Lahire's triangle construction problem

Paris Pamfilos University of Crete, Greece pamfilos@uoc.gr

Abstract

Here we study the problem of constructing a triangle from the data $\{\alpha, b + c, h_A\}$. The key-point is the detection of a circumstance where b + c appears in explicit form.

1 The problem

Denoting, as usual, by $\{a = |BC|, b = |CA|, c = |AB|\}$ the side-lengths, by $\{\alpha, \beta, \gamma\}$ the angles of the triangle *ABC* and by h_A the altitude from *A*, the problem of Lahire is, to construct the triangle from the given data $\{\alpha, b + c, h_A\}$.

Figure 1: Representing the sides-sum b + c

A key-point, to solve the problem geometrically, is to realize that the sides-sum b + c appears in an isosceles triangle AFH with appex A (See Figure 1-I). This isosceles is constructed by drawing from the middle M of BC the line ζ orthogonal to the bisector ε of angle \widehat{A} . This claim results from the following lemma.

Lemma 1. If, from the midle M of BC, we draw a line ζ orthogonal to the bisector ε of the angle \widehat{A} , then this line intersects the sides $\{AB, AC\}$ at points, correspondingly $\{F, H\}$, so that |BF| = |CH| and, consequently |AF| + |AH| = b + c.

Proof. The proof follows by noticing that the bisector ε of \widehat{A} passes from the middle D of the arc \widehat{BDC} of the circumcircle κ of ABC (See Figure 1-II). In addition, $\{DF, DM, DH\}$ are the verticals from D on the sides and consequently line ζ is the Simson line of point D. Points $\{F, M, H\}$ are on this Simson line and the right-angled triangles $\{BFD, CHD\}$ are easily seen to be equal.

2 The quadratic equation

The solution to Lahire's problem follows by showing that x = |DM| satisfies a quadratic equation depending on the given data. The derivation of the equation exposed below follows closely the one given by Altshiller-Court [Cou80, p.144].

Figure 2: The circles $\{\lambda, \mu\}$

Notice first that the circumcircle λ of the isosceles AFH passes through D, having AD as a diameter (See Figure 2). If E denotes the intersection of lines $\{\varepsilon, \zeta\}$ and J is the projection of A on line DM, then the five points $\{A, Y, E, M, J\}$ are on a circle μ with diameter AM. Here Y is the foot of the altitude on BC. This follows easily from the fact, that all three points $\{Y, E, J\}$ see the segment AM under a right angle. Point J is also on the circle λ , since it is viewing its diameter AD under a right angle. Thus J is the second intersection point of circles $\{\lambda, \mu\}$ and AJMY is a rectangle. Using these facts, we can now calculate the difference of squares:

$$\begin{split} |FD|^2 - |DM|^2 &= |FE|^2 - |EM|^2 = (|FE| + |EM|)(|FE| - |EM|) \\ &= |FM||MH| = |MD||MH| = |MD||AY| \quad \Rightarrow \\ |FD|^2 - x^2 &= x \cdot h_A, \quad \text{while} \quad |FD| = |AF| \tan\left(\frac{\alpha}{2}\right) = \frac{b+c}{2} \tan\left(\frac{\alpha}{2}\right). \end{split}$$

3 The solution

From the data $\{\alpha, b + c\}$ construct the isosceles AFH and determine D on the bisector of angle \widehat{A} , hence the length |FD|. Solving the previous quadratic, determine the length x = |DM|. The line BC is a common tangent to the circles with centers at $\{A, D\}$ and respective radii $\{h_A, |DM|\}$.

REMARK There is also another method to represent the sum b + c using the respective altitudes $\{h_B, h_C\}$. This is described by the following lemma.

Lemma 2. Given the measure α of the angle \hat{A} , the lengths $\{b + c, h_b + h_c\}$ are respectively hypotenuse and vertical side of a right-angled triangle with an angle equal to α (or its complement).

Proof. Extend h_B by the length h_C and draw from the resulting point D a parallel DA' to side AC (See Figure 3-I). Then A'AC is isosceles, since it has equal altitudes from $\{C, A'\}$ and A'BD is a right-angled triangle with the stated properties. Figure 3-II shows the case of an obtuse-angled triangle.

Figure 3: The sum $h_B + h_C$ related to b + c

Analogous property holds also for the lengths $\{|h_B - h_C|, |b - c|\}$. Applying the lemma, one can easily construct the triangle *ABC*, given the data: (1) $\{a, \alpha, h_B + h_C\}$, (2) $\{\alpha, |b - c|, h_B + h_C\}$, (3) $\{a, \gamma, h_B + h_C\}$ and (4) $\{a, \gamma, |h_B - h_C|\}$. For the case of the

Figure 4: The difference $|h_B - h_C|$ related to |b - c|

difference of lengths see the figure 4.

4 A similar problem

A similar problem to the one of Lahire is to construct the triangle *ABC* from its elements $\{\alpha, |b - c|, h_A\}$. The preceding method applies, with slight modifications, to deliver a solution also for this problem.

In fact, draw from the middle M of BC the line ζ' orthogonal to the external bisector ε' of the angle \widehat{A} (See Figure 5). Then show that ζ' intersects the sides $\{AB, AC\}$ at points correspondingly $\{F', H'\}$ such that |AF'| = |AH'| = |b - c|. Hence the isosceles triangle F'AH' and point D' is again constructible from the given data. Line ζ' is again the Simson line relative to the point D', which is on the circumcircle κ of ABC. A similar to the previous calculation leads also to a quadratic equation for x = |D'M|:

$$|D'M|^{2} - |F'D'|^{2} = |E'M|^{2} - |E'F'|^{2} = (|E'M| - |E'F'|)(|E'M| + |E'F'|)$$

= $|MH'||MF'| = |MJ||MD'| = |AY||MD'| \Rightarrow$
 $x^{2} - |F'D'|^{2} = h_{A} \cdot x, \text{ with } |F'D'| = |AF'| \tan\left(\frac{\pi - \alpha}{2}\right) = \frac{b+c}{2} \tan\left(\frac{\pi - \alpha}{2}\right).$

Figure 5: Triangle from $\{\alpha, |b - c|, h_A\}$

This shows that |D'M| is constructible from the given data and then, line *BC* is constructed as a common tangent to the circles with centers at $\{A, D'\}$ and corresponding radii $\{h_A, |D'M|\}$.

References

[Cou80] Nathan Altshiller Court. *College Geometry*. Dover Publications Inc., New York, 1980.