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The bottom line for mathematicians is that the
architecture has to be right. In all the mathematics
that I did, the essential point was to find the right
architecture. It’s like building a bridge. Once the
main lines of the structure are right, then the details
miraculously fit. The problem is the overall design.

C.L. Dodgson, College Math. J. 25(1994)
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1 Nagel point of the triangle

This is defined as the intersection point Na of the lines joining the vertices {A, B, C} with
the contact points {A′′, B′′, C′′} of the opposite sides with the corresponding “excircles”
of the triangle t = ABC. That this point exists can be easily proved by applying “Ceva’s
theorem”. For this we use the basic relations between the segments defined by the contact
points of the side-lines of the triangle with the incircle and the excircle (see figure 1), both
inscribed in the same angle of the triangle (see file Ceva’s theorem). In fact, denoting the
side-lengths by

a = |BC| , b = |CA| , c = |AB| and the semi-perimeter s =
1
2

(a + b + c) ⇒

|AB| + |BA′| = |AB′| = |AC′| = |AC| + |CA′′| = s ⇒

|BA′′| = s − c , |BA′| = s − b , |CA′| = s − b , |CA′′| = s − c ,

and analogous formulas for the excircles contained in the other angles of the triangle.
Thus, a characteristic property of the Nagel Cevian AA′′ is that its trace A′′ on BC sep-
arates the perimeter of the triangle in two halves |AB| + |BA′′| = |A′′C| + |CA|. Analogous
properties hold also for the other Nagel Cevians.

http://users.math.uoc.gr/~pamfilos/eGallery/Gallery.html
http://users.math.uoc.gr/~pamfilos/
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Theorem 1. The lines {AA′′, BB′′, CC′′} intersect at a point.

This follows by measuring the ratio and applying Ceva’s theorem
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Figure 1: Nagel’s point characteristic ratios A′′B
A′′C = −

s−c
s−b

Remark 1. We notice the equality of the segments |BA′| = |A′′C| = s − b, implying a sim-
ple relation of the Nagel point Na and the “Gergonne point” Ge of the triangle, defined
as the intersection of the Cevians joining the vertices with the contacts of the incircle on
the opposite side. This relation implies that the {Ge, Na} are “isotomic conjugate” points of
the triangle, i.e. the intersections of their Cevians with each side, like the points {A′, A′′}
in the figure, lie symmetrically w.r.t. to the middle of that side.
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Figure 2: Nagel Cevian of △ABC as median of △AXY
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Theorem 2. From the vertex A of the triangle ABC draw the parallel to BC and the bisectors
of the angles it forms there with the sides {AB, AC}. From any point X on such a bisector draw
the parallel to BC intersecting the other bisector in Y (see figure 2). The middle Z of XY lies
on the Nagel Cevian of ABC through A.

Proof by picture. The triangles {AXB1, AC1Y } are isosceli. And

|AC1| + |C1Z | = |YZ | = |AB1| + |B1Z | = |XZ | .

Thus point Z has the characteristic property of the Nagel Cevian from A w.r.t. to the tri-
angle AB1C1 to bisect its perimeter. Because of the similarities of triangles {AB1C1, ABC}
this is also a Nagel Cevian for the triangle ABC.

2 Barycentric coordinates of the Nagel point

For the calculation of the barycentrics (see file Barycentric coordinates) of Na we use the
known signed ratio

r =
A′′B

A′′C
= −

s − c

s − b
⇒ A′′ =

1
1 − r

(B − rC) ⇒ A′′ =
1
a

((s − b)B + (s − c)C).

Analogously we obtain B′′ = 1
b ((s − c)C + (s − a)A). The Nagel point is the intersection of

the lines Na = AA′′ ∩ BB′′, the coefficients of which are expressed by the vector products

AA′′ : A × A′′ = (0 : −(s − c) : (s − b)),

BB′′ : B × B′′ = ((s − c) : 0 : −(s − a)).

The barycentrics of Na result by taking again the vector product

AA′′ × BB′′ = (s − a : s − b : s − c).

Remark 2. From the isotomic relation between points, which in barycentrics is expressed
by the reflexive relation

X (p : q : r)↔ X ∗
(
1
p

:
1
q

:
1
r

)
,

we see that the barycentrics of the Gergonne point alluded to in remark 1 are

Ge

( 1
s − a

:
1

s − b
:

1
s − c

)
.

In figure 3 we consider a triangle ABC and draw parallels to the side BC. Shown are
the “double” triangle AB2C2 and the triangle AB1C1, in which B1C1 is a common tangent
to the incircles of the triangles {BB2M ′, CM ′C2}, M ′ being the middle of B2C2. The incircle
of the triangle B3C3 created in the same way is the excircle of the triangle AB1C1. By the
similarity of all these triangles, created by parallels to BC, their orthocenters, incenters,
the Gergonne and Nagel points move on four lines through A labeled accordingly in the
figure. Next theorem formulates some properties of this figure.

Theorem 3. With the preceding definitions and the labels shown in figure 3 hold the following
properties.

1. The the Nagel Cevian through the vertex A meets B1C1 at the line bisector ZM ′ of B1C1.

2. The Gergonne Cevian through the vertex A passes through the intersection point A1 of
B1C1 with M ′Y.
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Figure 3: Atlitude, Gergonne, bisector and Nagel Cevian lines from A

3. The semi-perimeter of the triangle AB1C1 is τ = b + c.

4. The line PQ is orthogonal to the bisector AI and passes through M ′.

5. The altitude line is harmonic conjugate of the bisector line w.r.t. to the pair of Gergonne and
Nagel lines.

nr-1. In fact, the triangles {ABC, M ′C′B} are equal and {AY, M ′Z } are their correspond-
ing equal altitudes. It follows that AYM ′Z is a parallelogram and their diagonals bisect
each other at M which is also the middle of BC. Hence M ′ is the middle of B2C2.

nr-2. From the equality of {BY, ZC} and the equality of the triangles follows easily
that the intersection A1 of B1C1 and M ′Y satisfies A1B1 = NC1. Hence A1 is on the
Gergonne Cevian through A.

nr-3. The similarity ratio of AB1C1 to ABC is λ = (2(hA − r))/hA, where hA = |AY | the
altitude of ABC from A and r its inradius. But with the area of ABC : E = rs = (hA · a)/2
we have

λ =
2(hA − r)

hA
= 2 −

2
hA

E

s
= 2 −

2
hA

hAa

2s
=

2s − a

s
=

b + c

s
.

Hence, by the similarity, the semi-perimeter of AB1C1 will be equal to τ = λ · s = b + c.
nr-4. The bisectors from {B, C} of the triangles {B2BM ′, M ′CC2} are parallel to the bi-

sector AI. Thus, the orthogonal from M ′ to AI cuts on AB the segment BP = BM ′ = AC
and on AC the segment CQ = CM ′ = AB. It follows that AP = AQ = b + c and the result
follows from nr-3.

nr-5 follows at once from the fact that A3N is a diameter of the excircle of AB1C1
parallel to the altitude line and the bisector line passes through its center whereas the
Gergonne and Nagel lines pass through its extremities.
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3 The Nagel line of the triangle

This is the line containing the incenter, the centroid and the Nagel point and, as Bottema
says, it is “a counterpart of the Euler line” [Bot07, p.83]. The justification for this is given by
the following theorem.

Theorem 4. The Nagel point Na is the incenter of the “anticomplementary” triangle t′ = A′B′C′

of ABC. The points {I, G, Na} are collinear and |GNa | = 2|IG|.
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Figure 4: The cevians of the Nagel point

Consider the homothety f with center G and ratio −2. This maps the triangle t onto t′

and the incircle κ of t onto the incircle κ′ of t′. The proof amounts to show that the line
A1I ′ passes through the vertex A (See Figure 4). Here {I, I ′, A2, A1} denote respectively
the incenters of t, t′ and the contact points of κ with {BC, DE}, where DE is the parallel
to BC tangent to κ.

The triangle A1I ′A2 has G for centroid. Hence the line A2A3 = f (I ′A1). Because of
BA2 = CA′′ = s − b, next ratios in the similar triangles {ADE, A′CB, A′D′E′} are equal:

A1E

A1D
=

A2B

A2C
=

A3E′

A3D′
.

Hence A2A3 passes through A′ and consequently its homothetic I ′A1 passes through A.
By the similarity of triangles {ADE, ABC} line AI ′ passes also through the contact point
A′′ of the excircle with BC . Thus, the cevian AA′′ containing the Nagel point passes
through I ′ and analogously the other cevians do the same. Hence I ′ coincides with the
Nagel point Na of ABC.

Next theorem is a continuation of theorem 3. In this triangle ABC is extended to
its “double” AB2C2 and we consider the incircles and some lines related to the created
triangles {ABC, AB2C2, BB2M ′, CM ′C2} (see figure 5)

Theorem 5. Referring to figure 5, the following properties hold.
1. The incenter I ′ of △AB2C2 and points {M ′, A′} are collinear.
2. The exterior common tangent B1C1 of the circles {κB, κC} and the analogous exterior com-

mon tangents of the other pairs of circles meet at the incenter I ′ of △AB2C2.

3. The internal common tangents of the circles {κB, κC} intersect at a point J of the line M ′A′.
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4. Line A′M ′ is Nagel Cevian for the triangles {M ′CB, A′PP′, I ′NN ′} and is also parallel to
the Nagel Cevian from A of the triangle ABC.

5. Lines {A′M ′, AN} intersect at a point K on the parallel to BC from A.
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Figure 5: Relations between Nagel Cevians of triangles similar to ABC

nr-1. In fact, triangle AB2C2 is the anticomplementary of M ′BC and by the preceding
theorem the incenter I ′ of AB2C2 is the Nagel point of M ′BC. Also A′ is on the Nagel
Cevian from M ′ of the triangle M ′BC since |BA′| = s − b, as is necessary for this Cevian.

nr-2 follows from the fact that these exterior tangents, together with the sides of the
triangle AB2C2 form rhombi, like the one at the corner B2 : B2NI ′B1, showing that I ′ is
on the bisector of B̂2 and analogously I ′ is on the bisector of the other angles.

nr-3 follows from theorem 2, since J is the middle of OBOC, hence, by that theorem,
J is on the Nagel Cevian from I ′ of the triangle I ′NN ′. By the similarity of triangles
{PA′P′, NI ′N ′} the line I ′M is also Nagel Cevian for the triangle A′PP′.

nr-4 follows from nr-3 and the fact that △A′PP′ is homothetic to AB1C1 whose Nagel
Cevina is AN.

nr-5. The intersection point of the lines {A′M ′, JN} defines two homothetic triangles
{KJA′, KNM ′}with homothety ratio 2, since |NM ′| = 2|JA′| and this implies the claim.

4 Alternative construction of the Nagel point

V

I

B

A

U

N
a

C

D E

Figure 6: Alternative definition of the Nagel point
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The following method ([Ask03, p.13]), rediscovered in [Hoe07]) gives another way
to construct the Nagel point using only the incircle and not the excircles. For this draw
tangents to the incircle parallel to the sides. Then join the contact points of these parallels
with the opposite vertices. The three cevians thus created concure at the Nagel point (see
figure 6).

The proof follows directly from the similarity of triangles {ADE, ABC} alluded to also
in the previous section.

5 Other Nagel-like points

Below is drawn an extension of figure 1 defining the Nagel point (see figure 7). In this
there are seen three additional Nagel-like points {N1, N2, N3}, resulting as intersections of
three cevians to the contact points with the “tritangent circles” of the triangle.

1. If point U is the contact of incircle with side AB, then its antipode V is on the line
CNa .

2. The extension of CB1 passes through the antipode of A1.

Nr-1 is a consequence of the homothety of the incircle to the excircle opposite to C. The
homothety has center at C and this implies that the end-points of parallel radii of the
two circles are aligned with C. This is the case with {C′, V }.

Nr-2 holds for, essentially, the same reason. This time C is the (anti) homothety center
of the two excircles with centers A”, B”, hence again end-points of anti-parallel radii are
collinear with C. This is the case with {B1, B3}.

Analogous properties, of course, hold also for the other vertices of the triangle and
the corresponding excircles and contacts.
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Figure 7: Other Nagel-like points {N1, N2, N3}
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6 Connection with the de Longchamps point

The “de Longchamps” point of the triangle is the symmetric of the orthocenter w.r. to
the circumcenter of the triangle. Next theorem relates it to the Nagel-like points of the
triangle.

Theorem 6. The three Nagel-like points {N1, N2, N3} joined to respective excenters {A′′, B′′, C′′}
define three concurring lines at the “de Longchamps” point De of the triangle.

Thus De is the center of perspectivity of the two triangles {ABC, N1N2N3} and coin-
cides with the “De Longchamps point”. (See Figure 8).
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Figure 8: de Longchamps point related to {N1, N2, N3}

As we did in section 2, we compute here also the barycentrics of the contact points
from the known ratios, the symbol � denoting here the equality of vectors up to a non-
zero scalar factor:

A1A

A1B
= r =

s

s − c
⇒ A1 =

1
1 − r

(A − rB) � ((c − s)A + sB),

A2C

A2A
= r =

s − b

s
⇒ A2 =

1
1 − C

(A − rA) � (sC + (b − c)A),

A1C : A1 × C = (−s : c − s : 0),

A2B : A2 × B = (s : 0 : s − b) ⇒

N1 = ((s − b)(c − s) : s(s − b) : s(s − c)).

The collinearity of {A, Na , N1} and the similar to it triples, suggested by figure 8, results
from the obviously vanishing determinant∣∣∣∣∣∣∣∣∣

1 0 0
s − a s − b s − c

(s − b)(c − s) s(s − b) s(s − c)

∣∣∣∣∣∣∣∣∣ = 0.
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Similar to the previous arguments lead to the barycentrics

A′′ = (−a : b : c), B′′ = (a : −b : c), C′′ = (a : b : −c).

Taking into account that the de Longchamps point has barycentrics

De = (−3a4 + 2a2(b2 + c2) + (b2 + c2)2, . . . )

and computing the determinant of the barycentrics vectors of the points {De, N1, A′′} we
find that this vanishes, hence the three points are collinear. This proves that the three
lines {A′′N1, B′′N2, C′′N3} pass through the de Longchamps point De of the triangle ABC.
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Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e-mail to: pamfilos@uoc.gr
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