A short proof of Morley's theorem

Paris Pamfilos
University of Crete, Greece
pamfilos@math.uoc.gr

Abstract

A short and elementary proof of Morley's theorem.

Figure 1: Bisector property
Morley's theorem can be given a short proof based on a trivial property of the bisectors of a triangle $A B C$ with base angles 2β and 2γ. In fact, the following property is obvious.

Lemma 1 From the incenter E of triangle $A B C$ and on both sides of $A E$ draw two lines inclined to it by 30° and intersecting the other sides, respectively at D,F (See Figure 1). Then $D E F$ is equilateral and $D F$ is orthogonal to $A E$.

Having that, reflect $B E$ and $D E F$ on $A B$ to obtain $B I$ and the equilateral $D I J$. Do the same on the other side, i.e. reflect $C E$ and $D E F$ on $C F$ to obtain $C H$ and the equilateral $F H G$. By the symmetry w.r. to $A E$ the quadrilateral $I D F H$ is an isosceles trapezium with three equal sides, hence cyclic, and its angle $\widehat{I H F}$ is easily computed:

$$
\begin{aligned}
& \widehat{I D F}=60^{\circ}+2\left(90^{\circ}-\alpha / 2\right)=60^{\circ}+180^{\circ}-\alpha=60^{\circ}+2 \beta+2 \gamma \Rightarrow \\
& \widehat{I H F}=120^{\circ}-2 \beta-2 \gamma \Rightarrow \widehat{I H D}=60^{\circ}-\beta-\gamma .
\end{aligned}
$$

This, essentially, finishes the proof, since the inscribed angle viewing the $\operatorname{arc}(I D H)$ will be then of measure

$$
180^{\circ}-3 \beta-3 \gamma,
$$

which shows that the intersection A^{*} of lines $B I$ and $C H$ will be on the circlumcircle κ of $I D F H$ and $A^{*} D, A^{*} F$ will be the trisectors of A^{*}. This obviously implies that for a triangle $A^{*} B C$ with base angles 3β and 3γ the adjacent trisectors intersect at the vertices of an equilateral triangle, as required by the theorem of Morley ([Cox61, 24]).

References

[Cox61] H Coxeter. Introduction to Geometry. John Wiley and Sons Inc., New York, 1961.

