
Homographic relation
A file of the Geometrikon gallery by Paris Pamfilos

Every physicist thinks that he knows what a
photon is... I spent my life to find out what a
photon is and I still don’t know it.

Albert Einstein, In E. Hecht Optics I,p.9
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1 Homographic Relation

“Homographic Relation” or “homography” between two real variables {x, y} is a one-to-one
(invertible) function y = f (x) involving algebraic operations only between the variables
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{x, y}. The one-to-one and the algebraic requirements imply that the relation has the form.

y =
ax + b

cx + d
, with ad − bc , 0 ⇔ cxy − ax + dy − b = 0 , (1)

with an inverse function of the same kind

x =
dy − b

−cy + a
. (2)

The graph of the function is a rectangular hyperbola (see figure 1). This is the only kind
of quadratic curve that represents an invertible real function of the “extended real line”
to itself. By “extended real line” I mean the real line R, to which an additional point “at
infinity”, denoted by ∞ has been added. In the following the terms “number” and “point”
are used interchangeable to denote elements of the extended real line.

Besides the “group property” discussed in the next section, the other main properties
of a homographic relation are the following.

(-d/c)

(a/c)

O

Figure 1: Function y = (ax + b)/(cx + d) representing a homographic relation

1. They preserve the cross ratio (pq; uv) = p−u
q−u : p−v

q−v . This means that for

p′ = f (p), q′ = f (q), . . . ⇒ (p′q′; u′v′) = (pq; uv).

2. They are distinguished in “involutive” i.e. such that f 2 = e ⇔ f −1 = f and
“non-involutive” (e represents the identity function e(x) = x).

3. Involutive/non-involutive homographic relations are completely determined by
prescribing arbitrarily the values to two/three arbitrary points.

4. If a homographic relation f interchanges two points, i.e. there are (x, y) such that
f (x) = y and f (y) = x, then f is involutive.

Nr-1 is is an easy calculation resulting to a kind of figure 1.
Nr-2 Non-involutive homographies are determined by their values at three distinguished
points. This follows from nr-1, by solving the equality of cross ratios

(p′q′; u′y) = (pq; ux),
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w.r. to y leading to a function y = f (x) as in nr-1.
Nr-3+nr-4: The involutive property is equivalent to the symmetry of the hyperbola about
the first diagonal (line y = x). This in turn is equivalent with the condition a + d = 0.
This is equivalent also to the lying of the center O of the hyperbola on the first diagonal.
“Involutive homographies” are determined by their values at two points. This is seen most
easily from equation 1. The homographic relation obtains in this case the form.

Axy + B(x + y) + C = 0. (3)

This determines the coefficients {A, B, C}, uniquely up to a multiple, by prescribing two
pairs {(x1, y1), (x2, y2)}.

Theorem 1. Any homography is the composition of two involutions.

In fact, consider a homography y = f (x) = (ax + b)/(cx + d) and for an arbitrary triple
of points {p, q, r} the images {p′ = f (p), q′ = f (q), r′ = f (r)}, which, according to nr-3, com-
pletely determine f . We adopt the notation g : (xy)(uv) for an involution completely
determined, according to nr-3, by the requirement to interchange the members of the
pairs {(x, y), (u, v)} ([Cox87, p.47]). We can define, using again nr-3, the two involutions.

I1 : (pq′)(qp′) and I2 : (p′q′)(r′s) where s = I1(r). (4)

and see that f = I2 ◦ I1 :

p
I1
7→ q′

I2
7→ p′, q

I1
7→ p′

I2
7→ q′, r

I1
7→ s

I2
7→ r′.

2 The group PGL(2,R)

Two homographies of the real line y = f (x) and z = g(y) can be “composed” and produce
a third homography z = h(x) = (g ◦ f )(x) = g(f (x)). Assume that to f corresponds the
matrix A and to g the matrix B. Then to their composition h = g ◦ f corresponds the
product matrix C = B · A. This means that if

y = f (x) =
ax + b

cx + d
with A =

(
a b
c d

)
, z = g(y) =

a′y + b′

c′y + d′
with B =

(
a′ b′

c′ d′

)
then z = (g ◦ f )(x) = g(f (x)) =

a′′x + b′′

c′′x + d′′
with(

a′′ b′′

c′′ d′′

)
= C = B · A =

(
a′ b′

c′ d′

) (
a b
c d

)
=

(
a′a + b′c a′b + b′d
c′a + d′c c′b + d′d

)
.

By its definition, a matrix A and a non-zero multiple tA of the matrix define the same
homography

y =
(ta)x + (tb)
(tc)x + (td)

=
ax + b

cx + d
.

Thus, it is not exactly one invertible matrix that corresponds to f but a whole “line” of
invertible matrices {t · A : t ∈ R, t , 0}. We denote this set of matrices by [A]. The group
PGL(2,R) consists of all these elements {[A]} for which the “multiplication” is the usual
matrix multiplication.

It is instructive to see the formation of the inverse homography and the corresponding
matrix, especially in the case of involutions f 2 = e ⇔ f −1 = f.

y = f (x) =
ax + b

cx + d
, A =

(
a b
c d

)
or any multiple tA, t , 0,
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with inverse x = f −1(y) =
dx − b

−cx + a
or any multiple tA−1, t , 0.

In the case of involution the condition f = f −1 translates to the matrix relation(
a b
c d

)
= t

(
d −b
−c a

)
,

which determines a matrix different from (a multiple of) the identity only for t = −1
leading to the condition a + d = 0 characterizing the involutive homographies.

3 Fixed points of homographic relations

Of particular interest are the “fixed points” or “double points” of such relations, character-
ized by the equation

x = f (x) = (ax + b)/(cx + d). (5)

This is equivalent to the quadratic equation

cx2 + (d − a)x − b = 0 with discriminant D = (a + d)2 − 4(ad − bc). (6)

“Involutive relations” (a + d = 0) have either no (when ad−bc > 0) or two (when ad−bc <
0) fixed points. This follows from the derivative

f ′(x) = (ad − bc)/(cx + d)2.

Only hyperbolas representing “decreasing” functions ((ad − bc) < 0) meet the first diag-
onal.

Exercise 1. If the homographic relation (5) has two fixed points {A(0), B(k)} show that the cross
ratio (XY ; AB) for {X (x), Y (y)} is constant and equal to d/a.

Hint: f (0) = 0 ⇒ b = 0, and k = f (k) ⇒ k = (a − d)/c. Then, using this and (5) into

(XY ; AB) =
x

y
:

x − k

y − k
⇒ (XY ; AB) =

d

a
.

4 Fixed points, the case of involution

Assume f is an involution and there are two different, real or imaginary fixed points
{x1, x2}. Then, since f preserves the cross ratio, for any other point x3, x4 = f (x3) we
have

(x1x2; x3x4) = (f (x1)f (x2); f (x3)f (x4)) = (x1x2; x4x3) ⇒ (7)
(x4 − x1)/(x4 − x2) = −(x3 − x1)/(x3 − x2) (8)

This means that (x3, x4 = f (x3)) ∼ (x1, x2) are harmonic conjugate pairs. Thus, we have
the theorem.

Theorem 2. Involutions are characterized by the existence of two (real or imaginary) points
{x1, x2}, such that for every other point x3 the image x4 = f (x3) is the harmonic conjugate of x3
with respect to {x1, x2}.



5 Limit points of homographies 5

5 Limit points of homographies

Given the homography f (x) = (ax + b)/(cx + d) there are two distinguished values re-
lated to the point at infinity of the line on which the homography operates writing

f (x) =
a + b

x

c + d
x

−−−−→
x→∞

a

c
= if = f (∞),

gives the first limit point which is the image point of the point at infinity. The second
limit point is the point sent to infinity, or using the inverse function, the point if −1

jf = if −1 = −
d

c
, f (jf ) = ∞ .

Using these two points and assuming c , 0 we see easily that the homographic relation
y = f (x) takes the form

(x − jf )(y − if ) = −
ad − bc

c2 . (9)

The condition c , 0 is the necessary condition for the “converse” of the next exercise.

Exercise 2. Given are two points {X (x), Y (y)} on the line ε. Show that if there exist two points
{A(a), B(b)} and a constant c, susch that the signed distances satisfy the relation

AX · BY = c, (10)

then {x, y} satisfy a homographic relation. Under certain assumptions the converse holds as
well, i.e. with the assumption that {x, y} satisfy a homographic relation, then there exist points
{A(a), B(b)}, which satisfy (10).

Hint: For the converse, assume that the homographic relation has the form xy+ax+by+c =
0 and see that for u = −b, v = −a, d = ab − c, it takes the form (x − u)(y − v) = d.

6 Homographic relations represent projectivities

The importance of this kind of relations stems from the fact that they represent “projec-
tivities” or “homographies” or “homographic transformations” of one-dimensional projective
spaces or “projective lines” (see file Projective Line).

The standard model of such a line is the “extended real line” or “one-point compactified
real line” of section 1.

Another model of the projective line is a “range of points” consisting of points of an
euclidean line, in the plane, the space or a higher dimensional euclidean space, to which
a point “at infinity” has been added.

A third example of projective line is a “pencil of lines” or “range of lines” of the euclidean
plane, consisting of all lines passing from a fixed point A called the “center” of the pencil.
For this kind of projective line I often use the symbol A∗.

In all these models their points can be described by “classes of pairs” of numbers (x, y)
different from (0, 0) , two pairs considered in the same class if they define the same “di-
rection”, i.e. they satisfy (x ′, y′) = k(x, y), with k , 0.

The pairs {(x, y)} represent “homogeneous coordinates” for these models and a projectiv-
ity or homography is described in these coordinates by an invertible matrix:

A =

(
a b
c d

)
defining

(
x ′1
x ′2

)
= A

(
x1
x2

)
i.e.

(
x ′1
x ′2

)
=

(
a b
c d

) (
x1
x2

)
. (11)
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The “homographic relation” results then for the corresponding quotients

t′ :=
x ′1
x ′2

, t =
x1

x2
⇒ t′ =

at + b

ct + d
. (12)

Homogeneous coordinates of a line ε result also from usual “line coordinates” on ε. Latter
are defined by fixing two points {O, A} on ε and defining as line coordinate the signed ratio

x =
OX

OA
.

The corresponding “homogenization” results by considering pairs of numbers (u, v) such
that x = u/v. The pair (u, v) represents then the homogeneous coordinates of the point of
the line ε represented also by x. A homographic transformation is then described by

x ′ =
ax + b

cx + d
w.r. to x,

(
u′

v′

)
=

(
a b
c d

)
·

(
u
v

)
=

(
au + bv
cu + dv

)
w.r. to (u, v).

Α

Χ Ο Υ

φ ω

ε

(I)

Μ Ν

A

B

Ρ

Β'

ΥΧ

A'

ε

(ΙΙ)

Figure 2: Homographic relation through angle... ... and through circle

Exercise 3. The angle X̂AY of fixed measure and with fixed vertex at point A rotates about A and
defines the points of intersection {X (x), Y (y)} of its sides with the fixed line ε (see figure 2-(I)).
Show that {X, Y } are related homographicaly.

Hint: Consider a system of coordinates with origin at the projection O of A on ε. If the
angle is not a right one, apply formula tan(φ + ω) = tan(φ)+tan(ω)

1−tan(φ) tan(ω) and see that y−x
d2+xy = k,

where d = |AO| and k = tan(φ + ω), where φ + ω = χ is the fixed measure of the rotating
angle. If the rotating angle is right, then x · y = −d2 and the homographic relation is an
“involution” (i.e. homography f satisfying f −1 = f ).

Exercise 4. Point P is moving on a fixed circle and the lines {PA, PB}, which pass through two
fixed points {A, B} of the circle, intersect line ε at points {X (x), Y (y)} (see figure 2-(II)). Show that
{X, Y } are related homographicaly.

Hint: ([Pap96, 24, VII]) Consider the points {A′, B′}, at which the parallels of ε from {A, B}
intersect the circle a second time. Define the points {M, N}, at which {AB′, A′B} intersect
ε and show that the product of the signed distances MX · NY = MA · NB is fixed. Finally
apply exercise 2.

Exercise 5. Point P is moving on a fixed circle κ(O, r) centered at the origin of coordinates and
lines {PA, PB}, which pass through two fixed points {A(a, b), B(−a, b)} of the circle lying on a
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parallel to the x−axis, intersect this axis at points {X (x), Y (y)} (see figure 3). Show that {X, Y }
are related homographicaly and satisfy

axy + r2(x − y) − ar2 = 0 .

How the more general exercise 4 can be deduced from this special case?

P

X(x)

A(a,b)B

Y(y)

C
O

κ
ε

Χ' Υ'

Figure 3: Homographic relation of {x, y}

Hint: The first part is a simple calculation. For the second part consider the perspectiv-
ities {f1, f2} from points {A, B} mapping the x− axis to an arbitrary but fixed line ε. If
Y = f (X ) represents the homographic relation between {X, Y }, then Y ′ = (f2 ◦ f ◦ f −1

1 )(X ′)
represents the homographic relation of the points {X ′, Y ′}.

7 Orthogonality for pencils in involution

Here we handle a simple homography problem concerning a pencil of lines. The pencil
consists of all lines emanating from the origin O of coordinates in the plane. Assume
a Cartesian coordinate system at O and let a line through the origin intersect the line
x = 1 at a point (1, m). This line is represented by the equation y = mx, and (1, m) are
homogeneous coordinates parameterizing the pencil O∗ of lines through the origin O.
By the preceding discussion an involution of this pencil is defined through a function
m′ = f (m), with f (m) = (am + b)/(cm + d). By the involution condition d must be equal
to −a and we have the problem:

y=
mx m

1

-1/m

y=
(-1/m

)x

O

Figure 4: Involutive relation on a pencil of lines

Problem 1. To find the pairs of lines (m, m′ = f (m)), which are orthogonal.
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If the line corresponding to m′ = f (m) is orthogonal to the one corresponding to m,
then m′ must be equal to −1/m (see figure 4). Thus, in order to locate pairs (m, m′)
which are orthogonal we must solve the equation

−(1/m) = (am + b)/(cm − a) ⇔ am2 + (b + c)m − a = 0. (13)

1. If a is non-zero, setting (b + c)/a = 2d, we arive at equation m2 + 2dm − 1 = 0,
wich has always two real solutions m1, m2. Since their product m1m2 = −1, the
two solutions determine the same pair of orthogonals.

2. If a is zero, then the equation above becomes (b + c)m = 0 i.e. b + c = 0, and
f (m) = b/(cm) = −1/m. Thus, in this case we have the special involution “by orhtog-
onals”, in which every line maps to its orthogonal.

The result of this short discussion is next theorem.

Theorem 3. An involution on a pencil of lines either has exactly one pair (m, m′) of orthogonal
lines or all pairs {(m, m′)} are orthogonal.

8 Involutions and pencils of circles

As noticed in equation 6 the fixed point equation of the general homographic relation has
the discriminant

D = (a + d)2 − 4(ad − bc) (14)

1. If D > 0, then there are two real fixed points and the relation is called “hyperbolic”.

2. If D < 0, then there are two imaginary fixed points and the relation is called “ ellip-
tic.”

3. If D = 0, then there are two real coincident fixed points and the relation is called
“parabolic”.

Denoting by {x1, x2} the two fixed points of the homography x ′ = f (x) , we compute the
cross ratio

(x1x2; xx ′) =
x1 − x

x2 − x
:

x1 − x ′

x2 − x ′
=

x1 − x

x2 − x
:

x1 − (ax + b)/(cx + d)
x2 − (ax + b)/(cx + d)

=

=
x1 − x

x2 − x
:

(cx + d)x1 − (ax + b)
(cx + d)x2 − (ax + b)

=
x1 − x

x2 − x
:

(cx1 − a)x + (dx1 − b)
(cx2 − a)x + (dx2 − b)

=

=
x1 − x

x2 − x
:
(
x + (dx1 − b)/(cx1 − a)
x + (dx2 − b)/(cx2 − a)

·
cx1 − a

cx2 − a

)
=

=
x1 − x

x2 − x
:
((
−x + (dx1 − b)/(−cx1 + a)
−x + (dx2 − b)/(−cx2 + a)

)
·

cx1 − a

cx2 − a

)
=

=
x1 − x

x2 − x
:
((
−x + x1

−x + x2

)
·

cx1 − a

cx2 − a

)
=

cx2 − a

cx1 − a
.

The equality in the last line following from the fact that y = (dx − b)/(−cx + a) represents
the inverse f −1 of f , which also fixes {x1, x2}.

Last expression is constant, equal to k say. Thus, we have the theorem
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Theorem 4. The general homographic relation f (x) = (ax + b)/(cx + d) is characterized by the
property

(x1x2; xf (x)) =
cx2 − a

cx1 − a
= k, for all pairs (x, x ′ = f (x)), (15)

where {x1, x2} are the fixed points of f.

Conversely, the preceding equation, solving for x ′ = f (x), implies the homographic
relation:

x ′ =
x(x2 − kx1) − (1 − k)x1x2

x(1 − k) − (x1 − kx2)
. (16)

Note the particular value for

x =
1

1 − k
(x1 − kx2) producing

x − x1

x − x2
= k and x ′ = ∞. (17)

The particular case of “involutions” corresponds to the constant k = −1. In that case the
cross ratio is

(x1x2; xx ′) = −1 ⇔ (x1 − x)(x2 − x ′) + (x1 − x ′)(x2 − x) = 0, (18)

which is equivalent with

x ′ =
x(x1 + x2) − 2x1x2

2x − (x1 + x2)
. (19)

Selecting the middle O with line coordinate (x1 + x2)/2 as origin, this equation becomes

x ′ =
r2

x
, where r =

x1 − x2

2
. (20)

This translates to the

Theorem 5. An involution coincides with the restriction of an inversion I(O, r) on its supporting
line.

x x'

b

-b

0

Figure 5: Elliptic involution xx ′ = −b2 with no real fixed points

From this follows that points {(x, x ′)} are intersection points of the supporting line
with the members of a “circle-pencil”. The circle pencil being “hyperbolic” (ad − bc < 0),
“elliptic” (ad − bc > 0) or “parabolic” (ad − bc = 0), which is in accordance with the nam-
ing conventions at the beginning of the section. Notice that in the elliptic case, of two
imaginary fixed points, {a ± ib}, the radius r2 = −b2 and the “inversion” must be consid-
ered in the complex domain. Geometrically then the equation xx ′ = −b2 has the inter-
pretation of a map of the real line into itself produced by an “intersecting pencil of cir-
cles”, whose circle-members pass all through the points a ± ib (see figure 5). Notice also
that the parabolic pencil cannot occur in the case of involutions, since per assumption
ad − bc , 0.
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9 Homography by polars

Fixing a conic κ and two lines {ε, ζ } we can define a homography using the polars of
points X ∈ ε w.r.t. the conic. Figure 6 shows the way. For each point X ∈ ε the polar pX

ε

ζ

Χ

p
X

Y

P
ε

κ

Figure 6: Homography by the polars of X ∈ ε

of X passes through a fixed point, the pole Pε of the line ε and intersects the line ζ at a
point Y.

Theorem 6. Under the preceding assumptions the map f : X 7→ Y is a homography.

Proof. A formal proof can be given using the representation of the conic in a projective
coordinate system by a symmetric matrix A. Denoting by X the triple of coordinates of
a point of the plane, the polar of this point is a line with coefficients given by the matrix
multiplication pX = A · X. The line ε can be described by fixing two points {B, C} of it and
considering its parameterization X = B + t · C. The polar pX is then a linear combination
of two particular polars:

pX = AX = (AB) + t · (AC)

and the triples {(AB), (AC)} represent the coefficients of the particular polars {pB, pC}, inter-
secting at the pole Pε of the line. If Q = (q1, q2, q3) are the coefficients of the line ζ, then
the intersection points {Y = ζ ∩ pX } are given in coordinates using the vector product:

Q × AX = (Q × AB) + t · (Q × AC) = U + t · V .

Thus, using the homogeneous coordinates of the lines {ε, ζ } defined respectively by the
pairs of points {(B, C), (U, V )}, this relation between the lines is described by the identity
function t′ = t, which is a homography as claimed. □

Next exercise gives an alternative proof in the case of a circle κ using a composition
of two homographies.

Exercise 6. Given are a circle κ(K, r) and two lines {ε, ε′}. For every point X ∈ ε we correspond
the point Z = ε′ ∩ pX , where pX is the “polar” of X w.r. to κ. Show that the correspondence
Z = h(X ) from ε to ε′ is a homography.

Hint: The map Y = f (X ) of the line ε onto itself (see figure 7), with Y = pX ∩ ε is a ho-
mography, actually an involution. All lines pX for X ∈ ε pass through the pol P of ε and
the intersection X ′ = pX ∩ XK is the inverse of X relative to κ satisfying KX · KX ′ = r2.
The circle with diameter XY passes through X ′ is orthogonal to κ and intersects the line
KP at a fixed point L. Then, introducing coordinates with origin at O = ε ∩ KP we have
OX · OY = −OL2 = k corresponding to the equation of coordinates x · y = k, proving that
f is an involution. Then Z = g(Y ) is also a “central projection” from P of line ε onto ε′.
Hence their composition Z = h(X ) = g(f (X )) is a homography.
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ε

ε'

Χ

Υ

Ο

L

K
κ

P

Z

λ

X'

p
X

Figure 7: Homography through polars

Remark 1. This special case can be used to give an alternative proof of theorem 6. In
fact, a general conic κ can be mapped by an appropriate “projectivity” f onto a circle.
The lines {ε, ζ } map then to lines {ε′, ζ ′} and the correspondence g : X 7→ Y by polars of
κ maps to a correspondence by polars h : X ′ 7→ Y ′ w.r.t. the circle, which is a homog-
raphy. Then the correspondence by polars g is a composition g = f −1 ◦ h ◦ f, which is a
homography too.

10 General pencil intersecting a line

A general “pencil of circles” intersecting a line ε defines an involution on the line. For

X

Y

λ

O
κ

η

Α

Β

κ'

κ''

ε

Figure 8: Homography f : X 7→ Y on line ε

this consider for an X ∈ ε the unique circle κ of the pencil through X intersecting again
the line at a second point Y . The homographic relation is f : X 7→ Y (see figure 8). The
reason is very simple. Consider the intersection O = ε ∩ λ, where λ is the radical axis
of the pencil. Then OX · OY = r2 is a constant independent of X. The fixed points of
the involution induced on ε are the contact points {A, B} of the two circles {κ′, κ′′} of the
pencil which are tangent to the line ε. Points {A, B} can be located as intersections of ε
with the circle η, whose center is O and its radius is the tangent from O to any circle of
the pencil.

11 Homographic transformations between lines

Homographic transformations or projectivities of a line onto itself, as explained in section
6, can be generalized also to maps between two different lines {α, �}. For this it suffices
to adopt two homogeneous coordinate systems {(x, y), (x ′, y′)} on the respective lines and
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use an invertible matrix:(
x ′

y′

)
=

(
a b
c d

) (
x
y

)
⇔

{
for t =

x

y
, t′ =

x ′

y′

}
, t′ =

at + b

ct + d
. (21)

Such examples of homographies can be easily constructed using the second description,
in which (t, t′) represent line coordinates on two lines {α, �} and passing to their “homog-
enization” {t = u/v, t′ = u′/v′}, as explained in section 6. Geometrically, this can be done
by creating correspondences of the points of a line α to the points of a line � involving
geometric constructions with intersection points (i) of two lines, (ii) of a line and a conic.
Such constructions reduce to relations of the form (21) between corresponding line coor-
dinates {t, t′} of the two lines, thus defining homographic transformations between these
lines.

A basic first example is the “central projection” from a point P of a line ε onto a second
line ε′ (see figure 9). Considering parameterizations along the lines:

A X

B
Y

P

ε

ε'

Figure 9: Central projection of ε onto ε′ from P

ε : X = A + xE, ε′ : Y = B + yF,

we find the relation between {x, y} from the collinearity of the points {Y, X, P}:∣∣∣∣∣∣∣∣∣
b1 + yf1 b2 + yf2 1
a1 + xe1 a2 + xe2 1

p1 p2 1

∣∣∣∣∣∣∣∣∣ = 0 ⇒ y =
ax + b

cx + d
,

in which

a = E · J(B − P), b = B · JP + A · J(B − P), c = F · J(E), d = F · J(A − P),

the dot denoting the “inner product” and J denoting the “+90◦-rotation” J(x, y) = (−y, x).

X

YO

B

A

Z

r

y

x

Figure 10: Homographic relation between points of different lines

Exercise 7. Given is a circle and two tangents to it at points {A, B}, intersecting at the point O.
Point Z moves on the circle and the tangent to it intersects {OA, OB} at points {X, Y }. Show that
{X, Y } are related homographicaly (see figure 10).
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Hint: The radius r of the circle can be expressed through (see file Tritangent circles):

r2 =
|OA||AX ||BY |

|OA| + |AX | + |BY |
=

a(x − a)(y − a)
a + (x − a) + (y − a)

⇔ y = (a2 + r2)
x − a

ax − (a2 + r2)
,

where a = |OA| and the systems of coordinates on {OA, OB} have their origin at O.

The discussion in section 2 on compositions of homographies generalizes in part to ho-
mographies between different lines and the composition g = f2 ◦ f1 of two homographies

between different lines α
f1
→ �

f2
→ γ is a homography g : α → �. Also, representing {f1, f2}

with matrices {A, B}we obtain the representation of g with the product matrix C = BA.

12 Good parameterizations of pencils and conics

Homographic relations are intimately connected with so called “good” parameterizations
of pencils of lines (through a fixed point A) and also with “good” parameterizations of
conics ([Ber87, II, p.173]). A good parameterization of the pencil A∗ of lines through the
point A is defined by fixing a line ε not containing A and considering as a parameter
of a line ζ ∈ A∗ its intersection X = ε ∩ ζ (see figure 11). Using a projective coordinate

A

X'

X
ε

ζ

ε'

Figure 11: Good parameterization ζ 7→ X = ε ∩ ζ of the pencil A∗

system of ε we associate then to ζ the coordinate x of X. From the discussion in section
11 follows, that if we use instead of ε another line ε′, then the corresponding coordinates
{x, x ′} are related by a homographic relation x ′ = (ax + b)/(cx + d).

A

X

Y(y)

B

ε

ε'

Z(z)

κ

Figure 12: Good parameterization X 7→ Y = ε ∩ AX of the conic κ

A “good” parameterization of a conic κ is reminiscent of the “stereographic projection”
of the circle onto a line. The pattern is the same: We fix a point A on κ and a line ε not
containing A. For every other point X ∈ κ, X , A we associate the point Y = AX ∩ ε of
the line. Fixing a projective coordinate system on ε we finally associate to X the coordi-
nate y of Y (see figure 12). We call A the “pole” and ε the axis of the good parameteri-
zation. Changing to another pole and axis {B, ε′} and a projective coordinate system on ε′
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we obtain another good parameterization, related to the first by a homographic relation
z = (ay + b)/(cy + d). This is guaranteed by the theorem of Chassles Steiner characteriz-
ing the conics by just this property, i.e. that the two good parameterizations are related
by such a homography ([Cox87, p.77]):

Theorem 7 (Chassles-Steiner theorem). A homographic relation {f : A∗ → B∗} between two
pencils of lines through two distinct points {A, B} produces through the intersection points of
corresponding lines {X = ζ ∩ f (ζ ), ζ ∈ A∗} a conic κ passing through {A, B} (see figure 12). Con-
versely, two good parameterizations of the conic κ with poles/axes respectively {A, ε}, {B, ε′} define
coordinates {y, z} of the same point X ∈ κ related by homographic relation z = (ay + b)/(cz + d).

13 Homography between a conic and a line

Good parameterizations can be used to define a “homography between a conic and a line”
f : κ → ε . In fact, we say that f is such a homography if there is a good parameteri-
zation σ : κ → η such that the composition of the maps f ′ = f ◦ σ−1 : η → ε (see figure
13) is a homography. If this is true for σ then it is true also for any other good parame-

X Y

A ε

Χ'

η

f

σ

κ

f '

Figure 13: Homography f : κ → ε from a conic to a line

terization τ : κ → η′. This because f ′′ = f ◦ τ−1 = f ◦ σ−1 ◦ σ ◦ τ−1 = f ′ ◦ (σ ◦ τ−1) and, by
theorem 7, σ ◦ τ−1 is a homography from η′ to η so that the composition with f ′ is also
a homography from η′ to ε.

By this definition a good parameterization τ : κ → ε of κ becomes also a homogra-
phy between the conic κ and the line ε. To satisfy the formal definition for it, it suffices
to consider as σ appearing in the definition the same map σ = τ, the composition f ′

becoming then the identity e = τ ◦ τ−1 on line ε.

14 Homography between two conics

Essentially the same method used in the preceding section, in order to define a homog-
raphy between a conic and a line, can be used also for the definition of the “homography
between two conics”. We define a map of this kind between two conics f : κ → λ by re-
quiring the existence of two good parameterizations σ : κ → ε and τ : λ → η, such that
the composition f ′ = τ ◦ f ◦ σ−1 : ε → η, called “representation” of f w.r.t. {σ, τ}, is a ho-
mography (see figure 14) between the lines ε and η .

Again if there exist two good parameterizations {σ, τ} satisfying the above condition,
then, by an argument similar to that of the preceding section, we see that the condition
is valid by considering any other two parameterizations {σ′, τ′} in the definition of the
homography.

I am not going to develop here the whole theory of “conic homographies”. This is
done in some detail in the file Conic Homographies. Here I discuss only three special
examples. The first is a trivial one: the identity e : κ → κ, e(X ) = X, for every X ∈ κ.
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A B

X

Y

σ τ

f

f'

ε
η

κ
λ

Figure 14: Homography f between two conics and its representation f ′

For two good parameterizations {σ, τ} of κ the composition e′ = τ ◦ e ◦ σ−1 = τ ◦ σ−1 is a
homography between two lines according to theorem 7. Thus, the identity e of κ onto
itself is a homography between conics.

The second example, perhaps the most prominent conic homography, is the “harmonic
homology”, defined by a point or a line. In fact, given a conic κ and fixing a point A < κ
the harmonic homology fA is a conic homography of κ onto itself that associates to each
point X ∈ κ of the conic the harmonic conjugate Y ∈ κ point X w.r.t. (A, XA), where XA

is the intersection of the line XA with the polar εA of A w.r.t. the conic (see figure 15).
To show that Y = fA(X ) is a homography fix a point B ∈ κ and the line AB intersecting

A

X

Y

ε
Α

B

C

X'

Y'

A'

X
A κ

η

Figure 15: dd

a second time κ at C. Consider also the good parameterizations {σB, σC} mapping each
X ∈ κ respectively to X ′ = εA ∩ BX and X ′′ = εA ∩ CX. Due to the property of the polar
to produce collinear points {X ′ = σB(X ), C, Y,} the harmonic homology fA can be written
fa = σ−1

C ◦ σB and can be represented using twice σB

f ′A = σB ◦ fA ◦ σ−1
B = σB ◦ (σ−1

C ◦ σB) ◦ σ−1
B = σB ◦ σ−1

C ,

which, according to the first example, is a line homography of the line εA onto itself. We
notice that fA is “involutive”, i.e. it coincides with its inverse f −1

A = fA or equivalently
fA(f (A(X ))) = X for every X ∈ κ.

The third example is a special case of the previous one, in which the conic κ is re-
placed by a circle and the point A lies outside the κ. In this case the harmonic homology
has two fixed points. We discuss this in the next section.
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15 General pencil intersecting a circle

An intersecting or non-intersecting “pencil of circles” P defines through the intersection
points {X, X ′} of its circle-members {η ∈ P} with a fixed circle κ a harmonic homology
(involution) on κ. To see this, consider for an X ∈ κ the unique circle η ∈ P of the pencil
through X intersecting again the circle at a second point X ′. The homographic relation
is f : X 7→ X ′ (see figure 16).

The reason for this is very simple. Consider the intersection F = ζ ∩ XX ′, where ζ is
the radical axis of the pencil P. Point F does not depend on the particular circle-member
η ∈ P of the pencil. It is the same for all circles of the pencil, since taking another circle
η′ ∈ P of the pencil the radical axis of {ζ, η′} must pass through F too. Thus, drawing
the two tangents {FX1, FX2} to κ from F, real or imaginary, the transformation X 7→ X ′

coincides with the inversion f with center F and power |FX1|
2. This in turn coincides

with the “harmonic homology” of κ with fixed point F and axis the “polar” λ of F w.r.

X
1

α

F

X'

X
2

X

η

τ

θ

ζ

κ

Υ

λ

Figure 16: Involution f : X 7→ X ′ on the circle κ

to κ. The fixed points of this homography induced on κ by the pencil P are the contact
points {X1, X2}, real or imaginary, of the two tangents.

16 Three points and a circle through one of them

Consider a circle κ passing through one vertex, A say, of the triangle ABC. Each point P
of the circle defines two circles {κB = (BAP), κC = (CAP)} (see figure 17).

X

Y

A

B C

Pκ
Β

κ
C

κ

Figure 17: Homography defined by the triangle ABC and the circle κ
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Theorem 8. The second intersection points {X, Y } of the circles respectively {κB, κC} with the
lines {AC, AB} define points {X, Y } homographicaly related.

Proof. A short proof can be given by transforming the configuration through an inver-
sion X ′ = f (X ) w.r.t. a circle ν(A, r) centered at A and with arbitrary radius r. Such an
inversion transforms the circles {κ, κB, κC} to corresponding lines {µ, µB, µC} and the points
{B, C, P, X, Y } respectively to points {B′, C′, P′, X ′, Y ′} as shown in figure 18. In this con-

A

B C

X'
Y'

B'

C'

P'

ν

μ

μ
Β μ

C

Figure 18: After the inversion w.r.t. ν(A, r)

figuration {P′} varies on µ and the variable lines {µB, µC} pass through the fixed points
{B′, C′} and define on AC, AB respectively the points {X ′, Y ′}, which are homographicaly
related. This because the map X ′ 7→ Y ′ is the composition f = f2 ◦ f1 of the perspectivity
f1 from B′ of line AC to line µ and the perspectivity f2 from C′ of line µ to line AB.
Thus, considering the signed distances from A as coordinates {x, y} on lines {AC, AB}, the
coordinates of X ′, Y ′ are related by a function of the form y′ = (ax ′ + b)/(cx ′ + d). Ex-
pressing these by the coordinates of the inverse points {x ′ = r2/x , y′ = r2/y}we see that
{x, y} are related by a function of the form

r2

y
=

a(r2/x) + b

c(r2/x) + d
⇔ y = r2 cr2 + dx

ar2 + bx
,

which is indeed a homographic relation. □

X

Y

A

B C

P

D
E

κ
Β

κ
C

κ

x

y

Figure 19: {x = DX, y = EY } have constant product xy

Corollary 1. With the notation and assumptions of this section and denoting by {D, E} the sec-
ond intersection points of the circle κ respectively with lines {AC, AB}, the signed distances
{x = DX, y = EY } satisfy xy = k with k constant (see figure 19).
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Proof. In fact, changing the coordinate origins from A to D for line AC and from A to
E for line AB changes the homography of theorem 8 to an other homography

y = (a′x + b′)/(c′x + d′).

It is then easy to see that for P tending to D the variables {x → 0, y→ ∞} and for P tend-
ing to E the variables {x → ∞, y→ 0}. These conditions imply a′ = d′ = 0 and prove the
corollary. □

Corollary 2. The value of the preceding constant is k = BE · CD.

Proof. Consider the circle κ0 circumscribing the triangle ABC. This intersects the circle
κ besides point A also at a second point P0. As P tends to P0 the two circles {κB, κC}

tend both to coincide with the circle κ0 and the points {X, Y } tend to coincide respectively
with {C, B}, thereby proving the corollary (see figure 20). □

X

Y

A

B C

P

D

E

κ
Β

κ
C

κ

P
0

κ
0

Figure 20: The value of the constant k = BE · CD

Theorem 9. With the notation of this section, the lines {XB, YC} intersect at a point Q, which
for P varying on the circle κ describes a line parallel to the line DE (see figure 21).

C

A

B

D

X

Y

Q

O

P

D
0

E
0

E' D'

E

κ

ε

ε'

Figure 21: The line ε′ locus of intersections {Q = XB ∩ YC} for P ∈ κ
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Proof. The proof results by showing that the locus ε′ of Q is one of the lines of a de-
generate conic consisting of two intersecting lines. For this we notice first that theorem
8 implies that the two pencils of lines {B∗, C∗} are homographicaly related. Hence by
theorem 7 the intersection point Q = XB ∩ YC of corresponding lines describes a conic
passing through the centers {B, C} of the two pencils. We show that this conic passes
through four collinear points {E′, D0, E0, D′} obtained for special positions of P on κ and
defined as follows (see figure 21).

1. E′ is obtained for X = A ⇒ Q = Y ∈ AB and k = DA · EE′.

2. D′ is obtained for Y = A ⇒ Q = X ∈ AC and k = EA · DD′.

3. D0 is obtained for P = X = D implying that Y goes to infinity on AB and CD0
becomes parallel to AB.

4. E0 is obtained for P = Y = E implying that X goes to infinity on AC and BE0
becomes parallel to AC.

From the two first conditions we have DA · EE′ = EA · DD′ showing that {DE, D′E′} are
parallel. From (3) we have BD0

BD =
AC
AD ⇒ AC+AD

AD = CD
AD (∗). From the parallelism of

{DE, D′E′} we have BE′+BE
BE = EE′

BE =
k

BE·DA (∗∗). But (∗) = (∗∗) since this equation simplifies
to k = CD · BE which is true. This implies BD0

BD =
BE′

BE showing that D0E′ is parallel to
DE. Analogously we show that E0D′ is parallel to ED, which completes the proof that
the four points are collinear. This implies that the geometric locus of Q is a subset of a
degenerate conic consisting of the two lines {ε′, BC}, point Q varying on line ε′. □

The sequence of the conclusions of the preceding discussion can be reversed and for
a given triangle ABC and a selected vertex, A say, show a means to associate to each line
ε of the plane a circle κε passing through this vertex.

A

B

C

D
E

P

QD
0

E
0

E' D'

X
Y

ε

κ
ε

Figure 22: Associating to a line ε a circle κε through A

Theorem 10. Given a triangle τ = ABC and a line ε we consider for each point Q ∈ ε the
intersections {X = BQ ∩ AC , Y = CQ ∩ AB}. The circles {(ABX ), (ACY )} intersect a second time
at a point P describing a circle κε (see figure 22).

Proof. We start with the homographic relation f : X 7→ Y of the line AC onto AB. This is
the composition f = f2 ◦ f1 of two central projections: f1 of the line AC to ε with center
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B and f2 of the line ε to AB with center C. The signed distances {x = AX, y = AY } are
seen again, as in the preceding theorem to satisfy the relation x · y = k with k = CD · BE.
The meaning of the points {D, E, E′, D′, D0, E0} seen in figure 22 and the related to them
properties together with their proofs are the same with the corresponding labels and
proofs used in theorem 9. The circle κε is now defined as the circumcircle of triangle
DAE. Applying now the results of theorem 9 we find that for each point P of this circle
the corresponding point Q constructed by that theorem is on the line ε. But the depen-
dence of Q from P is precisely the inverse of the dependence of P from Q, thereby
showing that P is on the circle κε. □

Remark-2 In [Pam21] we show that the map associating Q 7→ P is the restriction on the
line ε of a Moebius transformation with limit points {B, C}.
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2. Projective line
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Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e-mail to: pamfilos@uoc.gr
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