
Euclidean plane Isometries ( Congruences )

A file of the Geometrikon gallery by Paris Pamfilos

To properly know the truth is to be in the truth; it is to
have the truth for one’s life. This always costs a struggle.
Any other kind of knowledge is a falsification. In short,
the truth, if it is really there, is a being, a life.

Kierkegaard, Truth is the way
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1 Transformations of the plane

“Transformation” of the plane is called a process f , which assigns to every point X of
the plane, with a possible exception of some special points, another point Y of the plane
which we denote by f (X). We write Y = f (X) and we call X a “preimage” of the trans-
formation and Y the “image” of X through the transformation. We often say that the
transformation f “maps” X to Y . For the process f we accept that it satisfies the require-
ment

X , X ′ ⇒ f (X) , f (X ′).

In other words, different points also have different images. Equivalently, this means that,
if for two points X , X ′ holds f (X) = f (X ′), then it will also hold X = X ′. The set of points
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X , on which the transformation f is defined, is called “domain” of the transformation
f , while the set consisting of all Y , such that Y = f (X), when X varies in the domain
of f , is called “range” of f . For transformation examples the reader may consult the
beginnings of the following sections. Here we limit ourselves in a description of common
characteristics of these notions.

For every shape of the plane Σ the set of images f (X), where X runs through Σ , is
called “image” of Σ and is denoted as f (Σ ).

Applying the processes one after the other, we create the notion of “composition of
transformations”. For two given transformations f and g, we call “composition” of f and g,
the transformation whose process results by the successive application of the processes
of f and g. The composition of transformations is denoted by

g ◦ f .

By definition, the process of composition g ◦ f first corresponds Y = f (X) to X and then
Z = g(Y ) = g( f (X)) to Y . Totally then, it corresponds Z = g( f (X)) to X . There are some
details, which we must be careful with in compositions. These have to do with the do-
mains and ranges of the transformations, which participate in the composition. For all
of it to be meaningful, the range of the first transformation ( f ) must be contained in the
domain of the second (g). Things are considerably simplified for transformations which
have domain and range the entire plane.
Since the composition g ◦ f is a new transformation, we may consider its composition
with a third transformation h :

h ◦ (g ◦ f ),

and more generally we can define the composition of as many transformations f1, f2,
f3,..., fk we want, which, for simplicity, let us consider that they are defined on the entire
plane:

fk ◦ fk−1 ◦ ... ◦ f1.

The meaning of such a composition of transformations is that we apply successively the
processes of the transformations which participate in sequence from right to left. f1 maps
point X1 to X2 = f1(X1), f2 next maps X2 to X3 = f2(X2), and so on and so forth. This
process can be denoted pictorially by the diagram

X1
f1
7−→ X2

f2
7−→ X3

f3
7−→ X4 ...

fk
7−→ Xk+1.

A very simple and insignificant, regarding its action, transformation is the so called “iden-
tity transformation”, which we denote with e and which, to every point X corresponds X
itself. This one resembles the unit in the familiar multiplication, which leaves numbers
unchanged. The same way, this transformation does nothing. It leaves every point fixed.
Its structural meaning however is as important as that of the multiplication unit. With its
help we can define immediately the “inverse transformation” of a transformation f which
we denote with f −1. This one performs exactly the opposite process to that of f and by
definition holds

f −1 ◦ f = e.

If we confine ourselves to transformations f , g, h, ..., defined for all points on the plane,
then their totality together with composition, presents a noteworthy similarity with the
set of positive numbers and multiplication. I list the similarities (and one difference) in
two parallel columns:
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“Numbers” “Transformations”
z = x · y (product) h = g ◦ f (composition)
x · y = y · x (commutativity) g ◦ f , f ◦ g (in general)
x · (y · z) = (x · y) · z (associativity) h ◦ (g ◦ f ) = (h ◦ g) ◦ f
1 (unit) e (identity transformation)
y = x−1 ⇔ y · x = 1 (inverse) g = f −1 ⇔ g ◦ f = e

We will apply these rules in the next sections. I underline here the associative property
h ◦ (g ◦ f ) = (h ◦g) ◦ f , which holds for transformations. This is due to their very nature as
a correspondence process, which remains the same, any way we choose to group them
(insert parentheses) in a particular composition of more than one transformations.

2 Isometries, general properties

A special category of transformations, we will deal with in the next sections, is that of
“isometries” or “congruences” of the plane. With this naming we mean transformations,
which are defined on the entire plane and additionally have the property of preserving
distances ([Cox61, p. 39], [Sin95]). In other words, transformations X ′ = f (X), such that,
for every pair of points X , Y and their images X ′, Y ′ will hold

|X ′Y ′ | = |XY |.

Theorem 1. An isometry preserves angles.

Proof. The short wording means that for three points X , Y , Z and their images X ′, Y ′,
Z ′ through the transformation the angles �Y X Z and �Y ′X ′Z ′ are equal. This however is a
consequence of the property of the isometry of the transformation, on the basis of which
|X ′Y ′ | = |XY |, |Y ′Z ′ | = |Y Z |, |Z ′X ′ | = |Z X |. In other words the triangles X ′Y ′Z ′ and XY Z
are congruent. From the congruence of triangles follows the equality of the angles as
well. �

Exercise 1. Show that the composition g◦ f of two isometries f and g is again an isometry. Show
also that the inverse transformation f −1 of an isometry is an isometry.

Theorem 2. An isometry maps a line ε onto a line ε′. If the isometry fixes two points A and B of
ε, then it also fixes all the points of ε.

Proof. The position of a point X of the line AB is completely determined by the ratio
|XA |
|XB | and the fact that | |X A| ± |XB | | = |AB |. The latter gives the necessary and sufficient
condition so that X is on the line. If therefore the isometry f fixes points A, B then for the
images X ′, A′, B′ will hold:

|X ′A′ |
|X ′B′ |

=
|X A|
|XB|

, and |X ′A′ | ± |X ′B′ | = |X A| ± |XB |.

Consequently if X is contained in line ε = AB, then also X ′ will be contained in line
ε′ = A′B′. The second part follows immediately from the previous equalities, if we take
into account that A′ = A, B′ = B. Then from these follows that for every point X of ε point
X ′ coincides with X . �

Theorem 3. An isometry, which fixes three non collinear points, coincides with the identity
transformation.
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Proof. Assume that the isometry f fixes the points A, B and C . Then, according to the
previous theorem, it also fixes the lines AB and AC . If X is a point not lying on these
lines, we draw a line ε through X , which intersects AB and AC respectively at D and E ,
which are fixed by f . By the previous theorem f fixes all the points of DE therefore also
X . �

Corollary 1. Two isometries coincident at three points are coincident everywhere.

Proof. Indeed, if f , g are the two isometries, then g−1◦ f will fix the three points, therefore
it will coincide with the identity transformation g−1 ◦ f = e ⇔ f = g, �

Exercise 2. Show that an isometry f maps a circle κ onto a circle κ′ = f (κ) of equal radius.

Theorem 4. If an isometry f satisfies the relation f ◦ f = e, then it fixes at least one point.

Proof. Obviously the identity transformation has the property of the psoposition. Let us
suppose then that f is not coincident with the identity transformation and let us denote
with X ′ the point f (X), so that, according to the hypothesis X ′′ = X . We consider now an
arbitrary point X such that X ′ = f (X) , X . Such a point exists, for otherwise f would be
the identity. Suppose M is the middle of X X ′. We show that f fixes M . By hypothesis f
exchanges X and X ′, therefore maps the line X X ′ to itself (Theorem 2). Also

|X ′M ′ | = |X M | = |X ′M | = |X ′′M ′ | = |X M ′ |.

The first and third equality hold because f is an isometry. The second because M is the
middle of X X ′. This means that point M ′ lies on the medial line of X X ′, but also, as we
noted, it is a point of the line X X ′, therefore it coincides with M . �

3 Reflections or mirrorings

A line of the plane ε defines a simple transformation called “reflection” or “mirroring”
relative to the line ε, which is called “axis” or “mirror” of the reflection. The process for
this transformation is described as follows:

ε

Χ

Υ

Μ

X'

Y'

Figure 1: Mirroring or reflection relative to ε

a) To every point X not contained in the line ε corresponds the point Y , such that ε is the
medial line of XY . In other words, point X is projected orthogonally to ε at its point M
and X M is extended to its double towards M , until Y .
b) To every point X contained in the line ε the process corresponds the point X itself. In
this case then, point X is, as we say, a “fixed point of the transformation”.

Thus, the reflection is well defined for every point of the plane or, in other words,
its domain is the entire plane. The same happens also with its range. It also coincides
with the entire plane, since for every Y there exists one X such that f (X) = Y . The line
ε, through which a reflection is defined, consists of all the fixed points of the reflection.
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Every point X not contained in ε is in correspondence with Y which is on the other side
of ε than that where X is to be found. A reflection then interchanges the two sides of ε
and leaves the points of ε fixed.

The reflection underlies the notion of “axial symmetry”: The shape Σ is axially sym-
metric, if there exists a reflection f , such that f (Σ ) = Σ .

Theorem 5. Every reflection is a plane isometry.

Proof. By the figure 1, in which XYY ′X ′ is a trapezium, hence |X X ′ | = |YY ′ |. �

ε

Χ

Υ

X'

Y'

A

B

C

Α'

C'

Β'

Figure 2: |X X ′ | = |YY ′ | and �BAC = �B′A′C ′
Theorem 6. For every reflection f holds f ◦ f = e, in other words the inverse of a reflection is
the same transformation of the reflection.

Proof. Indeed, if Y = f (X), then point Y is the symmetric of X relative to the line ε, which
defines the reflection. Then, however, point X is also the symmetric of Y relative to ε,
consequently X = f (Y ) hence, for every X will hold f (Y ) = f ( f (X) = X , which means that
the composition f ◦ f coincides with the identity transformation e. �

The important characteristic of reflections is that, as we say, they “generate” all the isome-
tries of the plane. In other words, every isometry of the plane may be written as a com-
position of reflections. With a little more work we’ll prove later next theorem ([Cox61,
p. 46]):

Theorem 7. Every isometry of the plane is either a reflection or a composition of two or three
reflections.

O

X

X'

Σ'

XΣ

X'(Ι) (ΙΙ)

O

Y

Y'

Figure 3: Transformation of point symmetry relative to O

Closely connected to reflections is also the other simple transformation we met, the point
symmetry. A point O of the plane defines the transformation f of the “point symmetry”
relative to O. This one for every X , 0 corresponds point X ′ = f (X) to X , which is the
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symmetric of X relative to O. In other words the point X ′ for which O is the middle of
segment X X ′.

Theorem 8. The composition g ◦ f of two reflections whose axes intersect orthogonally at O
coincides with the point symmetry relative to O.

α

β
Χ

Υ Ζ

Ο

Figure 4: Point symmetry as composition of two reflections

Proof. The proof is suggested by the figure. If Y is symmetric relative to line α and Z is
symmetric of Y relative to line β, which intersects line α orthogonally at O, then Z is also
symmetric of X relative to point O. �

Theorem 9. If an isometry f fixes two points A and B, then it also fixes all the points of the line
AB and coincides with either the identity transformation or the reflection relative to the line AB.

Proof. The first part of the theorem follows from Theorem 2. For the second, assume
that f , e. It suffices to consider one point X off the line AB and see what is the point
X ′ = f (X). Triangles ABX and ABX ′ will be congruent and we see easily that they either

A B

X

X'

Y

Figure 5: Isometry with two fixed points

coincide or they will be symmetric relative to AB. The first is excluded by assumption,
therefore point X ′ will be the symmetric of X relative to AB. �

Theorem 10. If an isometry of the plane f , different from the identity, satisfies the relation
f ◦ f = e and has exactly one fixed point O, then it is coincident with the point symmetry relative
to O.

Proof. The proof is contained in theorem 4. We showed there that for every X with X ′ =
f (X) , X the middle M of the segment X X ′ is fixed. Then if there exists exactly one
fixed point O, then all X X ′ will have the same middle O, which is the essence of point
symmetry. �

Corollary 2. An isometry of the plane f , different from the identity, which satisfies the relation
f ◦ f = e is coincident with a symmetry relative to point O or with a reflection relative to line ε.
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Remark 1. For a given transformation f , the shape Σ of the plane is called “symmetric”
relative to f , when f (Σ ) = Σ . The shapes Σ which are symmetric relative to a point O are
precisely those which satisfy f (Σ ) = Σ , where f is the symmetry transformation relative
to O. The shapes Σ which are symmetric relative to an axis ε are precisely those which
satisfy f (Σ ) = Σ , where f is the reflection relative to the line ε.

Remark 2. Transformations which coincide with their inverse ( f −1 = f ⇔ f ◦ f =
e) are called “involutions” and play an important role in Euclidean, as well as in other
Geometries ([VY10, p. 102 (I)]).

Exercise 3. Show that, for two different lines of the plane ε and ε′, there always exists a reflection
f which transforms one to the other ( f (ε) = ε′). In fact, depending on the position of the lines
there exist exactly two or exactly one reflection which has this property. When exactly do these
cases happen?

Exercise 4. Show that for two different line segments AB, CD of the same length, sometimes there
exists a reflection which transforms one to the other f (AB) = CD and sometimes there doesn’t.
When exactly does either case happen?

Exercise 5. Given two different lines (equal segments, congruent circles) examine when there
exists a point symmetry which transforms one to the other.

Α

Β
Γ

Α'

Β'

Γ'

ε

Figure 6: Reflections reverse orientation

Reflections are closely connected to the reversal of orientation of triangles and more gen-
erally of polygons. Every reflection f maps a triangle ABC onto a triangle A′B′C ′, which
has the opposite orientation (See Figure 6). The transformations we consider in this book

O

Α

Β Γ
Α'

Β'Γ'

Figure 7: Point symmetries of the plane preserve orientation

(are, as it is said, “continuous” and) have the property that, if they preserve the orientation
of a triangle, then they preserve the orientation of every other triangle. Respectively, if
they reverse the orientation of a triangle, they will reverse the orientation of every other
triangle. It suffices then to examine what happens to the orientation of a single triangle,
for us to conclude if the specific transformation preserves or reverses the orientation.
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Isometries which reverse the orientation of triangles, we say that they reverse the ori-
entation of the plane and we sometimes distinguish with the name “anti-isometries”, while
those that preserve orientation, we say that they preserve the orientation of the plane and
we call them “direct isometries”. An example of a direct isometry is the point symmetry,
which as we saw (Theorem 8) can be written as the composition of two reflections (See
Figure 7). More generally than single reflections, every composition f = fk ◦ ... ◦ f1 of an
odd number of reflections reverses the orientation of the plane, while every composition
of an even number of reflections preserves the orientation.

4 Translations

“Translation” of the plane by AB is called the transformation f , which is defined by an ori-
ented line segment AB. This transformation, to every point X of the plane, corresponds
a point Y, such that the line segments XY and AB are parallel, equal and equally oriented

A B

X Y

Figure 8: Translation by AB

(See Figure 8). Obviously the domain and range of this transformation is the entire plane.
It is also obvious that parallel, equally oriented and equal line segments AB, CD define
the same translation. From the definition follows immediately, that the inverse trans-
formation f −1 is the translation by the inversely oriented line segment BA. Finally, the
“null translation” is the identity transformation, considered as a translation by a segment
whose end points coincide.

Theorem 11. Every translation is an isometry.

A B

Z

Y

X

Z'

Y'

X'

Figure 9: Translations are isometries

Proof. We must show that a translation f preserves distances. If X , Y are different points
and X ′ = f (X), Y ′ = f (Y ) then |XY | = |X ′Y ′ |. This follows immediately from the fact that
X X ′Y ′Y is a parallelogram. Segments X X ′ and YY ′ are by definition parallel, equal and
equally oriented to AB, which defines the translation (See Figure 9). �

Theorem 12. The composition g ◦ f of two translations by the oriented segments AB and CD is
a translation by the oriented segment E Z . The segment E Z is defined as the side of the triangle
EHZ which results from an arbitrary point E and from H = f (E) and Z = g(H).
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A

B Γ

Δ
Ε

Η

Ζ Χ

Υ=f(X)

Ω = g(Y)

f g

Figure 10: Composition of translations is a translation

Proof. Indeed if X is another arbitrary point different from E and Y = f (X), Ω = g(Y ),
then the triangles XYΩ and EHZ will have respective sides parallel equally oriented and
equal: |XY | = |EH |, |YΩ | = |HZ |, therefore they will be congruent and will also have their
third sides parallel, equally oriented and equal: |XΩ | = |E Z |. �

Corollary 3. Consider the broken line with vertices {A1, A2, . . . , Ak}. This defines k − 1 transla-
tions { f1, f2, ..., fk−1} relative to its respective oriented sides {A1A2, A2A3, A3A4, ..., Ak−1Ak}. The
composition of these translations is equal to the translation f which is defined by the oriented
segment A1Ak :

fk−1 ◦ fk−2 ◦ ... ◦ f2 ◦ f1 = f .

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

ff
1 f

2 f
3 f

4
f
5

f
6

f
7

Figure 11: Composition of translations

Proof. The proof results (by induction on k) by applying the previous theorem and re-
ducing gradually the number of the sides of the broken line. If for example, the broken
line has four vertices {A1, A2, A3, A4}, then f2 ◦ f1 = g where g is the translation by A1A3

and f3 ◦ g = h, where h is the translation byA1A4. Totally then f3 ◦ f2 ◦ f1 = f3 ◦ g = h. �

Corollary 4. The composition of translations f = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1 parallel to the oriented
sides A1A2, A2A3, ..., Ak−1Ak , Ak A1 of the polygon A1A2...Ak is the identity transformation.

Proof. In this corollary, which is a direct consequence of the previous one, we consider
that the identity transformation e is a translation by a line segment whose end points
coincide (null translation). �

Theorem 13. The composition of two reflections relative to two parallel lines {α, β} lying at
distance δ, is a translation by a line segment of length 2δ and direction orthogonal to that of the
parallel axes, from α to β.

Proof. Figure 12suggests the proof. If the axes α, β of the reflections are parallel at dis-
tance δ, then for every point X and its image Y = f (X), Z = g(Y ) the distance will be
|X Z | = 2δ, since the middles M , N respectively of XY , Y Z will be on α and β respec-
tively. �
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Χ Υ Ζ

δ

Μ Ν

α β

Figure 12: Translation from reflections

Remark 3. In the previous theorem the parallel axes of the two reflections can be posi-
tioned on any part of the plane. It suffices that they are orthogonal to the line segment
AB, which defines the translation and their distance is equal to δ = |AB |

2 . The proof of
the next theorem is not the simplest one, but demonstrates the use of composition of
transformations and applies the previous remark.

Theorem 14. The composition g ◦ f of a point symmetry f relative to point O and a translation
g by the segment AB is the symmetry relative to a point O′, where O′ is the translation of O by
AM , where M is the middle of AB. Similarly, the composition f ◦ g is a symmetry relative to the
point O′′, which is the translation of O by M A.

Α Β

Ο Ο'

α β

γ

M

O O'

X

Y Z(I) (II)

Figure 13: Translation and point symmetry ... and with compositions

Proof. Assume the composition order g◦ f (the proof for the order f ◦g is similar). Accord-
ing to Theorem 8, the symmetry f relative to a point O coincides with the composition of
two reflections with axes intersecting orthogonally at O (See Figure 13-II). We therefore
choose these axes γ and α, so that the first passes through O and is parallel to AB and the
second passes through O and is orthogonal to AB. Then f is written as f = fα ◦ fγ, where
fα, fγ are the reflections relative to the lines α and γ respectively. Also the translation is
written as the composition g = fβ ◦ fα, where fβ is the reflection relative to line β parallel
of α and passing through point O′, where OO′ is parallel, equal and equally oriented to
AM . Then, the composition that interests us is written:

g ◦ f = ( fβ ◦ fα) ◦ ( fα ◦ fγ) = fβ ◦ ( fα ◦ fα) ◦ fγ = fβ ◦ e ◦ fγ = fβ ◦ fγ .

The equality between initial and final term gives the proof. �

Remark 4. On the last formula we use the fact that placement of parentheses may be
arbitrary. This, because the composition of transformations is, as we say, associative. In
other words for three transformations always holds

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

This is a direct consequence of the definition of transformation, as a process of corre-
spondence of points. The question of how these processes are grouped, that is, where the
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parentheses will be, is irrelevant, as long as we don’t change the order of application of
these processes. The thing changes if we change the order of application of these pro-
cesses. As it is seen also from the previous theorem, in general, for two transformations
the order of application plays an important role, so

g ◦ f , f ◦ g.

In some cases, however, equality holds. When it holds g ◦ f = f ◦ g, we say that the
transformations “commute”. One such case, for example, occurs in the case of a symmetry
fO relative to a point O. This, according to Theorem 8, is written as the composition of
two reflections

fO = fβ ◦ fα,

relative to lines α and β respectively, which pass through O and are orthogonal. Besides
the fact, that these lines may have an arbitrary orientation, provided they are orthogonal
at O, so in this case it is easy to see that additionally holds

fβ ◦ fα = fα ◦ fβ .

The interesting characteristic of point symmetries and translations is that they are repre-
sented as compositions of reflections. The fact that this representation may be done in
many ways is one additional characteristic, useful in many applications. The next theo-
rem gives one such application.

Theorem 15. The composition fP ◦ fO of two symmetries relative to two different points O and
P, is a translation by the double of OP.

O P

α

β

γ

O P

X

Y

Z

δ

2δ

(Ι) (ΙΙ)

Figure 14: Two point symmetries ... simply ... and with compositions

Proof. The proof follows directly by writing fO = fβ ◦ fα and fP = fγ ◦ fβ, where fα, fγ
are reflections relative to the lines orthogonal to OP and fβ is the reflection relative to the
line β = OP (See Figure 14-II). We have then

fP ◦ fO = ( fγ ◦ fβ) ◦ ( fβ ◦ fα) = fγ ◦ ( fβ ◦ fβ) ◦ fα = fγ ◦ e ◦ fα = fγ ◦ fα.

The last composition, however, is exactly (Theorem 13) that one which defines the trans-
lation mentioned in the theorem. �

Corollary 5. The composition of ν symmetries relative to ν points A1, A2, ..., Aν is, for even ν a
translation and for odd ν a symmetry.

Proof. Indeed, let us denote by f1, f2, ..., fν the respective point symmetries. Then we can
group their compositions in pairs

f = fν ◦ ... ◦ ( f4 ◦ f3) ◦ ( f2 ◦ f1).
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If ν is even, then we have exactly µ = ν/2 pairs, representing each a translation (Theorem
13). Then their composition will also be a translation (Corollary 3). If ν is odd, then in
the aforementioned composition participate µ = ν−1

2 pairs, which represent translations,
therefore their composition will also be a translation. This translation is then composed
with a symmetry fν and gives finally a symmetry (Theorem 14). �

Exercise 6. Show that the composition of a reflection fε relative to line ε and translation fAB
relative to a line segment orthogonal to ε is a reflection fε′ relative to line ε′ parallel to ε and at
distance |AB |2 from it.

Exercise 7. For which pairs of lines ε, ε′ does there exist a translation which maps one to the
other?

Exercise 8. Show that for two circles of equal radius there exist both a reflection and a translation
which maps one to the other.

Theorem 16. Given ν different points A1, A2, ..., Aν, there exists exactly one polygon which has
these points as middles of successive sides if ν is odd. If ν is even, in general, there is no such
polygon. If however there exists one, then there exist infinitely many and, in fact, every point of
the plane may be considered to be a vertex of such a polygon.
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X
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X
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X
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X
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X
2 X
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X
4

O
a(I) (II)

Figure 15: Polygons with given middles of sides

Proof. The proof results by tracing the orbit of an arbitrary point X0, to which we apply
successively the symmetry transformations { f1, ..., fν} relative to the vertices {A1, ..., Aν}:

X1 = f1(X0), X2 = f2(X1), ..., Xν = fν(Xν−1).

According to Corollary 5, if the polygon has an odd number of vertices, then the compo-
sition f = fν ◦ ... ◦ f1 of these symmetries will be a new symmetry relative to some point
O of the plane (See Figure 15-I). Consequently the last point Xν = f (X0) will always be
the symmetric of X0 relative to O and we will have coincidence X0 = Xν and therefore a
closed polygon with the wanted properties, exactly then, when X0 coincides with O. This
shows the first part of the theorem.

The second part is proved by a similar argument. In this case the aforementioned
theorem guarantees that f is a translation by a fixed line segment a (See Figure 15-II).
Consequently, no matter which X0 we use to start, the final Xν will always be an image of
X0 relative to the translation by a. If, therefore, there exists one closed polygon (X0 = Xν),
then a = X0Xν will collapse to a point and the translation will coincide with the identity
transformation e. Then, however, for every point X0 the corresponding polygon will close
and will satisfy the requirements of the theorem. �
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Figure 16: Polygons with an even number of sides

Next theorem points out a category of polygons of an even number of sides, for which the
special case of the previous theorem applies: Every point X0, produces a polygon with
one of its vertex at X0 and with predetermined middles of sides ([Yag62, p. 88, I]).

Theorem 17. Let the polygon a = A1A2...Aν for an even number ν = 2µ be constructed from the
polygon b = B1...Bµ, by attaching parallelograms to the sides of b (See Figure 16). Then for every
point X1 of the plane there is a polygon x = X1...Xν, having for middles the vertices of a.

Proof. Figure 16 shows one of these special polygons. Polygon a is a decagon and the
respective b a pentagon. a was constructed by attaching to b parallelograms. The end
points of the opposite sides of these parallelograms define the vertices of the decagon
a. Let us assume then that we have one such polygon a and the respective b and let
us consider an arbitrary point X1 and the successively symmetric points relative to the
vertices of a. We extend X2B1 towards B1 by doubling it until point P. Because A1 is also
the middle of X1X2, X1P will be parallel to and double of A1B1. Because A2 is the middle
of X3X2, X3P will be parallel to and double of A2B1. Similarly X5P will be parallel to and
double of A4B2, and so on. This way we arrive at point Xν−1 (point X9 in the figure) and
we prove that Xν−1P is parallel to and double of Aν−1Bµ (A9B5 in the figure). This implies
that points Xν, Bµ and P are collinear and point Bµ is the middle of the line segment XνP.
This, in turn, implies that the points Xν, Aν and X1 are collinear and the polygon x has the
desired properties. �

Δ

Γ Β

Α

Ε

Ζ

Η

Θ
Ι

Κ

Ν

Μ

Figure 17: Composition of point symmetries

Exercise 9. Let ABCD be a parallelogram and E a point. We define successively point Z sym-
metric of E relative to A, point H symmetric of Z relative to B, Θ symmetric of H relative to
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C (See Figure 17). Show that the symmetric Θ ′ relative to D always coincides with the initial
point E . Also show that the created quadrilateral E ZHΘ is a parallelogram, exactly in the case,
in which the point E coincides with the symmetric K of the center I of the parallelogram, relative
to the middle M of the side AD .

Exercise 10. Show that the inverse transformation of a translation by (the oriented) segment AB
is the translation by the segment BA.

Exercise 11. Show that a translation preserves the orientation of the plane.

5 Rotations

In order to define the rotation we need the notions of “oriented angle” and of its “signed
measure”. The oriented angle �XOY is an angle in which we distinguish the order of its
sides OX , OY (See Figure 18). If the transition from OX to OY is opposite to the direction

O

X

Y

ω
O

(+) (-)

Χ

Υ

ω

Figure 18: Positively (+) and negatively (-) oriented angle �XOY

of the clock’s hands, then we consider the angle as being “positively oriented”, or simply
a positive angle. If the transition is in the same direction as the clock’s, we consider the
angle as being “negatively oriented”, or simply a negative angle. The signed measure of an
oriented angle �XOY , which we denote by (�XOY ), coincides with ±|�XOY |, where |�XOY |
is its usual measure. The sign is taken to be positive for positively oriented angles and
negative for negatively oriented ones.

From the definition follows immediately, that for successive oriented angles �XOY and�YOZ the following rule is valid

(XOZ) = (XOY ) + (YOZ).

“Rotation” of the plane, relative to the center O and by the (oriented) angle ω, is called the
transformation f , which is defined by the rules: a) the center O of the rotation remains
fixed ( f (O) = O), b) to every other point X of the plane corresponds the point Y such that
|OY | = |OX | and the angle �XOY has signed measure ω.

Remark 5. As it is suggested by the figure 19, different rotations may have the same
result. This way for example, for the same center O, the rotation by θ = π

2 and the rotation
by an angle of opposite orientation −(2π − θ) = −3π

2 produce the same result. If we
denote these rotations with f and g respectively, then f (X) = g(X) for every point of the
plane. The same happens also for every other positively oriented angle θ. For negatively
oriented angles θ the same result can be had also with the angle θ ′ = 2π+θ. Consequently,
if we are interested in the result and not in the process used to reach it, we may assume
that a specific rotation f is done by an angle θ with |θ | ≤ π. The special case |θ | = π

defines the so called “half turn”, which coincides with the symmetry relative to the center
O of the rotation. This may be done either by rotating X by π or by rotating X by −π. In
all other cases (|θ | , π) we may assume that the rotation takes place by the unique angle
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Figure 19: Some rotations

which satisfies the inequality |θ | < π. A special case is also the identity transformation e.
This may be considered as a rotation by a zero angle with center any point of the plane.

Theorem 18. Rotations are isometries of the plane.

Proof. If f denotes the rotation by ω relative to the center O, it suffices to show, that
for two points X , Y and their images X ′, Y ′, holds |XY | = |X ′Y ′ |. However this follows

Χ
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Χ'

Υ'

Ο
Ζ

Χ Υ

Ζ'

Χ'

Υ'

Figure 20: Rotations are isometries

from the fact that the triangles XOY and X ′OY ′ are congruent isosceli, because they have
by definition of rotation |OX | = |OX ′ |, |OY | = |OY ′ | and the angle �XOY is equal to �X ′OY ′.
Indeed (X ′OY ′) = (XOY ′)−(XOX ′) = (XOY )+(YOY ′)−(XOX ′) = (XOY )+ω−ω = (XOY ). �

Exercise 12. Given two points X , Y , show that there exist infinitely many rotations f with the
property f (X) = Y . Also show that the centers of these rotations lie on the medial line of the
segment XY .

Theorem 19. The composition of two rotations with the same center O and angles α and β is a
rotation with center also O and rotation angle α + β.
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Figure 21: Composition of rotations with the same center

Proof. The proof follows immediately from the definitions (See Figure 21). If point X is
rotated first by α to Y , then (XOY ) = α. If, next, point Y is rotated by β to Z , then (YOZ) = β
and because the angles are successive (XOZ) = (XOY ) + (YOZ) = α + β. The figure to the
right underlines that the relation holds also for negatively oriented angles. �

Exercise 13. Show that the inverse transformation of a rotation f with center O and angle ω is
the rotation with the same center and angle −ω.

Ο Α

Β

α

β

ω

Χ

Υ

Ζ

Figure 22: Rotation as the composition of two reflections

Theorem 20. The composition of two reflections f = fβ ◦ fα, whose axes intersect at point O at
an angle of signed measure ω with |ω| ≤ π

2 , is a rotation with center point O and rotation angle
2ω (See Figure 22).

Proof. The proof follows directly from the fact that, if Y = fα(X), Z = fβ(Y ), then the
angles �XOY and �YOZ are bisected by the axes of the reflections α and β respectively.
Consequently (XOZ) = 2ω. �

Remark 6. In the last theorem the order of composition of the reflections is important. In
the composition fβ ◦ fα we must rotate from α to β. In the composition fα ◦ fβ we must
rotate from β to α. Also from the two angles of different measure, which are formed by
the two lines we consider the one which has the smaller measure. In the last figure, where
we consider the composition fβ ◦ fα, the angle which rotates the line α onto β is ω =�AOB,
where A, B are points on α and β respectively. Here too, we can choose the smaller in
absolute value oriented angle, which rotates α onto β. Besides, the case, where the two
lines intersect orthogonally, this restriction determines uniquely the signed angle which
does the work.

Theorem 21. The composition of two rotations g ◦ f with different centers O, O′ and angles
respectively φ and ψ is a rotation when φ + ψ , 2kπ (k integer), with center a point P, which is
determined from the givens, and rotation angle φ + ψ. When φ + ψ = 2kπ, then the composition
of the rotations is a translation.
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Figure 23: Composition of rotations with different centers

Proof. Let us express each rotation as a composition of two reflections. The first rotation
f as a composition of two reflections relative to the lines α and β (See Figure 23-I). We can
choose these lines to have any orientation we want, provided they pass through O and
form there the angle φ

2 (theorem 20). We choose them then so that β coincides with the
line OO′ which joins the centers of the two rotations. We consider the second rotation g

as a composition of two reflections relative to two lines, the first of which coincides with
β. Then the second required line for the expression of the rotation g will form with β at
O′ an angle equal to ψ

2 . If fα, fβ , fγ denote the reflections relative to the corresponding
lines, then we have:

g ◦ f = ( fγ ◦ fβ) ◦ ( fβ ◦ fα) = fγ ◦ ( fβ ◦ fβ) ◦ fα = fγ ◦ e ◦ fα = fγ ◦ fα.

The last is a composition of two reflections, which defines a rotation, when the respective
axes α and γ intersect (theorem 20). The intersection condition of these lines will be
exactly φ+ψ

2 , kπ ⇔ φ + ψ , 2kπ. In the case φ + ψ = 2kπ, the lines α and γ will
be parallel and consequently the composition of the rotations g ◦ f = fγ ◦ fα will be a
translation (Theorem 13). The figure 23-II underlines the case where the two rotations are
negatively oriented. The sum takes account of the signed measures of the angles. The
proof also gives the procedure by which the center P of the rotation g ◦ f (if it exists) can
be constructed. �
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Figure 24: Square construction Regular polygon construction

Exercise 14. Construct a square ABCD whose given is its center O and two points Z , H on the
sides respectively CD and D A, with |ZO | , |HO | (See Figure 24-I).

Exercise 15. Construct a regular polygon with n sides, whose given is the center O and two
points {A,B} lying on two successive sides and such that the angle ω = �AOB < 2π

n (See Figure
24-II).

Exercise 16. Show that a rotation preserves the orientation of the plane.
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Theorem 22. Given two equal and non parallel line segments AB and A′B′ there exists exactly
one rotation which maps A onto A′ and B onto B′.
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Figure 25: Rotations which map AB onto A′B′

Proof. Since the rotation will map A onto A′ its center will be on the medial line of AA′.
Similarly, its center will also be on the medial line of BB′, therefore the center of the
rotation will coincide with the intersection point O of these lines. The medial lines cannot
be parallel, because then AB and A′B′would be parallel. If the medial lines coincide, then
ABB′A′ would be a trapezium and we take as center O the intersection of AB and A′B′.
The hypothesis excludes the case of the trapezium being a rectangle. Because of the
medial lines, the triangles OAB and OA′B′ are congruent and triangles OAA′, OBB′ are
similar and the rotation angle is the one of signed measure (AOA′) = (BOB′). �

Exercise 17. In the previous figure show that the circles (AA′O) and (BB′O) intersect a second
time at the intersection point T of AB and A′B′. Conclude that the rotation angle of the previous
exercise is equal to the angle formed by the (extended) two line segments or its supplementary.

Corollary 6. Given two equal and non parallel line segments AB and A′B′, there exist exactly
two rotations which map the segment AB onto A′B′.

Proof. The first one is the one that maps A onto A′ and B onto B′ (Theorem 22) and the
other the one that maps A onto B′ and B onto A′ (See Figure 25-II). �

Exercise 18. The composition g ◦ f of a rotation f and a reflection g, whose axis passes through
the center of the rotation, is a reflection.

O

α

β

ω/2

Figure 26: Composition of rotation and reflection through the center

Hint: Express the rotation as a composition f = g ◦ h of two reflections, one of which is g.

Exercise 19. Show that, if an isometry of the plane fixes exactly one point O, then it coincides
with a rotation with this point as the center.
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Hint: If f is the isometry and X , O, then point X ′ = f (X)will have |X ′O | = |XO |, in other
words it will lie on the circle with center O and radius |OX |. Then the medial line ε of X X ′

passes through point O. Assume g is the reflection relative to ε. Then the composition
g ◦ f fixes the points O and X , consequently it fixes all the points of the line OX , therefore
it coincides with a reflection h with axis which passes through point O. We then have
g ◦ f = h ⇒ f = g ◦ h, in other words f is the composition of two reflections with axes
which intersect at O.

Exercise 20. Using the conclusions of the three previous exercises prove Theorem 7.

Hint: To show that every isometry f , different from the identity, is the composition of
at most three reflections, we consider the fixed points of f . If it has exactly one, then
(Exercise 19) it is a rotation, therefore a composition of two reflections. If it has two fixed
points, then it also has a whole line consisting of fixed points and consequently coincides
with a reflection (Theorem 9). If it fixes no point, consider an arbitrary point X and its
image X ′ = f (X). The reflection g with axis the medial line of X X ′ defines a composition
h = g ◦ f which fixes point X . Therefore h will be either a reflection or a rotation and
consequently f = g−1 ◦ h will be the composition of two or three reflections.

6 Congruence

Isometries lie at the root of the notion of “congruence” or “isometry” between shapes of the
Euclidean plane, which is defined as follows:

“Two shapes Σ and Σ ′ of the plane are congruent or isometric, if and only if there exists an
isometry f , which maps the one to the other ( f (Σ ) = Σ ′).”

In the next exercises, we give specific shapes Σ , Σ ′ and we search for an isometry f ,
which satisfies the above definition. Most of these exercises have been already expressed
in another form in the previous sections.

Exercise 21. Find an isometry, which maps a line α onto a line β (identical to Exercise 3).

Exercise 22. Find an isometry, which maps a circle α onto a circle β of equal radius (identical to
Exercise 8).

Exercise 23. Given are lines α, β, which intersect and one of the formed angles between them is
angle ω. If also the lines α′, β′ intersect under the same angle, then find an isometry f , which
maps line α onto α′ and line β onto β′.

Exercise 24. Find an isometry, which maps a line segment AB onto another line segment CD of
the same length.

Hint: Theorem 22 gives the solution for the general case, it leaves however some special
cases, which must be dealt with.

Exercise 25. Given are two congruent triangles ABC and A′B′C ′. Find an isometry which maps
the one to the other.

Hint: Again Theorem 22 applied to the line segments AB and A′B′, defines a rotation f
(or translation) which maps the one line segment to the other and drifts the triangle ABC
to a congruent A′B′D ( f (A) = A′, f (B) = B′, f (C ) = D). The two congruent triangles
A′B′D and A′B′C ′ have in common the side A′B′, therefore they will either be coincident
(D = C ′), which is exactly the case when the given triangles are similarly oriented, or D
will be the mirror image of C ′. In this case by composing with the reflection g relative to
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Figure 27: Rotation which maps ABC to A′B′C ′

A′B′ we get the isometry g ◦ f , which maps ABC onto (the reversely oriented) A′B′C ′.

According to Theorem 7, every isometry is the composition of at most three reflections.
We saw that compositions of two reflections give rotations or translations. Here we will
examine compositions of three reflections, which lead to the so called glide reflections. We
call “glide reflection” the composition g ◦ fε of a reflection f relative to line ε and a trans-
lation g by an oriented segment AB parallel to ε. We can easily see that in this definition
the order of the composition is irrelevant, in other words it holds g ◦ fε = fε ◦ g.

ε

A B

Χ

Υ Ζ

Figure 28: Glide reflection Z = h(X)

Remark 7. When point X is on the axis ε of the glide reflection h, then the corresponding
image Z = h(X) is also on the axis and X Z is equal and similarly oriented to the line
segment AB, which defines the translation of the glide reflection. For every point not
lying on the line ε the corresponding image Z = h(X) lies on the opposite side of ε.
Consequently if, for a given glide reflection h, a line ε with h(ε) = ε is found (we say: ε is
invariant relative to h), then this is the axis of the glide reflection, and for one of its points
X and its image Z = h(X), segment X Z is the translation of the glide reflection.

Theorem 23. The composition of a translation fAB by the oriented line segment AB and a reflec-
tion fε relative to a line ε is a glide reflection.

Proof. The formulation leaves the order of composition of the two isometries on purpose
indeterminate. The proof for both cases is the same. Let us assume then that we have the
order fε ◦ fAB. If AB is parallel to ε, then no proof is needed. If AB is not parallel to ε, then

ε

A

B

C

ε'

Figure 29: Composition of translation-reflection fε ◦ fAB

it is a hypotenuse of a right triangle AC B with AC parallel and C B orthogonal to ε. The
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translation fAB is then written as the composition fAB = fCB ◦ fAC and the composition
becomes

fε ◦ fAB = fε ◦ ( fCB ◦ fAC ) = ( fε ◦ fCB) ◦ fAC = fε′ ◦ fAC .

The replacement of the parenthesis is done relying on Exercise 6. �

Theorem 24. The composition of three reflections f = fC A ◦ fBC ◦ fAB relative to the sides of a
triangle is a glide reflection.
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Figure 30: Composition of reflections in the sides of triangle

Proof. We write the composition as f = fC A ◦ fBC ◦ fAB = ( fC A ◦ fBC ) ◦ fAB = g ◦ fAB. The
transformation g = fC A ◦ fBC is a rotation and we can rotate the angle AC B to a position
A′C B′ so that B′C is parallel to AB, while preserving g = fC A′ ◦ fB′C (See Figure 30-I).
Then

f = g ◦ fAB = fC A′ ◦ fB′C ◦ fAB = fC A′ ◦ ( fB′C ◦ fAB) = fC A′ ◦ h.

Here h = fB′C ◦ fAB is a translation by the double of their distance, because B′C , AB are
parallel. The conclusion follows by applying the previous theorem. �

Theorem 25. The composition of three reflections f = fC A ◦ fBC ◦ fAB relative to the sides of
a triangle ABC is a glide reflection relative to the line, which is defined by the side E Z of the
“orthic” triangle which is opposite to the vertex A. The distance of the translation is equal to the
perimeter of the orthic triangle DE Z .

Proof. From the previous theorem we know that f is a glide reflection. The proof follows
from remark 7 in combination with the properties of the orthic triangle DE Z of ABC , the
basic of which is, that the altitudes of ABC are bisectors of DE Z . This has implies that the
side ZE of the orthic, which is opposite to vertex A, gets mapped onto an equal segment
Z2E5 on the same line (See Figure 30-II). The proof results by considering the points Z , E
and following the trajectories of their images through the successive reflections building
up f . This is seen better in figure 30, instead of using a verbal description. In this figure
the various triangles result by reflection of ABC and its orthic on the sides of ABC . �

Theorem 26. Every isometry is either a reflection or a translation or a rotation or a glide reflec-
tion.

Proof. Combination of Theorem 7, of Theorem 12, of theorem 20 and of theorem 24. �
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Exercise 26. Let f be a glide reflection, which maps a line ε to the line ε′ = f (ε). Show that the
lines {ε, ε′} are parallel, if and only if, the line ε is parallel or orthogonal to the axis of the glide
reflection.

7 Some compositions of isometries

By Theorem 7 the product (=composition) of more than 3 reflections reduces to a prod-
uct of at most three reflections. Thus, since every isometry of the plane is a product of
reflections, the product of an arbitrary number of isometries reduces also to a product
of at most three reflections. Hence (Theorem 26) to a reflection or translation or rotation
or a glide-reflection. The claims formulated in the next two exercises follow from this
general remark. The important point though is to determine the defining elements of the
composition (centers, axes etc.) from those of the factors.

α β=γ

δ
γ

δ=α β

Ο
Ρ Ο

Ρ

Figure 31: Composition of rotation and translation

Exercise 27. Show that the composition of a rotation and a translation is a rotation by an angle
equal in measure to the angle of the participating in the composition rotation.

Hint: By figure 31. Analyze the factors in products of reflections as shown. The figure
illustrates the two cases {g ◦ f , f ◦ g} with f a translation and g a rotation with center
O. Point P is the center of the resulting rotation.
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Figure 32: Composition of two glide-reflections

Exercise 28. Show that the composition of two glide-reflections is a rotation with angle equal in
measure to twice the angle of the axes of the glide-reflections.

Hint: By deciphering figure 32 using also the previous exercise. In the figure the two glide
reflections { f ,g} have respectively axes {α, β} and translations {a, b}. The rotation with
center at Q is the composition g ◦ f .

Exercise 29. On a billiard table are placed two balls X , Y . Determine the trajectory of ball X ,
which reflected in the four walls will hit next ball Y . Examine also the case where the ball after the
reflections in the four walls of the rectangle returns to its original position.
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Figure 33: Billiard trajectory

Hint: ([Cat52, p. 7]) Y1 is the reflected of Y relative to side AD . Y2 is the reflected of Y1
relative to CD . X1 is the reflected of X relative to BC . X2 is the reflected of X1 relative to
AB. The segment X2Y2 determines the reflection points.
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Figure 34: Rotations w.r. to triangle-angles

Exercise 30. Consider the rotations { f1, f2, f3} about the vertices {A,B,C } of the triangle ABC
by angles equal to the respective positively oriented angles {α, β, γ} of the triangle (See Figure 34-
II). Show that their composition f = f3 ◦ f2 ◦ f3 is a point-symmetry with respect to the contact
point B′ of the inscribed circle with side AC .

Hint: Since the angle-sum α + β + γ = π, the composition f of the rotations is certainly
(Proposition 21) a rotation by π or a half-turn i.e. a point symmetry. Show that B′ remains
constant under f , hence it is the center of symmetry.

The last exercise can be generalized, initially, for convex polygons with ν sides A1A2 . . . Aν.
Thus, considering the angles of the polygon to be positively oriented, we can define the
composition of rotations

f = fν ◦ fν−1 ◦ · · · ◦ f2 ◦ f1,

where each fi is the rotation about Ai by the angle ωi of the polygon at Ai. Since the
sum of the polygon-angles ω1 + · · · +ων = (ν − 2)π, by the general theorems for rotations,
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we conclude that f , for odd ν will coincide with a point symmetry and for even ν will
coincide with a translation.

It is easy to see that f leaves the line ε = AνA1 invariant, i.e. maps ε to itself. Conse-
quently, in the case of the point-symmetry, the center of the symmetry will be on ε and in
the case of the translation, the oriented segment of translation will be parallel to ε. Next
exercises discuss the simplest cases of such compositions.
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Figure 35: 4 reflections composition 4 rotations composition

Exercise 31. Consider the cyclic quadrilateral ABCD , and the composition f = f4 ◦ f3 ◦ f2 ◦ f1 of
the reflections with respect to the sides {AB,BC ,CD,D A} having respective lengths {a, b, c, d}.
Show that f is a translation parallel to the oriented segment ED (See Figure 35-I)

of length
ac + bd

R
and slope to the diagonal BD : �BDE =

π

2
− B̂,

where R is the circumradius.

Hint: Separate the composition in pairs f = ( f4 ◦ f3) ◦ ( f2 ◦ f1). The first two reflections
g = ( f2 ◦ f1) define a rotation about B by an angle equal to the double of B̂. This rotation
can be represented also by two other reflections g = f ′2 ◦ f ′1 , where f ′1 is the reflection on
BA′ and f ′2 is the reflection in the diagonal BD . For this, it suffices for BA′ to make with
BD the same angle B̂. The second pair h = f4 ◦ f3 represents also a rotation, which, can be
tto represented by the pair of reflections h = f ′4 ◦ f ′3 , where f ′3 = f ′2 is the reflection on D B
and f ′4 is the reflection on the line which forms with BD an angle equal to D̂ . Because of
the hypothesis B̂ + D̂ = π, the reflection-axes of { f ′1, f ′4 } are parallel and the composition

f = ( f4 ◦ f3) ◦ ( f2 ◦ f1) = ( f ′4 ◦ f ′3 ) ◦ ( f
′
2 ◦ f ′1 ) = f ′4 ◦ f ′1,

is the translation by the double of the distance of these parallels. The rest follows from
simple calculations. Noticable is the symmetry of the expression in terms of the lengths
of sides, which, by Ptolemy’s theorem, can be represented also through the product of
the diagonals.

Exercise 32. Let f = f4 ◦ f3 ◦ f2 ◦ f1 be the composition of the rotations about the vertices,
correspondingly, {A,B,C ,D} of the quadrilateral ABCD by the respective positively oriented
angles of the quadrilateral. Show that f is a translation by the oriented segment D2B2 of the side



7 Some compositions of isometries 25

D A. This segment is the double of the projection D1B1 on D A of the diagonal of a quadrilateral
A′B′C ′D ′ (See Figure 35-II). This quadrilateral is cyclic and is formed by the intersection points
of the inner bisectors of the angles of the given quadrilateral ABCD .

Hint: The rotation f1 about A can be represented as a composition of two reflections f1 =
h1 ◦ g1. g1 is the refelection with respect to the bisector AA′ of Â. h1 is the reflection
in the side AB. Similarly, the rotation f2 about B can be represented as a composition
f2 = h2 ◦ g2, where g2 = h1 is, again, the reflection on the side AB and h2 is the reflection
on the bisector BC ′ of B̂. Then the composition of the rotations

f2 ◦ f1 = (h2 ◦ g2) ◦ (h1 ◦ g1) = h2 ◦ g1,

is the composition of the two reflections in the two consecutive sides {A′D ′,D ′C ′} of the
quadrilateral A′B′C ′D ′. A similar argument shows that the composition of the rotations
about C and D coincides with the composition of the reflections in B′C ′ and C ′D ′. Apply
the previous exercise to the inscriptible quadrilateral A′B′C ′D ′.

Exercise 33. Show that a convex quadrilateral ABCD is circumscriptible if and only if, the com-
position f = f4 ◦ f3 ◦ f2 ◦ f1 of the rotations by the positive oriented angles of the quadrilateral,
represents the identity transformation.

Exercise 34. Prove that taking the composition r of successive Reflections on the sides of a
generic non-cyclic quadrangle EFGH produces a rotation r(O, φ), where the center O and the
angle φ of rotation depend on the quadrangle.

h'

I

g

E

J

H

F

K

h

G

e'

O
e

f a b

Figure 36: Reflecting on the sides of a generic quadrangle

Hint: Denote by {e = HE, f = EF,g = FG, h = GH,a = EG, b = FH} and by r = (hg f e) the
order of the reflections (See Figure 36). The partial compositions ( f e) and (hg) are ro-
tations, hence they can represented by some other reflections {(ae′) , (h′a)} such that the
angles {âe′ , ĥ′a} are equal to the corresponding { f̂ e , ĥg}. From this remark follows the
construction of O as the intersection point of O = e′ ∩ h′, the rotation angle being the
double in measure of the angle ê′h′.
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Remark 8. By the construction of O in the last exercise results also the measure of the
oriented angle of rotation which is equal to

φ = 2ê′h′ = 2(π − Ê − Ĝ) = F̂ + Ĥ − Ê − Ĝ .

Remark 9. In the last exercise, considering now the order of reflections ( f ehg) and do-
ing the corresponding construction, we obtain the analogous triangle EGJ on the di-
agonal EG, which is symmetric to the EGO w.r. to that diagonal. Point J is the corre-
sponding rotation center and the rotation angle is also φ. Analogously the rotation orders
{(g f eh) , (ehg f )} create the rotation centers {I,K}, symmetric w.r. to FH with inversely
oriented rotation angle −φ . Next table summarizes these data.

center composition angle rotation
O (hg f e) +φ rO
K (ehg f ) −φ rK
J ( f ehg) +φ rJ
I (g f eh) −φ rI

Exercise 35. With the notation and conventions of the preceding exercise, the side-lines of the
quadrangle EFGH are orthogonal bisectors of respective sides of the quadrangle OK JI . More
precisely

e = HE ⊥ OK , f = EF ⊥ K J , g = FG ⊥ JI , h = GH ⊥ IO.
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Figure 37: The quadrangle OK JI

Hint: Consider the orbit of a point X, i.e. the transformed points under the reflections on
the side-lines of EFGH :

X , eX , f eX , g f eX , hg f eX , ehg f eX , f ehg f eX , . . .

To see the orthogonality e = HE ⊥ OK we consider the segments

X − eX and hg f eX − ehg f eX .



BIBLIOGRAPHY 27

Both are orthogonal at their middle to e, hence they are parallel. Their endpoints are ro-
tated correspondingly: X to hg f eX by rO and eX to ehg f eX by rK by opposite angles
±φ. It follows that the quadrangle with these endpoints is an isosceles trapezium and the
isosceli based at its lateral sides are equal. This implies that KO is also orthogonal to e
at its middle. Analogous arguments show the remaining orthogonalities.

Exercise 36. (Hjelmslev’s theorem) Prove that for a line α and its isometric image β = f (α) by
an isometry f of the plane, the midpoints of all the segments X X ′, where X ′ = f (X), are either
collinear on the same line γ or coincident to a point O ([Cox61, p. 47]).

Hint: From theorem 22 follows that there are two types of isometries between two lines:
rotations and translations preserving the orientation, and reflections and glide reflections
reversing it. Examine in each case what happens with the middles of X X ′. Show that for
glide reflections all these middles are on its axis.
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