
Inversion by Paris Pamfilos

’You must always invert’, as Jacobi said when
asked the secret of his mathematical discoveries.
He was recalling what Abel and he had done. If
the solution of a problem becomes hopelessly
involved, try turning the problem backwards,
put the quaesita for the data and vice versa.

E.T. Bell, Men of Mathematics, v. II p. 355
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1 Inversion on a circle

Given a circle κ(O, ρ), the “inversion” relative to κ or “κ−inversion”, is a correspondence
between points in the interior and exterior of the circle. To every point X different from
the center O, we correspond a point Y on the half line OX , such that |OX | |OY | = ρ2. The
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Figure 1: Inverse points X and Y

definition establishes a kind of symmetric relation, somewhat similar to the symmetry
relative to a line (reflection). X is the inverse of Y , if and only if Y is the inverse of X . We
then often say that such two points are “inverse points” relative to the circle κ or that “they
are κ−inverses”. The points of the circle κ are characterized by being coincident to their
inverse. We call these points the “fixed points” of the inversion. The circle κ is called the
“circle of inversion” or “invariant circle”, its center is called “center of inversion” and ρ2 is
called the “power of inversion”.

Exercise 1. Show that {X,Y } are inverse relative to the circle κ(O, ρ) precisely when {X,Y } are
harmonic conjugate w.r. to {A,B}, latter being the diameter points of κ on line OX .

Hint: Use coordinates {A(ρ), B(−ρ), X(x), Y (y), xy = ρ2} w.r. to O and show the rela-
tion X A/XB = −Y A/Y B.

Exercise 2. Given four points {A,B,X,Y } on a line, show that {X,Y } are inverse relative to the
circle with diameter AB, precisely when {A,B} are inverse relative to the circles with diameter
XY .

Hint: Use the symmetry of the relation X A/XB = −Y A/Y B of the preceding exercise.

Remark 1. Using these coordinates we see that AX
AY = −

x
ρ . This means that for very large

circles (huge ρ ) and X near A then AX
AY is approximately −1 i.e. the inversion almost

coincides with the “reflection” on the line tangent to the circle κ at A. This remark makes
plausible why we consider reflections on lines as special inversions, considering a line as a
circle of infinite radius.

Exercise 3. Referring to figure 1, show that {X,Y } are inverse relative to κ if and only if {A,B}
are inverse relative to the circle κ′ with diameter XY .

Hint: Use the characterization of inverse points of exercise 1.

“ Given a circle κ(O, ρ), to construct the inverse Y of a given point X relative to κ.”

If the point X is external to the circle κ (See Figure 2-I), then the intersection Y of the chord
AB of contacts of the tangents from X and the line OX is the wanted point, since from the
right triangle OAX , we will have

ρ2 = |OX | |OY |.
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Figure 2: Construction of inverses X , Y Orthogonal λ on κ

The same relation shows that X is also the inverse of Y . Therefore, for internal points
of the circle, we perform the reverse procedure: we raise the orthogonal AB on OY and
draw the tangents of κ at its intersection points A, B with the circle. X is the intersection
point of these tangents. The inverse of an X ∈ κ is X itself.

Theorem 1. Every circle λ, which passes through two inverse points {X,Y } relative to the circle
κ, is orthogonal to κ.

Proof. Indeed, if {X,Y } are inverse points relative to κ and Z is an intersection point of
the circle λ which passes through X , Y (See Figure 2-II), then, according to the definition
of inversion, we will have |OZ |2 = ρ2 = |OX | |OY |, which shows that OZ is tangent to the
circle λ. �
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Figure 3: Pairs of inverse points Inverses of line and circle through O

Theorem 2. Two different pairs of inverse points (X,Y ) and (X ′,Y ′) relative to the circle κ(O, ρ)
define four concyclic points.

Proof. Obviously, since the relation which connects them ρ2 = |OX | |OY | = |OX ′ | |OY ′ | (See
Figure 3-I), means that {X,Y,X ′,Y ′} are concyclic. �

Exercise 4. Given a circle κ, show that for two points {A,B} lying both in the interior/exterior
of the circle and such that their line does not pass through the center of κ, there is precisely one
circle κ′ containing them and being also orthogonal to κ.

2 Inverses of lines and circles

Theorem 3. If the point X describes a line ε, then its inverse Y relative to circle κ(O, ρ) describes
a circle ζ passing through the center O of the circle κ. Conversely, if the point Y describes a circle
ζ passing through O, then its inverse X relative to κ, describes a line ε.
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Proof. Let H be the projection of O on line ε and Z the inverse of H relative to κ (See
Figure 3-II). Pairs (X,Y ) and (H, Z) are concyclic points. Consequently, in the quadrilateral
ZHXY the angle at Y will be right, as supplementary to the angle at H, which is right.
Consequently Y will be on the circle ζ with diameter OZ .

The second claim follows using the same argument. If Y lies on circle ζ with diameter
OZ , consider the line ε, which is orthogonal to OZ at H, which is the inverse of Z relative
to κ. For an arbitrary point Y of ζ , let X be the intersection of ε with OY . The quadrilateral
XHZY is by construction cyclic, because of the right angles at opposite vertices H and Y .
Consequently, we will have |OY | |OX | = |OZ | |OH | = ρ2, therefore point X will be inverse
of Y . �

Theorem 4. If the point X describes the circle λ not passing through O, then its inverse Y relative
to circle κ(O, ρ) describes also a circle µ not passing through O.
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Figure 4: Inverse of circle

Proof. Let AB be the diameter of circle λ on OP, where P is the center of λ (See Figure
4). If A′, B′ are respectively the inverses relative to κ of A and B, we show also that the
inverse Y of the arbitrary point X of circle λ is contained in the circle µ with diameter
A′B′. Indeed, the quadrilaterals BB′Y X and AA′Y X are cyclic, therefore equal angles are
formed: �ABX = �B′Y X, �BAX = �A′YO.

This implies that the angle �A′Y B′ is right, therefore point Y lies on the circle with diameter
A′B′. �

Exercise 5. Show that the location of the center P′ and the radius r ′ of the inverse µ(P′,r ′) of
the circle λ(P,r) relative to κ(O, ρ) are given respectively by:

OP′ =
ρ2 |OP |
|OP |2 − r2

and r ′ =
ρ2r

|OP |2 − r2
. (1)

Remark 2. For the conclusion of theorem 3 we use often the formulation:

“The inverse of a line relative to a circle is a circle through the center of inversion and the inverse
of circle through the center of inversion is a line.”

Similarly for the conclusion of theorem 4 we use the formulation:

“The inverse of circle not passing through the center of inversion is a circle”.
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Note the reciprocity of inverse circles. In figure 4 circle µ is the inverse of λ, but also
circle λ is inverse of µ. The next proposition underlines the case in which circle λ and µ

coincide, in other words the circle coincides with its inverse.

Corollary 1. The inverses Y of points X of a circle λ are again points of λ, if and only if the circle
λ is orthogonal to the circle of inversion κ(O, ρ).

Proof. If the same circle λ contains point X and its inverse Y , then it is orthogonal to the
circle of inversion (Theorem 1). If again circle λ is orthogonal to the circle of inversion κ,
then for every line ε through O which intersects λ at X and Y , we will have the product
|OX | |OY |, equal to |OZ |2 = ρ2, where OZ is the tangent to λ from O. �

Remark 3. For the conclusion of corollary 1 we often use the formulation:invariant
circles

“The circles which are orthogonal to the circle of inversion are precisely these, which remain
invariant by the inversion.”

Corollary 2. The points {X,Y } are inverse relative to circle κ, if and only if there are two circles
{α, β} through {X,Y } orthogonal to κ.

Proof. If the {X,Y } are inverse relative to κ, then every circle through them is orthogonal
to κ (theorem 1). Conversely if two circles {α, β} through {X,Y } are orthogonal to κ, then
the inversion relative to κ leaves these circles invariant hence must interchange the two
points. �

Exercise 6. Given is a circle λ and a point B. Show that all the circles κ which pass through B
and intersect λ under a fixed angle ω, are tangent to a fixed circle ν.
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Figure 5: Circles intersecting a fixed circle under fixed angle

Hint: For a point B external to λ, consider the inversion relative to circle µ with center B,
which is orthogonal to λ (See Figure 5). Under this inversion the circle λ maps to itself
and the circle κ maps to a line εκ , which forms the same angle ω with λ. Such a line is
tangent to a fixed circle λ′, which is concentric with λ. It follows that the wanted circles
will be the inverses of the lines εκ , which are tangent to λ′, therefore the circles κ will be
tangent to the inverse ν of λ′ relative to µ.

3 Metric relations

Theorem 5. Let κ(O,r) be a circle and AB a segment. Consider segment A′B′ resulting by
inverting the end-points of AB relative to κ. Then the segment lengths are related by:lengths

comparison

|A′B′ | = r2
|AB |

|OA| · |OB|
.
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Figure 6: Lengths of “inverse” segments

Proof. Triangles {OA′B′,OBA} are similar (See Figure 6). Thus,

|A′B′ |
|AB|

=
|OA′ |
|OB |

=
|OA′ | · |OA|
|OB | · |OA|

=
r2

|OA| · |OB |
.

�

Remark 4. Notice that if {A′, A} coincide (of course coinciding then with a point of κ),
then the relation becomes:

|AB′ |
|AB |

=
r
|OB |

.

Exercise 7. Consider the circles {µ = (OAB), µ′ = (OA′B′), ν = (ABB′A′)} with corresponding
centers {D,C,E}. Show that the radii {ρ, ρ′} of the two first satisfy ρ/ρ′ = |AB|/|A′B′ | and
OCED is a parallelogram.

Hint: Use the similarity of triangles {OAB,OB′A′}.
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Figure 7: Variable AB on line ε and its inverse

Remark 5. Denoting by f the inversion relative to κ and by ε the line defined by AB,
figure 7 underlines the difference between the image f (AB) of the segment AB ⊂ ε,
which is an arc of the circle ε′ = f (ε) and the chord A′B′ of circle ε′ defined by the
images {A′ = f (A),B′ = f (B)}. The theorem deals with the chord AB and not with the
corresponding arc.

4 Ptolemy’s theorem

There are lots of applications of the inversion in various problems of geometry and in
particular applications of the metric relation of section 3. In this section we discuss a
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nice application of this metric relation in the proof of “Ptolemy’s theorem”, or “Ptolemy’s
inequality” rather ([Ped90, p.90]).
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Figure 8: Ptolemy’s inequality

Theorem 6. In a convex quadrilateral ABCD, the inequality involving the sides and the diago-
nalsPtolemy’s

inequality |BC | |AD| + |CD| |AB | ≥ |BD| |AC |

is valid. The equality is valid if and only if the quadrilateral has a circumcircle κ (is “ cyclic”).

Proof. The proof results by inversion on a circle κ, centered at B with arbitrary radius
r . Such an inversion maps the circle passing through A,B,C onto a line ε. By theorem
5 the lengths of segments {|CD|, |C ′D′ |}, where {C ′,D′} are the κ−inverses of {C,D}, are
related by the formula:

|C ′D′ | =
r2 |CD|
|BC | |BD|

and |D′A′ | =
r2 |DA|
|BD| |BA|

.

From the “triangle inequality” applied to triangle A′C ′D′ follows:

|A′C ′ | ≤ |A′D′ | + |D′C ′ | ⇔
r2 |AC |
|BA| |BC |

≤
r2 |DA|
|BD| |BA|

+
r2 |CD|
|BC | |BD |

, (2)

which, multiplying by |BA| |BC | |BD| and simplifying leads to the claimed inequality.
Obviously the collinearity of {A′,D′,C ′} is equivalent with the equality on the left side of
(2), which in turn is equivalent with D ∈ κ. �
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Figure 9: Property of equilaterals derived from Ptolemy’s inequality



5 Inversion is a conformal map 8

Exercise 8. For an equilateral triangle ABC and a point P, the distance from the most distant
vertex, C say, satisfies PA + PB ≥ PC and equality occurs exactly when P is on the arc AB of
the circumcircle of ABC.

Hint: In fact, by Ptolemy’s inequality, applied to the quadrangle APBC :

PA · BC + PB · AC ≥ PC · AB,

which, because of the equal sides, simplifies to PA + PB ≥ PC (See Figure 9-I). To exam-
ine the equality, consider P on the arc AB (See Figure 9-II). Take P′ so that PAP′ is equi-
lateral. Then triangles APB and AP′C are equal and consequently PA + PB = PP′ + P′C.

5 Inversion is a conformal map

Theorem 7. Let Y be the inverse of the point X relative to the circle κ(O, ρ), with X lying also
on circle µ. If the circle or line λ is tangent to the circle µ at X , then the inverse λ′ of λ and the
inverse µ′ of µ are tangent at Y .
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Figure 10: Tangent inverted into tangent Angle ω of two circles

Proof. In fact, λ and µ are tangent at X , precisely when X is their unique common point
(See Figure 10-I). When this happens, then λ′ and µ′ will also have Y as a common point.
If they had another common point Z , then the inverses of λ′ and µ′ which are λ and µ

respectively would have also, besides X , the inverse Ω of Z in common, which contradicts
the hypothesis. Therefore λ′ and µ′ have point Y as their unique common point, therefore
they are tangent at this point. �

We define the “angle between two circles” κ(O), λ(P), which intersect at two points A, B,
the supplementary ω of the angle �OAP = �OBP, which is the angle of the tangents at their
intersection point (See Figure 10-II). Next theorem shows that the inversion preserves
these angles. This property is often mentioned with the phrase:

“The inversion is a conformal transformation”.inversion
is conformal

For the proof we’ll need an auxiliary lemma, which we formulate as an exercise.

Exercise 9. Construct a circle λ tangent to a given line ε at a given point A and orthogonal to
a given circle κ(O, ρ) .

Hint: By the orthogonality of {λ, κ} the second intersection B of AO with the required
circle λ will satisfy OA · OB = ρ2, hence it is constructible (See Figure 11).
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Figure 11: Circle λ tangent to ε at A and orthogonal to κ

Theorem 8. Let Y be the inverse of point X relative to circle κ(O, ρ). If circles λ and µ pass
through X and form there the angle ω, then their inverses λ′, µ′ pass through point Y and form
there the same angle ω.
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Figure 12: The inversion is a conformal transformation

Proof. Consider the circle µ′′, which is tangent to µ at X (See Figure 12) and orthogonal to
κ. Consider also the circle λ′′, which is tangent to λ at X and orthogonal to κ. Because the
circles {λ, µ} are tangent to {λ′′, µ′′} respectively at X , the inverse circles {λ′, µ′} will be
tangent at Y of the inverses of λ′′ and µ′′ respectively. However, from the orthogonality
to κ, the inverse of λ′′ is λ′′ itself and similarly the inverse of µ′′ is µ′′ itself. Therefore the
tangents of λ′ and µ′ at Y will coincide respectively with their tangents of λ′′ and µ′′ at Y .
The latter however, by symmetry, form at Y the same angle with the one formed by the
tangents of λ′′, µ′′ at X , which by assumption make an angle of measure ω. Therefore the
tangents of λ′ and µ′ at Y will form an angle of the same measure. �

6 Inversion preserves the cross-ratio

The “cross ratio” (ABCD) of four collinear points is handled in its details in the file Cross
ratio. Its original definition involves the directed segments and their ratios

(ABCD) :=
CA
CB

:
DA
DB

. (3)

The definition is extended to four “concyclic” points on a circle κ using a fifth arbitrary
point P on the circle and an auxiliary line ε. The four lines {PA,PB,PC,PD} define with
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their intersections with ε four points {A′,B′,C ′,D′} (See Figure 13), and the cross ratio is
then defined by

(ABCD) := (A′B′C ′D′).

It is then proved that this definition does not depend on the particular P ∈ κ, as well as on
the particular line ε. An important property implied by this definition is the following.

Theorem 9. The cross ratio is preserved by inversions, i.e. if {A,B,C,D} are points on the cir-cross-ratio
preservation cle/line κ, then their images {A′,B′,C ′,D′} under an inversion satisfy (A′B′C ′D′) = (ABCD).

Proof. This derives directly from the definition if the inverse of κ is a line ε. If the inverse
of κ is a circle κ′, then we consider also the inverse P′ of point P. It is then easy to see
that the intersections {A0 = PA ∩ P′A′, B0 = PB ∩ P′B′, C0 = PC ∩ P′C ′, D0 = PD ∩ P′D′}
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Figure 14: Inversions preserve the cross ratio

are points of the radical axis ε of {κ, κ′} (See Figure 14), which proves the equality of the
two cross ratios. �

7 Inversion and pencils of circles

Theorem 10. For a given pencil of circles D and a circle κ(O, ρ), the inverses of circles λ of thepencils map
to pencils pencil relative to κ build another pencil D ′.

Proof. Assume that the pencil D consists of all the circles which are orthogonal to two
fixed circles µ and ν. Let also µ′ and ν′ be the inverses of circles µ and ν relative to κ.
By Theorem 8, every circle λ orthogonal to µ and ν will have an inverse λ′ orthogonal
to µ′ and ν′, therefore it will belong to the pencil D ′ of circles which are orthogonal to
µ′ and ν′. Similarly, every circle λ′ orthogonal to µ′ and ν′ will have an inverse λ which
is orthogonal to µ and ν, therefore it belongs to the pencil D and will have as inverse
exactly circle λ′ �
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Figure 15: Pencil D ′ of the inverses of circles of the pencil D

Remark 6. The pencil D ′, ensured by last theorem, is called “inverse pencil” of D relative
to the circle κ (See Figure 15).

In the previous theorem, the inversion relative to κ, not only sends the pencil D onto
a pencil D ′, but also preserves the quality of the pencil. In other words if the pencil
D is intersecting, then pencil D ′ is intersecting too, if it is non intersecting then D ′ is
also non intersecting etc. This however with a small concession. We must accept that,
depending on the relative position of D and the circle of inversion κ, pencil D ′ may be
“non conventional”, i.e. a pencil of lines through a point, real or at infinity, or a pencil ofmap to non-

conventional concentric circles. The next propositions show, for which positions of κ something like
that may happen.

AB
B'

κ

Figure 16: Special inversion of intersecting pencil

Theorem 11. Let D be an intersecting pencil and κ(A, ρ) be a circle with center at one of the
two base points {A,B} of the pencil. Then the inverse pencil D ′ of D relative to κ is the non-
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conventional pencil of the lines, which pass through the inverse B′ of B relative to κ (See Figure
16).

Proof. Consequence of Theorem 3. Since all the circles ofD pass through A, their inverses
will be lines. Since they also pass through B, their inverses will also pass through the
inverse B′ of B relative to κ. �
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Figure 17: Special inversion of non intersecting pencil

Theorem 12. Let D be a non intersecting pencil and κ(A, ρ) be a circle with center one of the
limiting points A and B of the pencil. Then the inverseD ′ ofD, relative to κ, is a non conventional
pencil of concentric circles with center the inverse B′ of B relative to κ (See Figure 17).

Proof. Consequence of Proposition 3, which we apply to two circles ε and ζ , passing
through points A and B, which belong to the orthogonal pencil of D. The inverses ε′ and
ζ ′ of these circles are lines through B′. Also because ε, ζ are orthogonal to every circle
λ of D, their inverses, which are lines ε′ and ζ ′ will be orthogonal to the inverse λ′ of λ
(Theorem 8). Therefore λ′ will be a circle with center B′. �

Theorem 13. Let D be a tangent pencil and κ(A, ρ) be a circle with center the base point A of the
pencil. Then the inverse D ′ of D relative to κ is the non conventional pencil of the lines, which
are parallel to the radical axis ε of D.

κ

A

ε

Figure 18: Inversion of tangential pencil
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Proof. Consequence of Theorem 3. Since all the circles ofD pass through the point A, their
inverses will be lines (See Figure 18-I). The inverse of the radical axis ε is itself. Every
circle λ of the pencil has common with the radical axis the unique point A. Consequently
the inverse λ′ of λ, which is a line, will have no common point with ε, therefore it will be
parallel to it. �

Exercise 10. Show that the inversion fµ relative to a member-circle µ of the pencil D leaves
the pencil invariant, in the sense that it maps every member-circle of D to another member-circle
of the same.

Hint: Conceive D as a set of circles orthogonal to two circles {α, β}, which remain invari-
ant under fµ .

A
A'B

κ

Figure 19: The inverses {A′} of A relative to circles of the pencil

Exercise 11. Show that the geometric locus of the inverses {A′} of a fixed point A relative to the
member-circles of a pencil D is the circle κ of the orthogonal pencil D ′ passing through A.

κ

Figure 20: Inverses relative to circles of a pencil

Figure 20 shows the inverses of a circle κ (bold) relative to member-circles of a pencil
D of intersecting type. The figure suggests that all these circles envelope two members of
the orthogonal pencil D ′ . In fact, it can be shown that all these circles are tangent to the
two circles of D ′ which are tangent to κ. This and some similar questions are handled
in the file Inverting on a family of circles.
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8 Inversion interchanging two circles

Theorem 14. Given two no congruent circles λ(A, α) and µ(B, β), there exists an inversion rela-inversion
interchanging tive to a circle κ, which interchanges the two given circles. In other words the inverse of λ relative

to κ is µ and vice versa.

ρ
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λμ

α

Figure 21: Inversion interchanging two circles

Proof. In the case where the circles λ and µ are mutually external or are externally tangent,
the external “similarity center” C of the two circles has the desired property of the center
of inversion (See Figure 21). Specifically, in this case the product of distances |CX | |CY |
of two antihomologous points from C is a fixed positive number equal to |CA| |CB | − αβ.
In this case, the desired circle has as center the external center of similarity C and radius
ρ =

√
|CA| |CB| − αβ.

C DB A ΧΥ

λ

μ
κ

Figure 22: Circle of inversion when λ contains µ

In the case where the circle µ(B, β) is internal to λ(A, α) or is internally tangent, the
wanted circle has as center the internal “similarity center” D of the two circles and radius
ρ =

√
αβ − |DA| |DB| (See Figure 22). Finally, in the case of two circles λ and µ intersecting

at two points there exist two circles κ(C, ρ) and κ′(D, ρ′) with radii ρ =
√
|CA| |CB | − αβ,

ρ′ =
√
αβ − |DA| |DB| and centers the “similarity centers” C (external) and D (internal) of

the circles λ and µ (See Figure 23). �

Exercise 12. Show that a circle κ whose inversion interchanges the circles {λ, µ} belongs to the
pencil generated by these two circles.

Hint: Show that a circle ξ orthogonal to {λ, µ} remains invariant by this inversion.

Exercise 13. Show that for given line λ and circle µ there is a circle κ, whose inversion inter-
changes {λ, µ} (See Figure 24).
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Figure 23: Circles of inversion of two intersecting circles λ and µ
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Figure 24: Inverting line λ to the circle µ

9 Inverseness is preserved by inversions

This section’s title, coined by Johnson [Joh60, p.55], expresses the essence of the following
theorem.

Theorem 15. If the points {X,Y } are inverse relative to the circle α and the inversion relative toinverseness
preserved circle κ maps α onto β and {X,Y } to {X ′,Y ′}, then latter are inverse relative to β.

β α

Α
Β

Χ Υ

κ

Χ'Υ'

Figure 25: Inverseness is preserved by inversions

Proof. If the points {X,Y } are inverse relative to the circle α, take two circles through
{X,Y } orthogonal to α and invert the whole figure relative to κ. The circle α maps to β

and the two circles map to two circles orthogonal to β (section 5). The proof results by
applying corollary 2. �

Corollary 3. If fα is the inversion relative to circle α and g is an inversion, then the inversion
fβ relative to the circle β = g(α) is fβ = g ◦ fα ◦ g−1 = g ◦ fα ◦ g.

Proof. In fact, by theorem 15,

Y ′ = fβ(X ′) ⇔ (g(Y )) = fβ(g(X)) ⇔ fα(X) = Y = (g−1 ◦ fβ ◦ g)(X),
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which is equivalent to the claimed “conjugation” by g of fα to fβ . �

Corollary 4. Given a circle α and a line ε, there is an inversion g, such that the inversion fα
relative to α is conjugate to the reflection fε relatvie to the line ε :

g ◦ fα ◦ g = fε .

This can be also expressed as:

Every inversion is conjugate by another inversion to a reflection.

Exercise 14. Show that in the case of two intersecting circles λ and µ, the two circles of inversion
{κ, κ′} which are ensured by Theorem 14 are orthogonal and pass through the intersection points
of λ and µ (See Figure 23).

Hint: The inversion relative to κ interchanges {λ, µ} and maps κ′ to a circle κ′′ which
also will interchange these two circles. Hence κ′′ must coincide with κ′, which then is
invariant under the inversion relative to κ, hence κ′ is orthogonal to κ.

Exercise 15. Show that if the circle κ interchanges the circles {λ, µ} and f is the inversion on a
circle ξ, then the circle f (κ) interchanges the circles { f (λ), f (µ)}.
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I
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ε

β'

Z'

Figure 26: Envelope of lines

Exercise 16. Consider two external to each other circles {α(A,rα), β(B,rβ)} and a variable point
X ∈ β. For each position of X consider the circle γX centered at X and orthogonal to α. Con-
sider finally the line β′ = f (β), where f is the γX−inversion. Show that all lines {β} are tangent
to a fixed circle ζ with the same center as α and calculate the radius of this circle (See Figure 26).

Hint: Let ε′ be a circle tangent to {β, β′} and passing through A. Consider also the
α−inversion g and the inverses {γ = g(β′), δ = g(β), ε = g(ε′),H ′ = g(H), I ′ = g(I)}, where
{H, I} the contact points of ε′ with {β′, β}, which are γX−inverses, hence HI passes
through X .

The line H ′I ′, which is tangent at these points to {γ, δ}, passes also through X . This
is seen through the cyclic quadrangle HII ′H ′. By corollary 3 {γ, δ} are γX−inverses and
I ′H ′ passes through X .

To show that the distance AE of line β′ from A is constant it suffices to show that
for the α−inverse Z, the diameter AZ of γ is constant. Since X is a similarity center of
{γ, δ} and δ is a fixed circle independent of X, it suffices to show that the ratio XH ′/XI ′

is constant.
For this consider the second intersection A′ of X A with ε′ and show that AK/AX is

constant, where K the second intersection of AX with δ

AK
AX
=

AK
(r2α/AA′)

=
AK · AA′

r2α
=

pδ(A)
r2α

,

where pδ(A) the “power” of A relative to δ.
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10 Inverting to equal circles

κλ

μ

Sδ

ξ κ'δ'

Figure 27: Inversion of two circles λ, µ to two equal circles

Theorem 16. The points {S} of a circle κ interchanging two given circles or a circle and a lineinverting
to equal {λ, µ} have the following property: Any circle ξ(S) with arbitrary radius inverts {λ, µ} to two

equal circles (See Figure 27).

Proof. Consider the inversion f on such a ξ and the circle δ orthogonal to {λ, µ} and
passing through S. The inversion f maps κ onto a line κ′ and δ onto a line δ′ or-
thogonal to κ′ and the circles {λ, µ} to two circles {λ′, µ′} orthogonal to line δ′, hence
having their centers on δ′. By theorem 15, since {λ, µ} are inverse relative to κ, the in-
verses {λ′ = f (λ), µ′ = f (µ)} are inverse relative to κ′ = f (κ), which is a line. Hence they
are symmetric relative to κ′. �

Exercise 17. With the settings of the previous theorem show that we can select the radius of ξ so
that one of the equal circles is precisely one of the {λ, µ}.

11 Composition of two inversions

The composition f = fβ ◦ fα of two inversions on two circles {α, β} is not an inversion.
There are though some properties for f and its conjugate g ◦ f ◦ g by an appropriate
inversion g which may be of interest. For instance, assume that the two circles {α, β}
intersect at two different points {O,P}. The inversion g relative to the circle γ(P, |OP |)

γ
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β

Χ

Ζ

Α

Β

δ

Ρ

Ο

Χ'

Ζ'

Υ

δ'

β'

α'

Figure 28: Composition of two inversions relative to intersecting circles

transforms the two circles correspondingly to two lines {α′, β′} through O. It is easily
seen that the composition f preserves the circles {δ} which are orthogonal to {α, β}.
Thus, a point X ∈ δ maps to Y = fα(X) ∈ δ and Z = fβ(Y ) ∈ δ. The transformation g
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maps the circle δ onto a circle δ′ with center at O which contains {X ′ = g(X), Z ′ = g(Z)}
(See Figure 28). The conjugate transformation

h = g ◦ f ◦ g = g ◦ ( fβ ◦ fα) ◦ g = (g ◦ fβ ◦ g) ◦ (g ◦ fα ◦ g) = h2 ◦ h1 (4)

is then a composition of two reflections {h1, h2} respectively on lines {α′, β′}. If the circles
{α, β} intersect by an angle ω, the same angle is the one between the lines {α′, β′} and the
composition h = h2 ◦ h1 is then a “rotation” about O by the angle 2ω.

γ

α

β

β'
α'

Χ

Υ

Ζ

δ

δ'

d

X' Z'

O

Figure 29: Composition of two inversions relative to tangent circles

In the case the two circles {α, β} are tangent at a point O, the inversion g on the circle
γ(O,r) with r arbitrary radius, maps the two circles correspondingly to two parallel lines
{α′, β′}. It is then again easily seen that the composition f preserves the circles {δ}which
are orthogonal to {α, β}. Thus, a point X ∈ δ maps to Y = fα(X) ∈ δ and Z = fβ(Y ) ∈ δ.
The transformation g maps the circle δ onto a line δ′ orthogonal to α′, β′ which contains
{X ′ = g(X), Z ′ = g(Z)} (See Figure 29). The conjugate transformation h of the relation 4 is
then a composition of two reflections {h1, h2} respectively on the two parallel lines {α′, β′},
i.e. h is a translation by a vector in the direction of δ′ and the distance 2d, where d is the
distance of the two parallels {α′, β′}. In the case the two circles {α, β} are non-intersecting,

γ

α
β

δ

δ'

Χ

Υ

Ζ

Χ'
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ΟΡ
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Figure 30: Composition of two inversions relative to non-intersecting circles

the inversion g on the circle γ(P, |OP |), where {O,P} are the limit points of the pencil they
generate, maps the two circles correspondingly to two concentric circles {α′, β′}. It is then
again easily seen that the composition f preserves the circles {δ}which are orthogonal to
{α, β}. Thus, a point X ∈ δ maps to Y = fα(X) ∈ δ and Z = fβ(Y ) ∈ δ. The transformation
g maps the circle δ onto a line δ′ passing through the center O of the concentric circles,
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which contains {X ′ = g(X), Z ′ = g(Z)} (See Figure 30). The conjugate transformation h
of the relation 4 is then a composition of two inversions {h1, h2} respectively on the two
concentric circles {α′, β′}, i.e. h is a homothety with center at O.

The discussion so far establishes the proof of the following theorem.

Theorem 17. The composition of two inversions f = fβ ◦ fα on the circles {α, β} is conjugatecomposition
of two by an appropriate inversion g to a transformation h = g ◦ f ◦ g, which is:

1. A rotation, if the circles {α, β} intersect at two different points.
2. A translation if the circles {α, β} are tangent.
3. A homothety if the circles {α, β} are disjoint.

12 Composition of three inversions

Theorem 18. The composition f = f1 ◦ f2 ◦ f3 of three inversions relative to circles {α, β, γ} ofthree but
same pencil the same pencil of circles D is also an inversion relative to a circle δ of D .

α

β

γ

A BC

U

V

W

Z
κ

D

ε

δ

Figure 31: Composition of three inversions relative to circles of the same pencil

Proof. In the case the pencil is a non-conventional of lines through a point, real or at infin-
ity, or a pencil of concentric circles, the theorem is easily proved. In the non conventional
case, we know from the discussion in section 7, that there is an inversion g transforming
the given pencil P to a non-conventional P ′ . Then the three inversions transform to
their conjugates {hi = g ◦ fi ◦ g}, which are reflections on lines through a point, real or at
infinity, or inversions on concentric circles and their composition

h = (g ◦ f3 ◦ g) ◦ (g ◦ f3 ◦ g) ◦ (g ◦ f3 ◦ g) = g ◦ ( f3 ◦ f2 ◦ f1) ◦ g

is easily seen to be of the same kind, i.e. either a reflection on a line of of P ′ if this consists
of lines, or a reflection on a circle of P ′ if this consists of concentric circles. The claim
follows then from the equivalent to the previous relation:

f3 ◦ f2 ◦ f1 = g ◦ h ◦ g.

�

13 Inversion action on an invariant circle

There is an interesting aspect of an inversion f leaving a circle λ invariant. Such a circle
is orthogonal to the circle of inversion κ(O, ρ) (theorem 1) and for each X ∈ λ the inverse
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λ

κ

ε

Figure 32: Homography f ∗ : X 7→ Y defined by an inversion

Y = f (X) ∈ λ too (See Figure 32). Besides the line XY passes through O and intersects
the radical axis ε of {κ, λ} at a point Z satisfying

(XY ZO) =
OX
OY

:
Z X
ZY
= −1, (5)

i.e. {X,Y } are “harmonic conjugate” w.r. to {O, Z}. This is equivalent to the fact that the
radical axis in this case (orthogonality of the circles) is also the “polar” of O w.r. to λ.

Forgetting for the moment the inversion and looking at this relation, we can use it to
define a map f ∗ which makes sense not only for the points of λ but for all the points
{X , O} of the plane . This is the “harmonic perspectivity” or “harmonic homology” ([Cox87,
p.55], [VY10, I,p.223]) defined generally by a line ε and a point O < ε called respectively
“axis” and “center” of the perspectivity. The recipe for such a transformation f ∗ is, to
associate to each X the point Y on the line OX, so that equation-5 holds. We formulate
this simple fact through the next theorem.

Theorem 19. The inversion f relative to the circle κ(O, ρ) restricted to the points of a circleaction on
invariant cir. λ, orthogonal to κ, coincides there with the harmonic perspectivity f ∗ with center O and axis

equal to the radical axis ε of the circles {κ, λ}.

X

Y

O
λ

κ

ε

μμ'

μ''

Figure 33: The image µ′ = f (µ) and the image µ′′ = f ∗(µ)

Figure 33 shows how differently act on a line µ the inversion f and the harmonic
perspectivity f ∗. The first maps µ onto a circle µ′ through the center of inversion. The
second maps µ onto another line µ′′, such that the pair (µ, µ′′) is harmonic conjugate
w.r. to the line ε and the point O. The two maps have the same effect only when applied
to the points X ∈ λ. For all other points of the plane their action on them is totally differ-
ent, the inversion mapping circles and lines onto circles and the perspectivity, as a special
kind of “homography”, mapping circles, and more generally conics, onto conics and lines
onto lines.
The inversion f relative to κ leaves κ point-wise fixed and maps λ onto itself. The
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Figure 34: The image κ′ = f ∗(κ) is a hyperbola

perspectivity f ∗, as we said, coincides with f on the points of λ but for points X ∈ κ
has a totally different behavior. Figure 34 shows that κ′ = f ∗(κ) is a hyperbola, the char-
acteristics of which can be determined from the two orthogonal circles {κ, λ}. Following
theorem lists the properties of this figure, which result easily from the very definition of
f ∗ and its fundamental properties:

1. f ∗ is an “involutive” map, i.e. satisfies ( f ∗)2 = e ( e the identity).

2. Lines map via f ∗ to lines, a finite line possibly mapping to the line at infinity.

3. The line η at half the distance of O from the axis ε of f ∗ maps via f ∗ to the line
at infinity and vice versa.

4. A circle, and more general a conic, maps via f ∗ to a conic.

5. The tangent τX of a curve κ at its point X maps to the tangent τX′ of the curve
f ∗(κ) at the point X ′ = f ∗(X).

Theorem 20. The image κ′ = f ∗(κ) of the circle κ is a hyperbola with the following properties.
1. κ′ passes through the intersections of κ ∩ λ and the points {C,C ′} which are diametral of

κ with CC ′ orthogonal to OP.

2. If {J, J ′} are the intersections {κ ∩ η}, then {OJ,OJ ′} are parallel to the asymptotes.
3. The asymptotes are the images via f ∗ of the tangents {τJ, τJ′} to κ at {J, J ′}.
4. These tangents intersect at I ′ = f ∗(I), point I being the center of the hyperbola.
5. The angle ω of the asymptotes, not containing any branch, is the same with the angle of

the tangents {τJ, τJ′} and this angle, depending on the position of λ relative to κ, satisfies
0 < ω < π/3.

6. The line η is a directrix of the hyperbola and point O is the corresponding focal point.
7. The eccentricity of κ′ is CO/OS = 2r0/q, where r0 the radius of κ and q = OQ.

Remark 7. The symmetry of the orthogonality relation implies that there is also another
hyperbola λ′, resulting by applying the preceding discussion after interchanging the
roles of {κ, λ}. Figure 35 illustrates the case showing the two hyperbolas together with
their asymptotes and {η, ζ } and the corresponding focal points {O,P}. An easy calcula-
tion using theorem 20 shows that the eccentricities {e, e′} of the two hyperbolas satisfy
the relation

e · e′ =
8

sin(2�ROP)
=

8

sin(2�RPO)
.
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Figure 35: The two hyperbolas naturally related to two orthogonal circles

Remark 8. The restriction on the angle ω : 0 < ω < π/3 stems from the property of the
circle κ to be defined by its center O, which is the focal point of the hyperbola and the
point J where the corresponding directrix η intersects the parallel OJ to the asymptote
(See Figure 36). The triangle OJQ is isosceles and OQ < OJ . For ω > π/3 the circle
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Ρ

ω

Figure 36: The restriction on the angle ω

κ(O, |OJ |) does not intersect the hyperbola in four points as required. The figure shows
also the recipe to construct the two orthogonal circles generating the hyperbola by the
method described above, provided its asymptotes form an angle ω < π/3 in the domain
not containing a branch of it.

14 Compositions of two inversions and homographies

Given two circles {α(A), β(B)}, each of the corresponding inversions { f1, f2} relative to
these circles leaves invariant every circle κ orthogonal to both, hence also the com-
position f = f2 ◦ f1 does the same and for each X ∈ κ creates a triangle with vertices
{X,Y = f (X), Z = f (Z)} inscribed in κ. In section 13 we saw that each of the two inver-
sions { f1, f2} coincide with “perspectivities” with centers respectively {A,B} and axes the
radical axes {η1, η2} of the pairs of circles {(α, κ), (β, κ)}. The composition f ∗ of these per-
spectivities coincides on the points of κ with the composition f of the two inversions
and defines a “homography” preserving the circle κ. Figure 37 shows the line X Z joining
X to its image Z = f (X) = f ∗(X). By a well known theorem (see file Abridged notation),
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Figure 37: Composition of two inversions X 7→ Z

we know that these lines, for variable X ∈ κ, envelope a conic. The figure shows this
conic (ellipse) and some other characteristics of the resulting configuration listed in the
form of a theorem.

Theorem 21. With the preceding notation and definitions and with P denoting the pencil of2 inversions
and
homographies

circles orthogonal to {α, β}, the following are valid properties
1. The composition f = f2 ◦ f1 of the inversions defines a transformation leaving invariant

each member-circle κ ∈ P .
2. The transformation f restricted on each member κ of the pencil P defines a homography

f ∗, whose homography axis is the line AB and whose isolated fixed point is the pole C of
AB relative to the circle κ.

3. The points {X, Z = f (X)} define for X ∈ κ lines X Z enveloping a conic κ′ belonging to
the (bitangent) family of conics generated by the circle κ and the line AB.

4. The conic κ′ is invariant w.r. to the harmonic perspectivity with axis AB and center C.

Notice that the above procedure can be reversed. Given a triangle like CDE and an
inscribed conic like κ′, such that |CY1 | = |CY2 |, one can reconstruct the above figure as
follows:

1. Define the circle circle κ tangent at {CD,CE} respectively at {Y1,Y2}.

2. Define the circle α centered at the intersection point A = Y1Y2 ∩ DE and orthogonal
to κ.

3. Define the circle β by the requirement to be orthogonal to κ with center B on Y1Y2
and passing through Z1 inverse of X1 relative to circle α.

The procedure shows that each conic inscribed in a triangle with the particular condition
|Y1C | = |Y2C | for some vertex C of the triangle and the corresponding tangent adjacent
sides, can be produced by two inversions and the resulting envelope of lines {X Z}.

15 Anti-inversion

A variation of the inversion is the so called “anti-inversion”. It is defined, like the inversionantiinversions
on a circle κ(O,r) and corresponds to every point A , O of the plane a point B on the same
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κ

Figure 38: Anti-inversion relative to κ

line OA, such that |OA| |OB| = r2 and such that OA, OB are oppositely oriented (See Figure
38). This, using oriented segments, could be expressed by the condition

OA · OB = −r2,

and it is easy to see that B is the symmetric, relative to O, of the inverse B′ of A relative
to the circle κ. The circle κ is called circle of anti-inversion, its center O center of the anti-
inversion and its radius r radius of the anti-inversion.
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κ

Figure 39: The polar circle κ of an acute-angled triangle

A prominent example commes from the altitudes {AA′,BB′,CC ′} of an acute-angled tri-
angle ABC (See Figure 39), which intersect at its “orthocenter” H and define oriented
segments such that

H A · H A′ = HB · HB′ = HC · HC ′ = −r2 =
1

2
(a2 + b2 + c2) − 4R2,

where {a, b, c} are the side-lengths and R the circumradius of the triangle. The circle κ

with center H and radius r is called the “polar circle of the triangle” (see file Autopolar
triangles).

Next exercises show, that several (but not all) properties of inversions carry over with
slight modifications to anti-inversions. The effort to solve them gives an opportunity to
review the theory of inversion. A key-fact for their solution is that the anti-inversion
fκ relative to the circle κ(O) is a composition fκ = gκ ◦ sO = sO ◦ gκ of the inversion gκ
relative to κ and the symmetry sO relative to O.

Exercise 18. Show that an anti-inversion maps the internal points of the circle to its external
points and vice-versa. Also every point of the circle is mapped to its diametrically opposite. Con-
clude that the anti-inversion admits no fixed points.

Exercise 19. If the point X varies on a line ε, then its anti-inverse point Y relative to a circle
κ(O,r) varies on a circle ζ passing through the center O of κ. If the point Y varies on the circle ζ
passing through point O, then its anti-inverse X relative to κ, varies on a line ε.



15 Anti-inversion 25

εζ'ζ λ
μ

κ

μ'

κ

(Ι) (ΙΙ)

Figure 40: Comparison of inverse- anti-inverse images

Exercise 20. If the point X varies on a circle λ not passing through O, then its anti-inverse Y
relative to the circle κ(O,r) varies on a circle µ.

Figure 40 shows the difference between the inverse and anti-inverse of a line and a
circle relative to circle κ. The two images are symmetric relative to the center of κ.

Exercise 21. Show that for every pair of anti-inverse points {A,B} relative to the circle κ and
every circle λ passing through them, circles κ and λ intersect by a diameter of κ and λ remains
invariant relative to the κ−anti-inversion. The converse is also true and a circle λ intersecting κ

by a diameter of κ remains invariant by the κ−anti-inversion.

Exercise 22. Two different pairs of anti-inverse points (X,Y ) and (X ′,Y ′) relative to the circle κ
define four concyclic points of a circle λ intersecting κ by a diameter of the latter.

Exercise 23. Let Y be the anti-inverse relative to the circle κ of the point X . If the circles λ and µ
pass through X and intesect under the angle ω, then their anti-inverses λ′, µ′ pass through point
Y and intersect under the same angle ω.

This means that, like the inversions, also the “anti-inversions are conformal transforma-
tions”.

Exercise 24. For a given circle pencilD and a circle κ, the anti-inverses relative to κ, of the circles
λ of the pencil, build another pencil of circles D ′ of the same type with D .
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Figure 41: Common circle µ of intersecting pencil D and anti-inversed D ′

Exercise 25. For a given intersecting pencil of circlesD and a circle κ, show that the pencilD ′ of
the anti-inverses relative to κ, of the circles λ of the pencil and the original pencil D have exactly
one circle-member µ in common. Circle µ is characterized by the fact that it passes through the
basic points of D as well as through the basic points of D ′ (See Figure 41).
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Figure 42: Common circle µ of pencil D and anti-inversed D ′

Exercise 26. For a given non intersecting pencil of circles D and a circle κ, show that the pencil
D ′ of the anti-inverses relative to κ, of the circles λ of the pencil and the original pencil D have
exactly one circle-member µ in common. µ is characterized by the fact that it intersects κ by a
diameter of κ.

Hint: The circle µ has its center at the intersection P of the lines of centers of the two
pencils (See Figure 42).

Exercise 27. For a given tangential pencil of circles D and a circle κ, show that the pencil D ′ of
the anti-inverses relative to κ, of the circles λ of the pencil and the original pencil D have exactly
one circle-member µ common. What characterizes µ in this case?

Exercise 28. Given a circle κ and a line ε, show that there exists a circle ω, relative to which the
anti-inversion inerchanges κ with ε.

Exercise 29. Show that there is no anti-inversion interchanging two intersecting circles κ and λ.

Hint: If {κ, λ} are tangent, then the anti-inversion should leave the point of contact fixed,
something impossible. If {κ, λ} intersect at two different points, then the anti-inversion
should interchange them, therefore the circles should be invariant and cannot map one
onto the other.

Exercise 30. Given two non congruent and non intersecting circles κ and λ, show that there
exists exactly one circle ν, relative to which the anti-inversion interchanges κ and λ (See Fig-
ure 43). The center of ν is the internal point of similarity D of κ, λ, the radius r of ν satisfies
r2 = αβ

(
|AB |2

(α+β)2
− 1

)
and the circle of inversion µ of the theorem 14, which, this one as well,

interchanges {κ, λ}, intersects the circle ν along a diameter of ν.

Two circles like {κ, λ}, as well as the related to them circles {µ, ν}, defined in the previ-
ous exercise, make an interesting system with many applications. The next exercise lists
the basic properties of this system.

Exercise 31. Given two non congruent and non intersecting circles {κ(A, α), λ(B, β)} and the
circles {µ, ν} defined in the previous exercise (See Figure 43), show that:

1. Two pairs of “antihomologous” points {(X,X ′), (Y,Y ′)}whose lines {X X ′,YY ′} pass through
the exterior (resp. interior) center of similarity C (resp. D), are contained in a circle τ (resp.
σ), which intersects orthogonally (resp. by diameter of ν) the circle µ (resp. ν).

2. Circle τ (resp. σ) is invariant with respect to the inversion (resp. anti-inversion) relative to
µ (resp. relative to ν).



15 Anti-inversion 27

κ

λ

Α Β
Χ

Χ'
Χ''

μ

ν

ξ

σ

τ

Γ
Δ

ε

Figure 43: The system of two non intersecting circles

3. Conversely, every circle τ (resp. σ) which intersects circles {κ, λ} and is invariant with
respect to the inversion relative to µ (resp. with respect to the anti-inversion relative to ν)
intersects {κ, λ} by pairs of antihomologous points {(X,X ′), (Y,Y ′)}, whose lines {X X ′,YY ′}
pass through point C (resp. D).

4. A circle tangent to {κ, λ} will be invariant with respect to the inversion relative to µ or it
will be invariant with respect to the anti-inversion relative to ν. In the first case the line
of the contact points with {κ, λ} will pass through C. In the second case this line will pass
through point C.

5. The inverse (resp. anti-inverse) of the circle of similitude ξ of {κ, λ} relative to µ (resp. ν),
is the radical axis of {κ, λ}.
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Figure 44: Intersection along diameter ... and orthogonal to β

Exercise 32. Given are two circles {α, β} outside each other and the point C outside both. To
construct a circle γ intersecting circle α along a diameter AB and orthogonal to β.

Hint: Consider the anti-inversion f relative to α and the anti-inverse β′ = f (β), as well
as the anti-inverse C ′ = f (C) of the given point (See Figure 44-I). The requested circle
γ maps under f to itself, is orthogonal to {β, β′} und passes through points {C,C ′}. It
follows that its center must be on the medial line η of CC ′ and also on the radical axis ε
of the two circles {β, β′}.
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Exercise 33. Given are the circles {α, β, γ} lying outside each other. To draw a circle δ intersecting
α along a diameter AB and orthogonal to the circles {β, γ}.

Hint: Consider the anti-inversion f relative to α and the anti-inverse β′ = f (β) (See Figure
44-II). The requested γ maps under f to itself and is orthogonal to {β, β′, γ}. Consequently
its center coincides with the radical center of the three last circles.

16 Three pairwise orthogonal circles

Here we examine the composition of three inversions on three pairwise orthogonal cir-
cles, starting with some easy exercises.
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Figure 45: Equal segments AE = AF

Exercise 34. Draw the circles {α, β, γ} with diameters the sides of the triangle ABC intersect-3 pairwise
orthogonals ing the altitudes correspondingly at the points {D,E,F} (See Figure 45). Show the equalities

{AE = AF,BF = BD,CD = CE}.

Hint: {AE, AF} are respectively tangents to the circle {(EB′C), (AC ′F)} implying the equal-
ities AE2 = AB′ · AC = AC ′ · AB = AF2 etc...
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Figure 46: Three paiwise orthogonal circles {α′, β′, γ′}

Exercise 35. Show that there are precisely three circles {α′, β′, γ′} pairwise orthogonal and cen-
tered at the vertices of the triangle ABC and construct them (See Figure 46). Show that their
radical center is the orthocenter of the triangle.

Hint: Use the previous exercise.
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Exercise 36. Show the converse to the previous exercise, i.e. that three circles {α′, β′, γ′} which
are pairwise orthogonal define by their centers the vertices of a triangle ABC with the properties
of the previous exercise.
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Figure 47: Diagonals passing through fixed points

Exercise 37. Let {κ, µ(O)} be two orthogonal circles and AC a variable chord of κ passing
through the fixed point E . Let also {B,D} be the second intersections of lines {OC,OA} with κ.

Show that line BD passes through a fixed point F of line EO.

Hint: See first that the diagonals of the quadrangle BD and AC intersect at a point K
of the radical axis ε of {κ, µ} which is also the “polar” of O relative to κ. This implies
that (B,C) are harmonic conjugate to (L,O) : (BCLO) = −1, where L = BC ∩ ε. Hence
(F,E) are also harmonic conjugate to (H,O) : (FEHO) = −1. Since {E,H,O} are fixed
this relation implies that also F has a fixed position.
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Figure 48: Anti-inversion inverted to anti-inversion

Theorem 22. Consider the anti-inversion f relative to the circle κ(O,r) and the inversion g

relative to the circle µ(P,R) passing through O. Then two anti-inverse points {X,Y = f (X)}
invert to {X ′ = g(X),Y ′ = g(Y )}, which are anti-inverse relative to a circle κ′(F). The circles
{κ, κ′} have point P as similarity center.

Proof. See first that X X ′Y ′Y is a cyclic quadrangle whose circumcircle αX is orthogonal
to µ (See Figure 48). This circle is invariant not only relative to µ but also relative to the
κ−anti-inversion. In fact, αX intersects κ in two diametral points {U,V} of κ.

This is seen by watching a point X moving on αX and taking the other intersection
point Y of OX with αX . If OX = −OY then {X,Y } are points of κ and we are done. If
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OX , −OY and |OX | < |OY | say, then moving X on κ to the position of Y we’ll have
|OX | > |OY | hence, by continuity, for some intermediate position we’ll have |OX | = |OY |
implying that {X,Y } are diametral points of κ.

Let now {A,B} the intersections of OP with αX . These two points satisfy two rela-
tions

OA · OB = −r2 and PA · PB = R2,

Hence their position is fixed and independent of the particular X . This implies that the
radical axis ε of µ,αX passes through a fixed point K ∈ OP, characterized by the har-
monicity relation (ABKP) = −1. Applying then exercise 37 we see that the diagonal X ′Y ′

of the quadrangle XY ′Y X ′ passes through a fixed point F ∈ OP satisfying

FX ′ · FY ′ = F A · FB = −k2,

for a constant k . This shows the first claim and a simple calculation of the constant k
proves also the second claim. �
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Figure 49: Composition of inversions on three pairwise orthogonal circles

Theorem 23. The composition f = f3 ◦ f2 ◦ f1 of three inversions respectively on the pairwise
orthogonal circles α, β, γ is an anti-inversion relative to a circle with center at the radical center
O of the three circles.

Proof. We prove this by inverting the related figure w.r. to a circle µ with center S one
of the intersection points of two of the circles, {β, γ} say (See Figure 49). The radius of µ
can be taken arbitrarily and for definiteness we take it to be |TS |, where T is the other
intersection point of the two selected circles. The inversion g relative to µ maps the
circles {β, γ} to two orthogonal lines {β′, γ′} through T and the third circle α to a circle
α′ orthogonal to these lines, hence having its center at T .

Taking conjugates by g we have:

h = g ◦ f ◦ g = (g ◦ f3 ◦ g) ◦ (g ◦ f2 ◦ g) ◦ (g ◦ f1 ◦ g) = h3 ◦ h2 ◦ h1

and each of the {hi = g ◦ fi ◦ g} is an inversion respectively relative {α′, β′, γ′} (section 9).
Since {α′, β′} are two orthogonal lines intersecting at T, the composition sT = h3 ◦ h2 is
the symmetry at point T, hence h = sT ◦ h1 is the anti-inversion on circle α′. Applica-
tion of theorem 22 implies then that f = g ◦ h ◦ g is an anti-inversion. According to this
theorem the center of the anti-invesion must lie on ST and it is easily checked that f
interchanges the intersection points of the other pairs α ∩ β and α ∩ γ , thereby proving
the claim. �
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Figure 50: Three mutually orthogonal circles

Exercise 38. Let {AA′,BB′,CC ′} be the altitudes of the triangle ABC intersecting at its “ortho-
center” H (See Figure 50). Show the following properties:

1. The circles {α,α′} with diameters respectively {BC, AH} intersect orthogonally at the feet
{B′,C ′} of the altitudes.

2. If A′′ = BC ∩ B′C ′, then the circle α′′ centered at A′′ and orthogonal to {α,α′} intersects
these circles in the pairs {(A1, A2), (A6, A9)} the first lying on the altitude AA′ and the other
two defining a line through the middle A3 of BC.

3. The inversion f0 on the circle α0 centered at A and orthogonal to {α,α′′} maps the line
BC onto the circle α′.

4. The points {A′, A3} are inverse relative to α′′ .
5. If {A7, A8} are the f0−inverses of {A3, A′′}, then {(A′′,H, A7), (A3,H, A8)} are triples of

collinear points.
6. The triangle AA4A5 is related to the other two {ABC, AA′′A3} in the same way ABC is

related to {AA4A5, AA′′A3}. The three triangles have AA′ as a common altitude and H as
common orthocenter.

7. Lines {A′′H, A3H} are the radical axes respectively of the circle pairs (α,α0) and (α′′, α0) .

Hint: Nr-1. A3 and the middle A0 of AH are diametral points of the Euler circle and
{A0B′,B′A3} are orthogonal at B′.

Nr-2. The centers of a circle orthogonal to two other circles is on the radical axis of
these two.

Nr-3. Since BC maps to a cirlce through A and {B′,C ′}.
Nr-4. Since AA′ is the polar of A3 relative to α′′.

Nr-5. τ = A7A3A′H is a cyclic quadrangle, since {(A3, A7), (A′,H)} are pairs of f0−inverses.
Since {A′, A3} are α′′−inverses the circumcircle of τ is also orthogonal to α′′ hence the
collinearity of {A′′,H, A7}. Analogously is proved the collinearity of the other triple. Lat-
ter can be also proved by noticing that by the previous argument {A′′A7, AA′} are two
altitudes of the triangle AA′′A3, consequently the third altitude will pass also through
their intersection H.

Nr-6. Follows from the previous nr.
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Nr-7. Apply exercise 35 or prove directly by showing that A′′ is on the radical axis of
{α,α0}, which amounts to the fact that {A′, A′′} are α−inverses. This implies that H is the
“radical center” of the three circles {α,α′′, α0}, hence A3H being orthogonal to AA′′ is the
radical axis of {α′′, α0}.

17 Inversions and complex numbers

Here I follow Schwerdtfeger [Sch79], to discuss some relations of inversions with the field
of complex nubmers C. The equation of the circle κ(K,r) in cartesian coordinates

|X − K |2 = r2 expands to x2 + y2 − 2k1x − 2k2y + k21 + k22 = r2

This, representing the points with complex numbers {z = x + iy, k = k1 + ik2}, can be writ-
ten

z · z − k · z − k · z + k · k − r2 = 0.

The inversion relative to κ leads to an expression with coefficients depending on {k,r}:

z′ = k +
r2

|z − k |2
(z − k) = k +

r2

z − k
⇔ z′ =

kz + (r2 − k · k)

z − k

One can describe the reflections on lines with complexes, as a particular kind of inver-
sions, with a similar expression. For this start with the expression of a line with com-
plexes

k · z + k · z − n = 0,

and notice that the corresponding reflection expressed in complexes ([Dea56, p.29]) is
given by

z′ =
k · z − n

−k
.

Thus, in both cases, the inversion on a circle or a line (reflection) can be expressed through

z′ = f (z) =
k · z − n

m · z − k
, (6)

where the real numbers {m = 1, n = k · k − r2} in the case of the circle and m = 0 in the
case of the line. The function f satisfies, as expected, f 2 = e (e: the identity transforma-
tion) and this, using matrices, is equivalent to

M · M =

(
k −n
m −k

)
·

(
k −n
m −k

)
= (k · k − m · n) ·

(
1 0
0 1

)
. (7)

Complex 2 × 2 matrices M satisfying the more general equationcircle
matrices

M · M =

(
a b
c d

)
·

(
a b
c d

)
= µ ·

(
1 0
0 1

)
with µ , 0, (8)

are called “circle-matrices”. It can be shown ([Sch79, p.80]) that these matrices are charac-
terized by a simple operation that transforms them to “hermitian matrices” with non-zero
determinant. The operation is a change of signs in one row and interchange of the two
rows:

M =

(
a b
c d

)
7→

(
−c −d
a b

)
= M1 .
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The “hermitian” property of M1 means, by definition, that “the transposed matrix equals
the conjugate”: M t

1 = M1, which in our case means that {b, c} are real and {a,−d} are
conjugate. In the aforementioned reference it is also shown that , “every circle-matrix rep-define

inversions resents an inversion”, as well as, the fact that the “group” of all transformations described
by invertible complex 2 × 2 matrices and corresponding relations of the form{

z′ =
az + b
cz + d

or z′ =
az + b
cz + d

}
,

are generated by a product (composition) of at most 4 inversions. The first kind (on thegroup gene-
rated by
inversions

left), called “Moebius transformations” requiring two or four inversions, and the second
(on the right) requiring one or three inversions.
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