Lahire's triangle construction problem

Paris Pamfilos
University of Crete, Greece
pamfilos@uoc.gr

Abstract

Here we study the problem of constructing a triangle from the data $\left\{\alpha, b+c, h_{A}\right\}$. The key-point is the detection of a circumstance where $b+c$ appears in explicit form.

1 The problem

Denoting, as usual, by $\{a=|B C|, b=|C A|, c=|A B|\}$ the side-lengths, by $\{\alpha, \beta, \gamma\}$ the angles of the triangle $A B C$ and by h_{A} the altitude from A, the problem of Lahire is, to construct the triangle from the given data $\left\{\alpha, b+c, h_{A}\right\}$.

Figure 1: Representing the sides-sum $b+c$
A key-point, to solve the problem geometrically, is to realize that the sides-sum $b+c$ appears in an isosceles triangle $A F H$ with appex A (See Figure 1-I). This isosceles is constructed by drawing from the middle M of $B C$ the line ζ orthogonal to the bisector ε of angle \widehat{A}. This claim results from the following lemma.

Lemma 1. If, from the midle M of $B C$, we draw a line ζ orthogonal to the bisector ε of the angle \widehat{A}, then this line intersects the sides $\{A B, A C\}$ at points, correspondingly $\{F, H\}$, so that $|B F|=|C H|$ and, consequently $|A F|+|A H|=b+c$.

Proof. The proof follows by noticing that the bisector ε of \widehat{A} passes from the middle D of the arc $\widehat{B D C}$ of the circumcircle κ of $A B C$ (See Figure 1-II). In addition, $\{D F, D M, D H\}$ are the verticals from D on the sides and consequently line ζ is the Simson line of point D. Points $\{F, M, H\}$ are on this Simson line and the right-angled triangles $\{B F D, C H D\}$ are easily seen to be equal.

2 The quadratic equation

The solution to Lahire's problem follows by showing that $x=|D M|$ satisfies a quadratic equation depending on the given data. The derivation of the equation exposed below follows closely the one given by Altshiller-Court [Cou80, p.144].

Figure 2: The circles $\{\lambda, \mu\}$
Notice first that the circumcircle λ of the isosceles AFH passes through D, having $A D$ as a diameter (See Figure 2). If E denotes the intersection of lines $\{\varepsilon, \zeta\}$ and J is the projection of A on line $D M$, then the five points $\{A, Y, E, M, J\}$ are on a circle μ with diameter $A M$. Here Y is the foot of the altitude on $B C$. This follows easily from the fact, that all three points $\{Y, E, J\}$ see the segment $A M$ under a right angle. Point J is also on the circle λ, since it is viewing its diameter $A D$ under a right angle. Thus J is the second intersection point of circles $\{\lambda, \mu\}$ and $A J M Y$ is a rectangle. Using these facts, we can now calculate the difference of squares:

$$
\begin{aligned}
|F D|^{2}-|D M|^{2} & =|F E|^{2}-|E M|^{2}=(|F E|+|E M|)(|F E|-|E M|) \\
& =|F M||M H|=|M D\|M H|=|M D \| A Y| \Rightarrow \\
|F D|^{2}-x^{2} & =x \cdot h_{A}, \quad \text { while } \quad|F D|=|A F| \tan \left(\frac{\alpha}{2}\right)=\frac{b+c}{2} \tan \left(\frac{\alpha}{2}\right) .
\end{aligned}
$$

3 The solution

From the data $\{\alpha, b+c\}$ construct the isosceles $A F H$ and determine D on the bisector of angle \widehat{A}, hence the length $|F D|$. Solving the previous quadratic, determine the length $x=|D M|$. The line $B C$ is a common tangent to the circles with centers at $\{A, D\}$ and respective radii $\left\{h_{A},|D M|\right\}$.

REMARK There is also another method to represent the sum $b+c$ using the respective altitudes $\left\{h_{B}, h_{C}\right\}$. This is described by the following lemma.

Lemma 2. Given the measure α of the angle \widehat{A}, the lengths $\left\{b+c, h_{b}+h_{c}\right\}$ are respectively hypotenuse and vertical side of a right-angled triangle with an angle equal to α (or its complement).

Proof. Extend h_{B} by the length h_{C} and draw from the resulting point D a parallel $D A^{\prime}$ to side $A C$ (See Figure 3-I). Then $A^{\prime} A C$ is isosceles, since it has equal altitudes from $\left\{C, A^{\prime}\right\}$ and $A^{\prime} B D$ is a right-angled triangle with the stated properties. Figure 3-II shows the case of an obtuse-angled triangle.

Figure 3: The sum $h_{B}+h_{C}$ related to $b+c$

Analogous property holds also for the lengths $\left\{\left|h_{B}-h_{C}\right|,|b-c|\right\}$. Applying the lemma, one can easily construct the triangle $A B C$, given the data: (1) $\left\{a, \alpha, h_{B}+h_{C}\right\}$, (2) $\left\{\alpha,|b-c|, h_{B}+h_{C}\right\}$, (3) $\left\{a, \gamma, h_{B}+h_{C}\right\}$ and (4) $\left\{a, \gamma,\left|h_{B}-h_{C}\right|\right\}$. For the case of the

(II)

Figure 4: The difference $\left|h_{B}-h_{C}\right|$ related to $|b-c|$
difference of lengths see the figure 4.

4 A similar problem

A similar problem to the one of Lahire is to construct the triangle $A B C$ from its elements $\left\{\alpha,|b-c|, h_{A}\right\}$. The preceding method applies, with slight modifications, to deliver a solution also for this problem.

In fact, draw from the middle M of $B C$ the line ζ^{\prime} orthogonal to the external bisector ε^{\prime} of the angle \widehat{A} (See Figure 5). Then show that ζ^{\prime} intersects the sides $\{A B, A C\}$ at points correspondingly $\left\{F^{\prime}, H^{\prime}\right\}$ such that $\left|A F^{\prime}\right|=\left|A H^{\prime}\right|=|b-c|$. Hence the isosceles triangle $F^{\prime} A H^{\prime}$ and point D^{\prime} is again constructible from the given data. Line ζ^{\prime} is again the Simson line relative to the point D^{\prime}, which is on the circumcircle κ of $A B C$. A similar to the previous calculation leads also to a quadratic equation for $x=\left|D^{\prime} M\right|$:

$$
\begin{aligned}
\left|D^{\prime} M\right|^{2}-\left|F^{\prime} D^{\prime}\right|^{2} & =\left|E^{\prime} M\right|^{2}-\left|E^{\prime} F^{\prime}\right|^{2}=\left(\left|E^{\prime} M\right|-\left|E^{\prime} F^{\prime}\right|\right)\left(\left|E^{\prime} M\right|+\left|E^{\prime} F^{\prime}\right|\right) \\
& =\left|M H^{\prime}\right|\left|M F^{\prime}\right|=|M J|\left|M D^{\prime}\right|=|A Y|\left|M D^{\prime}\right| \Rightarrow \\
x^{2}-\left|F^{\prime} D^{\prime}\right|^{2} & =h_{A} \cdot x, \text { with }\left|F^{\prime} D^{\prime}\right|=\left|A F^{\prime}\right| \tan \left(\frac{\pi-\alpha}{2}\right)=\frac{b+c}{2} \tan \left(\frac{\pi-\alpha}{2}\right) .
\end{aligned}
$$

Figure 5: Triangle from $\left\{\alpha,|b-c|, h_{A}\right\}$

This shows that $\left|D^{\prime} M\right|$ is constructible from the given data and then, line $B C$ is constructed as a common tangent to the circles with centers at $\left\{A, D^{\prime}\right\}$ and corresponding radii $\left\{h_{A},\left|D^{\prime} M\right|\right\}$.

References

[Cou80] Nathan Altshiller Court. College Geometry. Dover Publications Inc., New York, 1980.

