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The reason why we are on a higher imaginative level is
not because we have finer imagination, but because we
have better instruments.

A.N. Whitehead, Science and the Modern World VII, p.166
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1 The two main types of pencils

The first main type of a “pencil of circles” or “coaxal system of circles” ([Ped90, p.106]) is the
set of all circles passing through two points {𝐴, 𝐵} called “base points” of the pencil (see
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Figure 1: Pencil of “intersecting type”

figure 1). All pairs of circles of this pencil share the same “radical axis”, which is the line
𝐴𝐵 and is called the “radical axis of the pencil”. The orthogonal bisector line of the segment
𝐴𝐵 carries the centers of all the circles of the pencil and is called the “line of centers of the
pencil” . This type of pencil often called “elliptic” ([Cox61, p.85]) is also characteristically
called “intersecting pencil of circles.” The pencil has a smallest circle 𝜅, having as diameter
the segment 𝐴𝐵. There is no biggest circle in this pencil. With growing radius the circle
tends to the common radical axis, the line 𝐴𝐵, which is considered also as a degenerate
member of the pencil (a circle of infinite radius).
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Figure 2: Pencil of “non‑intersecting type”

The second main type is the set of “Apollonian circles of a segment 𝐴𝐵 ” (see figure 2). By
their definition the points {𝑋} of such a circle 𝜅 satisfy the condition

𝑋 ∈ 𝜅 ⇔ 𝑋𝐴
𝑋𝐵 = 𝑘, with a constant 𝑘.

The circles have now no common points and the pencil, often called “hyperbolic”, is also
characteristically called a “non‑intersecting pencil of circles”. The circles of the pencil have
in this case also a common radical axis which coincides with the orthogonal bisector line
of the segment 𝐴𝐵, called the “radical axis of the pencil”. The “line of centers” of the pencil is
now line 𝐴𝐵. The points {𝐴, 𝐵} are called “limit points” of the pencil. They are considered
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as members of the pencil with radius zero (see file Apollonian circles). The circles 𝜅 of
this pencil can be identified with those of the following theorem.

Theorem 1. The limit points {𝐴, 𝐵} of a non intersecting pencil are inverse relative to every circle
𝜅 of the pencil. They are also harmonic conjugate relative to the diametrically opposite points
{𝑈, 𝑉} of 𝜅, which are defined from its intersection with the center line of the pencil. Thus, every
pair (𝑈, 𝑉) of “harmonic conjugates” to (𝐴, 𝐵) is the diameter of a circle of the pencil and vice‑
versa.

2 The tangential type of pencils

The two previous are the main types of pencils. There are also some other pencils, which
can be considered as limiting cases of these two. Next pencil can be considered as limiting
case of a pencil of intersecting type, resulting when one of the common points, 𝐵 say,
tends to coincide with the other common point 𝐴. Figure 3 displays the resulting pencil
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Figure 3: Tangential pencil of circles

of circles often called “parabolic”. Its members are all tangent to a line 𝜀 at a fixed point
𝐴 of this line, therefore it is characteristically called a “tangential pencil of circles”. The line
𝜀 is the common radical axis of all pairs of circles of the pencil, called the “radical axis of
the pencil” and the orthogonal to it at 𝐴 is the “line of centers of the pencil”.

3 Pencils described by equations

The equation of a circle in cartesian coordinates results by expanding the simple expres‑
sion deriving directly from the definition of a circle 𝜅(𝑋0, 𝑟) with center 𝑋0 = (𝑥0, 𝑦0)
and radius 𝑟 ∶

𝜅 ∶ (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑟2 ⇔ 𝑥2 + 𝑦2 − 2𝑥0𝑥 − 2𝑦0𝑦 + (𝑥2
0 + 𝑦2

0 − 𝑟2) = 0.

The slightly more general equation involving a function of two variables

𝑓 (𝑥, 𝑦) = 𝑎(𝑥2 + 𝑦2) + 2𝑏𝑥 + 2𝑐𝑦 + 𝑑 = 0 (1)

comprises the case of lines (𝑎 = 0), considered as circles of infinite radius. Notice that
the equation comprises, for appropriate coefficients, the case of single points

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 0,



4 Common properties to all types of pencils 4

considered as circles with radius 𝑟 = 0. Comparing equation (1) with the one preceding
it, we see that the center of the circle is given by

𝑥0 = −𝑏
𝑎 , 𝑦0 = −𝑐

𝑎 and the radius

𝑥2
0 + 𝑦2

0 − 𝑟2 = 𝑑
𝑎 ⇔ 𝑟2 = 𝑏2 + 𝑐2 − 𝑎𝑑

𝑎2 . (2)

The pencils of circles are “lines” of circles defined as linear combinations of two “points”
in the space of all circles expressed through equations similar to equation (1). This means
that they are described by equations of the form

𝜆𝑓1(𝑥, 𝑦) + 𝜇𝑓2(𝑥, 𝑦) = 0 ⇔
𝜆(𝑎1(𝑥2 + 𝑦2) + 2𝑏1𝑥 + 2𝑐1𝑦 + 𝑑1) + 𝜇(𝑎2(𝑥2 + 𝑦2) + 2𝑏2𝑥 + 2𝑐2𝑦 + 𝑑2) = 0. ⇔

(𝜆𝑎1 + 𝜇𝑎2)(𝑥2 + 𝑦2) + 2(𝜆𝑏1 + 𝜇𝑏2)𝑥 + 2(𝜆𝑐1 + 𝜇𝑐2)𝑦 + (𝜆𝑑1 + 𝜇𝑑2) = 0. (3)

The variousmembers result by varying the pair of parameters (𝜆, 𝜇) . Pairs of parameters
satisfying (𝜆′, 𝜇′) = 𝑘(𝜆, 𝜇) with 𝑘 ≠ 0, define the same circle‑member, so that essentially
only the quotient (𝜆 ∶ 𝜇) is relevant for the definition of a member. The unique member
of such a pencil, which degenerates to a line, is obtained by setting

𝜆𝑎1 + 𝜇𝑎2 = 0 ⇔ (𝜆 ∶ 𝜇) = (−𝑎2 ∶ 𝑎1)

and the resulting line‑equation for these values of (𝜆, 𝜇)

2(𝜆𝑏1 + 𝜇𝑏2)𝑥 + 2(𝜆𝑐1 + 𝜇𝑐2)𝑦 + (𝜆𝑑1 + 𝜇𝑑2) = 0 (4)

expresses then the “radical axis” of the pencil. The kind of the pencil can be recognized
by the number of circles of radius 𝑟 = 0 i.e. points it comprises. This in turn, by means of
equation (2), is controlled by the number of solutions of equation

𝑏2 + 𝑐2 − 𝑎𝑑 = 0 ⇔ (𝜆𝑏1 + 𝜇𝑏2)2 + (𝜆𝑐1 + 𝜇𝑐2)2 − (𝜆𝑎1 + 𝜇𝑎2)(𝜆𝑑1 + 𝜇𝑑2) = 0,

which is homogeneous w.r. to (𝜆, 𝜇) and setting 𝑡 = 𝜆/𝜇 leads to the quadratic

(𝑡𝑏1 + 𝑏2)2 + (𝑡𝑐1 + 𝑐2)2 − (𝑡𝑎1 + 𝑎2)(𝑡𝑑1 + 𝑑2) = 0, ⇔
(𝑏2

1 + 𝑐2
1 − 𝑎1𝑑1)𝑡2 − 2(𝑏1𝑏2 + 𝑐1𝑐2 − 𝑎1𝑑2 − 𝑎2𝑑1)𝑡 + (𝑏2

2 + 𝑐2
2 − 𝑎2𝑑2) = 0. (5)

If this quadratic has two real solutions, then the pencil has two point‑members, which
is the case of the “hyperbolic” pencil of “non‑intersecting” type, the points being its “limit
points”. If there is only one solution then the pencil is “parabolic” of the “tangential” type,
and if there are no real solutions, then the pencil is of “elliptic” or “intersecting” type and
all circles pass through two fixed points {𝐴, 𝐵}, the “base points” of the pencil.

4 Common properties to all types of pencils

Next properties, formulated as separate propositions, are easy consequences of the def‑
initions and can be proved either geometrically or using the analytic description of the
previous section 3 (see also [Mcl91]).

Proposition 1. Every pair consisting of a circle 𝜇(𝑁, 𝑟) and a line 𝜀 defines exactly one pencil of
circles which contains the circle 𝜇 and has corresponding radical axis the line 𝜀.
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Proposition 2. Every pair of different points (𝐴, 𝐵) of the plane defines a unique pencil of non‑
intersecting type having them as limit points.

Proposition 3. Every pair (𝐴, 𝜀) of a point 𝐴 and a line or circle 𝜀 of the plane defines a unique
pencil of non‑intersecting type or tangential type containing them as members.

Proposition 4. Every pair of non concentric circles defines exactly one circle pencil which contains
them as members.

The previous propositions show that given a pair (𝛼, 𝛽) whose members are points, lines
or circles, with the exclusion of two lines, defines a pencil of circles containing them, for
which we say that it is “generated” by the pair.

Proposition 5. Given a pencil of circles, for every point 𝑋 of the plane there exists exactly one
pencil‑member 𝜅 which passes through it.

Proposition 6. Given a circle pencil and a circle 𝜅, which does not belong to the pencil and does
not have its center at the center line of the pencil, the radical axes of the pairs of circles (𝜅, 𝜇),
where 𝜇 is a circle that belongs to the pencil, pass all through a fixed point 𝐶 of the radical axis of
the pencil (see figure 4).
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Figure 4: All radical axes of pairs {(𝜇, 𝜅)} pass through C

Since the function representing the circle 𝑓 (𝑥, 𝑦) = (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟2 expres‑
ses also the “power” of the point 𝑋(𝑥, 𝑦) w.r.t. the circle, we have the following property:

Proposition 7. The circle 𝜇 belongs to the pencil 𝒫 , which is generated by the circles {𝜅, 𝜆} if
and only if, for every point 𝑋 of 𝜇 the ratio of powers of 𝑋 relative to the circles {𝜅, 𝜆} is constant.
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Figure 5: Locus of points with constant ratio of tangents to two circles

Proposition 8. Given the circles 𝜅(𝐴, 𝛼) and 𝜆(𝐵, 𝛽), the geometric locus of points 𝑋 for which
the ratio of the lengths of the tangents to the two circles 𝜅 and 𝜆 is fixed, is a circle 𝜇 which belongs
to the pencil defined by 𝜅 and 𝜆.
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Figure 6: |𝐴𝑋|
|𝐴𝑇| = |𝐵𝑌|

|𝐵𝑇| = |C𝑍|
|C𝑇|

Proposition 9. Given the circle 𝜅(𝑂, 𝑅) and a point 𝑇, different from the center 𝑂 of the circle,
the geometric locus of the points 𝐴 for which the ratio of the lengths |𝐴𝑇|

|𝐴𝑋| = 𝑘 is constant, where
𝐴𝑋 is the tangent to 𝜅 from 𝐴, is a circle 𝜆 of the pencil generated by the circle 𝜅 and the point 𝑇
(see figure 6).

Proposition 10. Given the circle 𝜅(𝑂, 𝑟) and a point 𝑇, three other points {𝐴, 𝐵, 𝐶} have the same
ratio of lengths of tangents to their distance from 𝑇

|𝐴𝑋|
|𝐴𝑇| = |𝐵𝑌|

|𝐵𝑇| = |𝐶𝑍|
|𝐶𝑇|

if and only if, the circumscribed circle 𝜆 of triangle 𝐴𝐵𝐶 belongs to the pencil generated by the
circle 𝜅 and the point 𝑇 (see figure 6).

Exercise 1. Given two circles {𝜅1(𝑂1, 𝑟1), 𝜅2(𝑂2, 𝑟2)} show that the distance 𝑑ℓ of the limit
points of the pencil they generate is

𝑑ℓ = 2𝑟1𝑟2
|𝑂1𝑂2|

√(𝑟2
1 + 𝑟2

2 − |𝑂1𝑂2|2)2

4𝑟2
1𝑟2

2
− 1 .

which has a value: real for hyperbolic, zero for parabolic and imaginary for elliptic pencils.

5 Orthogonal circles

Orthogonal circles are formed with the help of tangents to circles from a given point. The
tangents {𝑃𝐴, 𝑃𝐵} to the circle 𝜅(𝑂, 𝑟) from a point 𝑃 are equal, therefore they define a
circle 𝜆(𝑃, 𝑟′), which has these tangents as radii (see figure 7‑(I)). At the intersection point
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Figure 7: Right circles Harmonic quadruple (𝐴𝐵𝐶𝐷) = −1

𝐴 of the two circles the angle between their radii is a right one. This is a mutual relation.
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The circle 𝜅 can be considered that it results the same way, from the tangents to 𝜆 from 𝑂.
Two intersecting circles, whose radii at the intersection points are orthogonal are called
“orhogonal circles”. By definition, therefore, this is equivalent to:

“At one of their intersection points, the radius of one is tangent to the other”.
From this characteristic property follow also the two next corollaries.

Corollary 1. Two circles {𝜅(𝑂, 𝑟), 𝜆(𝑃, 𝑠)} are orthogonal, if and only if

|𝑂𝑃|2 = 𝑟2 + 𝑠2.

Corollary 2. Two circles {𝜅, 𝜆} are orthogonal, if and only if the diametrically opposite points
{𝐴, 𝐵} of one and {𝐶, 𝐷} of the other, on their center line, build a harmonic quadruple (see figure
7‑(II)).

This follows directly from the characteristic property of a harmonic quadruple of
points.

Exercise 2. Construct a circle 𝜆, orthogonal to a given circle 𝜅(𝑂, 𝑟) and having its center at a
given point 𝑃 external to 𝜅.
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Figure 8: Similar triangles 𝐴𝐸𝑍, 𝐵𝑀𝐶 Diametrically opposite points 𝑀, 𝑁

Exercise 3. Show that the circles {𝜅, 𝜆}, intersecting at points {𝐴, 𝐵} are orthogonal, if and only
if one of the following conditions holds:

1. Every line through point 𝐴 defines points {𝑀, 𝐶} on circles {𝜅, 𝜆} such that the angle 𝐶𝐵𝑀
is a right one.

2. For every point𝐶 of 𝜆 the lines {𝐶𝐴, 𝐶𝐵} intersect again the circle 𝜅 at diametrically opposite
points {𝑀, 𝑁}.

3. The tangents to the circles at {𝑀, 𝐶} intersect orthogonally.

Hint: The triangles 𝐸𝐴𝑍 and 𝐵𝑀𝐶 are similar evenwhen the circles are not orthogonal
(see figure 8‑(I)). (2) draw 𝐵𝑀 and use (a) (see figure 8‑(II)).

Theorem 2. The circles 𝜇, which are simultaneously orthogonal to the non concentric circles
{𝜅, 𝜆}, have their centers on the radical axis of {𝜅, 𝜆}.

If the circles 𝜇(𝑆, 𝜌) and 𝜅(𝑂, 𝜌′) are orthogonal, then their radii at one of their inter‑
section points 𝐴 will be orthogonal (see figure 9‑(I)), therefore line 𝑆𝐴 will be tangent to
𝜅. The same will happen also with circles 𝜇 and 𝜆. Consequently the tangents from point
𝑆 towards the given circles will be equal and point 𝑆 will lie on the radical axis of 𝜅 and 𝜆.

Corollary 3. A circle 𝜇 orthogonal to two other cirlces {𝜅, 𝜆} is simultaneously orthogonal also
to every circle of the pencil generated by {𝜅, 𝜆}.
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Figure 9: Orthogonal to two circles Orthogonal to intersecting pencil

If 𝜇 is orthogonal to {𝜅, 𝜆} its center will be contained in the radical axis of{𝜅, 𝜆}, which is
also the radical axis of the pencil produced by {𝜅, 𝜆}. Consequently 𝜇 will have the same
power relative to all the circles of this pencil. Thus, if 𝜇(𝑆, 𝑟) intersects a third circle 𝜈 of
the pencil at 𝐴, then the radius 𝑆𝐴 of 𝜇 will also be tangent to 𝜈, therefore the two circles
will be orthogonal.

6 Orthogonal pencils

By means of corollary 3 pencils “go in pairs”. Each pencil defines a second, consisting
of all circles which are orthogonal to all circles of the first pencil. In the case of an intersect‑
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Figure 10: Pencils orthogonal to intersecting/non‑intersecting pencils

ing pencil, the orthogonal one is a non‑intersecting (see figure 10‑(I)) and in the case of
non‑intersecting the orthogonal is an intersecting pencil (see figure 10‑(II)). Thus, orthog‑
onality interchanges these two types of pencils. The radical axis of one becomes line of
centers of the other.

In the case of a tangential pencil, its orthogonal consists of all circles passing through
the same contact point 𝐴 of the first pencil, but this time tangent there at the line which
is orthogonal to the common tangent of the first pencil. Thus, in this case the orthogonal
pencil of a tangential pencil is a tangential pencil too (see figure 11).



7 Three exeptional types of pencils 9

A

Figure 11: Pencil orthogonal to a tangential one

7 Three exeptional types of pencils

Next figure displays the three last types of pencils consisting, in the first case, of lines
passing from a fixed point (see figure 12‑(I)). These lines are considered as very large
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Figure 12: Pencils resulting from the previous as limiting cases

circles of an intersecting pencil, whose one of the common points 𝐵 is at infinity. The
pencil in this case coincides with a “pencil of lines”. The next type results from a tangential
pencil, whose contact point 𝐴 is at infinity, hence the circles become parallel lines (see
figure 12‑(II)). The third pencil consists of concentric circles (see figure 12‑(III)) and can
be considered as limiting case of a non‑intersecting pencil, in which the point 𝐵 tends to
coincide with point 𝐴. Some times these pencils are called “exceptional”, since they lack
a real radical axis and line of centers.

Including these exceptional cases in the set of all pencils we can formulate the follow‑
ing theorem (see file Inversion).

Theorem 3. An inversion w.r. to a circle 𝜅 maps a pencil of circles to another pencil of circles.

The theorem follows from the property of inversions to map the set 𝒦 of all circles
and all lines of the plane into 𝒦 itself ([Joh60, p.44]). As will be seen below, using an
appropriate inversion, it is possible to invert a usual pencil of circles to an exceptional
one and vice‑versa.

In the case of “exceptional” pencils, the orthogonals are seen in figure 13. In accor‑
dance with the main types from which they result as limiting cases, here we have again
an interchange of types (𝐼) ↔ (𝐼𝐼𝐼) and an orthogonal of the same type in figure 13‑(II).
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Figure 13: Pencils orthogonal to exceptional pencils

8 Reduction to exceptional cases

Using an appropriate “inversion transformation” we can transform the main types of pen‑
cils and the tangential one to corresponding exceptional types. For the intersecting type
we can apply an inversion with center at one of the common points {𝐴, 𝐵} of the pencil,
and an arbitrary radius. Figure 14 shows the inversion on circle 𝜆(𝐵, |𝐴𝐵|) of a pencil of
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Figure 14: Intersecting pencil inverted to pencil of lines

intersecting type. The inverted of the circle members are the lines through 𝐴 . Thus, by
this inversion the pencil transforms to the pencil of lines through 𝐴. Each circle trans‑
forms to the line passing through 𝐴 and its second intersection with 𝜆. The smallest
circle of the pencil 𝜅 transforms to the line 𝜅′ tangent to 𝜅 at 𝐴.

Figure 15 shows the inversion on circle 𝜆(𝐵, |𝐴𝐵|) of a pencil of non‑intersecting type.
The inverted of the circle members are the concentric circles with center at 𝐴. Each circle
member of the pencil transforms to the circle with center at 𝐴 and passing through its
intersection points with 𝜆. The radical axis 𝜀 of the pencil transforms to such a circle 𝜀′

coinciding with the symmetric of 𝜆 w.r. to 𝜀. The reason for this behaviour is the fact
that inversions preserve angles. In fact, the orthogonal to the original pencil is of intersecting
type, containing members such as the circle 𝜅 in figure 15. Such circles transform by
the inversion to lines through 𝐴, like line 𝜅′ in figure 15. Consequently the original
pencil transforms to the orthogonal of the pencil of lines through 𝐴, which is the pencil
of concentric circles.

Finally figure 16 shows the inversion on a circle 𝜆(𝐵) of a pencil of tangential type.
The inverted of the circle members are lines parallel to the common tangent 𝜀 of the
original pencil.
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Figure 15: Non‑intersecting pencil inverted to pencil of concentric circles
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Figure 16: Tangential pencil inverted to a pencil of parallel lines

A typical application of this reduction to the exceptional cases is the following theorem
known as “Haruki’s lemma”

Theorem 4. The intersection points of two pairs of circles {(𝛼, 𝛽), (𝛾, 𝛿)}, the first belonging to
a circle pencil and the second pair belonging to its orthogonal pencil, lie by four on eight circles.
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Figure 17: Intersections of pairs of orthogonal circles
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Proof. Figure 17 shows two such pairs and two, out of the eight, circles passing through
intersection points of the circle pairs. The theorem becomes trivial if we perform an inver‑
sion w.r. to a circle of arbitrary radius but center at the base point 𝑂 of the intersecting
pencil. The configuration transforms by this inversion to the one shown in figure 18, for
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Figure 18: Inverted intersections of pairs of orthogonal circles

which the proof is trivial.

Figure 19 shows the form obtained by the configuration of the previous theorem in
the case of orthogonal pencils of tangential type. The proof for this case, in which there
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Figure 19: Intersections of pairs of orthogonal circles of tangential type

is one only circle, uses a similar argument to the previous one.

9 Two prominent pencils

There are two much studied pencils of circles connected, the first with a triangle and the
secondwith a quadrangle. The first is the pencil generated by the three “Apollonian circles”
{𝜅𝐴, 𝜅𝐵, 𝜅𝐶} of the triangle 𝐴𝐵𝐶. The circles are defined by the property of their points {𝑋}
to have constant ratio of distances from the vertices (see figure 20):

𝜅𝐴 = {𝑋 ∶ 𝑋𝐵
𝑋𝐶 = 𝐴𝐵

𝐴𝐶} , 𝜅𝐵 = {𝑋 ∶ 𝑋𝐶
𝑋𝐴 = 𝐵𝐶

𝐵𝐴} , 𝜅𝐶 = {𝑋 ∶ 𝑋𝐴
𝑋𝐵 = 𝐶𝐴

𝐶𝐵 } .

The three circles intersect at two points, the “isodynamic points” of the triangle and the
line they define is called “Brocard axis” of the triangle. It passes through the “symmedian
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Figure 20: The “Apollonian circles” pencil of the triangle

point” 𝐾 and the “circumcenter” 𝑂 of the triangle. The centers of the circles lie on the
“Lemoine axis” of the triangle, which is orthogonal to the Brocard axis. The Lemoine axis
is the “trilinear polar” of the symmedian point 𝐾 and also the “polar” of 𝐾 w.r. to the
circumcircle 𝜅. The three circles are also orthogonal to the circumcircle 𝜅. More on this
can be found in the file Apollonian circles of a triangle and isodynamic points.
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Figure 21: The “Newton” pencil of the quadrangle

The second prominent pencil (see figure 21) is connected with the “diagonals” of a
complete quadrangle. It is generated by the three circles having as diameters the three
“diagonals” {𝐴𝐶, 𝐵𝐷, 𝐸𝐹} of the quadrangle. The centers of these circles lie on the “Newton
line” of the quadrangle joining the middles of the diagonals of the quadrangle.
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10 Polars and poles w.r. to members of a pencil

Theorem 5. The polars 𝜀𝑃 of a point 𝑃 w.r. to the member‑circles 𝜅 of a pencil 𝒫 pass through
the point 𝑃′, which is the diametral of 𝑃 w.r.t. the circle 𝜆 of the orthogonal pencil of the pencil
𝒫 passing through 𝑃 (see figure 22).

κ

λ

P

P'

ε
Ρ

Q

ε

Figure 22: The polars of 𝑃 pass all through 𝑃′

Proof. The proof follows by considering the projection 𝑄 of 𝑃 on the polar 𝜀𝑃 of 𝑃 w.r.
to the circle 𝜅. This is the inverse of 𝑃 w.r. to 𝜅 and every circle passing through {𝑃, 𝑄} is
orthogonal to 𝜅. In particular the circle 𝜆 passing through {𝑃, 𝑄} and with center on the
radical axis 𝜀 of the pencil 𝒫 defines the unique circle of the orthogonal pencil passing
through 𝑃. The polar 𝜀𝑃 is orthogonal to 𝑃𝑄 at 𝑄 and passes through the diametral
point 𝑃′ of 𝜆, which is the same for all members 𝜅 ∈ 𝒫.
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Figure 23: The poles 𝑃 of line 𝜀 w.r. to circle‑members {𝜅}
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Considering the poles of a fixed line 𝜀 w.r. to the circle‑members {𝜅} of a pencil we
find themdefining certain hyperbolas and in some cases parabolas and degenerate conics.

Theorem 6. The poles of a fixed line w.r.t. the circle‑members of a pencil lie on a conic, which is
a hyperbola or parabola or a degenerate conic (see figure 23).

Proof. Here we discuss the case of an intersecting pencil, leaving the other cases as exer‑
cises. The pencil we consider has base points {𝐴, 𝐵} lying symmetrically w.r.t. the origin
on the y‑axis (see figure 23). All circles 𝜅(𝐾, 𝑟) of this pencil pass through {𝐴(0, 𝑎), 𝐵(0, −𝑎)}.
The circles are easily seen to have centers 𝐾(𝑘, 0) and be defined by equations of the form:

𝑥2 + 𝑦2 − 2𝑘𝑥 − 𝑎2 = 0 with 𝑘 = 𝑢2 − 𝑎2

2𝑢 , 𝑟 = |𝐾𝑈| = 𝑢2 + 𝑎2

2|𝑢| , (6)

where we denote by 𝑈(𝑢, 0) a running point on the x‑axis, defining the circle 𝜅(𝐾, 𝑟).
Assuming also the line to be given by an equation of the form

𝑥
𝑠 + 𝑦

𝑡 = 1, (7)

we find, using the relation 𝐾𝑄 ⋅ 𝐾𝑃 = 𝑟2 and some simple calculations, the expression
satisfied by the poles 𝑃 of 𝜀 w.r. to 𝜅 ∶

𝑠 ⋅ 𝑥2 − 𝑡 ⋅ 𝑥𝑦 − 𝑠𝑡 ⋅ 𝑦 + 𝑠𝑎2 = 0, (8)

which represents in general (𝑠𝑡 ≠ 0) a hyperbolawith an asymptote orthogonal to the line
𝜀 at 𝑆 and the other asymptote parallel to the y‑axis and passing through −𝑆. The exclu‑
sion of ellipseswas expected, since, as the center 𝐾 of 𝜅 approaches 𝑆, the corresponding
pole 𝑃 tends to infinity, hence the geometric locus of points {𝑃} is not bounded.
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Figure 24: Parabola generated when the line 𝜀 is parallel to the line of centers

Figure 24 shows the case of a line 𝜀 parallel to the line of centers of the pencil of circles.
In this case the poles 𝑃 of 𝜀 w.r.t. to the member‑circles lie on a parabola. The focus of
the parabola in this figure is the base point 𝐴 of the pencil.

Next sections show some other instances of the intimate relation of circle pencils with
hyperbolas.
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11 Quadratic transformation defined by a pencil

Returning to theorem 5 and the corresponding figure 22, we consider a pencil 𝒫 and
the associated to it transformation 𝑓 ∶ 𝑃 ↦ 𝑃′, which to every point 𝑃 associates the
common point 𝑃′ of all polars of 𝑃 w.r. to the circle members of the pencil. The recipe
of construction of 𝑃′ involves the orthogonal pencil 𝒬 of 𝒫. For each point 𝑃 we select
the unique circle member 𝜆 ∈ 𝒬, and define 𝑃′ as the diametral point of 𝑃 w.r. to 𝜆. It
is obvious that this is an “involutoric” transformation, i.e. it sastisfies 𝑓 2 = 𝑒, the symbol 𝑒
denoting the identity transformation. In other words, the transformation 𝑓 behaves like
a reflection, being identical with its inverse transformation i.e. satisfying 𝑓 (𝑃′) = 𝑃. Next
theorem gives a more precise description of it ([Pon65, I,p.43]).

Theorem 7. The transformation 𝑓 is a “quadratic” one, transforming lines to conics of all kinds
except ellipses.

P
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O

ε

f(ε)

λ

Figure 25: The quadratic transformation 𝑓 ∶ 𝑃 ↦ 𝑃′

Proof. We handle here the case of a pencil 𝒫 of non‑intersecting type, leaving the other
cases as exercises. In this case the circle members {𝜆} of the orthogonal pencil 𝒬 pass
through two fixed points {𝐴, 𝐵}, which can be taken on the x‑axis symmetric w.r. to the
origin (see figure 25). A short calculation shows then that the transformation is given by

𝑃(𝑝1, 𝑝2) ↦ 𝑃′(𝑝′
1, 𝑝′

2) = 𝑓 (𝑃) with ⎛⎜
⎝

𝑝′
1 = −𝑝1 , 𝑝′

2 =
𝑝2

1 − 𝑎2

𝑝2
⎞⎟
⎠

, (9)

where 𝐴(𝑎, 0). It is easily seen from the formula and also from the figure, that the coor‑
dinate vectors have a constant inner product

𝑃 ⋅ 𝑃′ = −𝑎2.

Assuming the line 𝜀 represented in parametric form

𝜀 ∶ 𝑥 = 𝛼𝑡 + 𝛽, 𝑦 = 𝛾𝑡 + 𝛿,
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taking 𝑓 (𝑥, 𝑦) and eliminating the parameter 𝑡, we find the equation satisfied by

𝑓 (𝜀) ∶ 𝛼 ⋅ 𝑥2 + 𝛾 ⋅ 𝑥𝑦 + (𝛽𝛾 − 𝛼𝛿) ⋅ 𝑦 − 𝑎2𝛼 = 0, (10)

representing, for 𝛾 = 0 a parabola and for 𝛾 ≠ 0 a hyperbola (see file The quadratic
equation in the plane).

Remark 1. The name “quadratic” stems from the expression (9), which in homogeneous
coordinates is described by the equations

𝑥′ = −𝑥𝑦, (11)
𝑦′ = 𝑥2 − 𝑎2𝑧2, (12)
𝑧′ = 𝑦𝑧, (13)

which on the right have quadratic polynomials. The transformation belongs to the more
general group of “Cremona transformations”, studied in the context of “algebraic geometry”
([ea70, p.19], [Ode16, p.329]). The transformation is well defined and 1‑1 everywhere
except for the points of three lines, which are the x‑axis and the two parallels to the y‑axis
at 𝑥 = ±𝑎. On these two lines the transformation is not 1‑1, but sends each line to a point.
The three points in homogeneous coordinates

(𝑎, 0, 1), (−𝑎, 0, 1), (0, 1, 0),

which are the solutions of the system of equations 𝑥′ = 𝑦′ = 𝑧′ = 0, and represent the
intersections of the three exceptional lines are called “fundamental points” of the transfor‑
mation. All the conics‑images of lines under this transformation pass through these three
points.

Remark 2. An analogous quadratic transformation can be defined more generally for
a “pencil of conics” through four fixed points (see figure 26). The fundamental points in
this case are the three diagonal points {𝐴, 𝐵, 𝐶} of the complete quadrangle of the four
fixed points. The corresponding quadratic transformation 𝑓 is defined as before: the

C
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ε

f(ε)

α

β

P

f(P)

Figure 26: More general quadratic transformation 𝑃 ↦ 𝑓 (𝑃)

polars of 𝑃 w.r. to the conics of the pencil pass through the same point 𝑃′ = 𝑓 (𝑃). The
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transformation, referred to the “projective coordinate system” of the triangle of these three
points, takes then the form of the usual “isogonal transformation”

𝑥′ = 𝑦𝑧, 𝑦′ = 𝑧𝑥, 𝑧′ = 𝑥𝑦.

The images 𝑓 (𝜀) of lines {𝜀} are again conics passing through the three fundamental points
{𝐴, 𝐵, 𝐶}. These are the “triangle conics” or “circumconics” of the triangle 𝐴𝐵𝐶 ([Yiu13, p.
109]), forming the so called “homaloidal net” of conics in the context of Cremona quadratic
transformations ([ea09, p.294]).

Remark 3. From equation (9) follows that lines 𝜀 parallel to the y‑axis map under 𝑓 to
degenerate conics consisting of two lines: the x‑axis and the symmetric to 𝜀 w.r. to the
y‑axis. This refines the type of the quadratic transformation 𝑓 to the type of “de Jonquieres
transformations”, which are Cremona transformations of the plane preserving a pencil of
lines ([Des09, p.51]).

Remark 4. For a member circle 𝜅 ∈ 𝒫 the quadratic transformation maps it to a curve
𝜅′ = 𝑓 (𝜅) of degree four. Figure 27 displays such an example for a circle 𝜅 of the pencil
of non‑intersecting type with limit points {𝐴(𝑎, 0), 𝐵(−𝑎, 0)} lying on the x‑axis symmetric
w.r. to the origin. The circle can be parameterized by its diametral points {𝑈(𝑢, 0), 𝑉(𝑣, 0)}
satisfying 𝑢𝑣 = 𝑎2. A short computation shows that the curve 𝜅′ satisfies the equation

𝑦2(𝑢𝑥 + 𝑎2)(𝑥 + 𝑢) + 𝑢(𝑥2 − 𝑎2)2 = 0.
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Figure 27: Transform 𝑓 (𝜅) of 𝜅 ∈ 𝒫

12 Hyperbola from a pencil of circles

Next properties supply an alternative way to define a hyperbola using a pencil of circles
passing through two fixed base points. The appropriate configuration consists of two lines
{𝑂𝐴, 𝑂𝐵} and two points {𝐹, 𝐹′}, taken symmetrically relative to 𝑂 and also lying on a
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Figure 28: Hyperbola defined by a pencil of circles {𝛼}

bisector of the angle of the two lines. We then consider all circles {𝛼} passing through
{𝐹, 𝐹′} and intersecting the lines along the chords {𝐴𝐵, 𝐶𝐷} (see figure 28).

Theorem 8. Under the previous conventions, the following are valid properties.

1. The triangles {𝐴𝐹′𝑂, 𝐵𝑂𝐹′, 𝐴𝐵𝐹} are similar.
2. The triangles {𝐹′𝐵𝐴, 𝑂𝐹𝐴} are similar.
3. The middle 𝑃 of 𝐴𝐵 moves on a hyperbola with focal points {𝐹, 𝐹′}.
4. The line 𝐴𝐵 is tangent at 𝑃 to the previous hyperbola.

Proof. Nrs 1‑2 follow by observing the angles inscribed in the circle 𝛼.
Nr‑3. Define first {𝑥 = 𝐴𝐹, 𝑦 = 𝐴𝐹′, 𝑑 = 𝑃𝐹, 𝑒 = 𝑃𝐹′, 𝑚 = 𝐴𝑂}. Then from the similar‑

ity of the triangles we have

𝑑
𝑥 = 𝑂𝑁

𝑚 , 𝑒
𝑦 = 𝑂𝑀

𝑚 ⇒ 𝑒 − 𝑑 = 1
𝑚(𝑦𝑂𝑀 − 𝑥𝑂𝑁) = 1

2𝑚(𝑦2 − 𝑥2).

But the difference 𝑦2 − 𝑥2 = 𝐹′𝑆2 − 𝐹𝑆2 = 2𝐹𝐹′ ⋅ 𝑂𝑆. Hence

1
2𝑚(𝑦2 − 𝑥2) = (𝐹𝐹′ ⋅ 𝑂𝑆)/𝑚 = 𝐹𝐹′ cos(𝜙).

This shows that𝑃 is on the hyperbolawith focal points {𝐹, 𝐹′} andmajor axis 2𝑎 = 𝐹𝐹′ cos(𝜙).
Since 2𝑐 = 𝐹𝐹′, we have also that 𝑏 = 𝑐 sin(𝜙) and the two lines {𝑂𝐴, 𝑂𝐵} are asymptotes
of the hyperbola.

Nr‑4 follows by showing that 𝑃𝐵 is a bisector of the angle 𝐹′𝑃𝐹. In fact, by the equality
of the angles 𝐴𝑂𝐵 = 2𝜙 = 𝐴𝐸𝐵, where 𝐸 is the circumcenter of 𝐴𝐹𝐹′, follows that points
{𝐴, 𝐸, 𝑂, 𝐵, 𝑇} are concyclic on a circle 𝛽 and 𝑇𝐸 is a diameter of it, which passes through
the middle 𝑃 of 𝐴𝐵. Then, point 𝑇 is the pole of 𝐴𝐵 and 𝑃(𝐹𝐹′; 𝐵𝑇) is a harmonic pencil
with two orthogonal rays {𝑃𝐵, 𝑃𝑇}. Hence these rays are bisectors of the angle of the other
two.

Next theorem and corresponding figure 29 summarizes again the same properties
stressing the role of the angles involved.
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Figure 29: Property of the general asymptotic triangle

Theorem 9. The asymptotic triangle 𝑂𝐴𝐵 defines three triangles {𝐹𝐴𝐵, 𝑂𝐵𝐹′, 𝑂𝐹′𝐴}, which are
similar and the angle 𝐴𝐹𝐵 is constant and equal to 𝐹′𝑂𝐵 = (360∘ − 𝜔)/2, where 𝜔 is the angle
between the asymptotes .

Corollary 4. There is a unique hyperbola having for asymptotes the diagonals {𝐴𝐵′, 𝐴′𝐵} of an
isosceles trapezium 𝐴𝐴′𝐵′𝐵 and passing through the middles of the non‑parallel sides.

From the similarity of triangles {𝐴𝑂𝐹′, 𝐹′𝑂𝐵}, follows that the distance of𝑂 from the sides
{𝐹′𝐴, 𝐹′𝐵} of the triangle 𝐹′𝐴𝐵 is proportional to the lengths of these sides, something that
characterizes the “symmedian line” 𝐹′𝐾 of a triangle, hence the property. This proves next
theorem.

Theorem 10. All triangles 𝐴𝐵𝐹′, created from the asymptotic triangle 𝑂𝐴𝐵, have the angle 𝐹′

constant and equal to half the angle of the asymptotes. In addition 𝐹𝐹′ is the symmedian line from
𝐹′, hence the symmedian point 𝐾 of this triangle lies on line 𝐹𝐹′, which is also a bisector of the
angle 𝐴𝑂𝐵. Analogously, line 𝐹𝐹′ is also a symmedian of the triangle 𝐴𝐹𝐵.

Theorem11. Ahyperbola, whose asymptotes {𝑂𝐴, 𝑂𝐵}make an angle𝜔, is generated by rotating
an angle of measure 𝐴𝐹′𝐵 = 𝜔/2 or 𝐴𝐹𝐵 = 180∘ − 𝜔/2, about their fixed vertices {𝐹, 𝐹′}, which
are points of a bisector of the fixed angle 𝜔. The rotating angle intersects the fixed angle 𝜔 at
points {𝐴, 𝐵} and the hyperbola is the locus of the middle 𝐷 of 𝐴𝐵. Lines 𝐴𝐵 are tangents to this
hyperbola.

13 Rectangular hyperbolas related to pencils of circles

Theorem 12. The circles having for diameter chords of a rectangular hyperbola parallel to the
direction 𝛼, define a “pencil” 𝒟 . Their centers lie on the conjugate diameter 𝜀 of 𝛼 and their
radical axis 𝜁 is the orthogonal diameter to 𝜀 through the center 𝑂 of the hyperbola (see figure
30). The orthogonal to this pencil 𝒟 ′ is created analogously by the orthogonal to 𝛼 direction 𝛽 of
parallel chords.

Proof. We sketch the proof in the case of the rectangular hyperbola 𝑥𝑦 = 1. The general
rectangular hyperbola is similar to this one and the property in question is invariant under
similarities. Assume that the direction is determined by a vector 𝛼 = (𝑎1, 𝑎2). A typical
point on the conic is of the form 𝑋(𝑡) = (𝑡, 1/𝑡) and the other point of the conic on the
line 𝑋(𝑡) + 𝜆 ⋅ 𝛼 is easily seen to be

𝑋′(𝑡) = 𝑋(𝑡) + 𝜆 ⋅ 𝛼 with 𝜆 = 𝑎1 + 𝑎2𝑡2

𝑎1𝑎2𝑡 .
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Figure 30: Pencil on parallel chords

Setting 𝑋0 = (𝑋 + 𝑋′)/2 for the center and 𝑟2 = (𝑋 − 𝑋′)2/4 for the radius, the variable
circles with diameters 𝐴′𝐵′ are described by the equation:

𝑓𝑡(𝑥, 𝑦) = (𝑥 − 𝑋0(𝑡))2 + (𝑦 − 𝑌0(𝑡))2 − 𝑟2(𝑡) = 0.

The radical axis of two such circles {𝜅, 𝜅′}, characterized by the parameters {𝑡, 𝑡′} is given
by the equation

𝑓𝑡(𝑥, 𝑦) − 𝑓𝑡′(𝑥, 𝑦) = (𝑎1𝑥 − 𝑎2𝑦)(𝑡′ − 𝑡)(𝑎2𝑡𝑡′ + 𝑎1)
𝑎1𝑎2𝑡𝑡′ = 0 ⇔ 𝑎1𝑥 − 𝑎2𝑦 = 0 ,

which is independent of the values {𝑡, 𝑡′}, showing that the circles belong to a pencil. The
direction of the radical axis given by (𝑎2, 𝑎1) and its orthogonal direction (𝑎1, −𝑎2) is the
one of the line of centers. All other claims are easily proved from these remarks. Notice
that point 𝐸 in figure 30 is a limit point of the pencil and |𝑂𝐸| is the length of the tangent
from 𝑂 to every member‑circle of the pencil. In this figure the radical axis 𝜁 does not
intersect the hyperbola and the pencil𝒟 is of non‑intersecting type. The orthogonal pencil
𝒟 ′ consists of member‑circles 𝜆 on diameters with endpoints on different branches.

In figure 30 notice the line 𝜏, which is the radical axis of the pair of orthogonal circles
{𝜅, 𝜆} and coincides with the altitude from 𝐵′ of the right triangle 𝐴′𝐵′𝐶′. The theorem
has the following short of converse.

Theorem 13. Given a pencil of circles of intersecting or non‑intersecting type and a direction 𝛼,
the diametral points of the diameters of member‑circles, which are parallel to 𝛼 generate rectangular
hyperbolas.

Proof. We handle the case of non‑intersecting pencils. The other case can be reduced to
this one by considering the orthogonal to the given pencil and applying the last claim of
theorem 12.

Let {𝐸, 𝐸′} denote the limit points of the pencil of non‑intersecting type. Drawing the
line 𝛼 from 𝐸 realizing the given direction, we have a system of lines determining a
rectangular hyperbola (see figure 31). In fact, the line 𝛽 = 𝐸𝐸′ joining the limit points of
the given pencil and the parallel lines {𝛼, 𝛼′} through these points determine the bisectors
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Figure 31: Rectangular hyperbola generated by a pencil of circles {𝜅}

{𝛾, 𝛿} of the angles of lines {𝛼, 𝛽}. There is then a unique rectangular hyperbola having
aysmptotes the lines {𝛾, 𝛿} and passing through 𝐸. This hyperbola passes through the
symmetrics {𝐸1, 𝐸′, 𝐸2} of 𝐸 w.r.t. the bisectors {𝜀, 𝜁} of the angles of lines {𝛾, 𝛿}. It is also
required to pass through a fifth point 𝐸″, whose projections on the axes {𝛾, 𝛿} define a
parallelogram with area equal to the area of the corresponding parallelogram defined by
the point 𝐸.

Having the hyperbola, we consider its intersections with lines parallel to 𝛼. By theo‑
rem 12 we know that the circles having diametral points these intersections build a pencil
with limit points {𝐸, 𝐸′}, hence coinciding with the given pencil.

Figure 32: Tangential pencil and diameters in a fixed direction

Exercise 4. Show that the corresponding proposition for a tangential pencil produces a pair of
orthogonal lines. More precisely, the diametral points of the member‑circles of a tangential pencil
defining a line with fixed direction lie on a degenerate conic consisting of two orthogonal lines (see
figure 32).

Theorem 14. To the circles of a pencil of intersecting or non‑intersecting type, tangents at a fixed
given direction are drawn. The geometric locus of contact points 𝑃 is a rectangular hyperbola.

Proof. We handle the case of intersecting type, leaving the other one as an exercise (see
remark 5 below). Consider a circle 𝜅 with center 𝐾 of the pencil with base points {𝐴, 𝐵}
(see figure 33). We adopt for coordinate axes the lines {𝑂𝑥, 𝑂𝑦} inclined to the medial line
𝑂𝐾 of 𝐴𝐵 by half the fixed angle 𝜙 = 𝑇𝐾𝑃/2, defined by the orthogonal 𝐾𝑃 to the fixed
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Figure 33: Parallel tangents to circles of a pencil

direction of the tangents. Setting {𝑥 = 𝑌𝑃, 𝑦 = 𝑂𝑌}, we have

𝑥
𝑆𝑌 = 𝑇𝑌

𝑦 ⇒ 𝑥𝑦 = 𝑇𝑌 ⋅ 𝑆𝑌 = 𝑇𝑌 ⋅ 𝑌𝑃 cot(𝜙) = 𝑇𝑌(𝑇𝑃 − 𝑇𝑌) cot(𝜙)

but 𝑇𝑌(𝑇𝑃 − 𝑇𝑌) cot(𝜙) = (𝑂𝑇 sin(𝜙))(2𝐾𝑇 sin(𝜙) − 𝑂𝑇 sin(𝜙)) cot(𝜙)
= 𝑂𝑇(2𝐾𝑇 − 𝑂𝑇) cos(𝜙) = 𝑂𝐴2 cos(𝜙),

thereby proving the claim.

Remark 5. Figure 34 results from figure 33 by considering the other intersection point
𝑃′ of the locus‑hyperbola for the fixed direction of the tangent line 𝜂 of the circle 𝛼 of the
intersecting pencil𝒟 with base points {𝐴, 𝐵}. The circle𝛽with diameter𝑃𝑃′ belongs to the
orthogonal pencil𝒟 ′ and its tangent 𝜀 at𝑃′ has also fixed direction, namely the orthogonal
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Figure 34: Parallel tangents to circles of a non intersecting pencil

to that of 𝜂. Thus the same hyperbola is the locus of tangent points of tangents in the fixed
direction 𝜀 to the circles of the non‑intersecting pencil 𝒟 ′ with “limit points” {𝐴, 𝐵}.

Remark 6. It is trivial to see that the analogous problem for a “tangential pencil” of circles
leads to a pair of orthogonal lines, which are identical with the asymptotes {𝑂𝑥, 𝑂𝑦} of
theorem 14 if the common tangent to the pencil is 𝐴𝐵 and the common contact point is 𝑂
(see figure 33).

14 Some exercises related to pencils of circles

In the first exercise we consider two circles {𝜆, 𝜈} of an intersecting pencil with base points
{𝐷, 𝐸} (see figure 35). The lines {𝐴𝐷, 𝐴𝐸} for 𝐴 ∈ 𝜈 define triangles {𝐴𝐷𝐸, 𝐴𝐵𝐶}, where
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{𝐵, 𝐶} the second intersections of these lines with the circle 𝜆. The following properties
are easily verified:

1. The triangles {𝐴𝐵𝐶, 𝐴𝐷𝐸} are similar through an “anti‑similarity” 𝑓𝐴 with center 𝐴
and axis the bisector 𝐴𝑁 of 𝐴 passing through the middle 𝑁 of the arc 𝐸𝑁𝐷 of 𝜈.

2. The segment 𝐵𝐶 has constant length and 𝑟 = 𝐵𝐶/𝐸𝐷 is the constant ratio of the
similarity 𝑓𝐴, for all positions of 𝐴 ∈ 𝜈. The circumcircle 𝜅 of △ 𝐴𝐵𝐶 has constant
radius.

3. The orthocenter 𝐻′ of △ 𝐴𝐷𝐸 moves on a circle 𝜈′ of the pencil, equal to the cir‑
cumcircle 𝜈 of △ 𝐴𝐷𝐸. The orthocenter 𝐻 of △ 𝐴𝐵𝐶 moves on the image‑circle
𝜈″ = 𝑓𝐴(𝜈′) via the similarity.

4. The angles {𝐻𝐴𝐵, 𝐻′𝐴𝐷} are equal and 𝐴𝐻 is orthogonal to 𝐵𝐶. Since the ortho‑
center 𝐻′ and the circumcenter 𝐾′ of △ 𝐴𝐷𝐸 are isogonal conjugate points, line
𝐴𝐻 passes through 𝐾′.
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Figure 35: Variable triangle 𝐴𝐵𝐶 between two member circles {𝜆, 𝜈}

5. From the same equality of angles follows that the circumcenter 𝐾 of △ 𝐴𝐵𝐶 is on
the line 𝐴𝐻′.

6. The segment 𝐴𝐻′ between the equal circles {𝜈, 𝜈′} of the pencil has constant length,
hence also the segment 𝐴𝐻 = 𝑓𝐴(𝐴𝐻′) has constant length. It follows that the circle
𝜈″ is concentric with the circle 𝜈.

7. The ratio 𝐾′𝐻/𝐻𝐴 is constant and 𝐻𝐻′ passes through a fixed point 𝑄 on 𝐾′𝑁.
8. The segment 𝐾𝐾′ is divided by the line 𝑄𝐻′ in a constant ratio.
9. The second intersection 𝑆 of the circumcircles of the triangles {𝐴𝐵𝐶, 𝐴𝐷𝐸} is the

direct‑similarity center of the oriented segments {𝐵𝐶, 𝐸𝐷}.

Figure 36 shows another property of the preceding configuration.
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Exercise 5. The line 𝜁 = 𝐴𝑆 envelopes a conic sharing with the circle 𝜈 two common parallel
tangents at the points {𝐿, 𝑁}.

Hint: This follows immediately from the exercise 6 below, by observing that the perpen‑
dicular to 𝜁 at 𝐴 meets 𝐿𝑁 at a fixed point 𝑀 whose distance |𝐾′𝑀| = |𝐾𝐴| is equal to
the constant radius of the circle 𝜅.
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Figure 36: The conic enveloping the lines 𝜁 = 𝐴𝑆

Exercise 6. Let 𝑀 be a fixed point and 𝜈 a fixed circle. For every point 𝐴 ∈ 𝜈 consider the line
𝜁𝐴 orthogonal to 𝑀𝐴 at 𝐴. The lines {𝜁𝐴} envelope a conic 𝜇.

Hint: The solution of this reduces to the following one representing a standard generation
of a conic.

Exercise 7. Let 𝑀 be a fixed point and 𝜈 a fixed circle. For every point 𝐴 ∈ 𝜈 consider the
orthogonal bisector line 𝜆𝐴 of the segment 𝑀𝐴. The lines {𝜆𝐴} envelope a conic 𝜈 homothetic
to the conic 𝜇 of the preceding exercise w.r.t. 𝑀 by the ratio 1/2 (see figure 37).

ΜO

Α Ρ

S

ν

μ νλ
Α

D'

ν'

Q'

Figure 37: Two homothetic conics

Hint: Assume Μ to be external to the circle 𝜅 and extend 𝑂𝐴 to its intersection 𝑃 with
𝜆𝐴. Then ||𝑃𝑂| − |𝑃𝑀|| = |𝑂𝐴| is the constant radius of 𝜈. This implies that 𝜈 is a hyper‑
bola with focal points {𝑀, 𝑂}. The intersection 𝑆 of 𝑀𝑃 with the parallel to 𝜆𝐴 from 𝐴
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has the same relation with the circle 𝜈′ as 𝑃 with 𝜈. Here 𝜈′ is the homothetic of 𝜈 w.r.t.
to 𝑀 at the ratio 2.

Exercise 8. Given two circles {𝜅, 𝜆} the polars 𝜆𝑃 of points 𝑃 ∈ 𝜅 w.r.t. 𝜆 envelope a conic (see
figure 38).
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Figure 38: The conic enveloping the polars {𝜆𝑃}

Hint: Figure 38 shows such a conic enveloped by the lines {𝜆𝑃.} The line 𝜆𝑃 is orthogonal
to 𝑃𝐷 at the inverse 𝑄 of 𝑃 w.r.t. 𝜆, which moves on the circle 𝜅′ inverse of 𝜅 w.r.t.
𝜆. Thus we have the configuration of exercise 6.

On the occasion of the preceding figure notice that the contact point 𝑃′ of the line 𝜆𝑃
is the pol w.r.t. 𝜆 of the tangent 𝑡𝑃 of 𝜅 at 𝑃 (see figure 39). The inverse 𝑃″ of 𝑃′ w.r.t.
𝜆 is on 𝑡𝑃 coinciding with the projection of 𝐷 on 𝑡𝑃. Thus, the inverse of the hyperbola
𝜇 w.r.t. 𝜆 is the “pedal” of the circle 𝜅 w.r.t. 𝐷 i.e. the locus of projections of 𝐷 on the
tangents of the circle 𝜅. This is one of the traditional definitions of the “limacon”, which
is a curve of degree four ([Loc61, p.47], [Law72, p.113], [Ode16, p.406]). Since 𝐷 is one
of the focal points of 𝜇 this shows that “the inverse of a conic w.r.t. a circle with arbitrary
radius and center at a focal point is a limacon”. The figures below show the corresponding
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Figure 39: The inversion of the hyperbola 𝜇 to a limacon

shape of the limacon in the case of a parabola and an ellipse inverted w.r.t. an arbitrary
circle centered at a focal point 𝐷 of the conic. While the inversion of the hyperbola is a
limacon with a self‑intersection at 𝐷 , the parabola produces analogously a limacon with
a singular point (cusp) at 𝐷 which is traditionally called a “cardioid”. Finally the ellipse
produces a limacon without singular points.
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Figure 40: The inversion of the parabola 𝜇 to a limacon (cardioid)
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Figure 41: The inversion of the ellipse 𝜇 to a limacon

Remark 7. Finishing this discussion we should notice the definition of a “homographic
relation ” on a line 𝜀 through its intersections with the members of a pencil of circles. This
is discussed in the file Homographic relations.
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3. Barycentric coordinates
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5. Homographic relations
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Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
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