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The greatest of faults, I should
say, is to be conscious of none.

T. Carlyle, On Heroes
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1 Fundamental invariants of triangles

The “fundamental invariants” of a triangle 𝐴𝐵𝐶 are traditionally considered to be the fol‑
lowing three quantities associated with the triangle:
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Figure 1: Fundamental invariants of the triangle: {𝑠, 𝑟, 𝑅}
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2 Some remarkable identities 2

1. The “half‑perimeter” : 𝑠 = 𝑎+𝑏+𝑐
2 ,

2. The “ inradius” 𝑟 i.e. the radius of the inscribed circle,

3. The “ circumradius” 𝑅 i.e. the radius of the circumcircle of the triangle.

2 Some remarkable identities

Denoting by {𝑟𝑎, 𝑟𝑏, 𝑟𝑐} the radii of the “excircles” of the triangle the following identity is
valid ([Joh60, p.189]):

𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 = 4𝑅. (1)
The proof relies on some other identities involving the area Δ of the triangle and the
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Figure 2: Distances to contact points

quantities 𝑠, 𝑠 − 𝑎, 𝑠 − 𝑏, 𝑠 − 𝑐

𝑟 = Δ
𝑠 , 𝑟𝑎 = Δ

𝑠 − 𝑎, 𝑟𝑏 = Δ
𝑠 − 𝑏, 𝑟𝑐 = Δ

𝑠 − 𝑐 . (2)

𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 − 𝑟 = ∑ ( Δ
𝑠 − 𝑎 − Δ

3𝑠) = Δ ∑ ( 1
𝑠 − 𝑎 − 1

3𝑠) = Δ
3𝑠 ∑ (2𝑠 + 𝑎

𝑠 − 𝑎 ) . (3)

The first expresses the radii in terms of the area and the perimeter. The second sums over
the cyclic permutations of the letters {𝑎, 𝑏, 𝑐}:

∑ (2𝑠 + 𝑎
𝑠 − 𝑎 ) = 1

(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) ∑(2𝑠 + 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐), (4)

∑(2𝑠 + 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) = 3𝑎𝑏𝑐. (5)

Last equation results by carrying out the operations (e.g. with Maxima). Then back sub‑
stitution yields

𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 − 𝑟 = Δ
3𝑠 ⋅ 3𝑎𝑏𝑐

(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) = Δ𝑎𝑏𝑐
Δ2 = 𝑎𝑏𝑐

Δ = 4𝑅.
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This, taking into account “Heron’s formula” for the area, and last expressing {𝑎, 𝑏, 𝑐} in
terms of sines by the sine formula giving:

𝑎𝑏𝑐 = 4𝑅Δ = 4𝑅𝑟𝑠. (6)

By the occasion of this calculation I include another couple of formulas involving the two

b

h
a
 = csin(B)=cb/(2R)

a

c

Figure 3: The formula 𝑎𝑏𝑐 = 4Δ𝑅

symmetric quadratic expressions of the sides of the triangle.

𝑏𝑐 + 𝑐𝑎 + 𝑎𝑏 = 𝑠2 + 𝑟(4𝑅 + 𝑟), (7)
𝑎2 + 𝑏2 + 𝑐2 = 2(𝑠2 − 𝑟(4𝑅 + 𝑟)). (8)

Denote the first sum by 𝑋 and the second by 𝑌. Obviously

2𝑋 + 𝑌 = (𝑎 + 𝑏 + 𝑐)2 = 4𝑠2.

On the other hand, the expression 𝑌 − 2𝑋 can be written:

𝑌 − 2𝑋 = ∑((𝑏 − 𝑐)2 − 𝑎2) = − ∑(𝑎 + 𝑐 − 𝑏)(𝑏 + 𝑎 − 𝑐) = −4(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑎) ∑ 1
𝑠 − 𝑎.

Replacing there {𝑠 − 𝑎, 𝑠 − 𝑏, 𝑠 − 𝑐} with the expressions resulting from equation (2), we
obtain:

𝑌 − 2𝑋 = −4(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑎) ∑ 1
𝑠𝑎

= −4Δ2

𝑠 ∑ 1
𝑠 − 𝑎

= −4Δ2

𝑠 ∑ 𝑟𝑎
Δ = −4𝑟 ∑ 𝑟𝑎 = (−4𝑟)(4𝑅 + 𝑟).

Solving these equations for {𝑋, 𝑌} we find the expressions in equations (7) and (8).

3 Generalizing to 3rd degree symmetric functions

The precedingmethod can be generalized to compute every symmetric function of {𝑎, 𝑏, 𝑐}
in terms of the distinguished quantities {𝑠, 𝑟, 𝑅}, the “fundamental invariants” of the trian‑
gle ([AA06, p.110]). As an example I examine the two basic cubic symmetric functions:
𝑋 = (𝑎3 + 𝑏3 + 𝑐3) and 𝑌 = (𝑏𝑐(𝑏 + 𝑐) + 𝑐𝑎(𝑐 + 𝑎) + 𝑎𝑏(𝑎 + 𝑏), which satisfy:

(𝑎 + 𝑏 + 𝑐)3 = ∑ 𝑎3 + 3 ∑ 𝑎𝑏(𝑎 + 𝑏) + 6𝑎𝑏𝑐 ⇒ 8𝑠3 = 𝑋 + 3𝑌 + 6𝑎𝑏𝑐, (9)

(𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐) = ∑ 𝑎3 + ∑ 𝑎𝑏(𝑎 + 𝑏) ⇒ 4𝑠(𝑠2 − 𝑟(4𝑅 + 𝑟)) = 𝑋 + 𝑌.
(10)
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Solving the two equations for {𝑋, 𝑌} we find the expressions for these two symmetric
cubic functions:

𝑎3 + 𝑏3 + 𝑐3 = 2𝑠(𝑠2 − 6𝑟𝑅 − 3𝑟2), (11)

∑ 𝑎𝑏(𝑎 + 𝑏) = 2𝑠(𝑠2 − 2𝑟𝑅 + 𝑟2). (12)

Analogously we may compute the symmetric cubic functions

𝑎(𝑏 − 𝑐)2 + 𝑏(𝑐 − 𝑎)2 + 𝑐(𝑎 − 𝑏)2 = ∑ 𝑎(𝑏2 + 𝑐2) − 2 ∑ 𝑎𝑏𝑐
= ∑ 𝑎(𝑎2 + 𝑏2 + 𝑐2) − ∑ 𝑎3 − 6𝑎𝑏𝑐
= 2𝑠(𝑎2 + 𝑏2 + 𝑐2) − ∑ 𝑎3 − 6𝑎𝑏𝑐
= 2𝑠(𝑠2 + 𝑟2 − 14𝑅𝑟), (13)

(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) = 2𝑎𝑏𝑐 + ∑ 𝑎𝑏(𝑎 + 𝑏) = 2𝑠(𝑠2 + 2𝑟𝑅 + 𝑟2), (14)

(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏)(𝑎 + 𝑏 − 𝑐) = 8(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) = 8𝑠𝑟2. (15)

4 Some 4th degree symmetric functions

The calculation of the higher symmetric functions has to be done gradually, since in each
stepweneed the results of the previous. Ause of these formulas ismade below, in theGIO
construction problem, i.e. the problem of constructing a triangle by giving the location
of its three remarkable points: G(centroid), I(incenter) and O(circumcenter). As a last
example I calculate the symmetric functions of fourth order:

(𝑎 + 𝑏 + 𝑐)4 = ∑ 𝑎4 + 4 ∑ 𝑏𝑐(𝑏2 + 𝑐2)+6 ∑ 𝑏2𝑐2 + 12𝑎𝑏𝑐 ∑ 𝑎,
(𝑎3 + 𝑏3 + 𝑐3)(𝑎 + 𝑏 + 𝑐) = ∑ 𝑎4+ ∑ 𝑏𝑐(𝑏2 + 𝑐2),
(𝑎2 + 𝑏2 + 𝑐2)2 = ∑ 𝑎4+ 2 ∑ 𝑏2𝑐2.

This leads to the following system with obvious meaning of the symbols:

(𝑎 + 𝑏 + 𝑐)4 = 𝑋 + 4𝑌+6𝑍 + 12𝑎𝑏𝑐 ∑ 𝑎,
(𝑎3 + 𝑏3 + 𝑐3)(𝑎 + 𝑏 + 𝑐) = 𝑋+ 𝑌,
(𝑎2 + 𝑏2 + 𝑐2)2 = 𝑋+ 2𝑍.

This is a linear system of equations, in which the right side is known from the previous
steps:

⎛⎜⎜⎜
⎝

1 4 6
1 1 0
1 0 2

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑋
𝑌
𝑍

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

(𝑎 + 𝑏 + 𝑐)4 − 12𝑎𝑏𝑐 ∑ 𝑎
(𝑎3 + 𝑏3 + 𝑐3)(𝑎 + 𝑏 + 𝑐)

(𝑎2 + 𝑏2 + 𝑐2)2

⎞⎟⎟⎟
⎠

⇒

⎛⎜⎜⎜
⎝

𝑋
𝑌
𝑍

⎞⎟⎟⎟
⎠

= 1
12

⎛⎜⎜⎜
⎝

−2 8 6
2 4 −6
1 −4 3

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

(𝑎 + 𝑏 + 𝑐)4 − 12𝑎𝑏𝑐 ∑ 𝑎
(𝑎3 + 𝑏3 + 𝑐3)(𝑎 + 𝑏 + 𝑐)

(𝑎2 + 𝑏2 + 𝑐2)2

⎞⎟⎟⎟
⎠

= 1
12

⎛⎜⎜⎜
⎝

−2 8 6
2 4 −6
1 −4 3

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

(2𝑠4) − 12(4𝑅𝑟𝑠)(2𝑠)
(2𝑠(𝑠2 − 6𝑟𝑅 − 3𝑟2))(2𝑠)

(2(𝑠2 − 𝑟(4𝑅 + 𝑟)))2

⎞⎟⎟⎟
⎠

⇒

𝑋 = ∑ 𝑎4 = 2([4𝑟𝑅 − 𝑠2 + 𝑟2]2 − [2𝑟𝑠]2),
𝑌 = ∑ 𝑏𝑐(𝑏2 + 𝑐2) = −2(16𝑟2𝑅2 + 4𝑟𝑠2𝑅 + 8𝑟3𝑅 − 𝑠4 + 𝑟4),
𝑍 = ∑ 𝑏2𝑐2 = 16𝑟2𝑅2 − 8𝑟𝑠2𝑅 + 8𝑟3𝑅 + 𝑠4 + 2𝑟2𝑠2 + 𝑟4.
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5 Relations involving the tritangent circles

The “tritangent circles” of the triangle 𝐴𝐵𝐶 (see file Tritangent circles ) are its “incircle”
and the three “excircles”, which are the four circles tangent to all sides of the triangle
([Cou80, p.72]). Using figure 4, it is not difficult to show the relations
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Figure 4: Relations connected with the tritangent circles

|𝐶𝐷| = 𝑎
2 cos (𝛼

2 )
= 2𝑅 sin (𝛼

2) , |𝐼𝐵| = |𝐼𝐽| sin (𝛾
2 ) = 4𝑅 sin (𝛼

2) sin (𝛾
2 ) ,

𝑟 = 4𝑅 sin (𝛼
2) sin (𝛽

2 ) sin (𝛾
2 ) , 𝑠 − 𝑎 = |𝐴𝐼| cos (𝛼

2) = 4𝑅 sin (𝛽
2 ) sin (𝛾

2 ) cos (𝛼
2) ,

cos (𝛼
2) = 𝑠

|𝐴𝐽| , 𝐴𝐷𝐸 = |𝛽 − 𝛾|
2 , |𝐴𝐷| = 2𝑅 cos (|𝛽 − 𝛾|

2 ) , |𝐴𝐸| = 2𝑅 sin (|𝛽 − 𝛾|
2 ) ,

sin (𝛼
2) = √(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑏𝑐 , cos (𝛼
2) = √𝑠(𝑠 − 𝑎)

𝑏𝑐 , cot (𝛼
2) = √ 𝑠(𝑠 − 𝑎)

(𝑠 − 𝑏)(𝑠 − 𝑐) .

6 The cubic equation satisfied by {𝑎, 𝑏, 𝑐}

The converse problem, that of the existence of a triangle with given {𝑠, 𝑟, 𝑅}, occupied
Euler, in a slight variation ([San15, p.7]) and led him to the third degree equation of next
theorem:

Theorem 1. The side‑lengths {𝑎, 𝑏, 𝑐} of the triangle 𝐴𝐵𝐶 satisfy the cubic equation:

𝑥3 − 2𝑠𝑥2 + (𝑠2 + 𝑟2 + 4𝑅𝑟)𝑥 − 4𝑠𝑅𝑟 = 0. (16)

Proof. Replacing in sin2 (𝛼
2 )+cos2 (𝛼

2 ) = 1 the corresponding expressions of the previous
section and using equation (6), we find the relations:

sin2 (𝛼
2) = 𝑎𝑟

4𝑅(𝑠 − 𝑎) , cos2 (𝛼
2) = 𝑎(𝑠 − 𝑎)

4𝑅𝑟 ⇒ 𝑎𝑟
4𝑅(𝑠 − 𝑎) + 𝑎(𝑠 − 𝑎)

4𝑅𝑟 = 1.

Last equation for 𝑥 = 𝑎 is equivalent to the mentioned in the theorem and will hold also
for {𝑥 = 𝑏, 𝑥 = 𝑐}, since the coefficients of the relation are independent of 𝑎.
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7 Blundon’s inequalities

Every equation of degree 3 can be written in the form

𝑥3 + 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0,

and making the substitution 𝑥 = 𝑦 − 𝐴/3 this reduces to

𝑦3 + 𝑃𝑦 + 𝑄 = 0, with 𝑃 = 𝐵 − 𝐴2

3 and 𝑄 = 𝐶 − 𝐴
3 (𝐵 − 2

9𝐴2) .

In order for the roots of equation (16) to be real, the known inequality ([Bur86, p.71])

𝑄2

4 + 𝑃3

27 < 0 must be satisfied.

This is a condition, which in the present case reduces to

𝑠4 + 2𝑠2[𝑟2 − 10𝑅𝑟 − 2𝑅2] + 𝑟(𝑟 + 4𝑅)3 ≤ 0 . (17)

Besides that one, in order for a triangle to exist with the given data, certain additional
conditions must be satisfied, like for example the deduced from the well known “Euler’s
relation” (see file Tritangent circles ) inequality 𝑅 > 2𝑟, as well as, the deduced from
equation (8) inequality, 𝑠 > 𝑟. If such a triangle exists, then the lengths of its sides are
determined fully through the roots of the polynomial. However the construction of the
triangle with these data using only a ruler and compass is not possible in general. Note
that the inequality (17), considered with respect to 𝑠2 is quadratic and is satisfied when 𝑠2

is between the roots of the corresponding trinomial, whose discriminant is

𝐷 = [4(𝑅 − 2𝑟)]2𝑅(𝑅 − 2𝑟) .

This leads to the double inequality of Blundon, [Bir15]

2𝑅(𝑅 + 5𝑟) − 𝑟2 − 2(𝑅 − 2𝑟)√𝑅2 − 2𝑅𝑟 ≤ 𝑠2 ≤ 2𝑅(𝑅 + 5𝑟) − 𝑟2 + 2(𝑅 − 2𝑟)√𝑅2 − 2𝑅𝑟.

8 The 𝐺𝐼𝑂 triangle

Here we use “barycentric coordinates” (see file Barycentric coordinates ) to determine the
sides of the triangle with vertices {𝐺, 𝐼, 𝑂} (orthocenter, incenter, circumcenter). For this,
in the case of |𝐺𝐼| we apply the formula for the distance of two points expressed in absolute
barycentrics:

|𝑈𝑈′|2 = 𝑆𝐴(𝑢′ − 𝑢)2 + 𝑆𝐵(𝑣′ − 𝑣)2 + 𝑆𝐶(𝑤′ − 𝑤)2,
where

𝑆𝐴 = (𝑏2 + 𝑐2 − 𝑎2)/2, 𝑆𝐵 = (𝑐2 + 𝑎2 − 𝑏2)/2, 𝑆𝐶 = (𝑎2 + 𝑏2 − 𝑐2)/2,

are theConway triangle symbols and {𝑈 = (𝑢, 𝑣, 𝑤)𝑡, 𝑈′ = (𝑢′, 𝑣′, 𝑤′)} are the barycentrics
of the two points.

From the fact that the absolute barycentrics of the the three points are respectively
given by:

𝐺 = (1, 1, 1)/3, (18)
𝐼 = (𝑎, 𝑏, 𝑐)/(2𝑠), (19)
𝑂 = (𝑎2𝑆𝐴, 𝑏2𝑆𝐵, 𝑐2𝑆𝐶)/(2𝑆2), (20)
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Figure 5: The 𝐺𝐼𝑂 triangle

where 𝑆 is twice the area of the triangle 𝐴𝐵𝐶, we deduce:

|𝐺𝐼|2 = ∑ 𝑆𝐴 ( 𝑎
2𝑠 − 1

3)
2

= …

= 2 ∑ 𝑎𝑏(𝑎 + 𝑏) − ∑ 𝑎3 − 9𝑎𝑏𝑐
9(2𝑠) = … ⇒

|𝐺𝐼|2 = 𝑠2 + 5𝑟2 − 16𝑅𝑟
9 . (21)

Here the sums are over the cyclic permutations of {𝑎, 𝑏, 𝑐} and the dots mean calculations,
taking into account equations (6), (11), (12).

For the other sides of the triangle 𝐺𝐼𝑂 is computationally more favorable to use
the euclidean norm with origin at the circumcenter expressed in barycentrics (see file
barycentric coordinates):

|𝑂𝑃|2 = 𝑅2 − (𝑎2𝑣𝑤 + 𝑏2𝑤𝑢 + 𝑐2𝑢𝑣), for 𝑃 = (𝑢, 𝑣, 𝑤) in absolute barycentrics. ⇒

|𝑂𝐺|2 = 𝑅2 − 1
9(𝑎2 + 𝑏2 + 𝑐2) = 𝑅2 − 2

9(𝑠2 − 𝑟(4𝑅 + 𝑟)). (22)

|𝑂𝐼|2 = 𝑅2 − 1
4𝑠2 (𝑎2𝑏𝑐 + 𝑏2𝑐𝑎 + 𝑐2𝑎𝑏) = ⋯ = 𝑅(𝑅 − 2𝑟), (23)

latter being the “Euler’s relation” for the circumradius and inradius of the triangle 𝐴𝐵𝐶.
Using equations (21), (22) and (23), we can express the fundamental invariants {𝑟, 𝑅, 𝑠} in
terms of the side‑lengths {|𝐺𝐼|, |𝐼𝑂|, |𝑂𝐺|} of the triangle 𝐺𝐼𝑂. In fact, solving equation (23)
w.r. to 2𝑟𝑅 and replacing into the two other equations, we obtain the system of equations:

5𝑟2+ 𝑠2 = 8(𝑅2 − 𝑂𝐼2) + 9𝐼𝐺2,
−2𝑟2 + 2𝑠2 = 4(𝑅2 − 𝑂𝐼2) + 9𝑅2 − 9𝑂𝐺2.

Eliminating 𝑠2 from these equations and using again equation (23) to express the radius
𝑟 = (𝑅2 − 𝑂𝐼2)/(2𝑅), we obtain, after some easy calculation:

𝑅2 = 𝑂𝐼4

6𝐼𝐺2 + 3𝑂𝐺2 − 2𝑂𝐼2 . (24)

Replacing into the previous equation, we find:

𝑟2 = 9(𝑂𝐼2 − 𝑂𝐺2 − 2𝐼𝐺2)2

4(6𝐼𝐺2 + 3𝑂𝐺2 − 2𝑂𝐼2)
. (25)

𝑠2 = 3𝑂𝐼2(17𝑂𝐼2 − 2𝑂𝐺2 − 28𝐼𝐺2) − 9(𝑂𝐺2 + 2𝐼𝐺2)(5𝑂𝐺2 − 2𝐼𝐺2)
4(6𝐼𝐺2 + 3𝑂𝐺2 − 2𝑂𝐼2)

. (26)
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9 The orthocentroidal circle

The “orthocentroidal” circle of the triangle 𝐴𝐵𝐶 is the circle with diameter 𝐺𝐻, where 𝐻
is the orthocenter of the triangle (See Figure 6). This circle is of importance because of the

B

I

O

G

C
N

H

A

J

κ

Figure 6: The orthocentroidal circle 𝜅 of 𝐴𝐵𝐶

next theorem.

Theorem 2. Given the points {𝐺, 𝐼, 𝑂} there is a triangle 𝐴𝐵𝐶 having these points respectively
as centroid, incenter and circumcenter, if and only if the incenter 𝐼 is inside the orthocentroidal
circle with diameter 𝐺𝐻.

Proof. The necessity of the condition follows from equation (23), by which 𝑅2 > 𝑂𝐼2. Re‑
placing in this inequality 𝑅2 from equation (24) and doing some calculation, we see that
it is equivalent with:

2𝐼𝐺2 + 𝑂𝐺2 − 𝑂𝐼2 < 0 ⇔ 2𝐼𝐺2 + 2𝑂𝐺2 − 𝑂𝐼2 < 𝑂𝐺2

⇔ 𝐽𝐼2 < 𝑂𝐺2 = 𝐽𝐺2. (27)

Here we applied “Stewart’s theorem”, implying 𝐽𝐼2 = 2(𝐼𝐺2 + 𝑂𝐺2) − 𝑂𝐼2 and the fact
that 𝐺𝐻 = 2𝑂𝐺 .

The sufficiency proof is more involved and can be seen in [Gui84]. Point 𝐼 though
must be different from themiddle 𝑁 of 𝑂𝐻, which is the center of the Euler circle ([Ste07],
[Yiu13]).

10 Euler’s construction problem

Euler solved the problem of constructing a triangle from the points {𝐼, 𝐻, 𝑂}, which is
equivalent to the problem of constructing the triangle from {𝐺, 𝐼, 𝑂}, since each triple de‑
termines the other. The method can be described as follows.

1. Find {𝑠, 𝑟, 𝑅}, the fundamental invariants of the under construction triangle as in sec‑
tion 8.

2. Consider the cubic equation (16), whose roots are the side‑lengths {𝑎, 𝑏, 𝑐} of the
trianlge.

3. Solve the cubic to find these lengths and construct the triangle. See section 6 for the
resulting cubic equation. See also section 7 for the restrictions satisfied by {𝑠, 𝑟, 𝑅}.
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Figure 7: The locus of the feet of the altitudes

Figure 7 shows a curve related to the determination of this triangle. The curve contains
the feet {𝐴′, 𝐵′, 𝐶′} of the altitudes of the triangles {𝐴𝐵𝐶} inscribed in a circle 𝜅1(𝑂, 𝑅) and
circumscribed to a circle 𝜅2(𝐼, 𝑟), the respective radii satisfying the Euler relation 𝑑2 =
|𝑂𝐼|2 = 𝑅(𝑅 − 2𝑟). These three points lie on a curve resembling an “hypotroichoid”, given
in parametric form by the equations:

𝑥(𝑡) = 4𝑅𝑑(𝑅2 − 𝑑2) cos2(𝑡) + (𝑑4 − 𝑅4 + 4𝑅2𝑑2) cos(𝑡) − 4𝑑𝑅3

2𝑅(2𝑅𝑑 cos(𝑡) − (𝑑2 + 𝑅2))
, (28)

𝑦(𝑡) = 4𝑅𝑑(𝑅2 − 𝑑2) cos(𝑡) sin(𝑡) + (𝑑4 − 𝑅4) sin(𝑡)
2𝑅(2𝑅𝑑 cos(𝑡) − (𝑑2 + 𝑅2))

(29)

Its derivation goes back to a related computation by Odehnal of the “poristic” triangle
𝐴𝐵𝐶, i.e. triangle varying but with fixed incircle and fixed circumcircle ([Ode11]). The
requested triangle 𝐴𝐵𝐶, with given points {𝑂, 𝐼, 𝐻} and from them resulting {𝑟, 𝑅}, has
its altitude feet {𝐴′, 𝐵′, 𝐶′} on the intersection of the Euler circle 𝜆(𝐸, 𝑅/2) and this curve.
These points determine the “orthic” triangle 𝐴′𝐵′𝐶′ of 𝐴𝐵𝐶. In the aforementioned refer‑
ence is proved that the orthocenters of the poristic triangles {𝐴𝐵𝐶} lie on a circle 𝜅, as seen
in the figure.
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1. Barycentric coordinates
2. Conway triangle symbols
3. Tritangent circles

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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