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He who knows only his own side of
the case, knows little of that.

J. Mill, On Liberty ch. II
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1 Projective plane, the standard model

The “standard model” of the real projective plane, to which, for the time being we restrict
our study, is often denoted by PR2 or P2. It consists of the “classes” {X = [x] = [x1, x2, x3]}model PR2

of vectors of x ∈ R3 modulo non-zero multiplicative constants. For every non-zero vec-
tor a of R3, A = [a] denotes a point of the projective plane and vector 0 6= a ∈ R3 is
called a “representative” of the point. Two representatives {a, a′} defining the same point,
if and only if, a′ = ka, with a non-zero real number k.

The most important shapes of the projective plane are its “lines” consisting of allprojective
lines points {X = [x]}, whose representatives x lie on a plane a1x1 + a2x2 + a3x3 = 0 of R3,

the plane passing through the origin. Since every plane is defined by a triple of coeffi-
cients [a] = [a1, a2, a3] modulo a non-zero multiplicative constant, we see that the set of
lines of the projective plane is itself a projective plane. This is called the dual projective
plane and denoted by P∗2 .

Shapes of particular importance of the projective plane are the “algebraic curves” de-
fined by equations p(x) = 0, where p(x) = p(x1, x2, x3) is a homogeneous polynomial
of three variables i.e. a polynomial satisfying p(kx) = kr p(x), r being the “degree” of the
polynomial. The homogeneity of the polynomial implies that p(x) = 0 is a condition on
the class [x] and not on its representative. Special cases of such curves are the lines,

projective
lines

ax1 + bx2 + cx3 = 0,

for which the degree r = 1 and the conics for which the degree r = 2 :

projective
conics

p(x1, x2, x3) = ax2
1 + bx2

2 + cx2
3 + 2dx1x2 + 2ex2x3 + 2 f x3x1 = 0. (1)

The 2’s appearing before the last coefficients are for convenience, when using the matrix
notation, in which the equation takes the form:

p(x1, x2, x3) = (x1, x2, x3)

a d f
d b e
f e c

x1
x2
x3

 = 0.

Two “lines” are different if their corresponding vectors of coefficients are independent.
This, using the “vector product” can be expressed by the condition:two lines

intersection a′′

b′′

c′′

 =

a
b
c

×
a′

b′

c′

 =

bc′ − b′c
ca′ − c′a
ab′ − a′b

 6=

0
0
0

 .

The “class” of the vector [a′′, b′′, c′′] represents then the intersection point of the two lines
and shows the first difference from the euclidean plane, namely,

“Two different lines have always an intersection point.”

The vector product can be used to find also the “line joining” two points given by their co-
ordinates (a, b, c) and (a′, b′, c′). The joining line is again expressible through the vector
product giving the coefficients and also the equation in terms of the “triple product”two points

line ∣∣∣∣∣∣
a b c
a′ b′ c′

x1 x2 x3

∣∣∣∣∣∣ = 0.

A nice introduction to this and related models of the projective plane can be found in the
book by Kendig [Ken11, p.35].
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2 Projective base and associated projective coordinates

By its definition, “A projective base consists of four points of the projective plane which are in
general position.” This means: four points {A, B, C, D} with corresponding representing
them vectors {a, b, c, d}, such that every triple from them forms a base of R3.projective

base The fourth point D, whose corresponding representative vector can be expressed by
the other three

d = µa + νb + ξc, (2)

is called the “coordinator” or “unit” point of the basis. It is used to fix the scalar multiples
of vectors {a, b, c} (I often say “calibrate”) with respect to which we define coordinates
associated to this base. Lines {[a], [b], [c]} define the directions and equation (2) is used to
define the three vectors (up to multiplicative constant) by projecting d on the three lines
and taking as representativesrole of

unit D
a′ = µa, b′ = νb, c′ = ξc ⇒ d = a′ + b′ + c′.

Figure 1 illustrates the case suggesting the way d calibrates the other three vectors. The

a'

b'

c'

d

O

Figure 1: Projecting the diagonal onto three other directions

three vectors determine the lines through O and d sets the diagonal of a parallelepiped,
the calibrated vectors being then the edges at O. Considering multiples of the four vec-
tors creates a similar parallelepiped since the directions of the lines remain the same.

Every projective base introduces a corresponding “homogeneous coordinate system” by
which we associate to “points” X of PR2 “coordinates” (u, v, w) ∈ R3 and write formal
non-sense

X = uA + vB + wC. (3)

This equation between points, which actually cannot be added, has per definition the
meaning comming from the corresponding representative vectors and their analysis to
the basis {a′, b′, c′}

x = ua′ + vb′ + wc′ = u(µa) + v(νb) + w(ξc),

The numbers {u, v, w} being defined up to a non-zero multiplicative constant i.e. satisfy-
ing

uA + vB + wC = u′A + v′B + w′C ⇔ (u′, v′, w′) = k(u, v, w) with k 6= 0.

In particular, the points {A, B, C, D} defining the base, have correspondingly the coordi-
nates {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

In these coordinates a line is represented by a linear equation

pu + qv + rw = 0,

equations {u = 0, v = 0, w = 0} representing respectively the lines {BC, CA, AB} descri-
bed respectively also by combinations with the remaining two coordinates:

BC : vB + wC, CA : wC + uA AB : uA + vB.
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Remark 1. The above “addition of points” is formal and must be used carefully. For ex-
ample Y and vY define the same point, but considering another point X and taking
the sums {X + Y, X + vY} we obtain two different points of the line XY. The equality
condition being here also

uX + vY = u′X + v′Y ⇔ (u′, v′) = k(u, v).

The rule is that

“opperating with such formal sums we are not allowed to incorporate the multiplying coefficientsrule one
into the symbols and replace vY with Y .”

Having two combinations Z = uX + vY, Z′ = u′X + v′Y, the “addition”

Z + Z′ = (uX + vY) + (u′X + v′Y) = (u + u′)X + (v + v′)Y,

is legitimate and represents a point depending, though, on the particular representation
of {X, Y} by corresponding classes of vectors {[x], [y]}. Having made a choice for this
representation, the point Z + Z′ is then the one represented by [(u + u′)x + (v + v′)y].
Representing {X, Y} in a different way {X = [x′] = [mx], Y = [y′] = [ny]} we obtain, in
general, a different sum

Z + Z′ = [(u + u′)x′ + (v + v′)y′]
= [(u + u′)(mx) + (v + v′)(ny)] 6= [(u + u)x + (v + v)y] if m 6= n.

Thus, the rule for manipulating such “linear combinations of points” of the projective
plane is that

“everything depends on the selected representation {[x], [y], . . .} of points {X, Y, . . .} and werule two
must stick to the selected representation during the whole manipulation.”

3 Projective lines

Projective lines are the lines of the projective plane. Their prototype has been handled
in the file Projective line. Selecting two points {A, B} on the particular line η, all other
points {X ∈ η} can be described by formal sums

X = µA + νB with µ, ν ∈ R, µν 6= 0.

More general, the collinearity on a line of three pairwise different points {X, Y, Z} is
expressed by an equation of the form

collinearity
condition uX + vY + wZ = 0 with uvw 6= 0,

implying that anyone of them, Z say, can be expressed by the other two points:

Z = − u
w

X− v
w

Y =
u
w

X +
v
w

Y,

since multiplication of the expression by k = −1 does not change Z. For three non-
collinear points {X, Y, Z} the equation

non
collinear uX + vY + wZ = 0 is equivalent to u = v = w = 0.
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As a consequence, having three points expressed in a projective base with correspoding
coefficients

X = xA + yB + zC, X′ = x′A + y′B + c′C, X′′ = x′′A + y′′B + z′′C, (4)

The collinearity of the points is equivalent with the existence of a triple {µ, ν, ξ} such that

µX + νX′ + ξX′′ = 0 ⇔
(µx + νx′ + ξx′′)A + (µy + νy′ + ξy′′)B + (µz + νz′ + ν′′z′′)C = 0 ⇔
(µx + νx′ + ξx′′) = (µy + νy′ + ξy′′) = (µz + νz′ + ν′′z′′) = 0.

The last homogeneous system having a non-zero solution only in the case of vanishing
determinant leads to the proof of the theorem:

Theorem 1. Three points expressed as formal combinations of three independent points {A, B, C}
through equations (4) are collinear, if and only if the determinant of their coefficients vanishes:∣∣∣∣∣∣

x x′ x′′

y y′ y′′

z z′ z′′

∣∣∣∣∣∣ = 0.

Analogous theorem is valid also for three lines expressed in projective coordinates
through corresponding equations:

αu + βv + γw = α′u + β′v + γ′w = α′′u + β′′v + γ′′w = 0. (5)

Theorem 2. Three lines expressed through equations (5) are concurrent in a point, if and only if
the determinant of their coefficients vanishes:∣∣∣∣∣∣

α β γ
α′ β′ γ′

α′′ β′′ γ′′

∣∣∣∣∣∣ = 0.

Similar theorems expressed through the vanishing of determinants we obtain for the
coefficients of a line through two points and the intersection of two lines:

Theorem 3. Given two points {X = xA + yB + zC , X′ = x′A + y′B + z′C}, the coefficients
of their line can be expressed by the cross-product of the coordinate vectors:x

y
z

×
x′

y′

z′

 =

yz′ − zy′

zx′ − xz′

xy′ − yx′

 .

Theorem 4. The coordinates of the intersection of two lines expressed in projective coordinates:

αu + βv + γw = 0, α′u + β′v + γ′w = 0

can be expressed through the cross-product of the coefficient vectors:α
β
γ

×
α′

β′

γ′

 =

βγ′ − γβ′

γα′ − αγ′

αβ′ − βα′

 .
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Corollary 1. The condition of collinearity of three points

A′ = βB + γC, B′ = γ′C + α′A, C′ = α′′A + β′′B,

on the sides of the triangle ABC isMenelaus
projectively ∣∣∣∣∣∣

0 β γ
α′ 0 γ′

α′′ β′′ 0

∣∣∣∣∣∣ = βγ′α′′ + γα′β′′ = 0.

Corollary 2. The condition of concurrency of three lines through the vertices of the triangle
ABC, defined through the points on the opposite sides of the triangle:

A′ = βB + γC, B′ = γ′C + α′A, C′ = α′′A + β′′B,

is
Ceva
projectively

βγ′α′′ − γα′β′′ = 0.

Proof. The coefficients of the lines {AA′, BB′, CC′} are given respectively by:1
0
0

×
0

β
γ

 =

 0
−γ
β

 ,

0
1
0

×
α′

0
γ′

 =

 γ′

0
−α′

 ,

0
0
1

×
α′′

β′′

0

 =

−β′′

α′′

0

 .

The condition of collinearity is equivalent with the vanishing of the determinant:∣∣∣∣∣∣
0 −γ β
γ′ 0 −α′

−β′′ α′′ 0

∣∣∣∣∣∣ = βγ′α′′ − γα′β′′ = 0.

Remark 2. The two last corollaries express respectively the theorems of “Menelaus” and
“Ceva” in projective form. The theorems in their usual formulation are handled in the
files Menelaus’ theorem and Ceva’s theorem.

4 Cross ratio

The ubiquitous in the projective plane notion of “cross-ratio” (PQ, UV) or “anharmonic
ratio” of four points {P, Q, U, V} on a line η, expressed as combinations of two points of
it X(x1, x2) = x1A + x2B :

P(p1, p2), Q(q1, q2), U(u1, u2), V(v1, v2),

is defined by the corresponding quotientscross ratio

p = p1/p2, q = q1/q2, u = u1/u2, v = v1/v2, through

(PQ, UV) :=
p− u
q− u

:
p− v
q− v

=
p1u2 − p2u1

q1u2 − q2u1
:

p1v2 − p2v1

q1v2 − q2v1
. (6)

The important point is, that this definition, although it uses a description of the points
of line η in terms of a particular system of coordinates, ultimately it is independent of
this particular description, all descriptions producing the same result. In fact, expressing
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the points of η w.r. to another pair {A′, B′ ∈ η}, we obtain new quotients {p′, q′, u′, v′},
related to the old by a “homographic relation” f :

p′ = f (p), q′ = f (q), u′ = f (u), v′ = f (v) with f (x) =
ax + b
cx + d

, (7)

which, replaced in equation 6 and doing a bit of calculation, leads to the claimed inde-
pendence of the value of (PQ, UV) from the selected particular representation of the
points of η :

(PQ, UV) =
p− u
q− u

:
p− v
q− v

=
p′ − u′

q′ − u′
:

p′ − v′

q′ − v′
.

A particular case appears often in applications, when {U, V} are expressed in terms of
{P, Q}:

U = u1P + u2Q, V = v1P + v2Q.

In this case, setting {u = u1/u2, v = v1/v2}, the quotient defining the cross section be-
comes:

(PQ, UV) =
p− u
q− u

:
p− v
q− v

=
∞− u
0− u

:
∞− v
0− v

=
v
u

=
v1

v2
:

u1

u2
. (8)

Four lines through the same point E define on a fifth line ε intersecting them the same

A B C D

A'
B' C'

D'

ε

ε'E

Figure 2: Cross ratio of four lines through the same point

cross ratio, independently of the location of the line ε. This is proved for the case of
the euclidean plane in the file Cross ratio and the proof for the projective plane is easily
reducible to that one. This fact allows the definition of the cross ratio (η1η2, η3η4) of four
lines {ηi, i = 1, ..., 4} passing through the same point in the same way as in the euclidean
plane. It is defined to be equal to the cross ratio (AB, CD) of the four intersection points
of these lines with an arbitrary line ε. Next theorem has also a proof analogous to the
corresponding one of the euclidean plane.

Theorem 5. The cross ratio (η1η2, η3η4) of four lines through the same point E of the plane
expressed in terms of two fixed lines {α, β} through E as linear combinations

ηi = α + λiβ , i = 1, 2, 3, 4 is (η1η2, η3η4) =
λ1 − λ3

λ2 − λ3
:

λ1 − λ4

λ2 − λ4
.

Proof. Represent the lines w.r.t. a system of projective coordinates (u, v, w) in the form

ηi = α + λiβ = (a + λia′)u + (b + λib′)v + (c + λic′)w = 0,

where {au + bv + cw = 0, a′u + b′v + c′w = 0} the equations of lines {α, β}. Intersect
them with the line w = 0 giving for {ui, vi} the values:

(a + λia′)ui + (b + λib′)vi = 0 ⇒ ui

vi
= −b + λib′

a + λia′
.

The claimed equality follows by substitution of this into the defining formula of the cross
ratio of four points on a line and subsequent simplification.
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5 Trilinear polar and pole

The “trilinear polar” ηD of a point D w.r. to a triangle ABC, for D not contained
on the side-lines of the triangle, is defined as a line created using the three “cevians”
{AD, BD, CD} of the point (See Figure 3). The points may be considered forming a pro-

D

A

B C

B'

A'

C'

A''

B''

C''

η
D

Figure 3: A basic figure of the projective plane

jective base. In figure 3 are seen the intersection points of the corresponding lines:a basic
figure

the “traces” : A′ = AD ∩ BC, B′ = BD ∩ CA, C′ = CD ∩ AB and
A′′ = BC ∩ B′C′, B′′ = CA ∩ C′A′, C′′ = AB ∩ A′B′.

The coordinates of A′ result by considering it as a point of line BC, hence of the form
vB + wC and also as a point of the line AD, hence of the form uA + rD. Being the
intersection of the two lines, we must have

vB + wC = uA + rD = uA + r(A + B + D) ⇔
0A + vB + wC = (u + r)A + rB + rC.

Last equation, by our conventions, means that:

(0, v, w) = k(u + r, r, r) with k 6= 0 ⇔ (u, v, w) = r(−1, 1, 1) with r 6= 0.

Analogous results for the points {B′, C′} show that we can write:

A′ = B + C, B′ = C + A, C′ = A + B. (9)

The point A′′ being on the line BC has the expression A′′ = vB + wC. Being also on line
B′C′ it has the expression A′′ = pB′ + qC′ = p(A + C) + q(A + B). Hence we have

A′′ = vB + wC = p(A + C) + q(A + B) ⇔
A′′ = 0A + vB + wC = (p + q)A + qB + pC ⇔
A′′ = p(0, 1,−1) with p 6= 0.

Hence we can write

A′′ = B− C, B′′ = C− A, C′′ = A− B. (10)

The cross ratio in this case is:

(BC, A′A′′) =
∞− 1
0− 1

:
∞ + 1
0 + 1

= −1.

Analogous equations we obtain for the other cross ratios and we come to the theorem:
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Theorem 6. For the points {A′, B′, C′, A′′, B′′, C′′} of the projective base the following pairs are
harmonic, i.e. they satisfy the relations:

(BC, A′A′′) = (CA, B′B′′) = (AB, C′C′′) = −1.

More generally, an analogous calculation shows that:

Theorem 7. The points {U = pX + qY, V = pX− qY} form harmonic pairs, satisfying the
equation (XY, UV) = −1.harmonic

pairs
Theorem 8. The points {A′′, B′′, C′′} are collinear and define the “trilinear polar” ηD of D w.r.
to the triangle. Conversely any line ηD not passing through the vertices of the triangle defines a
unique point D, whose trilinear polar is ηD. Point D is called the “trilinear pole” of ηD.

Proof. The first claim follows from A′′ + B′′ + C′′ = (B− C) + (C− A) + (A− B) = 0.
For the converse claim define the points {A′′, B′′, C′′} as intersections of ηD with corre-
sponding sides of the triangle and express them as combinations of the base points:

A′′ = βB + γC, B′′ = γ′C + α′A, C′′ = α′′A + β′′B.

The assumed collinearity of these points is equivalent (corollary 1) with

βγ′α′′ + γα′β′′ = 0.

The harmonic conjugates of {A′′, B′′, C′′} w.r. to corresponding vertices of the triangle
are

A′ = βB− γC, B′ = γ′C− α′A, C′ = α′′A− β′′B

and the concurrency of the three lines {AA′, BB′, CC′} is equivalent with (corollary 2):

βγ′α′′ − (−γ)(−α′)(−β′′) = 0,

which is identical with the previous one.

Remark 3. In the previous arguments we used the fact that a projective base can be con-
sidered as a pair (ABC, D) consisting of a triangle and a point not lying on the side-lines
of that triangle. In the projective plane we have not a notion of length-ratio of segments
and cannot apply the formulation of the theorems of Ceva and Menelaus, used in the frame
of affine geometry, which leads to the proof of the existence of the trilinear polar in the
affine plane.

Remark 4. The “affine plane” results by deleting a specific line η of the projective plane
and maintaining the remaining points. In this plane can be defined the notion of par-
allelity, and the notions of ratios and middles of segments.. In the projective plane all
bases “look” equal, whereas in the affine plane we have a “preferred” kind of bases, defin-
ing the “barycentric coordinates” (see file Barycentric coordinates). In these bases point
D is the centroid of the triangle ABC. In the “euclidean plane”, which is an affine plane
endowed with a distance-function of pairs of points, besides the “barycentric coordinates”
we define also some other projective coordinate systems, one of them being the “trilinear
coordinates”. In these D is the “incenter” of the triangle ABC.

Theorem 9. For any projective base {A, B, C, D} and any point X = αA + βB + γC, the cor-
responding trilinear polar ηX is described in this base by the equation:

ηX : (βγ)u + (γα)v + (αβ)w = 0 ⇔ u
α
+

v
β
+

w
γ

= 0.
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Proof. The intersection points {A′ = XA ∩ BC , B′ = XB ∩ CA , C′ = XC ∩ AB} are rep-
resented correspondingly by {βB + γC , γC + αA , αA + βB}. Their harmonic conju-
gates on lines {BC, CA, AB} are {A′′ = βB− γC , B′′ = γC− αA , C′′ = αA− βB}. The
collinearity of the point U = uA + vB + wC with the points {A′′, B′′} spanning the tri-
linear polar is expressed by the vanishing determinant (corollary 1):∣∣∣∣∣∣

0 β −γ
−α 0 γ
u v w

∣∣∣∣∣∣ = 0 ,

which is equivalent to the claimed equations.

6 Projectification of the euclidean plane

The “projectification” of the euclidean plane extends it to the projective plane by adding a
new line. A way to see this in a concrete model is by identifying the euclidean plane ε
with the planeeuclidean

plane ε ε = {(x1, x2, x3) ∈ R3 : x3 = 1}
of R3. Every line η = {k(x1, x2, x3)} of R3 passing through the origin O and not being
parallel to that plane (i.e. not having x3 = 0 ) intersects ε on a point [η] = (x1, x2, 1)

O

x
1

x
2

x
3

x
3
=1

x
3
=0

η

ε:[η]

[ζ]

Figure 4: Projectification of ε

(See Figure 4). We identify [η] = (x1, x2, 1) with this line η = {k(x1, x2, x3)}, which is an
element of the projective plane PR2.

This establishes an identification of the euclidean plane ε with a part E′ of the pro-
jective plane. The complement F′ =PR2 − E′ consists of all points (=lines of R3 ) of the
form ζ = {k(x1, x2, 0)}. This set is a projective line of PR2. The projectification adds to
ε a set of points F, which is isomorphic to this line F′. The added line F is called “line
at infinity” and consists of “points at infinity” which correspond to points of the projectiveline at

infinity plane of the form [ζ] = [{k(x1, x2, 0)}].
The correspondence is given by means of “directions” of parallel lines of ε. We con-

sider the class of all lines parallel to a non zero vector (v1, v2, 0) as the point at infinity
[ζ] identified with the element [v1, v2, 0] of line F′. The projectification leads to a model
of the projective plane isomorphic to PR3 and consisting of a union ε = ε ∪ F.projective

plane ε Creating this model of the projective plane we have the benefit of embedding all fa-
miliar shapes of the euclidean plane into the projective plane. Then we can use the tools
of the projective plane to study properties of coincidence of lines and points or even more
general intersection questions, to which the projective plane is better suited than the eu-
clidean plane.

The reason for the latter is that all pairs of distinct lines in the projective plane intersect
at a point. In the projectification model the intersection point coincides with an ordinarywhy

projective
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point, if the lines intersect inside the euclidean plane. If they don’t, then their image in
the euclidean plane is that of two parallel lines, thus defining the same point at infinity,
which is then considered as their intersection. An ordinary line ε and the line at infinity
ε∞ intersect always at the point at infinity identified with the “direction” of that line ε.

Remark 5. With the projectification, besides PR2 of section 1, we have a second model
ε of the projective plane in which there is a distinguished line: the “line at infinity”. In
PR2 there is no such distinguished line and modifying slightly the procedure of projec-
tification, we could see that deleting any line η0 from PR2 we obtain an “affine” plane,
homeomorphic to ε and consisting of the points of PR2 not belonging to η0. Thus, from
the point of view of projective geometry the line at infinity is like any other line. Only the
projectification of the euclidean plane adds an additional distinguished line, consisting
of ideal points where two parallels intersect.

7 Homogeneous coordinates

Intimately associated with the procedure of “extension” of the euclidean plane to the pro-
jective plane, described in section 6, is a projective system of coordinates (x1, x2, x3), called
“homogeneous coordinates”, in which this triple represents the point

[η] = (x1/x3, x2/x3, 1) ∈ ε, if x3 6= 0,

and also represents the point at infinity

[ζ] = {k(x1, x2, 0)} if x3 = 0.

Using this coordinate system the equations defining curves of the euclidean plane
transfer to equations of the projective plane by replacing the coordinates {(x1, x2),} cor-
respondingly with {(x1/x3, x2/x3, 1)} which geometrically amounts to a “projection” of
the shapes onto the plane x3 = 1. Thus, line ax1 + bx2 + c = 0 projects to

a(x1/x3) + b(x2/x3) + c = 0 ⇔ ax1 + bx2 + cx3 = 0.

Similarly a conic represented by equation

ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f = 0 projects to
a(x1/x3)2 + b(x2/x3)2 + c(x1/x3)(x2/x3) + d(x1/x3) + e(x2/x3) + f = 0 ⇔
ax2

1 + bx2
2 + cx1x2 + dx1x3 + ex2x3 + f x2

3 = 0.

The inverse procedure consists of setting {x3 = 1} to an equation p(x1, x2, x3) = 0 of the
projective plane, to obtain the corresponding equation p(x1, x2, 1) = 0 of the euclidean
plane.
Figure 5 shows the “projective base” associated to this system of coordinates considered
as a particular case of “projective coordinates” in the sense of section 2. Here the triangle
ABC has the two vertices {A, B} at infinity. From the base only the points {C, D} are
finite points. The line at infinity is characterized by the equation

x3 = 0.

Remark 6. The coordinate x3 is not a “blessed” one. We could define analogous “projecti-
fications” based on the coordinate x2 or x1. We could even do analogous projectifications
using any coordinate out of the three (x, y, z) of an arbitrary coordinate system of R3,
all these constructions leading to projective planes isomorphic to ε.
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A(1,0,0)

B(0,1,0)

C(0,0,1)

D(1,1,1)

line at infinity

Figure 5: Projective base associated to the “homogeneous coordinates”

8 Homogeneous coordinates relation to projective coordinates

Considering the projective plane ε of section 6, we have two kinds of coordinates, the
“homogeneous”, which now we denote by (x, y, z) and the “projective coordinates”, denoted
by (u, v, w). These are associated to a “base” {A, B, C, D} of the plane ε, the four points
assumed to be on the finite part of the plane, i.e. none of them lying on the line at infinity.
Thus, they are represented by vectors:

A =

a1
a2
1

 , B =

b1
b2
1

 , C =

c1
c2
1

 , D =

d1
d2
1

 . (11)

The unit point D determines the vectors through which we get the projective coordi-
nates:

D = µA + νB + ξC ⇔

d1
d2
1

 =

a1 b1 c1
a2 b2 c2
1 1 1

 ·
µ

ν
ξ

 .

This system determines the unknowns (µ, ν, ξ) and the corresponding vectors

a = µ

a1
a2
1

 , b = ν

b1
b2
1

 , c = ξ

c1
c2
1

 , (12)

used to tedermine the “projective coordinates” of a point X = [x] :

x = ua + vb + wc.

Written in matrix notation this equation takes the form
projective to
homogeneous

x
y
z

 =

µa1 νb1 ξc1
µa2 νb2 ξc2
1 1 1

 ·
u

v
w

 =

a1 b1 c1
a2 b2 c2
1 1 1

 ·
µ 0 0

0 ν 0
0 0 ξ

u
v
w

 , (13)

giving the transition from the projective coordinates (u, v, w) to the homogeneous coor-
dinates (x, y, z) in terms of the concrete selected representatives of points {A, B, C, D}.
It is interesting here to notice that ordinary points, corresponding to homogeneous coor-
dinates with z = 1, have projective coordinates (u, v, w) satisfying the equation:

µ · u + ν · v + ξ · w = 1,

whereas, points at infinity, corresponding to homogeneous coordinates with z = 0, have
projective coordinates satisfying the equation:

µ · u + ν · v + ξ · w = 0. (14)
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Corollary 3. Equation (14) is the one representing the “line at infinity” in the projective systemline at
infinity of coordinates associated to the projective base {A, B, C, D}.

The calculation of the converse relation leading from homogeneous to projective coor-
dinates involves the inversion of the matrices appearing in equation (13) and leads to

homogeneous
to projective

u
v
w

 =
1

2∆

µ−1 0 0
0 ν−1 0
0 0 ξ−1

b2 − c2 c1 − b1 b1c2 − c1b2
c2 − a2 a1 − c1 c1a2 − a1c2
a2 − b2 b1 − a1 a1b2 − a2b1

x
y
z

 , (15)

in which ∆ denotes the oriented area of the triangle on the plane ε defined by the vectors
in (11).

9 Changing the system of projective coordinates

The relation of projective coordinates with respect to two coordinate bases {A, B, C, D},
{A′, B′, C′, D′} of the projective plane ε results from the matrix representation of section
8 by multiplying the appropriate matrices:u

v
w

 =
1

2∆

µ−1 0 0
0 ν−1 0
0 0 ξ−1

 ·
b2 − c2 c1 − b1 b1c2 − c1b2

c2 − a2 a1 − c1 c1a2 − a1c2
a2 − b2 b1 − a1 a1b2 − a2b1

 ·
a′1 b′1 c′1

a′2 b′2 c′2
1 1 1

 ·
µ′ 0 0

0 ν′ 0
0 0 ξ ′

 ·
u′

v′

w′

 .

In particular, keeping fixed the triangle ABC and changing only D to D′ gives for the
corresponding transition functions relating the two systems of projective coordinates the
simple rule:

change only
unit D

u
v
w

 =

µ′µ−1 0 0
0 ν′ν−1 0
0 0 ξ ′ξ−1

u′

v′

w′

 .

10 Obtaining equations in a projective coordinate system

We obtain equations in projective coordinate systems by homogenizing the known equa-
tions in euclidean cartesian systems and then, transforming to projective system by the
transformation rule of section 8. Thus, the line represented in cartesian coordinates by an
equation of the form

ax + by + c = 0 transforms in homogeneous coordinates to: ax + by + cz = 0.

This, changing the coordinates to any projective system by the invertible matrix M, given
by equation 13:x

y
z

 = M ·

u
v
w

 leads to an equation of a similar form: a′u + b′v + c′w = 0.

Analogously is seen that a quadratic equation transforms to a homogeneous quadratic
equation etc. This procedure is reversible and proves statements like the following:
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Theorem 10. Any linear equation in projective coordinates represents a line and vice-versa, any
line of the projective plane is represented in a system of projective coordinates by a linear homoge-
neous equation.

Theorem 11. Any quadratic equation in projective coordinates represents a conic and vice-versa,conic by
quadratic any conic of the projective plane is represented in a system of projective coordinates by a quadratic

homogeneous equation.

11 Example calculation of the radical axis of two circles

The discussion of section 10 can be applied to find the equation in projective coordinates
of the radical axis of two circles, whose equations in cartesian coordinates are of the form:

x2 + y2 + (ax + by + c) = 0 and x2 + y2 + (a′x + b′y + c′) = 0.

Transforming to homogeneous coordinates and subtracting the resulting equations we
come to the equation:

z[(a− a′)x + (b− b′)y + (c− c′)z] = 0.

This is the product of two lines: the line at infinity z = 0, and the radical axis in homo-
geneous coordinatesradical

axis (a− a′)x + (b− b′)y + (c− c′)z = 0.

By transforming the circle equation to a general projective system of coordinates (u, v, w)
the expression x2 + y2 transforms to a fixed quadratic one Q(u, v, w) and the remaining
terms transform to a product of lines η(u, v, w) · η0(u, v, w), of which the second linear
term η0(u, v, w) = 0 represents the line at infinity. Thus, in the general projective coordi-
nate system, the equation of the circle is written as a sum

Q0(u, v, w) + η(u, v, w)η0(u, v, w) = 0, (16)

in which Q0(u, v, w) is a standard quadratic expression, independent of the particularQ0(u, v, w) ∼
x2 + y2 circle, and η0(u, v, w) is the line at infinity. Also the difference

η(u, v, w)− η′(u, v, w) = 0,

of these parts of the equations of two circles represents the “radical axis” of these circles
([Lon91, II,p.69]).

Exercise 1. With the notation of the previous discussion, show that Q0(u, v, w) can be repre-
sented as a quadratic form:

Q0(u, v, w) = (µu, νv, ξw)

 a2
1 + a2

2 a1b1 + a2b2 a1c1 + a2c2
a1b1 + a2b2 b12 + b2

2 b1c1 + b2c2
a1c1 + a2c2 b1c1 + b2c2 c2

1 + c2
2

µu
νv
ξw

 . (17)

12 The circumcircle of ABC and the general circle

Here we continue the application of the formulas of sections 10 and 11 and determine
the form of the equation f0(u, v, w) = 0 of the “circumcircle” of the triangle ABC of the
projective base {A, B, C, D}, as well as, the equation f (u, v, w) = 0 of the general circle,
in terms of the associated projective coordinates. Figure 6 shows the circumcircle κ of
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C
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B'
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ε

a'
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κ

κ'

Figure 6: The circumcircle κ of ABC

ABC, as well as, its projection κ′ on the plane x3 = 0, which is a circle κ′ congruent to κ.
From the discussion in section 11 we know that the circle κ in the projective coordinates
(u, v, w) associated to the base {A, B, C, D} is described by equation (16) with Q0 given
by equation (17). Assuming the product of linear terms in the form

η(u, v, w) · η0(u, v, w) = (pu + qv + rw) · (µu + νv + ξw),

and taking into account that the circle passes through {A(1, 0, 0), B(0, 1, 0), C(0, 0, 1)}, we
find that

p = −µ(a2
1 + a2

2), q = −ν(b2
1 + b2

2), r = −ξ(c2
1 + c2

2).

Introducing this into equation (16) and doing a short calculation, we see that the coeffi-
cients of the squares {u2, v2, w2} vanish and the equation takes the form

∑
(

2a · b− a2 − b
2
)
(µν)(uv),

where the sum extends over the cyclic permutations of the letters and {a = (a1, a2), . . .},
the dot denoting the inner product. Taking into account that

2a · b− a2 − b
2
= −|AB|2

is the negative square length of side AB, we obtain next theorem.

Theorem 12. The equation of the circumcircle κ of the triangle ABC of the base {A, B, C, D}
w.r. to the projective coordinates associated to that base is

circumcircle
of ABC (

|BC|2
µ

)
vw +

(
|CA|2

ν

)
wu +

(
|AB|2

ξ

)
uv = 0. (18)

Corollary 4. With the preceding conventions and notation, the equation f (u, v, w) = 0 of a
circle κ w.r. to the projective coordinates associated to the base {A, B, C, D} has the form

general
circle

f (u, v, w) =

(
|BC|2

µ

)
vw +

(
|CA|2

ν

)
wu +

(
|AB|2

ξ

)
uv

+ (pu + qv + rw)(µu + νv + ξw) = 0,

where pu + qv + rw = 0 is the equation of the radical axis of κ and the circumcircle κ0 of the
triangle ABC. In particular, the equation of “concentric” circles to the circumcircle of ABC is
of the form

concentric
circumcircle

(
|BC|2

µ

)
vw +

(
|CA|2

ν

)
wu +

(
|AB|2

ξ

)
uv + λ(µu + νv + ξw)2 = 0, λ ∈ R.
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13 Projective transformations or projectivities

Depending on the point of view, one can give different but equivalent definitions of
the “projective transformation” or “projectivity”. A synthetic formulation, analysed in ax-
iomatic foundations of projective geometry ([VY10], [Whi06]) defines it as an invertible
map of the projective plane onto itself which “preserves lines”, i.e maps lines to lines.
Using the analytic apparatus of bases we can define it as a map of the projective plane
onto itself, which, w.r to a base {A, B, C, D} and corresponding projective coordinates
(u, v, w) has a representation by an invertible matrix:

projectivity
by a matrix

u′

v′

w′

 =

a b c
d e f
g h i

u
v
w

 , (19)

two matrices differing by a non-zero constant defining the same projectivity. From the
discussion in section 9 follows that the definition is independent of the specific coordinate
system. This means, that if the transformation is represented by an invertible matrix in a
specific coordinate system, then it does the same w.r. to any other system.

Using the model ε of section 6 we can prove the “fundamental theorem” of projective
geometry:

fundamental
theorem Theorem 13. For any couple of quadruples of four points {(A, B, C, D), (A′, B′, C′, D′)} of the

projective plane in general position, there is a projectivity f mapping the first onto the second
{ f (A) = A′, f (B) = B′, . . .}.

Proof. Identify the points {A, B, . . .} with respective representative vectors and consider
a triple of constants {µ, ν, ξ} and the matrix M transforming {A, B, C} to {µA′, νB′, ξC′}.
Putting the vectors in the columns of a matrix, this translates into a matrix equation of
the form:

(µA′, νB′, ξC′) = M · (A, B, C) ⇔ M = (µA′, νB′, ξC′) · (A, B, C)−1. (20)

The matrix M , depending on {µ, ν, ξ}, is completely determined up to multiplicative
constant by requiring for a fourth constant σ to have also

σ · D′ = MḊ ⇔ (A′, B′, C′)−1D′ =

µ/σ 0 0
0 ν/σ 0
0 0 ξ/σ

 (A, B, C)−1D. (21)

This is a diagonal linear system in {µ/σ, ν/σ, ξ/σ} with solutions of the form

µ = k1σ, ν = k2σ, µ = k3σ, for some constants k1, k2, k3,

completely, up to the factor σ, determining the matrix M and proving the theorem.

Remark 7. In some applications, trying to construct the projectivity from four given
points {A, B, C, D} and their images {A′, B′, C′, D′}, it is useful to have in mind the sim-
ple recipe contained in formulas (20) and (21):

1. Fix a projective coordinate system and form the matrices with columns the coordi-
nates of the points: P = (A, B, C), Q = (A′, B′, C′).

2. The matrix representing the projectivity has the form M = QKP−1, with a diagonal
matrix K = diag(k1, k2, k3).

3. The constants {ki} are determined by solving the linear system QKP−1D = k4D′.
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An example application of this recipe is contained in section 18, where we construct a
projectivity mapping the unit circle to a parabola.

In the case the projectivity f maps the four points {A, B, C, D} to themselves, the
matrices {(A, B, C), (A′, B′, C′)} are identical and the vectors {D, D′} are also identical,
implying in the last equations k1 = k2 = k3 = 1 and producing as a result for M a mul-
tiple of the identity. This proves the corollary:

case of
identity Corollary 5. A projectivity mapping four points {A, B, C, D} in general position to themselves is

the identity. Two projectivities coinciding on a set of four points {A, B, C, D} in general position,
coincide everywhere.

Proof. For the second claim notice that if two projectivities { f1, f2} coincide on such a set,
then g = f2 ◦ f−1 maps the four points onto themselves. Hence by the first part of the
corollary it is the identity.

We say that two shapes {S, S′} of the projective plane are “projectively equivalent” if
there is a projectivity f mapping one to the other f (S) = S′. By the preceding discussion
we have the corollary:

Corollary 6. Any two triangles and any two quadrangles of the projective plane are projectively
equivalent.

Thus, working in ε of section 6, all triangles are projectively equivalent to the equilat-any triangle
∼equilateral eral and all quadrangles are equivalent to the square. This has an interesting consequence

regarding the properties of these shapes: To prove a property of triangles/quadrangles,
which is preserved by projectivities, it suffices to prove it in the case of the equilat-any quad

∼square eral/square.
An example application of this principle is the following one concerning the “trilin-

ear polar”, encountered already in section 3. The traces of the center D of an equilateral
triangle ABC , define the medial triangle A′B′C′ and the pairs of opposite sides of the
two triangles are parallel, hence “intersect” at the line at infinity. Taking an arbitrary
triangle ABC and an arbitrary point D not lying on its side-lines, we have again the
triangle A′B′C′ of the traces of D. By the preceding discussion, there is a projectivity
f mapping the points {A, B, C, D} of the equilateral to the corresponding points of the
arbitrary triangle (on the right in figure 7). The projectivity f maps then the side-lines of

A B

C

C'

A'B'

D

C

A B

B'

C'

A'

D

A''

C''

B''

η

f

Figure 7: Mapping the line at infinity to the trilinear polar

the opposite sides {(AB, A′B′), . . .} to corresponding side-lines of opposite sides of the
arbitrary triangle. Since the three pairs of opposite sides have intersections lying on the
line at infinity, the corresponding pairs of opposite sides will intersect at the image line
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η = f (η∞) of the line at infinity via f . This proves that in an arbitrary triangle the pairs
of opposite sides of the triangles {ABC, A′B′C′} intersect on a line η, called the “trilinear
polar” of D w.r. to ABC. Further, as in the equilateral point C′ is harmonic conjugate to
the point at infinity of AB, the same property holds for C′ and C′′ in the arbitrary tri-
angle. This means that (C′, C′′) are harmonic conjugate to (A, B) . This property follows
from the “preservation of the cross ratio” by projectivities, which will be discussed below.

Remark 8. The projectivities of the plane build a group, denoted by PGL(2, R), and
identified, as we saw, with the group of real 3× 3 invertible matrices, two matrices
differing by a multiplicative non-zero constant being considered the same. This group
contains the group A f f (2, R) of “affinities” as a subgroup of projectivities fixing the line
at infinity, which in turn contains the group Iso(2, R) of euclidean “isometries” as a sub-
group of affinities that preserve the distances between points. This inclusion relation

PGL(2, R) ⊃ A f f (2, R) ⊃ Iso(2, R),

reflects the successive enrichment of structure of the plane. Starting with the projective
plane ε, all lines are “equivalent” and every pair of different lines has an intersection
point. Next, deleting a line η0 of the projective plane, we obtain the “affine plane” ε− η0
containing two kinds of pairs of lines: those that intersect, and those that do not intersect.
Latter, from the viewpoint of the projective plane, are the pairs whose intersection point
was contained in the deleted line (at infinity) η0. This creates the structure of “parallel”
lines of the affine plane. Finally we add a notion of “distance” between points of the affine
plane and we obtain the “Euclidean” plane with parallel and non-parallel lines, but also
with “distances” between points. The “Affinities” are projectivities that respect parallels,
i.e. map parallel lines to parallel lines. The “Isometries” not only respect parallelity but
also respect distances between points.

Remark 9. Besides the general properties characterizing all projectivities there are others
differentiating them in distinct classes with geometric properties mainly related to the
number and location of their fixed points on the plane.

14 A proof of Pappus’ theorem

Here is another example application of the “fundamental theorem” of projective geometry
discussed in section 13. It is based on the following exercise.Pappus

special

A B

CD E

F

G

H

O

I

J

η

Figure 8: A case of Pappus’ theorem

Exercise 2. From the points {E, F} on opposite sides of the square ABCD we draw lines to op-
posite corners {EA, EB, FC, FD} intersecting at points {G = EA ∩ FD, H = EB ∩ FC}. Show
that line η = GH passes through the center O of the square.
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Hint: Apply Menelaus’ theorem (see file Menelaus’ theorem) to triangles {EAB, FDH}
with secant GH (See Figure 8).

EAB :
GE
GA
· JA

JB
· HB

HE
= 1, FDH :

GD
GF
· HF

HC
· IC

ID
= 1.

From these equalities and the similar triangles {EDG ∼ EFG, . . .} follows

GE
GA

=
GD
GF

and
HB
HE

=
HF
HC

⇒ JA
JB

=
IC
ID

.

A B

C

D

F

E

O

G

H η

Figure 9: Pappus’ theorem, the general case
Pappus
general

Theorem 14. From the points {E, F} on opposite sides of a quadrangle ABCD we draw lines
to opposite corners {EA, EB, FC, FD} intersecting at points {G = EA ∩ FD, H = EB ∩ FC}.
Then, the line η = GH passes through the intersection point O of the diagonals of ABCD.

Proof. Use a projectivity f to map ABCD onto a square. Then the claimed property
transfers via f to that of the previous exercise.

Notice that the exercise and its proof could be carried out also for a parallelogram.

15 Presevation of the cross ratio

The projectivity f maps a line η = AB, defined by two points, onto a line η′ = f (η) = A′B′,
where {A′ = f (A), B′ = f (B)}. Every other point X = µA + νB of the line maps corre-
spondingly to

X′ = f (X) = f (µA + νB) = µ f (A) + ν f (B).

This rule of “linearity” follows from the representation of the points by projective coordi-
nates and the fact that f , per definition, acts on the triples of these coordinates as a linear
transformation. Considering a second point Y = χA + ψB on the line η and taking the
images via f

Y′ = f (Y) = χ f (A) + ψ f (B) = χA′ + ψB′,

we have for the cross ratios, using equation 8:

(AB, XY) =
χ

ψ
:

µ

ν
= (A′B′, X′Y′),

which proves a main property of projectivities:
preserves
cross ratio Theorem 15. Projectivities preserve the cross ratio of four points on a line.
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16 Projective conics

We consider here a non-degenerated conic described in projective coordinates (u, v, w)
relative to a base {A, B, C, D} by an invertible symmetric matrix, as noticed in sections 1
and 10 with the notation slightly changed:

p(u, v, w) = (u, v, w)

a d f
d b e
f e c

u
v
w

 = 0.

Changing the projective coordinates to another system (u′, v′, w′) we know (section 9)
that the two coordinate systems are related by an invertible matrix M :u

v
w

 = M ·

u
v
w

 .

Thus, in the new system the previous conic is described by a matrix of the form

(u′, v′, w′)Mt ·

a d f
d b e
f e c

 ·M
u′

v′

w′

 = 0.

Thus the same conic in various systems of projective coordinates is described by matrices
of the form:

P = Mt ·

a d f
d b e
f e c

 ·M with invertible matrices M.

By a standard theorem ([Kap74, p.8]) of linear algebra on “diagonalization” of symmetric
matrices, we know that there is an invertible matrix M such that P is a diagonal matrix.
This, multiplying further with matrices P′ = Dt · P · D leads to a multiple of one of the
matrices

Q′ =

1 0 0
0 1 0
0 0 1

 or Q =

1 0 0
0 1 0
0 0 −1

 ,

the first matrix not being admissible for non-degenerate conics, since, in the correspond-
ing projective coordinates system, it leads to the equation

u2 + v2 + w2 = 0.

The second matrix leads correspondingly to

u2 + v2 − w2 = O,

and proves the theorem, showing that in the projective plane there is essentially one
conic, the circle, all other being projectively equivalent to it.

Theorem 16. All non-degenerate conics of the projective plane are pairwise projectively equiva-
lent.all conics

equivalent
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17 Pole and polar

Of great importance in the geometry of conics is the notion of “pole” and “polar of a point
w.r.t. a conic”. Functionally, the two notions are described by a linear transformation
defined by the matrix of the conic w.r.t. some system of projective coordinates. If the
conic is defined by the equation

p(u, v, w) = (u, v, w)

a d f
d b e
f e c

u
v
w

 = 0 , (22)

Then the polar of the point P(u, v, w) is a line pu + qv + rw = 0 whose coefficients arepolar
related to the coordinates of P by the equation:

(p , q , r) = (u , v , w) ·

a d f
d b e
f e c

 . (23)

The “pole” of this line is by definition the p, relation between points and lines establishedpole
by this equation is also invertible. In other words, the non-degenerate conic establishes a
1-1 transformation of points to lines and vice-versa.

A point Q(u′, v′, w′) lies on the polar precisely when it is satisfied the equation:

pu′ + qv′ + rw′ = (u , v , w) ·

a d f
d b e
f e c

 ·
u′

v′

w′

 = 0 . (24)

This is a symmetric relation between the coordinates of the points {P, Q} and proves the
following theorem.

Theorem 17. The point Q lies on the polar of the point P if and only if P lies on the polar of
the point Q.

The geometric content of the polar is expressed by means of the cross ratio of four
points and the following theorem (see figure 10).

U

V

p
o
la

r 
o
f 
U

Q
1

Q
2

κ

Figure 10: Pole and polar

Theorem 18. The polar of the point U w.r.t. to the conic κ is the geometric locus of points V,
such that the line UV intersecting the conic at the points {Q1, Q2} satisfies (Q1Q2, UV) = −1,
i.e. V is the harmonic conjugate of U w.r.t. {Q1, Q2} for every line through U.
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Proof. Points {Q1, Q2} can be expressed in terms of {U(u0, v0, w0), V(ut, vt, wt)} as com-
binations (section 3).

Q1 = s1U + t1V , Q1 = s2U + t2V .

Using the equation 22, the points {Q1, Q2} correspond to the roots {q1, q2} of the equation

p(U + qV) = 0,

where we have set q = t/s. This is a quadratic equation in q with coefficients directly
computable from the matrix, its quadratic form p(V) and the corresponding bilinear
form p′(U, V) it defines:

p(U + qV) = q2 · p(V) + 2q · p′(U, V) + p(U) = 0 .

The cross ratio (UV, Q1Q2) is expressed through the quotient q2/q1 and the harmonic-
ity condition (UV, Q1Q2) = q2/q1 = −1 is equivalent with

q1 + q2 = 0 ⇔ p′(U, V) = (u0 , v0 , w0) ·

a d f
d b e
f e c

 ·
ut

vt
wt

 = 0 ,

which shows that V(ut, vt, wt) belongs to the polar of U.

We conclude this exposition with a section containing two examples of projectivities map-
ping respectively the circle to a parabola, and the circle to a hyperbola.

18 Projectivities mapping a circle to a parabola/hyperbola

Here we use the recipe of section 13 to create a projectivity mapping the unit circle to
a parabola. As an exercise in application of the same recipe, we determine also a pro-
jectivity mapping the same circle to a hyperbola. We work in the homogeneous system of
coordinates of section 7 and construct the projectivity f satisfying the two requirements:

1. It fixes the three points {A = (1, 0, 1)t, B = (−1, 0, 1)t, C = (0,−1, 1)t}.
2. It maps the fourth point D = (0, 1, 1)t to the point at infinity in the direction of

(0, 1), which is D′ = (0, 1, 0)t.

O

D(1)

B(-1) Z

X

Y=f(X)

κ
Χ

A(1)

C(-1)

Figure 11: Projectivity (perspectivity) mapping the circle to the parabola
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The matrices with columns the coordinates of the points are identical:

P := (A, B, C) = Q := (A′, B′, C′) =

1 −1 0
0 0 −1
1 1 1

 with P−1 =

 1/2 1/2 1/2
−1/2 1/2 1/2

0 −1 0

 .

The equation QKP−1D = k4D′ takes the form: k1+k2
2

k1−k2
2

k1−k2
2

0 k3 0
k1−k2

2
k1+k2

2 − k3
k1+k2

2

 = k4

0
1
0

 ,

whose solutions are of the form {(k1, k2, k3, k4) = t(1, 1, 2, 2).} The matrix M = QKP−1,
representing the projectivity, takes then the form

M =

1 0 0
0 2 0
0 −1 1

 mapping

x′

y′

1

 = M ·

x
y
1

 =

 x/(1− y)
2y/(1− y)

1

 ,

points {(x′, y′)} satisfying the equation y′ = x′2 − 1, representing the parabola shown in
figure 11. The easily seen vanishing of the determinantcircle to

parabola ∣∣∣∣∣∣
x x 0
y 2y −1
1 1− y 1

∣∣∣∣∣∣ = 0,

proves that this projectivity f maps the point X(x, y), to Y = f (X) = (x′, y′) the two
points being collinear with point C(0,−1). Further, by inspecting the matrix M, we see
that, the x-axis and point C(0,−1) are the only fixed points of f , whereas the whole
line y = 1 maps to the line at infinity. A further computation of the cross-ratio (CX,ZY),
where Z is the intersection point of line CX with the x-axis, shows that this is -1 (har-
monic) and the circle κX with diameter ZY is orthogonal to the unit circle. Actually, in
the terminology used in the classification of the various kinds of projectivities f is a “per-
spectivity” with center C, axis identical to the x-axis and “homology coefficient”, defined by
the cross ratio (CZ, XY) , equal to 2.

O

D(1)

B(-1) A(1)

C(-1)
F(-4/3)

K(-2/3)

X

Z
Y

Figure 12: Projectivity (harmonic homology) mapping the circle to the hyperbola
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Exercise 3. Repeat the preceding procedure, this time to define a projectivity fixing the same
points {A, B, C} and mapping the point D = (0, 1/2, 1)t to the point at infinity D′ = (0, 1, 0)t.
Show that in this case the projectivity is represented by the matrix

M =

1 0 0
0 −1 0
0 2 1

 ,

mapping the unit circle x2 + y2 = 1 to the hyperbola x2 − 3y2 − 4y− 1 = 0.circle to
hyperbola

By the way, this hyperbola (See Figure 12) has its center at K(0,−2/3) and its asymptotes
make an angle of 60◦. An aid for the corresponding calculations can be found in the file
The quadratic equation in the plane.
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