
Desargues’ theorem and perspectivities

A file of the Geometrikon gallery by Paris Pamfilos

The joy of suddenly learning a former secret and the joy
of suddenly discovering a hitherto unknown truth are the
same to me - both have the flash of enlightenment, the
almost incredibly enhanced vision, and the ecstasy and
euphoria of released tension.

Paul Halmos, I Want to be a Mathematician, p.3
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1 Desargues’ theorem

The theorem of Desargues represents the geometric foundation of “photography” and “per-
spectivity”, used by painters and designers in order to represent in paper objects of the
space.

Two triangles are called “perspective relative to a point” or “point perspective”, when we
can label them ABC and A′B′C′ in such a way, that lines {AA′, BB′, CC′} pass through
a common point P. Points {A, A′} are then called “homologous” and similarly points
{B, B′} and {C, C′}. The point P is then called “perspectivity center” of the two triangles.
The two triangles are called “perspective relative to a line” or “line perspective” when we can
label them ABC and A′B′C′ , in such a way (See Figure 1), that the points of intersection
of their sides C′′ = (AB, A′B′), A′′ = (BC, B′C′) and B′′ = (CA, C′A′) are contained in
the same line ε. Sides AB and A′B′ are then called “homologous”, and similarly the side
pairs (BC, B′C′) and (CA, C′A′). Line ε is called “perspectivity axis” of the two triangles.

Theorem 1. (Desargues 1591-1661) Two triangles are perspective relative to a point, if and only
if they are perspective relative to a line.

http://users.math.uoc.gr/~pamfilos/eGallery/Gallery.html
http://users.math.uoc.gr/~pamfilos/
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Figure 1: “Desargues’ configuration”: Theorem of Desargues

Proof. To prove this assume that the two triangles ABC and A′B′C′ are perspective rel-
ative to a point P and apply three times the theorem of Menelaus (Menelaus’ theorem):

In triangle PAB with secant C′′B′A′ :
C′′A
C′′B

· A′P
A′A

· B′B
B′P

= 1.

In triangle PBC with secant A′′C′B′ :
A′′B
A′′C

· B′P
B′B

· C′C
C′P

= 1.

In triangle PCA with secant B′′C′A′ :
B′′C
B′′A

· C′P
C′C

· A′A
A′P

= 1.

Multiplying the equalities and simplifying:
C′′A
C′′B

· A′′B
A′′C

· B′′C
B′′A

= 1.

According to the theorem of Menelaus, this relation means that C′′ lies on the line A′′B′′.
Conversely, assume that the points A′′, B′′ and C′′ are collinear and apply the already

proved part of the theorem on triangles C′′BB′ and B′′C′C, which, by assumption now,
are perspective relative to the point A′′. According to the proved part, the intersection
points A = C′′B ∩ B′′C, A′ = C′′B′ ∩ B′′C′ and P = BB′ ∩ C′C will be collinear. This is
equivalent with the fact that the lines AA′, BB′ and CC′ pass through the same point, in
other words, the triangles ABC and A′B′C′ are perspective relative to a point ([Tan67]).
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Figure 2: Point-perspective but not line-perspective

Figure 2 shows two quadrangles which are point-perspective relative to point P but
they are not line-perspective. Thus, the “Desargues’ configuration” ([Woo29]) is something
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peculiar to the triangles and not more general valid for polygons.

2 Perspective triangles

Theorem 2. Given two triangles {ABC, A′B′C′} there is a similar A′′B′′C′′ to A′B′C′, which
is perspective to ABC.
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Figure 3: Perspective triangles

The proof, suggested by figure 3, starts with the triangle τ = ABC and an arbitrary point
P not on the side-lines of τ. Then, we consider the lines {α = PA, β = PB, γ = PC} and
an arbitrary point A′′ ∈ α and a moving point Bt on β. Then, we construct a triangle
A′′BtCt ∼ A′B′C′ and prove three things.
1) That the circumcircles of all triangles {A′′BtCt, Bt ∈ β} have their circumcircle pass
through a fixed point D ∈ β .
2) That the vertex Ct of the triangles {A′′BtCt} move on a line δ intersecting line γ at a
point C′′ .
3) The triangle A′′B′′C′′ ∼ A′B′C′ has its vertex B′′ on line β .
The proofs of these statements are easy exercises (see file Similarity transformation).
Figure 3 shows a triangle ABC in perspective with an “equilateral” triangle. Notice that,
using an appropriate “homothety” with center at P, we can find a third triangle A1B1C1
congruent to A′B′C′ and in perspective to ABC. Thus, we have the following theorem.

Theorem 3. Two arbitrary triangles {ABC, A′B′C′} can be placed in the plane so as to be per-
spective.

3 Desargues’ theorem, special cases

A special application of the theorem of Desargues is also shown in figure 4. In this,
the two triangles ABC and A′B′C′ have two respective sides BC and B′C′ parallel to
B′′C′′, where B′′ = AC ∩ A′C′ and C′′ = AB ∩ A′B′. The parallels are considered again
as intersecting at a point at infinity A′′, through which passes B′′C′′. According to De-
sargues then, the lines {AA′, BB′, CC′} will pass through a common point P.

The same figure can also be interpreted in a different way, considering as main actors
the triangles BB′C′′ and CC′B′′. In these triangles the lines BC, C′′B′′ and B′C′′ are
parallel and can be considered as passing through the same point A′′ at infinity. Then,
according to Desargues, points A = BC′′ ∩ CB′′), A′ = C′′B′ ∩ B′′C′ and P = BB′ ∩ CC′

are collinear. The conclusion in this case can be proved also by applying the theorem of
Thales.
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Figure 4: Desargues’ theorem, A′′ −→ ∞

Figure 5 shows another special case, in which two of the points {A′′, B′′, C′′} on the axis of
perspectivity are at infinity, hence the whole axis of perspectivity coincides with the line
at infinity and the two perspective triangles have their sides parallel. Then they are “ho-
mothetic” and the perspectivity center P becomes “homothety center” (see file Homothety
transformation).
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Figure 5: Desargues’ theorem generalizes an homothety theorem

Thus, the proof of the general Desargues’ theorem could be reduced to the present
case of homothetic triangles by sending the axis of perspectivity to the line at infinity via
a Projective transformation.

4 Sides passing through collinear points

Theorem 4. Let a variable triangle ABC have its vertices {B, C} on two fixed lines PB′, PC′

respectively and its sides passing through three points {A′′, B′′, C′′} lying on a fixed line. Then
its third vertex A varies on a line PA′ passing through P.

The theorem is a direct corollary of Desargues’ theorem. Defining point A′ as intersec-
tion of the known lines A′ = B′C′′ ∩ B′′C′, we have that the triangles {ABC, A′B′C′} are
line-perspective, hence also point-perspective relative to P.

Problem 1. Given the triangle PXY, inscribe to it a triangle A′B′C′, such that its sides
pass through three given points {A′′, B′′, C′′} lying on a given line.

According to the previous theorem all triangles {A′B′C′} having their vertices {B′, C′}
on lines {PX, PY} respectively and their sides passing respectively through the fixed
points {A′′, B′′, C′′} have their third vertex A′ varying on a fixed line PA (See Figure 6).
Its intersection with the third side XY of the given triangle determines point A′ of the
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Figure 6: Sides through three collinear points

desired triangle. This determines also completely triangle A′B′C′, since its sides must
pass through the given points {A′′, B′′, C′′}.

The line PA′ is constructed through an auxiliary triangle ABC. This, in turn, is con-
structed by considering an arbitrary line A′′BC through A′′ intersecting {PX, PY} at
points {B, C} and defining point A through A = BC′′ ∩ B′′C.

Remark-1 A special case of the theorem 4 occurs when line carrying {A′′, B′′, C′′} is
the line at infinity. This means that the variable triangle A′B′C′ has sides always parallel
to three given directions. In this special case one can see immediately, without using De-
sargues’ argument, that the third point varies on a line. Using this special case one can
even reduce to it the general Desargues’ theorem by defining a projective map (“projec-
tivity”) that sends the line carrying {A′′, B′′, C′′} to the line at infinity.

Remark-2 Applying the theorem 4 repeatedly and proceeding inductlively one can eas-
ily show its generalization :

Theorem 5. When a polygon varies so that its n sides pass through n fixed points lying on a
given line ε and n − 1 of its vertices lie on n − 1 given fixed lines, then its n-th vertex describes
also a fixed line line.
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Figure 7: A polygon with sides passing through 5 fixed collinear points

Figure 7 shows a pentagon, whose 5 sides pass through 5 points of line ε and its vertices
{1, 2, 3, 4} move on respective fixed lines {(1), (2), (3), (4)}. Then its fifth vertex moves
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also on a line (5).

Remark-3 It is essential that points {A′′, B′′, C′′, . . .} through which pass the sides of
the variable triangle (resp. polygon) in theorems 4 and 5 are collinear. In the more gen-
eral case in which these points are not collinear the geometric locus of A, in both cases,
is a conic. This is handled in the file Maclaurin ([Cha65, p.72]). There is also a special
case, in which these three points are not collinear, but line B′′C′′ passes through P and
the locus of A is again a line. This case is handled below.

5 A case handled with projective coordinates

Next problem can be considered as a limiting case of problem 1.
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Figure 8: A limiting configuration for problem 1

Problem 2. Let a variable triangle ABC have its vertices {B, C} respectively on two fixed
lines {PX, PY} and its sides passing through three points {A′′, B′′, C′′} with line B′′C′′

passing through P. Then its third vertex A varies on the line passing through points
{R, S}, which are the intersection points respectively of the line-pairs R = A′′C′′ ∩ PY
and S = A′′B′′ ∩ PX.

To prove this consider the intersection points V,W of the line-pairs correspondingly
V = AB′′ ∩ OB and W = A′′B′′, C′′B. Use a “projective base” (see file Projective plane )
in which

A′′(1, 0, 0), B′′(0, 1, 0), C′′(0, 0, 1)

and calculate the coordinates of A. For this consider the lines {PX, PY, A′′BC} to be
described respectively by the equations

PX : ax + by + cz = 0, PY : a′x + b′y + c′z = 0, A′′BC : uy + vz = 0.

Points {B, C} have then coordinates

(bv − cu, −av, au), (b′v − c′u, −a′v, a′u).

Lines {BC′′, CB′′} have respectively the form:

(−av)x + (cu − bv)y = 0, (−a′u)x + (b′v − c′u)z = 0.
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Their intersection is point A with coordinates:

A = ((cu − bv)(b′v − c′u), av(b′v − c′u), a′u(cu − bv)).

Since lines {PX, PY} intersect at the point P of line x = 0, we find that b′ = sb, c′ = sc
for a constant s. Thus, the coordinates of point A become:

(−s(cu − bv)2, −sav(cu − bv), a′u(cu − bv)),

which simplifies to
(s(cu − bv), sav, −a′u). (1)

On the other side the coordinates of points {S, R} are easily calculated to be

S : (−b, a, 0) and R : (−sc, 0, a′).

The determinant of the coordinates of these two, and the coeffients in equation 1, is then:∣∣∣∣∣∣
s(cu − bv) sav −a′u

−b a 0
−sc 0 a′

∣∣∣∣∣∣ = 0.

This proves the collinearity of points {A, S, R}. By Desargues’ theorem triangles A′′WC′′

and PCV, being line-perspective, are also point-perspective with respect to a point U.
One could start from this and show the collinearity of three points {A, S, R}. The

calculation though seems to be slightly more complicated than the one given above.

6 Space perspectivity

Desargues’ theorem can be understood as the result of an operation on a pyramid with
basis the triangle ABC on its plane α. A second plane β intersects the pyramid along
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Figure 9: Pyramid intersected with a plane

a triangle A′B′C′ and the plane α along a line ε (See Figure 9). Then, we use a space
rotation with axis the line ε . This rotation, preserving the dimensions of triangle A′B′C′,
causes a continuous transformation of the pyramid and its vertex P until to make it coin-
cident with a point P0 of α and to degenerate the pyramid from a space shape to a plane
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shape in the form of a configuration like the one of Desargues’ theorem. In this limiting
configuration the triangle A′B′C′ becomes coplanar with ABC and P0 becomes a per-
spectivity center of the two triangles, whereas the line ε becomes the axis of perspectivity
of the two triangles.

The procedure can be reversed and, starting from a configuration like the one of De-
sargues’ theorem, will create a series of pyramids in space. These pyramids will have the
same base ABC and the triangle A′B′C′ will appear as a cut of the pyramid with a plane
β passing through the rotation axis ε.

Exercise 1. Show that the vertex P of the pyramid in figure 9 describes, during the rotation
about ε, a circle orthogonal to ε.

Hint: Consider first the plane δ parallel to line ε and containing the edge AP of the
pyramid. This plane intersects the sides {BC, B′C′} of the triangles respectively at points
{A1, A2}, which define the two parallel lines {AA1, A′A2} and the two similar triangles
{AA1P, A′A2P}. The bases of these two triangles preserve their length during the rota-
tion, hence their ratio is a constant A′A2/AA1 = k.

Consider then the plane ζ orthogonal to ε, passing through the vertex of the pyramid
P and intersecting {ε, AA1, A′A2} respectively at points {O, U, V}. Using the similarity
of the triangles {AA1P, A′A2P} show that

PV
VU

=
k

k − 1
= k′,

is a constant. Conclude the construction of the claimed geometric locus of P in the

U

V

P

O K

P
0

Figure 10: Locus of P in a plane orthogonal to ε

plane ζ, which is a circle with center K, such that KO/OU = k′ and radius KP, such
that KP/OV = UK/UO (See Figure 10).
Using the discussion of section 2 we can easily construct a pyramid over an equilateral
ABC and cut it along a triangle similar to a given one A′B′C′. The problem becomes
however somewhat more complex if we wand to do that for a special pyramid, e.g. a
“right pyramid over the equilateral”, meaning a pyramid with base the equilateral ABC
and having its vertex P1 orthogonally projected onto the center K of the equilateral.
Figure 11 suggests a way to do that as follows:

1. We choose an arbitrary line ε to play the role of “axis”.
2. We define the intersections of C′′ = ε ∩ AB, A′′ = ε ∩ BC, B′′ = ε ∩ CA .
3. We define the circles {α, β, γ} the points of which view {A′′B′′, B′′C′′, C′′A′′} under

the angles α̂, β̂, γ̂ of the given triangle A′B′C′ or their supplements.
4. From an arbitrary point of one of the circles, B′ ∈ β say, we draw the two lines

{B′A′′, B′C′′} intersecting a second time the circles {γ, α} respectively at {C′, A′}.
5. As B′ moves on β all these triangles are similar to the given one. Also by con-

struction they are line-perspective with axis ε and, by Desargues, they are point-
perspective from a point P .
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Figure 11: Revolve about ε to create a pyramid over ABC

6. Turning the plane about ε we create pyramids over ABC cut by the rotated plane
along the triangle A′B′C′.

7. In order to obtain, by such a rotation about ε, a right pyramid over ABC the point
P has to be on the line ζ orthogonal to ε through K .

8. The geometric locus of P, as B′ varies on β, is a cubic passing through the ver-
tices of ABC and B′ has to be chosen so that the corresponding point P is one
intersection point P0 of ζ with the cubic.

7 Perspectivity as a projective transformation

Returning to the basic Desargues’ configuration we notice some important and equal
cross ratios (see figure 12)

(PC0, CC′) = (PA0, AA′) = (PB0, BB′) = k.

This shows that the two triangles are related by a “Perspectivity” in the projective-geome-
tric sense. The perspecitivities in this sense are transformations f of the projective plane
with the following characteristic properties.

1. They have a pointwise-fixed line ε : f (X) = X, for all X ∈ ε.

2. They have an additional fixed point P : P /∈ ε, f (P) = P.

3. They have every line ζ through P invariant and if Q = ε ∩ ζ, then for every other
point X ∈ ε the image X′ = f (X) is the point X′ ∈ ζ : (PQ, XX′) = k.

4. {P, ε} are called respectively “center” and “axis” of the perspectivity and k is called
“coefficient” of the perspectivity.

Traditionally “perspectivities” include also “elations”, which are transformations satisfying
only the two first conditions nr-1 and nr-2, last with the property P ∈ ε. I study these in
the file Projectivities. Here I exclude this kind of transformations and speak of “perspec-
tivities” per definition satisfying all the above three conditions. Classically, such perspec-
tivities, are called also “Homologies” ([Ver71, p.60]). Homologies with ratio k = −1 are
called “harmonic homologies” or “harmonic perspectivities”. From the properties of the cross
ratio follows that the perspectivity with the same center and axis and coefficient k′ = k−1
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Figure 12: Equal cross ratios

is the inverse map f−1 of f . It follows that harmonic homologies are involutive, i.e. their
inverse f−1 = f ⇔ f 2 = e.

The preceding discussion leads to the following result.

Theorem 6. A Desargues’ configuration defines a perspectivity and conversely, given a perspec-
tivity f , every triangle τ together with its image f (τ) defines a Desargues’ configuration.
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Figure 13: Affinity defined by perspective triangles along parallel lines

Corollary 1. If the triangles {ABC, A′B′C′} are point-perspective w.r.t. to a point at infinity
[E] , i.e. homologous points lie on parallel lines (intersecting at [E], which defines their direction)
(see figure 13), then the ratios defined by the axis of perspectivity ε are equal

A0A
A0A′ =

B0B
B0B′ =

C0C
C0C′ ,

and the perspectivity becomes an “affinity” fixing [E] and mapping every X to a point X′ , such
that the line XX′ is parallel to the direction [E] and satisfies X0X/X0X′ = k, where the point
X0 = ε ∩ XX′ (see file Affinities).
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Specializing theorem 6 in another direction the “harmonic perspectivities” are charac-
terized by the following theorem.

Theorem 7. A perspectivity f is harmonic if and only if there is a triangle τ such that the
vertices of τ and those of its image τ′ = f (τ) are six points of the same conic κ. The axis of
perspectivity is in this case the polar w.r. to κ of the center of perspectivity.
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Figure 14: Perspective triangles in a harmonic perspectivity

Proof. If the triangles are perspective and there is a conic κ through their vertices (see
figure 14), then the axis must be the polar of the center P w.r. to κ, consequently the per-
spectivity is harmonic. In fact, consider in this case the polar of P and the corresponding
harmonic perspectivity f ′ mapping {A, B, C} correspondingly to {A′, B′, C′}. The two
projectivities { f , f ′} coincide then on four points {P, A, B, C}, hence they coincide every-
where.

Conversely, if the triangles {τ, τ′} are perspective w.r. to a harmonic perspectivity f ,
then the conic κ through the five points {A, B, C, A′, B′} has the axis ε as polar of the
center P and is invariant under f : f (κ) = κ. Hence the sixth point C′ is also on the
conic.
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Figure 15: Harmonic perspectivity characterization

Exercise 2. Show that the perspectivity f is “harmonic” if and only if, for every pair of points
{A, B} and their images A′ = f (A), B′ = f (B) the lines {AB′, A′B} intersect at a point C of
its axis ε (see figure 15).

Hint: By the fundamental property of complete quadrilaterals (P, C) ∼ (D, D′) are har-
monic pairs. Conversely, if C ∈ ε then (P, F) ∼ (A, A′) are harmonic pairs etc.

8 The case of the trilinear polar

The “trilinear polar” of a point P relative to the triangle ABC is defined as the “axis” of
perspectivity of ABC and the “cevian” triangle A′B′C′ of the point P (see figure 16). It
is thus, a special Desargues’ configuration and next theorem characterizes this case.
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Theorem 8. The triangle ABC and the “cevian” triangle A′B′C′ relative to the point P are per-
spective w.r. to a perspectivity f with coefficient k = −2 : A′B′C′ = f (ABC). Conversely, if
two triangles are perspective A′B′C′ = f (ABC) w.r.t a perspectivity f with coefficient k = −2
and {A′, B′, C′} are on the respective sides {BC, CA, AB} of ABC, then the perspectivity axis
is the trilinear polar of either triangle relative to the perspectivity center P.

Proof. By their definition ABC and its cevian A′B′C′ are perspective relative to P. The
“prototype” of cevian triangle is a triangle ABC and its “medial” triangle, with vertices the
middles {A′, B′, C′} of the sides {BC, CA, AB}. The cevians in this case are the “medians”
of the triangle and P is the centroid G, the trilinear polar being the line at infinity ε∞.
The first part of the theorem is easily verified for this special case. By the fundamental
theorem of projective geometry, there is a projectivity g mapping the vertices A, B, C to
themselves and the point P to G. Then, the trilinear polar ε of P maps to ε and the first
part of the theorem reduces to the above special case.

For the converse and the assumed there conditions, consider the three intersection
points {A′′ = AA′ ∩ ε, B′′ = BB′ ∩ ε, C′′ = CC′ ∩ ε}, which, by their construction, satisfy
(PC′′, CC′) = (PA′′, AA′) = (PB′′, BB′) = −2. By the first part of the theorem the same
conditions satify also the intersections of {AA′, BB′, CC′} with the trilinear polar of P,
hence latter coincides with ε.

ε

A

B

C
A'

B'

C'

P ε''

ε'

Figure 17: Trilinear polars {ε′, ε′′} of {ABC, A′B′C′}

Figure 17 shows that not every triangle ABC and its image A′B′C′ = f (ABC) by a
perspectivity f with coefficient k = −2 have the same trilinear polar coinciding with ε.
The lines {ε′, ε′′} are the trilinear polars of the respective triangles {ABC, A′B′C′}.

Exercise 3. Given a line ε and a point P /∈ ε, construct all the triangle-pairs (ABC, A′B′C′),
such that A′B′C′ is the cevian of ABC relative to P and ε is their common trilinear polar.

Hint: Figure 18 suggests a way to produce such pairs showing the construction of ABC.
Define first the perspectivity f with center P and axis ε and coefficient k = −2. Points
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Figure 18: Triangles with prescribed pole and trilinear polar

{A, B} can be chosen arbitrarily. Then C = AB′ ∩ A′B, where {A′ = f (A), B′ = f (B)}
and C′ = f (C).

Exercise 4. Given a line ε, a point P /∈ ε and the perspectivity f of the previous exercise, fix
the point A and consider for each B the corresponding C = A′B ∩ AB′ with B′ = f (B). Show
that the map g(B) = C is a harmonic perspectivity with center A′ = f (A) and axis ε.

Hint: (BC, A′A1) = −1 in figure 18. In the prototype cevian triangle with the medians,
point A′ is the middle of BC and ε is the line at infinity.

9 The case of conjugate triangles

Conjugate triangles relative to the conic κ are constructed by taking an arbitrary tri-
angle ABC and considering the “poles” {A′, B′, C′} of its side-lines relative to κ. The
triangle A′B′C′ is the “conjugate” to ABC relative to κ (See Figure 19). By the pole-
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Figure 19: Conjugate triangles {ABC, A′B′C′}

polar-reciprocity it is easily seen that the conjugate of A′B′C′ is ABC. Thus, we have
here a map f of the set of triangles onto itself which is involutive f 2 = e. Next theorem
shows that every such pair of triangles creates also a Desargues’ configuration.

Theorem 9. If the triangles {ABC, A′B′C′} are conjugate relative to the conic κ, then they are
perspective. The perspectivity f mapping ABC to A′B′C′ has axis the polar of the center w.r.
to the conic. The perspectivity mapping A′B′C′ to ABC is the inverse of f .

Proof. ([Sal17, p.253]) Considering the question as a problem of the projective plane (see
file Projective plane), a conic κ is represented w.r. to a “projective coordinate system”
through an invertible symmetric 3 × 3 matrix M and the corresponding quadratic equa-
tion of the form xt Mx = 0.

For a point z, the corresponding polar line p(x) = 0 is then given by p(x) = zt Mx
= 0. The symmetry of this equation is the reason for the “pole-polar reciprocity”. In fact,
the symmetry wt Mv = vt Mw = 0, means that if the polar pv of v passes through w
then also the polar pw of w passes through v.
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Let now {x1, x2, x3} represent the vertices of ABC and {p1, p2, p3} be the correspond-
ing polars with respect to κ. Let {y1, y2, y3} represent the vertices of A′B′C′ , y1 being
the intersection of {p2, p3}, y2 being the intersection of {p3, p1} etc. y1 being on p2 , its
polar passes through x2. y1 being also on p3 , its polar passes through x3 . Thus the
polar of y1 coincides with side BC. Analogous argument is valid for the other points
{y2, y3}, showing that the conjugation relation is well defined and symmetric.

To show the perspectivity of the triangles define the three numbers

t3 = p1(x2) = xt
1Mx2 = xt

2Mx1 = p2(x1) (by the symmetry of matrix M).

Analogously define t1 = p2(x3), t2 = p3(x1). Any line through the intersection point
A′ of p2(x) = 0, p3(x) = 0 is represented through p2(x)− kp3(x) = 0. Such a line pass-
ing through A(x1) satisfies p2(x1)− kp3(x1) = 0 ⇒ k = t3/t2, hence the line being
given by:

t2 p2 − t3 p3 = 0.

Analogously we obtain the equations of the other lines {BB′, CC′} through equations:

t3 p3 − t1 p1 = 0, t1 p1 − t2 p2 = 0.

Obviously last equation is the negative sum of the first two, hence the three lines pass
through the same point.

The claim, that the axis is the polar of P , is a consequence of the previous argu-
ments. In fact, A0 = BC ∩ B′C′ being on the polars of A, A′ implies that A0 is the pole
of AA′. Analogously {B0 = CA ∩ C′A′, C0 = AB ∩ A′B′} are correspondingly the poles
of {BB′, CC′}. Since {AA′, BB′, CC′} pass through P their poles are contained in the
polar of point P.
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