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1 Definition, first properties

Conway triangle symbols are called the expressions

𝑆𝐴 = 1
2(𝑏2 + 𝑐2 − 𝑎2), 𝑆𝐵 = 1

2(𝑐2 + 𝑎2 − 𝑏2), 𝑆𝐶 = 1
2(𝑎2 + 𝑏2 − 𝑐2). (1)

They come from a triangle 𝐴𝐵𝐶 with side‑lengths {𝑎, 𝑏, 𝑐} and angles lying respectively
opposite to them: {𝛼, 𝛽, 𝛾} [Yiu13a, p.33]. They are equivalent to the expressions

𝑆𝐴 = 𝑏𝑐 cos(𝛼), 𝑆𝐵 = 𝑐𝑎 cos(𝛽), 𝑆𝐶 = 𝑎𝑏 cos(𝛾). (2)

Their importance stems from the fact that they represent the “inner product of displacement
vectors” 𝑈 − 𝑈′, where {𝑈 = (𝑢, 𝑣, 𝑤), 𝑈′ = (𝑢′, 𝑣′, 𝑤′), …} are vectors of “absolute barycen‑
tric” coordinates, or “barycentrics”. Thus,

|𝑈𝑈′|2 = 𝑆𝐴(𝑢 − 𝑢′)2 + 𝑆𝐵(𝑣 − 𝑣′)2 + 𝑠𝐶(𝑤 − 𝑤′)2 (3)
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Figure 1: Triangle 𝐴𝐵𝐶 with side‑lengths {𝑎, 𝑏, 𝑐} and opposite angles {𝛼, 𝛽, 𝛾}

is the square of the distance of the points in the plane, which are represented by the coor‑
dinates vectors {𝑈, 𝑈′} and

𝑈𝑈′ ⋅ 𝑃𝑃′ = 𝑆𝐴(𝑢 − 𝑢′)(𝑝 − 𝑝′) + 𝑆𝐵(𝑣 − 𝑣′)(𝑞 − 𝑞′) + 𝑆𝐶(𝑤 − 𝑤′)(𝑟 − 𝑟′) (4)

represents the inner product of the displacement vectors

𝑈 − 𝑈′ = (𝑢 − 𝑢′, 𝑣 − 𝑣′, 𝑤 − 𝑤′) and 𝑃 − 𝑃′ = (𝑝 − 𝑝′, 𝑞 − 𝑞′, 𝑟 − 𝑟′),

where {𝑈, 𝑈′, 𝑃, 𝑃′} are vectors of absolute barycentrics, satisfying per definition

𝑢 + 𝑣 + 𝑤 = 𝑢′ + 𝑣′ + 𝑤′ = 𝑝 + 𝑞 + 𝑟 = 𝑝′ + 𝑞′ + 𝑟′ = 1.

Alternatively the inner product and the square distance can be represented using the side‑
lengths themselves:

|𝑈𝑈′|2 = −𝑎2(𝑣 − 𝑣′)(𝑤 − 𝑤′) − 𝑏2(𝑤 − 𝑤′)(𝑢 − 𝑢′) − 𝑐2(𝑢 − 𝑢′)(𝑣 − 𝑣′). (5)

Formore general barycentrics 𝑈 = (𝑢, 𝑣, 𝑤) with 𝑢 + 𝑣 + 𝑤 ≠ 1 we come to “absolute bary‑
centrics” by dividing with

𝑠𝑈 = 𝑢 + 𝑣 + 𝑤 giving the absolute barycentric: 𝑈∗ = 1
𝑠𝑈

𝑈 = 1
𝑠𝑈

(𝑢, 𝑣, 𝑤). (6)

From their definition, comes not to surprise that these symbols are ubiquitous in sub‑
jects of “triangle geometry” dealt with barycentrics ([Yiu13a], [Yiu13b], [Kim18]) (see file
Barycentric coordinates).

2 Identities resulting directly from definition

Next identities are easy consequences of the definition ([Yiu13a, p.33]). In these the ex‑
pression

𝑆 = 2Δ = 𝑎𝑏 sin(𝛾) = 𝑏𝑐 sin(𝛼) = 𝑐𝑎 sin(𝛽), (7)
is twice the area Δ of the triangle of reference 𝐴𝐵𝐶 and obviously hold the relations:

𝑆𝐴 = 𝑆 cot(𝛼), 𝑆𝐵 = 𝑆 cot(𝛽), 𝑆𝐶 = 𝑆 cot(𝛾), (8)
𝑆𝐵 + 𝑆𝐶 = 𝑎2, 𝑆𝐶 + 𝑆𝐴 = 𝑏2, 𝑆𝐴 + 𝑆𝐵 = 𝑐2, (9)
𝑆𝐵 − 𝑆𝐶 = 𝑐2 − 𝑏2, 𝑆𝐶 − 𝑆𝐴 = 𝑎2 − 𝑐2, 𝑆𝐴 − 𝑆𝐵 = 𝑏2 − 𝑎2, (10)

𝑆2
𝐴 = 𝑏2𝑐2 − 𝑆2, 𝑆2

𝐵 = 𝑐2𝑎2 − 𝑆2, 𝑆2
𝐶 = 𝑎2𝑏2 − 𝑆2, (11)

𝑆𝐴𝑆𝐵 + 𝑆𝐵𝑆𝐶 + 𝑆𝐶𝑆𝐴 = 𝑆2, (12)
𝑎2𝑆𝐴 + 𝑏2𝑆𝐵 + 𝑐2𝑆𝐶 = 2𝑆2, (13)

𝑎2(𝑆2
𝐴 − 𝑆𝐵𝑆𝐶) + 𝑏2(𝑆2

𝐵 − 𝑆𝐶𝑆𝐴) + 𝑐2(𝑆2
𝐶 − 𝑆𝐴𝑆𝐵) = 0. (14)

𝑆𝐴𝑆𝐵 + 𝑐2𝑆𝐶 = 𝑆𝐵𝑆𝐶 + 𝑎2𝑆𝐴 = 𝑆𝐶𝑆𝐴 + 𝑏2𝑆𝐵 = 𝑆2, (15)



3 Connection with the Brocard angle 3

3 Connection with the Brocard angle

The Brocard angle 𝜔 of the triangle is defined in two ways, corresponding to the two
orientations of the triangle 𝐴𝐵𝐶. One way to define it is to select the positive orientation
and draw lines from the vertices making the same angle 𝜙 with the sides (See Figure 2‑I).
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Figure 2: Brocard angle 𝜔 of the triangle 𝐴𝐵𝐶

In general the three resulting lines do not concur. It is proved though that, for a given
triangle 𝐴𝐵𝐶, there is precisely one angle 0 < 𝜔 < 60∘, for which this happens indeed
and the three lines concur at a point 𝐵1. Selecting the negative orientation in the same
triangle (See Figure 2‑II) and doing the same work produces again, up to orientation, the
same angle 𝜔, and a second point 𝐵2 of concurrence of the three lines. The two points are
called “Brocard points” of the triangle and the angle 𝜔 satisfies the remarkable relation to
the sides of the triangle, connecting it with the Conway triangle symbols:

cot(𝜔) = cot(𝛼) + cot(𝛽) + cot(𝛾) ⇒

𝑆𝜔 ∶= 𝑆 cot 𝜔 = 𝑆𝐴 + 𝑆𝐵 + 𝑆𝐶 = 1
2(𝑎2 + 𝑏2 + 𝑐2). (16)

The importance of the symbol 𝑆𝜔, defined in the previous line, lies in the possibility
to express with it and the symmetric functions of {𝑎, 𝑏, 𝑐} and {𝑆𝐴, 𝑆𝐵, 𝑆𝐶} all possible
“cyclic invariant expressions” involving {𝑎, 𝑏, 𝑐} and {𝑆𝐴, 𝑆𝐵, 𝑆𝐶}. Next delirium calculantis
gives a flavour of this fact. The sums appearing in the equations are considered over the
cyclic permutations of the letters {𝑎, 𝑏, 𝑐} and {𝐴, 𝐵, 𝐶}. Thus, considering the additional
symmetric functions in the side‑lengths of the triangle

2𝑠 = 𝑎 + 𝑏 + 𝑐 and 𝑅 = 𝑎𝑏𝑐
2𝑆 ,

latter proved easily to be the “circumradius”, and 𝑠 called the “half‑perimeter” of the trian‑
gle, we have:

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1
2((𝑎 + 𝑏 + 𝑐)2 − (𝑎2 + 𝑏2 + 𝑐2)) = 2𝑠2 − 𝑆𝜔. (17)

𝑎3 + 𝑏3 + 𝑐3 = (∑ 𝑎2) (∑ 𝑎) − ∑ 𝑎𝑏(𝑎 + 𝑏 + 𝑐 − 𝑐)
= (2𝑆𝜔)(2𝑠) − (2𝑠2 − 𝑆𝜔)(2𝑠) + 3𝑎𝑏𝑐
= (2𝑠)(3𝑆𝜔 − 2𝑠2) + 6𝑅𝑆. (18)
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∑ 𝑎(𝑏 + 𝑐)2 = ∑ 𝑎(𝑏 + 𝑐 + 𝑎 − 𝑎)2 = ∑ 𝑎((2𝑠)2 − 4𝑠𝑎 + 𝑎2)
= (2𝑠)3 − 4𝑠 ∑ 𝑎2 + ∑ 𝑎3 = 2𝑠(2𝑠2 − 𝑆𝜔) + 6𝑅𝑆. (19)

∑ 𝑎𝑏(𝑎 + 𝑏) = ∑ 𝑎𝑏(𝑎 + 𝑏 + 𝑐 − 𝑐) = 2𝑠 ∑ 𝑎𝑏 − 3𝑎𝑏𝑐
= 2𝑠(2𝑠2 − 𝑆𝜔) − 6𝑅𝑆. (20)

∑ 𝑎(𝑏 − 𝑐)2 = ∑ 𝑎(𝑏 + 𝑐)2 − ∑ 𝑎(4𝑏𝑐)
= 2𝑠(2𝑠2 − 𝑆𝜔) − 18𝑅𝑆. (21)

∑ 𝑎𝑆𝐴 = 1
2 ∑ 𝑎(𝑏2 + 𝑐2 + 𝑎2 − 2𝑎2) = 2𝑠𝑆𝜔 − ∑ 𝑎3

= 4𝑠(𝑠2 − 𝑆𝜔) − 6𝑅𝑆. (22)

∑ 𝑎4 = ∑ 𝑎2(𝑆𝐵 + 𝑆𝐶) = ∑ 𝑆𝐴(𝑏2 + 𝑐2) = ∑ 𝑆𝐴 (∑ 𝑎2 − 𝑎2)
= 2(𝑆2

𝜔 − 𝑆2). (23)

∑ 𝑎2𝑏2 = 1
2 ((∑ 𝑎2)

2
− ∑ 𝑎4) = 𝑆2

𝜔 + 𝑆2. (24)

∑ 𝑆2
𝐴 = (∑ 𝑆𝐴)

2
− 2 ∑ 𝑆𝐴𝑆𝐵 = 𝑆2

𝜔 − 2𝑆2. (25)

∑ 𝑎𝑆2
𝐴 = ∑ 𝑎(𝑏2𝑐2 − 𝑆2) = 𝑎𝑏𝑐 ∑ 𝑏𝑐 − 𝑆2 ∑ 𝑎

= 2𝑅𝑆(2𝑠2 − 𝑆𝜔) − 2𝑠𝑆2. (26)

∑ 𝑎2𝑏2𝑆𝐶 = 1
2 ∑ 𝑎2𝑏2(𝑎2 + 𝑏2 + 𝑐2 − 2𝑐2) = 𝑆𝜔 ∑ 𝑎2𝑏2 − 3𝑎2𝑏2𝑐2

= 𝑆𝜔(𝑆2
𝜔 + 𝑆2) − 12𝑅2𝑆2. (27)

∑ 𝑎2𝑆2
𝐴 = ∑ 𝑎2(𝑏2𝑐2 − 𝑆2) = 3𝑎2𝑏2𝑐2 − 𝑆2 ∑ 𝑎2 = 2𝑆2(6𝑅2 − 𝑆𝜔). (28)

∑ 𝑎2𝑆𝐵𝑆𝐶 = 2𝑆2(6𝑅2 − 𝑆𝜔) as expected from (14) . (29)

𝑆𝐴𝑆𝐵𝑆𝐶 = 1
3(3𝑆𝐴𝑆𝐵𝑆𝐶) = ∑ 𝑆𝐴(𝑆2 − 𝑎2𝑆𝐴) = 𝑆2 ∑ 𝑆𝐴 − ∑ 𝑎2𝑆2

𝐴

= 𝑆2(𝑆𝜔 − 4𝑅2). (30)

∑ 𝑏𝑐𝑆𝐵𝑆𝐶 = 1
2 ((∑ 𝑎𝑆𝐴)

2
− ∑ 𝑎2𝑆2

𝐴) = 1
2 ((4𝑠(𝑠2 − 𝑆𝜔) − 6𝑅𝑆)2 − 2𝑆2(6𝑅2 − 𝑆𝜔))

= 8𝑠𝑅𝑆(𝑆𝜔 − 𝑠2) + 𝑆2(2𝑠2 + 12𝑅2 − 𝑆𝜔). (31)

∑ 𝑎6 = ∑ 𝑎2(𝑆𝐵 + 𝑆𝐶)2 = ∑ 𝑎2(𝑆2
𝐵 + 𝑆2

𝐶 + 𝑆2
𝐴 − 𝑆2

𝐴 + 2𝑆𝐵𝑆𝐶)
= (𝑆2

𝜔 − 2𝑆2)(2𝑆𝜔) + 2𝑆2(6𝑅2 − 𝑆𝜔)
= 2(𝑆3

𝜔 + 3𝑆2(2𝑅2 − 𝑆𝜔)). (32)

∑ 𝑆3
𝐴 = ∑ 𝑆𝐴(𝑏2𝑐2 − 𝑆2) = ∑ 𝑏2𝑐2𝑆𝐴 − 𝑆2 ∑ 𝑆𝐴

= 𝑆3
𝜔 − 12𝑅2𝑆2. (33)

∑ 𝑆𝐴(𝑆2
𝐵 + 𝑆2

𝐶) = ∑ 𝑆𝐴 (∑ 𝑆2
𝐴 − 𝑆2

𝐴) = (𝑆2
𝜔 − 2𝑆2) ∑ 𝑆𝐴 − ∑ 𝑆3

𝐴

= 12𝑅2𝑆2 − 2𝑆2𝑆𝜔. (34)

∑ 𝑎4𝑆𝐴 = ∑(𝑆𝐵 + 𝑆𝐶)2𝑆𝐴 = ∑(𝑆2
𝐵 + 𝑆2

𝐶 + 2𝑆𝐵𝑆𝐶)𝑆𝐴

= 6𝑆𝐴𝑆𝐵𝑆𝐶 + ∑ 𝑎2𝑆2
𝐴

= 4𝑆2(𝑆𝜔 − 3𝑅2). (35)
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∑ 𝑎3𝑆2
𝐴 = ∑ 𝑎3(𝑏2𝑐2 − 𝑆2) = 𝑎2𝑏2𝑐2 ∑ 𝑎 − 𝑆2 ∑ 𝑎3

= 𝑆2(2𝑠(2𝑠2 − 3𝑆𝜔 + 4𝑅2) − 6𝑅𝑆). (36)

∑ 𝑎4𝑆2
𝐴 = ∑ 𝑎4(𝑏2𝑐2 − 𝑆2) = 𝑎2𝑏2𝑐2 ∑ 𝑎2 − 𝑆2 ∑ 𝑎4

= 2𝑆2(𝑆2 + (4𝑅2 − 𝑆𝜔)𝑆𝜔). (37)

∑ 𝑆2
𝐴𝑆2

𝐵 = ∑(𝑆2 − 𝑐2𝑆𝐶)2 = ∑(𝑆4 − 2𝑆2𝑐2𝑆𝐶 + 𝑐4𝑆2
𝐶)

= 3𝑆4 − 2𝑆2 ∑ 𝑐2𝑆𝐶 + ∑ 𝑐4𝑆2
𝐶

= 3𝑆4 − 4𝑆4 + 𝑆2(𝑆2 + 8𝑅2𝑆𝜔 − 2𝑆2
𝜔)

= 2𝑆𝜔𝑆2(4𝑅2 − 𝑆𝜔) + 𝑆4. (38)

∑ 𝑎4𝑆3
𝐴 = ∑ 𝑎4𝑆𝐴(𝑏2𝑐2 − 𝑆2) = 𝑎2𝑏2𝑐2 ∑ 𝑎2𝑆𝐴 − 𝑆2 ∑ 𝑎4𝑆𝐴

= 4𝑆4(5𝑅2 − 𝑆𝜔). (39)

4 Playing with the formulas, GH, GI

Here and in the next sections, we apply the previous formulas to calculate the distances
of various remarkable “triangle centers” ([Kim18]) expressed in barycentric coordinates
(see file Barycentric coordinates). The result of the computation takes the form of an
expression in terms of {𝑠, 𝑅, 𝑆, 𝑆𝜔} introduced in the preceding section.

As a first example we calculate the square of the distances {𝐺𝐻2, 𝐺𝐼2} between the
centroid 𝐺 , the orthocenter 𝐻 and the incenter 𝐼 of the triangle. From this and the relation
|𝐻𝐺| = 2|𝐺𝑂| we obtain also the distance |𝐺𝑂| from the circumcenter 𝑂.

𝐺 = (1 ∶ 1 ∶ 1), 𝐺∗ = 1
3(1 ∶ 1 ∶ 1) (absolute barycentrics),

𝐻 = (𝑆𝐵𝑆𝐶 ∶ … ), 𝐻∗ = 1
𝑆2 (𝑆𝐵𝑆𝐶 ∶ … ),

𝐼 = (𝑎 ∶ 𝑏 ∶ 𝑐), 𝐼∗ = 1
2𝑠(𝑎 ∶ 𝑏 ∶ 𝑐).

𝐺𝐻2 = ∑ 𝑆𝐴 (1
3 − 1

𝑆2 𝑆𝐵𝑆𝐶)
2

= 1
9𝑆4 ∑ 𝑆𝐴 (𝑆4 − 6𝑆2𝑆𝐵𝑆𝐶 + 9𝑆2

𝐵𝑆2
𝐶)

= 1
9𝑆4 (𝑆4 ∑ 𝑆𝐴 − 6𝑆2 ∑ 𝑆𝐴𝑆𝐵𝑆𝐶 + 9𝑆𝐴𝑆𝐵𝑆𝐶 ∑ 𝑆𝐵𝑆𝐶)

= 1
9𝑆4 (𝑆4 ∑ 𝑆𝐴 − 9𝑆2𝑆𝐴𝑆𝐵𝑆𝐶)

= 1
9𝑆4 (𝑆4𝑆𝜔 − 9𝑆4(𝑆𝜔 − 4𝑅2))

= 4 (𝑅2 − 2
9𝑆𝜔) ⇒ (40)

|𝐺𝑂| = 1
2 |𝐺𝐻| ⇒ 𝐺𝑂2 = 𝑅2 − 2

9𝑆𝜔 ⇒ 𝑂𝐻2 = 9𝑅2 − 2𝑆𝜔. (41)

𝐺𝐼2 = ∑ 𝑆𝐴 (1
3 − 𝑎

2𝑠)
2

= 1
36𝑠2 ∑ 𝑆𝐴(2𝑠 − 3𝑎)2

= 1
36𝑠2 (4𝑠2 ∑ 𝑆𝐴 − 12𝑠 ∑ 𝑎𝑆𝐴 + 9 ∑ 𝑎2𝑆𝐴)

= 1
9𝑠(𝑠(6𝑠2 − 5𝑆𝜔) − 18𝑅𝑆). (42)
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For the four quantities, anticipating a bit the fundamentals of section 6 and using the
expressions in terms of the “inradius” 𝑟 of triangle 𝐴𝐵𝐶 ∶

𝑆 = 2𝑠𝑟, 𝑆𝜔 = 1
2(𝑎2 + 𝑏2 + 𝑐2) = 𝑠2 − 𝑟2 − 4𝑟𝑅,

we obtain the formulas:

𝐺𝐼2 = 1
9(𝑆𝜔 + 6𝑟(𝑟 − 2𝑅)) = 1

9(𝑠2 + 5𝑟2 − 16𝑅𝑟), (43)

𝐻𝑂2 = 9𝑅2 − 2𝑆𝜔 = 2𝑟2 + 8𝑅𝑟 + 9𝑅2 − 2𝑠2, (44)

𝐻𝐺2 = 4 (𝑅2 − 2
9𝑆𝜔) = 4

9𝐻𝑂2, (45)

𝐺𝑂2 = 𝑅2 − 2
9𝑆𝜔 = 1

9𝐻𝑂2. (46)

5 Euler’s theorem, Gerretsen’s inequalities

The distance |𝐼𝑂| of the incenter 𝐼(𝑎 ∶ 𝑏 ∶ 𝑐) from the circumcenter 𝑂(𝑎2𝑆𝐴, … ) is con‑
nected with Euler’s theorem, formulated below.

𝑂 = (𝑎2𝑆𝐴 ∶ … ), 𝑂∗ = 1
2𝑆2 (𝑎2𝑆𝐴 ∶ … ),

𝐼𝑂2 = ∑ 𝑆𝐴 ( 𝑎
2𝑠 − 1

2𝑆2 𝑎2𝑆𝐴)
2

= 1
4𝑠2𝑆4 ∑ 𝑆𝐴 (𝑎𝑆2 − 𝑠𝑎2𝑆𝐴)2

= 1
4𝑠2𝑆4 (𝑆4 ∑ 𝑎2𝑆𝐴 − 2𝑠𝑆2 ∑ 𝑎3𝑆2

𝐴 + 𝑠2 ∑ 𝑎4𝑆3
𝐴)

= 1
4𝑠2𝑆4 (𝑆4(2𝑆2) − 2𝑠𝑆2(𝑆2(2𝑠(2𝑠2 − 3𝑆𝜔 + 4𝑅2) − 6𝑅𝑆)) + 𝑠2(4𝑆4(5𝑅2 − 𝑆𝜔)))

= 𝑅
𝑆 (9𝑅𝑆 + 4𝑠(𝑆𝜔 − 𝑠2)). (47)

Anticipating a bit the fundamentals of the next section and expressing {𝑆, 𝑆𝜔} in terms of
{𝑠, 𝑟} in this wonderful formula

𝑆 = 2𝑠𝑟, 𝑆𝜔 = 𝑠2 − 𝑟2 − 4𝑟𝑅, (48)

where, 𝑟 is the “inradius ” of the triangle 𝐴𝐵𝐶, we come, after a drastic simplification, at
“Euler’s theorem”, saying that:

𝐼𝑂2 = 𝑅(𝑅 − 2𝑟). (49)

In the file Tritangent circles we discuss this theorem from the much more elegant syn‑
thetic aspect, contrasting this computational derivation, whose real purpose was to test
the calculations of section 3.

Here we have an instance indicating the contrast of the “generality of the method” to
the “elegance of the particular case”. The computations with barycentrics supply a general
method to calculate the distance, in principle, of any pair of remarkable points related
to the triangle 𝐴𝐵𝐶 i.e. “triangle centers”. The particular case though, as is here the case
with the distance |𝐼𝑂|, can be alternatively handledwith geometric tools and give amuch
deeper insight in the geometry of the triangle.
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It is the genius of Euler ([BS07], [Col07]) to foresee that these two points are connected
by such a simple relation as the one expressed by equation (49) and avoid some other
candidates, such as, for example, the next one of |𝐻𝐼| depending on all three {𝑟, 𝑅, 𝑠}.

𝐻𝐼2 = ∑ 𝑆𝐴 (𝑆𝐵𝑆𝐶
𝑆2 − 𝑎

2𝑠)
2

= ∑ 𝑆𝐴 ⎛⎜
⎝

𝑆2
𝐵𝑆2

𝐶
𝑆4 − 𝑎𝑆𝐵𝑆𝐶

𝑠𝑆2 + 𝑎2

4𝑠2
⎞⎟
⎠

= ∑
𝑆𝐴𝑆2

𝐵𝑆2
𝐶

𝑆4 − ∑ 𝑎𝑆𝐴𝑆𝐵𝑆𝐶
𝑠𝑆2 + ∑ 𝑎2𝑆𝐴

4𝑠2

= 𝑆𝐴𝑆𝐵𝑆𝐶
𝑆4 ∑ 𝑆𝐵𝑆𝐶 − 𝑆𝐴𝑆𝐵𝑆𝐶

𝑠𝑆2 ∑ 𝑎 + 1
4𝑠2 ∑ 𝑎2𝑆𝐴

= 𝑆𝐴𝑆𝐵𝑆𝐶
𝑆4 (𝑆2) − 𝑆𝐴𝑆𝐵𝑆𝐶

𝑠𝑆2 (2𝑠) + 1
4𝑠2 (2𝑆2)

= 𝑆𝜔 − 4𝑅2 − 2(𝑆𝜔 − 4𝑅2) + 1
2𝑠2 (𝑆2)

= 1
2𝑠2 (𝑆2 − 2𝑠2(𝑆𝜔 − 4𝑅2))

= 4𝑅(𝑅 + 𝑟) + 3𝑟2 − 𝑠2. (50)

Combining equations (43) and (50), we come to the well known “Gerretsen’s inequalities”
([WZ03]), which together with “Blundon’s inequalities”, discussed in the file Fundamental
invariants, are two important “triangle inequalities”([ea69]) for 𝑠2.

16𝑅𝑟 − 5𝑟2 ≤ 𝑠2 ≤ 4𝑅(𝑅 + 𝑟) + 3𝑟2 . (51)

6 Connection with the fundamental invariants

The “fundamental invariants” of the triangle are traditionally considered to be the “half‑
perimeter” 𝑠 = 𝑎+𝑏+𝑐

2 , the “ inradius” 𝑟 i.e. the radius of the inscribed circle, and the “
circumradius” 𝑅 i.e. the radius of the circumcircle of the triangle, somewhat more ex‑
tensively discussed in the file Fundamental invariants. There, among other things, are
proved also the next identities, in which the sums extend over the cyclic permutations of
{𝑎, 𝑏, 𝑐}. For general trigonometric relations between the elements of a triangle see [Lon93,
p.135] and [Hob18, p.155]. The basic relations are given by the next two lines.

Δ = 𝑠𝑟 = 𝑎𝑏𝑐
4𝑅 and 𝑆 = 2Δ = 2𝑠𝑟 = 𝑎𝑏𝑐

2𝑅 . (52)

𝑆𝜔 = 𝑆𝐴 + 𝑆𝐵 + 𝑆𝐶 = 1
2(𝑎2 + 𝑏2 + 𝑐2) = 𝑠2 − 𝑟(4𝑅 + 𝑟), (53)

Replacing {𝑆, 𝑆𝜔} in the formulas of section 3, we find the corresponding expressions in
terms of the fundamental invariants {𝑠, 𝑟, 𝑅}, as is the case with the next examples:

𝑏𝑐 + 𝑐𝑎 + 𝑎𝑏 = 𝑠2 + 𝑟(4𝑅 + 𝑟), (54)
𝑎2 + 𝑏2 + 𝑐2 = 2(𝑠2 − 𝑟(4𝑅 + 𝑟)), (55)
𝑎3 + 𝑏3 + 𝑐3 = 2𝑠(𝑠2 − 6𝑟𝑅 − 3𝑟2), (56)
𝑎4 + 𝑏4 + 𝑐4 = 2((𝑠2 − 𝑟2 − 4𝑅𝑟)2 − 4𝑟2𝑠2), (57)
𝑎𝑏(𝑎 + 𝑏) + 𝑏𝑐(𝑏 + 𝑐) + 𝑐𝑎(𝑐 + 𝑎) = 2𝑠(𝑠2 − 2𝑟𝑅 + 𝑟2), (58)
𝑎(𝑏 − 𝑐)2 + 𝑏(𝑐 − 𝑎)2 + 𝑐(𝑎 − 𝑏)2 = 2𝑠(𝑠2 + 𝑟2 − 14𝑅𝑟), (59)
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𝑎𝑆𝑎 + 𝑏𝑆𝑏 + 𝑐𝑆𝑐 = 4𝑠𝑟(𝑟 + 𝑅), (60)
𝑆2

𝐴 + 𝑆2
𝐵 + 𝑆2

𝐶 = (𝑠2 − 𝑟(4𝑅 + 𝑟))2 − 8𝑠2𝑟2, (61)
𝑎2𝑆2

𝐴 + 𝑏2𝑆2
𝐵 + 𝑐2𝑆2

𝐶 = 8𝑠2𝑟2(6𝑅2 + 4𝑅𝑟 + 𝑟2 − 𝑠2) (62)
𝑆𝐴𝑆𝐵𝑆𝐶 = 𝑆2(𝑠2 − (𝑟 + 2𝑅)2), (63)

∑ 𝑎𝑆2
𝐴 = 4𝑠𝑟(𝑟𝑅(4𝑅 + 𝑟) + 𝑠2(𝑅 − 2𝑟)), (64)

∑ 𝑆2
𝐴𝑆2

𝐵 = 8𝑠2𝑟2[𝑠2(4(𝑟 + 𝑅)2 − 𝑠2) − 𝑟(𝑟 + 2𝑅)2(𝑟 + 4𝑅)]. (65)

7 Orthic axis = Radical axis of circumcircle and Euler circle

Theorem 1. The radical axis of the circumcircle and the Euler circle of the triangle 𝐴𝐵𝐶 is the
trilinear polar of the orthocenter 𝐻, called “orthic axis ” of the triangle.

A''A'

A

B''
H

B'

C'

B C

E

κ λ
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Q
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th
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xi
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Figure 3: The radical axis of {𝜅, 𝜆} is the trilinear polar of 𝐻

The trilinear polar passes through the harmonic conjugates {𝑃 = 𝐴′(𝐵𝐶), 𝑄 = 𝐵′(𝐶𝐴)}
(See Figure 3). It suffices to show that the power of these points relative to the two circles
is the same. This is done by a typical calculation, starting from the cosine rule, for 𝑃 and
setting 𝑥 = 𝑃𝐵 . The corresponding calculation for 𝑄 being similar:

𝐴′𝐵 = 1
𝑎𝑆𝐵, 𝐴′𝐶 = 1

𝑎𝑆𝐶,
𝑃𝐵
𝑃𝐶 = 𝐴′𝐵

𝐴′𝐶 = 𝑆𝐵
𝑆𝐶

⇒ 𝑥 = 𝑃𝐵 = 𝑎 𝑆𝐵
𝑆𝐶 − 𝑆𝐵

power w.r. 𝜅 = 𝑃𝐵 ⋅ 𝑃𝐶 = 𝑥(𝑥 + 𝑎) = ⋯ = 𝑎2𝑆𝐶𝑆𝐵
(𝑆𝐶 − 𝑆𝐵)2 ,

power w.r. 𝜆 = 𝑃𝐴′ ⋅ 𝑃𝐴″ = ⋯ = 𝑎2𝑆𝐵𝑆𝐶
(𝑆𝐵 − 𝑆𝐶)2 .

8 GHI triangle, Feuerbach point

Euler considered the problem of constructing the triangle 𝐴𝐵𝐶 from the corresponding
triangle 𝐻𝐼𝑂. This is equivalent to the problem of constructing 𝐴𝐵𝐶 from the triangle
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𝐺𝐻𝐼 or 𝐺𝐼𝑂, since each of these triangles determines the other two. The problem for
𝐺𝐼𝑂 is discussed in the file Fundamental invariants. Herewe discuss some relations con‑

I

G

O

H

N
a

F

M 

A

B C

κ

ν

λ
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N

Figure 4: Triangle centers 𝐹 = 𝑋(11), 𝑁𝑎 = 𝑋(8), 𝑀 = 𝑋(100), 𝑀′ = 𝑋(104)

nected with these three triangles, suggested by figure 4. In this 𝐹 = 𝑋(11) is the “Feuer‑
bach point” (discussed in the file Tritangent circles) of contact of the incircle 𝜆 with the
Euler circle 𝜈 of 𝐴𝐵𝐶. Point 𝑁𝑎 = 𝑋(8) is the “Nagel point” of intersection of the cevians
to the contact points with the excircles of the triangle and 𝑀 = 𝑋(100), 𝑀′ = 𝑋(104) are
the diametral points of the diameter 𝑂𝑁𝑎 of the circumcircle 𝜅 of 𝐴𝐵𝐶. The following
theorem summarizes the relevant properties.

Theorem 2. With the definitions and conventions adopted so far, the following are valid proper‑
ties:

1. Points {𝐼, 𝐺, 𝑁𝑎} are collinear and 𝐺𝑁𝑎 = 2𝐼𝐺.
2. Lines {𝐼𝑂, 𝐻𝑁𝑎} are parallel and 𝐻𝑁𝑎 = 2𝐼𝑂.
3. Lines {𝐼𝐹, 𝑂𝑁𝑎} are parallel.
4. Point 𝐹 is the middle of 𝐻𝑀′.
5. Points 𝐹, 𝐺, 𝑀 are collinear and 𝐺𝑀 = 2𝐹𝑀.

Nr‑1 is proved in the files Barycentric coordinates andNagel point of the triangle.
Nr‑2 follows trivially since 𝐺𝐻 = 2𝑂𝐺.
Nr‑3 follows from the fact that the center 𝑁 of the Euler circle 𝜈 is the middle of 𝐻𝑂,

hence |𝐺𝑂|/|𝐺𝑁| = |𝐺𝑁𝑎|/|𝐺𝐼| = 2.
Nr‑4 follows from the fact that 𝐻 is the homothety center of the two circles {𝜈, 𝜅} with

homothety ratio 2.
Nr‑5 is a consequence of the previous nr.
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9 Third degree equation for the symbols

Using Vieta’s rules, expressing the coefficients of polynomial equations

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0 = 0,

by means of symmetric functions of the roots ([Tur47, p.66])

∑
𝑖1<⋯<𝑖𝑘

𝑥𝑖1 … 𝑥𝑖𝑘 = (−1)𝑘 𝑎𝑛−𝑘
𝑎𝑛

, for 𝑘 = 1, … , 𝑛,

and the corresponding formulas for the symmetric functions of the symbols {𝑆𝐴}, we arive
at the cubic equation satisfied by these symbols:

𝑥3 − 𝑆𝜔𝑥2 + 𝑆2𝑥 − 𝑆2(𝑆𝜔 − 4𝑅2) = 0. (66)

Transforming the equation into the “reduced” form 𝑦3 + 𝑝𝑦 + 𝑞 = 0 and requiring that the
roots of this equation are real ([Tur47, p.121]), we arive at the condition 4𝑝3 + 27𝑞2 < 0,
which translates in this case to the biquadratic equation:

𝑆4 + 2[𝑆2
𝜔 − 18𝑅2𝑆𝜔 + 54𝑅4]𝑆2 + 𝑆3

𝜔(𝑆𝜔 − 4𝑅2) < 0. (67)

Considering this as a quadratic equation w.r. to 𝑆2, we see that the corresponding dis‑
criminant is found to be

𝐷 = 4𝑅2(9𝑅2 − 2𝑆𝜔)3 = 4𝑅2(𝑂𝐻2)3.

Thus, in order to satisfy the inequality (67), the quantity 𝑆2 must be between the roots of
the corresponding quadratic i.e. it must satisfy the inequalities:

𝑈 − 2𝑅|𝑂𝐻|3 < 𝑆2 < 𝑈 + 2𝑅|𝑂𝐻|3, where 𝑈 = 𝑆2
𝜔 − 18𝑅2𝑆𝜔 + 54𝑅4. (68)
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