Fundamental invariants of triangles

The greatest of faults, I should say, is to be conscious of none.
T. Carlyle, On Heroes
1 Fundamental invariants of triangles 1
2 Some remarkable identities 2
3 Generalizing to 3rd degree symmetric functions 3
4 Some 4th degree symmetric functions 4
5 Relations involving the tritangent circles 5
6 The cubic equation satisfied by $\{a, b, c\}$ 5
7 Blundon's inequalities 6
8 The GIO triangle 6
9 The orthocentroidal circle 8
10 Euler's construction problem 8

1 Fundamental invariants of triangles

The "fundamental invariants" of a triangle $A B C$ are traditionally considered to be the following three quantities associated with the triangle:

Figure 1: Fundamental invariants of the triangle: $\{s, r, R\}$

1. The "half-perimeter": $s=\frac{a+b+c}{2}$,
2. The "inradius" r i.e. the radius of the inscribed circle,
3. The "circumradius" R i.e. the radius of the circumcircle of the triangle.

2 Some remarkable identities

Denoting by $\left\{r_{a}, r_{b}, r_{c}\right\}$ the radii of the "excircles" of the triangle the following identity is valid ([Joh60, p.189]):

$$
\begin{equation*}
r_{a}+r_{b}+r_{c}=4 R \tag{1}
\end{equation*}
$$

The proof relies on some other identities involving the area Δ of the triangle and the

Figure 2: Distances to contact points
quantities $s, s-a, s-b, s-c$

$$
\begin{align*}
& r=\frac{\Delta}{s}, \quad r_{a}=\frac{\Delta}{s-a}, \quad r_{b}=\frac{\Delta}{s-b}, \quad r_{c}=\frac{\Delta}{s-c} . \tag{2}\\
& r_{a}+r_{b}+r_{c}-r=\sum\left(\frac{\Delta}{s-a}-\frac{\Delta}{3 s}\right)=\Delta \sum\left(\frac{1}{s-a}-\frac{1}{3 s}\right)=\frac{\Delta}{3 s} \sum\left(\frac{2 s+a}{s-a}\right) . \tag{3}
\end{align*}
$$

The first expresses the radii in terms of the area and the perimeter. The second sums over the cyclic permutations of the letters $\{a, b, c\}$:

$$
\begin{gather*}
\sum\left(\frac{2 s+a}{s-a}\right)=\frac{1}{(s-a)(s-b)(s-c)} \sum(2 s+a)(s-b)(s-c) \tag{4}\\
\sum(2 s+a)(s-b)(s-c)=3 a b c \tag{5}
\end{gather*}
$$

Last equation results by carrying out the operations (e.g. with Maxima). Then back substitution yields

$$
r_{a}+r_{b}+r_{c}-r=\frac{\Delta}{3 s} \cdot \frac{3 a b c}{(s-a)(s-b)(s-c)}=\frac{\Delta a b c}{\Delta^{2}}=\frac{a b c}{\Delta}=4 R
$$

This, taking into account "Heron's formula" for the area, and last expressing $\{a, b, c\}$ in terms of sines by the sine formula giving:

$$
\begin{equation*}
a b c=4 R \Delta=4 R r s \tag{6}
\end{equation*}
$$

By the occasion of this calculation I include another couple of formulas involving the two

Figure 3: The formula $a b c=4 \Delta R$
symmetric quadratic expressions of the sides of the triangle.

$$
\begin{gather*}
b c+c a+a b=s^{2}+r(4 R+r), \tag{7}\\
a^{2}+b^{2}+c^{2}=2\left(s^{2}-r(4 R+r)\right) . \tag{8}
\end{gather*}
$$

Denote the first sum by X and the second by Y. Obviously

$$
2 X+Y=(a+b+c)^{2}=4 s^{2}
$$

On the other hand, the expression $Y-2 X$ can be written:
$Y-2 X=\sum\left((b-c)^{2}-a^{2}\right)=-\sum(a+c-b)(b+a-c)=-4(s-b)(s-c)(s-a) \sum \frac{1}{s-a}$.
Replacing there $\{s-a, s-b, s-c\}$ with the expressions resulting from equation (2), we obtain:

$$
\begin{aligned}
Y-2 X & =-4(s-b)(s-c)(s-a) \sum \frac{1}{s_{a}} \\
& =-4 \frac{\Delta^{2}}{s} \sum \frac{1}{s-a} \\
& =-4 \frac{\Delta^{2}}{s} \sum \frac{r_{a}}{\Delta}=-4 r \sum r_{a}=(-4 r)(4 R+r) .
\end{aligned}
$$

Solving these equations for $\{X, Y\}$ we find the expressions in equations (7) and (8).

3 Generalizing to 3rd degree symmetric functions

The preceding method can be generalized to compute every symmetric function of $\{a, b, c\}$ in terms of the distinguished quantities $\{s, r, R\}$, the "fundamental invariants" of the triangle ([AA06, p.110]). As an example I examine the two basic cubic symmetric functions: $X=\left(a^{3}+b^{3}+c^{3}\right)$ and $Y=(b c(b+c)+c a(c+a)+a b(a+b)$, which satisfy:

$$
\begin{array}{ll}
(a+b+c)^{3}=\sum a^{3}+3 \sum a b(a+b)+6 a b c & \Rightarrow \quad 8 s^{3}=X+3 Y+6 a b c \\
\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=\sum a^{3}+\sum a b(a+b) & \Rightarrow \quad 4 s\left(s^{2}-r(4 R+r)\right)=X+Y . \tag{10}
\end{array}
$$

Solving the two equations for $\{X, Y\}$ we find the expressions for these two symmetric cubic functions:

$$
\begin{align*}
a^{3}+b^{3}+c^{3} & =2 s\left(s^{2}-6 r R-3 r^{2}\right) \tag{11}\\
\sum a b(a+b) & =2 s\left(s^{2}-2 r R+r^{2}\right) \tag{12}
\end{align*}
$$

Analogously we may compute the symmetric cubic functions

$$
\begin{align*}
a(b-c)^{2}+b(c-a)^{2}+c(a-b)^{2} & =\sum a\left(b^{2}+c^{2}\right)-2 \sum a b c \\
& =\sum a\left(a^{2}+b^{2}+c^{2}\right)-\sum a^{3}-6 a b c \\
& =2 s\left(a^{2}+b^{2}+c^{2}\right)-\sum a^{3}-6 a b c \\
& =2 s\left(s^{2}+r^{2}-14 R r\right), \tag{13}\\
(a+b)(b+c)(c+a)=2 a b c+\sum a b(a+b) & =2 s\left(s^{2}+2 r R+r^{2}\right), \tag{14}\\
(b+c-a)(c+a-b)(a+b-c) & =8(s-a)(s-b)(s-c)=8 s r^{2} . \tag{15}
\end{align*}
$$

4 Some 4th degree symmetric functions

The calculation of the higher symmetric functions has to be done gradually, since in each step we need the results of the previous. A use of these formulas is made below, in the GIO construction problem, i.e. the problem of constructing a triangle by giving the location of its three remarkable points: G (centroid), I (incenter) and O (circumcenter). As a last example I calculate the symmetric functions of fourth order:

$$
\begin{array}{ll}
(a+b+c)^{4} & =\sum a^{4}+4 \sum b c\left(b^{2}+c^{2}\right)+6 \sum b^{2} c^{2}+12 a b c \sum a, \\
\left(a^{3}+b^{3}+c^{3}\right)(a+b+c) & =\sum a^{4}+\sum b c\left(b^{2}+c^{2}\right), \\
\left(a^{2}+b^{2}+c^{2}\right)^{2} & =\sum a^{4}+
\end{array} \quad 2 \sum b^{2} c^{2} .
$$

This leads to the following system with obvious meaning of the symbols:

$$
\begin{array}{ll}
(a+b+c)^{4} & =X+4 Y+6 Z+12 a b c \sum a, \\
\left(a^{3}+b^{3}+c^{3}\right)(a+b+c) & =X+Y, \\
\left(a^{2}+b^{2}+c^{2}\right)^{2} & =X+\quad 2 Z .
\end{array}
$$

This is a linear system of equations, in which the right side is known from the previous steps:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 4 & 6 \\
1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \\
& =\left(\begin{array}{c}
(a+b+c)^{4}-12 a b c \sum a \\
\left(a^{3}+b^{3}+c^{3}\right)(a+b+c) \\
\left(a^{2}+b^{2}+c^{2}\right)^{2}
\end{array}\right) \Rightarrow \\
& \left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \quad=\frac{1}{12}\left(\begin{array}{ccc}
-2 & 8 & 6 \\
2 & 4 & -6 \\
1 & -4 & 3
\end{array}\right)\left(\begin{array}{c}
(a+b+c)^{4}-12 a b c \sum a \\
\left(a^{3}+b^{3}+c^{3}\right)(a+b+c) \\
\left(a^{2}+b^{2}+c^{2}\right)^{2}
\end{array}\right) \\
& =\frac{1}{12}\left(\begin{array}{ccc}
-2 & 8 & 6 \\
2 & 4 & -6 \\
1 & -4 & 3
\end{array}\right)\left(\begin{array}{c}
\left(2 s^{4}\right)-12(4 R r s)(2 s) \\
\left(2 s\left(s^{2}-6 r R-3 r^{2}\right)\right)(2 s) \\
\left(2\left(s^{2}-r(4 R+r)\right)\right)^{2}
\end{array}\right) \Rightarrow \\
& X=\sum a^{4} \quad=2\left(\left[4 r R-s^{2}+r^{2}\right]^{2}-[2 r s]^{2}\right) \text {, } \\
& Y=\sum b c\left(b^{2}+c^{2}\right)=-2\left(16 r^{2} R^{2}+4 r s^{2} R+8 r^{3} R-s^{4}+r^{4}\right) \text {, } \\
& Z=\sum b^{2} c^{2} \quad=16 r^{2} R^{2}-8 r s^{2} R+8 r^{3} R+s^{4}+2 r^{2} s^{2}+r^{4} .
\end{aligned}
$$

5 Relations involving the tritangent circles

The "tritangent circles" of the triangle $A B C$ (see file Tritangent circles) are its "incircle" and the three "excircles", which are the four circles tangent to all sides of the triangle ([Cou80, p.72]). Using figure 4, it is not difficult to show the relations

Figure 4: Relations connected with the tritangent circles

$$
\begin{array}{cl}
|C D|=\frac{a}{2 \cos \left(\frac{\alpha}{2}\right)}=2 R \sin \left(\frac{\alpha}{2}\right), & |I B|=|I J| \sin \left(\frac{\gamma}{2}\right)=4 R \sin \left(\frac{\alpha}{2}\right) \sin \left(\frac{\gamma}{2}\right), \\
r=4 R \sin \left(\frac{\alpha}{2}\right) \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\gamma}{2}\right), & s-a=|A I| \cos \left(\frac{\alpha}{2}\right)=4 R \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\gamma}{2}\right) \cos \left(\frac{\alpha}{2}\right), \\
\cos \left(\frac{\alpha}{2}\right)=\frac{s}{|A J|}, \quad \widehat{A D E}=\frac{|\beta-\gamma|}{2}, & |A D|=2 R \cos \left(\frac{|\beta-\gamma|}{2}\right), \quad|A E|=2 R \sin \left(\frac{|\beta-\gamma|}{2}\right) \\
\sin \left(\frac{\alpha}{2}\right)=\sqrt{\frac{(s-b)(s-c)}{b c}}, \quad \cos \left(\frac{\alpha}{2}\right)=\sqrt{\frac{s(s-a)}{b c}}, \quad \cot \left(\frac{\alpha}{2}\right)=\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}
\end{array}
$$

6 The cubic equation satisfied by $\{a, b, c\}$

The converse problem, that of the existence of a triangle with given $\{s, r, R\}$, occupied Euler, in a slight variation ([San15, p.7]) and led him to the third degree equation of next theorem:

Theorem 1. The side-lengths $\{a, b, c\}$ of the triangle $A B C$ satisfy the cubic equation:

$$
\begin{equation*}
x^{3}-2 s x^{2}+\left(s^{2}+r^{2}+4 R r\right) x-4 s R r=0 \tag{16}
\end{equation*}
$$

Proof. Replacing in $\sin ^{2}\left(\frac{\alpha}{2}\right)+\cos ^{2}\left(\frac{\alpha}{2}\right)=1$ the corresponding expressions of the previous section and using equation (6), we find the relations:

$$
\sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{a r}{4 R(s-a)}, \quad \cos ^{2}\left(\frac{\alpha}{2}\right)=\frac{a(s-a)}{4 R r} \Rightarrow \frac{a r}{4 R(s-a)}+\frac{a(s-a)}{4 R r}=1
$$

Last equation for $x=a$ is equivalent to the mentioned in the theorem and will hold also for $\{x=b, x=c\}$, since the coefficients of the relation are independent of a.

7 Blundon's inequalities

Every equation of degree 3 can be written in the form

$$
x^{3}+A x^{2}+B x+C=0
$$

and making the substitution $x=y-A / 3$ this reduces to

$$
y^{3}+P y+Q=0, \quad \text { with } \quad P=B-\frac{A^{2}}{3} \quad \text { and } \quad Q=C-\frac{A}{3}\left(B-\frac{2}{9} A^{2}\right)
$$

In order for the roots of equation (16) to be real, the known inequality ([Bur86, p.71])

$$
\frac{Q^{2}}{4}+\frac{P^{3}}{27}<0 \quad \text { must be satisfied. }
$$

This is a condition, which in the present case reduces to

$$
\begin{equation*}
s^{4}+2 s^{2}\left[r^{2}-10 R r-2 R^{2}\right]+r(r+4 R)^{3} \leq 0 \tag{17}
\end{equation*}
$$

Besides that one, in order for a triangle to exist with the given data, certain additional conditions must be satisfied, like for example the deduced from the well known "Euler's relation" (see file Tritangent circles) inequality $R>2 r$, as well as, the deduced from equation (8) inequality, $s>r$. If such a triangle exists, then the lengths of its sides are determined fully through the roots of the polynomial. However the construction of the triangle with these data using only a ruler and compass is not possible in general. Note that the inequality (17), considered with respect to s^{2} is quadratic and is satisfied when s^{2} is between the roots of the corresponding trinomial, whose discriminant is

$$
D=[4(R-2 r)]^{2} R(R-2 r)
$$

This leads to the double inequality of Blundon, [Bir15]

$$
2 R(R+5 r)-r^{2}-2(R-2 r) \sqrt{R^{2}-2 R r} \leq s^{2} \leq 2 R(R+5 r)-r^{2}+2(R-2 r) \sqrt{R^{2}-2 R r}
$$

8 The GIO triangle

Here we use "barycentric coordinates" (see file Barycentric coordinates) to determine the sides of the triangle with vertices $\{G, I, O\}$ (orthocenter, incenter, circumcenter). For this, in the case of $|G I|$ we apply the formula for the distance of two points expressed in absolute barycentrics:

$$
\left|U U^{\prime}\right|^{2}=S_{A}\left(u^{\prime}-u\right)^{2}+S_{B}\left(v^{\prime}-v\right)^{2}+S_{C}\left(w^{\prime}-w\right)^{2}
$$

where

$$
S_{A}=\left(b^{2}+c^{2}-a^{2}\right) / 2, \quad S_{B}=\left(c^{2}+a^{2}-b^{2}\right) / 2, \quad S_{C}=\left(a^{2}+b^{2}-c^{2}\right) / 2
$$

are the Conway triangle symbols and $\left\{U=(u, v, w)^{t}, U^{\prime}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right\}$ are the barycentrics of the two points.

From the fact that the absolute barycentrics of the the three points are respectively given by:

$$
\begin{align*}
& G=(1,1,1) / 3 \tag{18}\\
& I=(a, b, c) /(2 s) \tag{19}\\
& O=\left(a^{2} S_{A}, b^{2} S_{B}, c^{2} S_{C}\right) /\left(2 S^{2}\right) \tag{20}
\end{align*}
$$

Figure 5: The GIO triangle
where S is twice the area of the triangle $A B C$, we deduce:

$$
\begin{align*}
|G I|^{2} & =\sum S_{A}\left(\frac{a}{2 s}-\frac{1}{3}\right)^{2}=\ldots \\
& =\frac{2 \sum a b(a+b)-\sum a^{3}-9 a b c}{9(2 s)}=\ldots \quad \Rightarrow \\
|G I|^{2} & =\frac{s^{2}+5 r^{2}-16 R r}{9} \tag{21}
\end{align*}
$$

Here the sums are over the cyclic permutations of $\{a, b, c\}$ and the dots mean calculations, taking into account equations (6), (11), (12).

For the other sides of the triangle $G I O$ is computationally more favorable to use the euclidean norm with origin at the circumcenter expressed in barycentrics (see file barycentric coordinates):
$|O P|^{2}=R^{2}-\left(a^{2} v w+b^{2} w u+c^{2} u v\right), \quad$ for $\quad P=(u, v, w) \quad$ in absolute barycentrics. $\quad \Rightarrow$

$$
\begin{align*}
& |O G|^{2}=R^{2}-\frac{1}{9}\left(a^{2}+b^{2}+c^{2}\right)=R^{2}-\frac{2}{9}\left(s^{2}-r(4 R+r)\right) \tag{22}\\
& |O I|^{2}=R^{2}-\frac{1}{4 s^{2}}\left(a^{2} b c+b^{2} c a+c^{2} a b\right)=\cdots=R(R-2 r) \tag{23}
\end{align*}
$$

latter being the "Euler's relation" for the circumradius and inradius of the triangle $A B C$. Using equations (21), (22) and (23), we can express the fundamental invariants $\{r, R, s\}$ in terms of the side-lengths $\{|G I|,|I O|,|O G|\}$ of the triangle GIO. In fact, solving equation (23) w.r. to $2 r R$ and replacing into the two other equations, we obtain the system of equations:

$$
\begin{aligned}
5 r^{2}+s^{2} & =8\left(R^{2}-O I^{2}\right)+9 I G^{2} \\
-2 r^{2}+2 s^{2} & =4\left(R^{2}-O I^{2}\right)+9 R^{2}-9 O G^{2}
\end{aligned}
$$

Eliminating s^{2} from these equations and using again equation (23) to express the radius $r=\left(R^{2}-O I^{2}\right) /(2 R)$, we obtain, after some easy calculation:

$$
\begin{equation*}
R^{2}=\frac{O I^{4}}{6 I G^{2}+3 O G^{2}-2 O I^{2}} \tag{24}
\end{equation*}
$$

Replacing into the previous equation, we find:

$$
\begin{gather*}
r^{2}=\frac{9\left(O I^{2}-O G^{2}-2 I G^{2}\right)^{2}}{4\left(6 I G^{2}+3 O G^{2}-2 O I^{2}\right)} \tag{25}\\
s^{2}=\frac{3 O I^{2}\left(17 O I^{2}-2 O G^{2}-28 I G^{2}\right)-9\left(O G^{2}+2 I G^{2}\right)\left(5 O G^{2}-2 I G^{2}\right)}{4\left(6 I G^{2}+3 O G^{2}-2 O I^{2}\right)} \tag{26}
\end{gather*}
$$

9 The orthocentroidal circle

The "orthocentroidal" circle of the triangle $A B C$ is the circle with diameter $G H$, where H is the orthocenter of the triangle (See Figure 6). This circle is of importance because of the

Figure 6: The orthocentroidal circle κ of $A B C$
next theorem.
Theorem 2. Given the points $\{G, I, O\}$ there is a triangle $A B C$ having these points respectively as centroid, incenter and circumcenter, if and only if the incenter I is inside the orthocentroidal circle with diameter GH.

Proof. The necessity of the condition follows from equation (23), by which $R^{2}>\mathrm{OI}^{2}$. Replacing in this inequality R^{2} from equation (24) and doing some calculation, we see that it is equivalent with:

$$
\begin{align*}
2 I G^{2}+O G^{2}-O I^{2} & <0 \quad \Leftrightarrow \quad 2 I G^{2}+2 O G^{2}-O I^{2}<O G^{2} \\
& \Leftrightarrow J I^{2}<O G^{2}=J G^{2} . \tag{27}
\end{align*}
$$

Here we applied "Stewart's theorem", implying $J I^{2}=2\left(I G^{2}+O G^{2}\right)-O I^{2}$ and the fact that $G H=2 O G$.

The sufficiency proof is more involved and can be seen in [Gui84]. Point I though must be different from the middle N of OH , which is the center of the Euler circle ([Ste07], [Yiu13]).

10 Euler's construction problem

Euler solved the problem of constructing a triangle from the points $\{I, H, O\}$, which is equivalent to the problem of constructing the triangle from $\{G, I, O\}$, since each triple determines the other. The method can be described as follows.

1. Find $\{s, r, R\}$, the fundamental invariants of the under construction triangle as in section 8.
2. Consider the cubic equation (16), whose roots are the side-lengths $\{a, b, c\}$ of the trianlge.
3. Solve the cubic to find these lengths and construct the triangle. See section 6 for the resulting cubic equation. See also section 7 for the restrictions satisfied by $\{s, r, R\}$.

Figure 7: The locus of the feet of the altitudes

Figure 7 shows a curve related to the determination of this triangle. The curve contains the feet $\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}$ of the altitudes of the triangles $\{A B C\}$ inscribed in a circle $\kappa_{1}(O, R)$ and circumscribed to a circle $\kappa_{2}(I, r)$, the respective radii satisfying the Euler relation $d^{2}=$ $|O I|^{2}=R(R-2 r)$. These three points lie on a curve resembling an "hypotroichoid", given in parametric form by the equations:

$$
\begin{align*}
& x(t)=\frac{4 R d\left(R^{2}-d^{2}\right) \cos ^{2}(t)+\left(d^{4}-R^{4}+4 R^{2} d^{2}\right) \cos (t)-4 d R^{3}}{2 R\left(2 R d \cos (t)-\left(d^{2}+R^{2}\right)\right)} \tag{28}\\
& y(t)=\frac{4 R d\left(R^{2}-d^{2}\right) \cos (t) \sin (t)+\left(d^{4}-R^{4}\right) \sin (t)}{2 R\left(2 R d \cos (t)-\left(d^{2}+R^{2}\right)\right)} \tag{29}
\end{align*}
$$

Its derivation goes back to a related computation by Odehnal of the "poristic" triangle $A B C$, i.e. triangle varying but with fixed incircle and fixed circumcircle ([Ode11]). The requested triangle $A B C$, with given points $\{O, I, H\}$ and from them resulting $\{r, R\}$, has its altitude feet $\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}$ on the intersection of the Euler circle $\lambda(E, R / 2)$ and this curve. These points determine the "orthic" triangle $A^{\prime} B^{\prime} C^{\prime}$ of $A B C$. In the aforementioned reference is proved that the orthocenters of the poristic triangles $\{A B C\}$ lie on a circle κ, as seen in the figure.

Bibliography

[AA06] Titu Andreescu and Dorin Andrica. Complex Numbers from A to ... Z. Birkhaeuser, Berlin, 2006.
[Bir15] Temistocle Birsan. Bounds for Elements of a Triangle Expressed by R,r and s. Forum Geometricorum, 15:99-103, 2015.
[Bur86] W. Burnside. Theory of Equations. Hodges, Figgis, Dublin, 1886.
[Cou80] Nathan Altshiller Court. College Geometry. Dover Publications Inc., New York, 1980.
[Gui84] A. P. Guinand. Euler Lines, Tritangent Centers, and Their Triangles. American Mathematical Monthly, 91:290-300, 1984.
[Joh60] Roger Johnson. Advanced Euclidean Geometry. Dover Publications, New York, 1960.
[Ode11] B. Odenhal. Poristic Loci of Triangle Centers. Journal for Geometry and Graphics, 15:45-67, 2011.
[San15] Edward Sandifer. How Euler Did Even More. Mathematical Association of America, New York, 2015.
[Ste07] J. Stern. Euler's Triangle Determination Problem. Forum Geometricorum, 7:1-9, 2007.
[Yiu13] Paul Yiu. The Elementary Mathematical Works of Leonhard Euler. http://math.fau.edu/Yiu/eulernotes99.pdf, 2013.

Related topics

1. Barycentric coordinates
2. Conway triangle symbols
3. Tritangent circles
[^0]
[^0]: Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome and could be send by e-mail to: pamfilos@uoc.gr

