
The quadratic equation in the plane
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Geometrical and Mechanical phenomena are the most
general, the most simple, the most abstract of all, the most
irreducible to others, the most independent of them;
serving, in fact, as a basis to all others. It follows that the
study of them is an indispensable preliminary to that of
all others. Therefore must Mathematics hold the first
place in the hierarchy of the sciences, and be the point of
departure of all Education, whether general or special.

A. Comte, The Positive Philosophy, Ch. II, p.33
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1 Introduction

A quadratic equation in two variables (in the plane) has the form

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0. (1)

It represents a curve in the plane referred to a coordinate system (𝑥, 𝑦), which in the sequel
we assume to be an orthonormal coordinate system. The curve itself and its geometric
properties is the object of the main interest. It is the building, whereas the specific coor-
dinate system, in which the curve is described by the above equation, is the scaffold used
to make the work on the building. Changing the scaffold may influence the appearance
of the equation and make it simpler or more complicated. This depends on the scaffold
and how well it adapts to the geometric object. The curves though, which are represented
by such equations existed also before the invention of this kind of description. They are
called conic sections or simply conics. They are intersections with planes of cones or
cylinders. In some cases, depending on the position of the plane, we get as intersections,
points and lines. These are called degenerate conics. All others are called proper conics.
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2 The allowed coordinate systems

There are infinite many possible coordinate systems in which the same geometric object
can be described. The acceptable coordinate systems are determined one from the other
through three constants: A point 𝑂′(𝑥0 , 𝑦0) and an angle 𝜋

4 < 𝜙 ≤ 𝜋
4 (see figure 1). The
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Figure 1: (𝑥′, 𝑦′) system determined through 𝑂′(𝑥0 , 𝑦0) and 𝜙

same point 𝑃 has coordinates with respect to the two systems: (𝑥, 𝑦) and (𝑥′, 𝑦′). These
are related through the coordinate change equations:

𝑥 = 𝑥0 + 𝑐 · 𝑥′ − 𝑠 · 𝑦′,
𝑦 = 𝑦0 + 𝑠 · 𝑥′ + 𝑐 · 𝑦′.

}
⇔

{
𝑥′ = 𝑐 · (𝑥 − 𝑥0) + 𝑠 · (𝑦 − 𝑦0),
𝑦′ = −𝑠 · (𝑥 − 𝑥0) + 𝑐 · (𝑦 − 𝑦0). (2)

Here 𝑐 = cos(𝜙), 𝑠 = sin(𝜙). Though there are infinite many other coordinate systems, we
restrict to those that are orthonormal and change according to the previous relations.

3 The transformation of the coefficients

The same curve is represented by two similar equations in the two systems of coordinates:

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0,
𝐴′𝑥′2 + 2𝐵′𝑥′𝑦′ + 𝐶′𝑦′2 + 2𝐷′𝑥′ + 2𝐸′𝑦′ + 𝐹′ = 0.

The coefficients of the second equation result by replacing (𝑥, 𝑦) through the formulas of
the preceding section i.e. making the substitution

𝐴(𝑥0 + 𝑐𝑥′ − 𝑠𝑦′)2 + 2𝐵(𝑥0 + 𝑐𝑥′ − 𝑠𝑦′)(𝑦0 + 𝑠𝑥′ + 𝑐𝑦′) + 𝐶(𝑦0 + 𝑠𝑥′ + 𝑐𝑦′)2
+ 2𝐷(𝑥0 + 𝑐𝑥′ − 𝑠𝑦′) + 2𝐸(𝑦0 + 𝑠𝑥′ + 𝑐𝑦′) + 𝐹 = 0

and writing the resulting equation in the (𝑥′, 𝑦′) system:

𝐴′𝑥′2 + 2𝐵′𝑥′𝑦′ + 𝐶′𝑦′2 + 2𝐷′𝑥′ + 2𝐸′𝑦′ + 𝐹′ = 0.
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The relations between the coefficients are:

𝐴′ = 𝐴𝑐2 + 2𝐵𝑐𝑠 + 𝐶𝑠2 ,

𝐵′ = (𝐶 − 𝐴)𝑐𝑠 + 𝐵(𝑐2 − 𝑠2),
𝐶′ = 𝐴𝑠2 − 2𝐵𝑐𝑠 + 𝐶𝑐2 ,

𝐷′ = 𝑐(𝐴𝑥0 + 𝐵𝑦0 + 𝐷) + 𝑠(𝐵𝑥0 + 𝐶𝑦0 + 𝐸),
𝐸′ = −𝑠(𝐴𝑥0 + 𝐵𝑦0 + 𝐷) + 𝑐(𝐵𝑥0 + 𝐶𝑦0 + 𝐸),
𝐹′ = 𝑓 (𝑥0 , 𝑦0) = 𝐴𝑥2

0 + 2𝐵𝑥0𝑦0 + 𝐶𝑦2
0 + 2𝐷𝑥0 + 2𝐸𝑦0 + 𝐹.

These equations imply, among other things, also the following simple consequences:
1) If the transformation is a pure translation i.e. c=1, s=0 (the angle 𝜙 = 0), then the
coefficients of the quadratic terms do not change i.e. 𝐴′ = 𝐴, 𝐵′ = 𝐵, 𝐶′ = 𝐶.
2) If the transformation is a pure rotation i.e. 𝑥0 = 𝑦0 = 0, then the constant term does not
change i.e. 𝐹′ = 𝐹.

We should notice here a special case concerning the quantities {𝐴 − 𝐶 , 𝐵}. If they
vanish in one coordinate system, then they vanish also in every other. This, because of
the preceding equations which imply:

𝐴′ − 𝐶′ = (𝐴 − 𝐶)(𝑐2 − 𝑠2) + 4𝐵𝑐𝑠,
𝐵′ = (𝐶 − 𝐴)𝑐𝑠 + 𝐵(𝑐2 − 𝑠2).

Also, if {𝐴 − 𝐶 = 𝐵 = 0} then, assuming 𝐴 ≠ 0, the equation takes the form

𝑥2 + 𝑦2 + 2(𝐷/𝐴)𝑥 + 2(𝐸/𝐴)𝑦 + (𝐹/𝐴) = 0 ⇔
(𝑥 + (𝐷/𝐴))2 + (𝑦 + (𝐸/𝐴))2 + (𝐹/𝐴) − (𝐷/𝐴)2 − (𝐸/𝐴)2 = 0 ⇔
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑅2 = 0,

representing the circle with center (𝑥0 , 𝑦0) = −(𝐷/𝐴, 𝐸/𝐴) and radius which can be real
or imaginary: 𝑅2 = (𝐷2 + 𝐸2 − 𝐴𝐹)/𝐴2. This proves the theorem:

Theorem 1. The general equation (1) represents a circle, if and only if 𝐴 − 𝐶 = 𝐵 = 0, and
𝐷2 + 𝐸2 − 𝐴𝐹 > 0.

4 The invariants

By inspecting the above transformation relations one sees easily that the expressions

𝐽1 = 𝐴 + 𝐶 = 𝐴′ + 𝐶′,
𝐽2 = 𝐴𝐶 − 𝐵2 = 𝐴′𝐶′ − 𝐵′2 ,

𝐽3 =

������𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

������ =

������𝐴
′ 𝐵′ 𝐷′

𝐵′ 𝐶′ 𝐸′
𝐷′ 𝐸′ 𝐹′

������ .
Thus, the three expressions, build from the coefficients of the equation with respect to a
particular coordinate system, define three numbers, which are independent of the partic-
ular system used. These numbers are called Invariants of the quadratic equation. Their
independence from the particular coordinate system suggests that their meaning is re-
lated to the geometric object, the curve, represented by the scaffold of the equation and
carry important information concerning this geometric object. To prove this, we start with
𝐽3 and then proceed to 𝐽2 and 𝐽1.
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5 Product of lines (𝐽3 = 0)
The simplest quadratic equations result by multiplying two line equations:

(𝑎𝑥 + 𝑏𝑦 + 𝑐)(𝑎′𝑥 + 𝑏′𝑦 + 𝑐′) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹.
In these the coefficients are given by:

𝐴 = 𝑎 · 𝑎′,
𝐵 =

1
2
(𝑎 · 𝑏′ + 𝑏 · 𝑎′),

𝐶 = 𝑏 · 𝑏′,
𝐷 =

1
2
(𝑐 · 𝑎′ + 𝑎 · 𝑐′),

𝐸 =
1
2
(𝑐 · 𝑏′ + 𝑏 · 𝑐′),

𝐹 = 𝑐 · 𝑐′.
Assume that we are in the coordinate system in which the first line (𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0) is
the x-axis (𝑦 = 0), thus 𝑎 = 0, 𝑏 = 1, 𝑐 = 0. It follows, that in this system of coordinates
𝐴 = 0, 𝐵 = 𝑎′/2, 𝐶 = 𝑏′, 𝐷 = 0, 𝐸 = 𝑐′/2, 𝐹 = 0. Thus

𝐽3 =

������𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

������ =
������ 0 𝑎′/2 0
𝑎′/2 𝑏′ 𝑐′/2

0 𝑐′/2 0

������ = 0.

The inverse is also true but somewhat more difficult to prove. In fact we have proved half
of the following valid theorem:

Theorem 2. The quadratic expression 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 decomposes to a
product of linear factors

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = (𝑎𝑥 + 𝑏𝑦 + 𝑐)(𝑎′𝑥 + 𝑏′𝑦 + 𝑐′),
if and only if the corresponding determinant 𝐽3 = 0.

To prove the other half of the theorem, we assume that 𝐽3 = 0 and try to factor the
equation 𝑓 (𝑥, 𝑦) = 𝐴𝑥2 +2𝐵𝑥𝑦+𝐶𝑦2 +2𝐷𝑥+2𝐸𝑦+ 𝐹 = 0 into a product of two lines. The
most complicated case is the one for which some of the coefficients 𝐴, 𝐶 say 𝐴 is different
from zero. Thus, leaving the easiest cases for the end, we assume 𝐴 ≠ 0 and have:

0 = 𝐴 · 𝑓 (𝑥, 𝑦) = 𝐴2𝑥2 + 2𝐴𝐵𝑥𝑦 + 𝐴𝐶𝑦2 + 2𝐴𝐷𝑥 + 2𝐴𝐸𝑦 + 𝐴𝐹 ⇔
𝐴2𝑥2 + 2𝐴(𝐵𝑦 + 𝐷)𝑥 = −𝐴𝐶𝑦2 − 2𝐴𝐸𝑦 − 𝐴𝐹 ⇔

(𝐴𝑥 + (𝐵𝑦 + 𝐷))2 = (𝐵𝑦 + 𝐷)2 − 𝐴𝐶𝑦2 − 2𝐴𝐸𝑦 − 𝐴𝐹 ⇔
(𝐴𝑥 + (𝐵𝑦 + 𝐷))2 = (𝐵2 − 𝐴𝐶)𝑦2 + 2(𝐵𝐷 − 𝐴𝐸)𝑦 + 𝐷2 − 𝐴𝐹.

On the right side of the last equation stands a quadratic function in 𝑦:

𝑔(𝑦) = (𝐵2 − 𝐴𝐶)𝑦2 + 2(𝐵𝐷 − 𝐴𝐸)𝑦 + 𝐷2 − 𝐴𝐹 = 𝑈𝑦2 + 2𝑉𝑦 +𝑊.

Putting also
ℎ(𝑥, 𝑦) = 𝐴𝑥 + (𝐵𝑦 + 𝐷),
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we obtain the relation

𝑎 𝑓 (𝑥, 𝑦) = ℎ(𝑥, 𝑦)2 − 𝑔(𝑦) ⇔ 𝑎 𝑓 (𝑥, 𝑦) = [ℎ(𝑥, 𝑦) −√
𝑔(𝑦)] · [ℎ(𝑥, 𝑦) +√

𝑔(𝑦)].
In order for this to factor into two linear terms, 𝑔(𝑦) has to be a complete square i.e. its
discriminant must vanish:

0 = 𝑈𝑊 −𝑉2 = (𝐵2 − 𝐴𝐶)(𝐷2 − 𝐴𝐹) − (𝐵𝐷 − 𝐴𝐸)2 ⇔ 𝐴 · 𝐽3 = 0.

In the case 𝐴 = 0 but 𝐵 ≠ 0 we do the previous work but using this time 𝑦 instead of 𝑥. In
the case 𝐴 = 𝐶 = 0, we see that

0 = 𝐽3 =

������ 0 𝐵 𝐷
𝐵 0 𝐸
𝐷 𝐸 𝐹

������ = 𝐵 · (2𝐸𝐷 − 𝐵𝐹).

In this case, if also 𝐵 = 0, then all quadratic terms vanish and the curve is a line. If 𝐵 ≠ 0,
then 2𝐸𝐷−𝐵𝐹 = 0 must be valid i.e. there is a constant 𝑘 such that 2𝐸 = 𝑘𝐵, 𝐹 = 𝑘𝐷. This
implies again that the equation decomposes to a product of lines:

0 = 2𝐵𝑥𝑦 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 2𝑥(𝐵𝑦 + 𝐷) + (2𝐸𝑦 + 𝐹) = (2𝑥 + 𝑘)(𝐵𝑦 + 𝐷).

6 𝐽3 = 0 : Degenerate conics

A quadratic function which decomposes to two linear factors represents a degenerate
conic. A (double) line:

𝑓 (𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦 + 𝑐)2 = 𝑎2𝑥2 + 2𝑎𝑏𝑥𝑦 + 𝑏2𝑦2 + 2𝑎𝑐𝑥 + 2𝑎𝑐𝑦 + 𝑐2 = 0,

or a pair of lines:

𝑓 (𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦 + 𝑐)(𝑎′𝑥 + 𝑏′𝑦 + 𝑐′)
= (𝑎𝑎′)𝑥2 + (𝑎𝑏′ + 𝑏𝑎′)𝑥𝑦 + (𝑏𝑏′)𝑦2 + (𝑎𝑐′ + 𝑐𝑎′)𝑥 + (𝑏𝑐′ + 𝑐𝑏′)𝑦 + (𝑐𝑐′) = 0,

or a point
(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 0.

Last equation is satisfied only by the point with coordinates (𝑎, 𝑏). Using complex num-
bers the last equation can be written:

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = [(𝑥 − 𝑎) + 𝑖(𝑦 − 𝑏)][(𝑥 − 𝑎) − 𝑖(𝑦 − 𝑏)] = 0.

Thus, in this case the quadratic equation decomposes to two linear factors too:

𝑥 + 𝑖𝑦 − (𝑎 + 𝑖𝑏) = 0 and 𝑥 − 𝑖𝑦 − (𝑎 − 𝑖𝑏) = 0.

The lines, though, are complex.
The following example equation represents two intersecting lines:

𝑓 (𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 + 2𝑦2 + 5𝑥 + 6𝑦 + 4 = 0.

One sees easily that for this equation 𝐽3 = 0. To decompose into factors, order it in powers
of 𝑥 and complete the square:

𝑓 (𝑥, 𝑦) = 𝑥2 + (3𝑦 + 5)𝑥 + (2𝑦2 + 6𝑦 + 4)

=

(
𝑥 + 3𝑦 + 5

2

)2

−
(
3𝑦 + 5

2

)2

+ (2𝑦2 + 6𝑦 + 4)

=

(
𝑥 + 3𝑦 + 5

2

)2

−
(
𝑦 + 3

2

)2

= (𝑥 + 𝑦 + 1)(𝑥 + 2𝑦 + 4).
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Exercise 1. Show that 𝑥2 − 𝑥𝑦 − 𝑦2 + 2𝑥 + 1 = 0 decomposes in a product of two intersecting
lines. Determine these lines.

7 𝐽3 ≠ 0 : proper conics

If the quadratic equation

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0

has its invariant

𝐽3 =

������𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

������ ≠ 0,

then the corresponding curve, represented by this equation, is a proper conic i.e. either
an ellipse or a hyperbola or a parabola (see figure 2). The ellipse and the hyperbola are

ellipse parabola hyperbola

Figure 2: Proper conics

point-symmetric. There exists a point 𝑃0 such that for every point 𝑃 on the conic, line
𝑃𝑃0 meets the conic in a second point 𝑃′ such that |𝑃𝑃0| = |𝑃′𝑃0| (see figure 3). This point

P
0

P

P'

Figure 3: Ellipse’s center of symmetry

is called the center of the conic. Ellipses and hyperbolas are called collectively central
conics. The parabola has no center of symmetry. It has though an axis of symmetry. This

P
0

Figure 4: Hyperbola’s center of symmetry

is called the axis of the parabola and is a line 𝜀 with the following property: for every
point 𝑃 on the parabola, point 𝑃′ which is the reflected of 𝑃 on the axis 𝜀 is also a point
of the parabola (see figure 5).
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P

P'

ε

Figure 5: Parabola’s axis

8 Central conics

The quadratic equation 𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 +𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0, which describes
a central conic, in addition to the condition 𝐽3 ≠ 0, is characterized by the fact that

𝐽2 = 𝐴𝐶 − 𝐵2 ≠ 0.

In fact, if the conic has a symmetry center and we take a coordinate system with origin at
this point, then for every point 𝑃(𝑥, 𝑦) satisfying the equation the point 𝑃′(−𝑥,−𝑦) satisfies
the equation too. Thus we have:

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 ⇒
𝑓 (−𝑥,−𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 − 2𝐷𝑥 − 2𝐸𝑦 + 𝐹 = 0 ⇒

𝑓 (𝑥, 𝑦) − 𝑓 (−𝑥,−𝑦) = 4𝐷𝑥 + 4𝐸𝑦 = 0.

Last equation must be true for the infinite many points 𝑃(𝑥, 𝑦) of the curve. Thus imply-
ing:

𝐷 = 𝐸 = 0.

Thus, for these particular coordinate systems, which are centered at the symmetry center
of the conic, the linear terms are missing and its equation obtains the simpler form:

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐹 = 0.

It follows that in this case
𝐽3 = 𝐽2 · 𝐹 ≠ 0,

which implies that 𝐽2 ≠ 0.

9 Find the center

To show the inverse of the previous result, we have to prove that if both 𝐽3 ≠ 0 and 𝐽2 ≠
0 are valid then the conic can be reduced to the above simpler form. This implies that
𝑓 (𝑥, 𝑦) = 0 ⇒ 𝑓 (−𝑥,−𝑦) = 0 and shows that the origin of the coordinate system is the
center of the conic. The problem here is to start with an equation in an arbitrary system

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0,

and find a new coordinate system centered at the center 𝑃0(𝑥0 , 𝑦0) of the conic. In this
new system of coordinates (𝑥′, 𝑦′) the quadratic equation will have the form

𝑓 ′(𝑥′, 𝑦′) = 𝐴′𝑥′2 + 2𝐵′𝑥′𝑦′ + 𝐶′𝑦′2 + 𝐹′ = 0.
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Hence, by the results of section 3, the following system of equations must hold:

𝐷′ = (𝐴𝑥0 + 𝐵𝑦0 + 𝐷)𝑐 + (𝐵𝑥0 + 𝐶𝑦0 + 𝐸)𝑠 = 0,
𝐸′ = −(𝐴𝑥0 + 𝐵𝑦0 + 𝐷)𝑠 + (𝐵𝑥0 + 𝐶𝑦0 + 𝐸)𝑠 = 0.

}
⇔

{
𝐴𝑥0 + 𝐵𝑦0 + 𝐷 = 0,
𝐵𝑥0 + 𝐶𝑦0 + 𝐸 = 0.

By assumption 𝐽2 =

����𝐴 𝐵
𝐵 𝐶

���� ≠ 0, hence the last system has a unique solution:

𝑥0 = −

����𝐷 𝐵
𝐸 𝐶

��������𝐴 𝐵
𝐵 𝐶

���� =
𝐵𝐸 − 𝐷𝐶
𝐴𝐶 − 𝐵2 ,

𝑦0 = −

����𝐴 𝐷
𝐵 𝐸

��������𝐴 𝐵
𝐵 𝐶

���� =
𝐷𝐵 − 𝐴𝐸
𝐴𝐶 − 𝐵2 .


(3)

These equations determine the location of the center 𝑃0(𝑥0 , 𝑦0) of the conic with respect
to the original system (𝑥, 𝑦) of coordinates. To find the new coordinates one has to make
a simple translation:

𝑥 = 𝑥0 + 𝑥′,
𝑦 = 𝑦0 + 𝑦′.

By section 3, since in this case the transformation has 𝑐 = 1, 𝑠 = 0, the coefficients of the
quadratic terms are preserved and the form of the equation is

𝐴𝑥′2 + 2𝐵𝑥′𝑦′ + 𝐶𝑦′2 + 𝐹′ = 0,

where
𝐹′ = 𝑓 (𝑥0 , 𝑦0) = 𝑓

(
−𝐷𝐶 − 𝐵𝐸
𝐴𝐶 − 𝐵2 , −𝐴𝐸 − 𝐷𝐵

𝐴𝐶 − 𝐵2

)
=

𝐽3
𝐽2
. (4)

Last equation results by an easy calculation.

10 Find the center, examples

To find the proper conics 𝑓 (𝑥, 𝑦) = 0, which are central and have coefficients 𝐴, 𝐵, 𝐶, ...
equal to ±1. Locate also their centers.

𝑓 (𝑥, 𝑦) = ±𝑥2 ± 2𝑥𝑦 ± 𝑦2 ± 2𝑥 ± 2𝑦 ± 1 = 0.

Originally one thinks there are 64 such examples. But there are indeed only 8. In fact
𝐴𝐶 − 𝐵2 ≠ 0 means in this case 𝐴𝐶 ≠ 1, hence 𝐴, 𝐶 must have different signs. Dividing
the equation by 𝐴 the problem reduces to the one with coefficients

𝑥2 ± 2𝑥𝑦 − 𝑦2 ± 2𝑥 ± 2𝑦 ± 1 = 0.

Thus there are only 16 to test, and from these only 8 have 𝐽3 ≠ 0. These are:

(1) 𝑥2 + 2𝑥𝑦 − 𝑦2 + 2𝑥 + 2𝑦 − 1 = 0, center: (−1, 0),
(2) 𝑥2 + 2𝑥𝑦 − 𝑦2 + 2𝑥 − 2𝑦 + 1 = 0, center: (0,−1),
(3) 𝑥2 + 2𝑥𝑦 − 𝑦2 − 2𝑥 + 2𝑦 + 1 = 0, center: (0, 1),
(4) 𝑥2 + 2𝑥𝑦 − 𝑦2 − 2𝑥 − 2𝑦 − 1 = 0, center: (1, 0),
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Figure 6: 8 congruent rectangular hyperbolas

(5) 𝑥2 − 2𝑥𝑦 − 𝑦2 + 2𝑥 + 2𝑦 + 1 = 0, center: (0, 1),
(6) 𝑥2 − 2𝑥𝑦 − 𝑦2 + 2𝑥 − 2𝑦 − 1 = 0, center: (−1, 0),
(7) 𝑥2 − 2𝑥𝑦 − 𝑦2 − 2𝑥 + 2𝑦 − 1 = 0, center: (1, 0),
(8) 𝑥2 − 2𝑥𝑦 − 𝑦2 − 2𝑥 − 2𝑦 + 1 = 0, center: (0,−1).

Figure 6 shows these 8 conics. They are all hyperbolas, even rectangular (we’ll see what
this means in a moment) and they are all congruent to each-other i.e. they can be set one
upon the other, so that they coincide, or equivalently “they have the same normal form” (see
section 12). In this context two normal forms are considered the same also if one of the
forms results from the other by interchanging the role of 𝑥 and 𝑦.

11 Axes of central conics

Central conics have also two axes of symmetry which are orthogonal to each other and
pass through their center. Obviously it would simplify the equation if we could change
to a coordinate system that has these axes as coordinate axes. In section 8 we saw that
central conics referred to a coordinate system with origin identical with their center have
a simplified corresponding equation:

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐹 = 0.
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Figure 7: Ellipse with its center and its axes

If we assume also that the axes coincide with the symmetry axes of the curve, then with

P
0

Figure 8: Hyperbola with its center and its axes

each 𝑃(𝑥, 𝑦) on the curve, points 𝑃′(−𝑥, 𝑦), 𝑃′′(𝑥,−𝑦) must also be on the curve, so that
equations

𝑓 (−𝑥, 𝑦) = 𝑓 (𝑥,−𝑦) = 𝐴𝑥2 − 2𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐹 = 0,
must also be valid. By subtracting the two equations we see that in such a system the
mixed 𝑥𝑦-coefficient must be zero:

𝐵 = 0.
Then the quadratic equation reduces to a simpler form:

𝐴𝑥2 + 𝐶𝑦2 + 𝐹 = 0.

Notice the difference from the equation in section 1. Here the equation is much simpler,
the coordinates though are not the original any more. One should write the equation
using something like (𝑥′, 𝑦′) but I dropped the primes for aesthetic reasons. It is usual
to make coordinate changes from (𝑥, 𝑦) to (𝑥′, 𝑦′), then, possibly to others (𝑥′′, 𝑦′′) and
still others ... but at the final stage use the simple symbols (𝑥, 𝑦), knowing that they are
different from the original ones. The last equation is referred as the normal form of the
equation of the conic.

12 Finding the normal form

The problem of finding the normal form of a proper central conic can be solved easily
using the invariants. In fact let us now distinguish the various coordinate systems. In the
first system, which is assumed to be an arbitrary one, the equation has the form:

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0.

If we translate to the symmetry center (𝑥0 , 𝑦0), then the equation becomes

𝑓 ′(𝑥′, 𝑦′) = 𝐴𝑥′2 + 2𝐵𝑥′𝑦′ + 𝐶𝑦′2 + 𝐹′ = 0, with 𝐹′ = 𝑓 (𝑥0 , 𝑦0) = 𝐽3
𝐽2
.

If now, holding the origin fixed, we turn the axes so that the new axes coincide with the
axes of the conic, then the equation in the new coordinates obtains the form

𝑓 ′′(𝑥′′, 𝑦′′) = 𝐴′𝑥′′2 + 𝐶′𝑦′′2 + 𝐹′ = 0.
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Since 𝐹′ is already known, it remains to find the values of 𝐴′, 𝐶′. But these constants
satisfy

𝐴′ + 𝐶′ = 𝐴 + 𝐶 = 𝐽1 , and 𝐴′ · 𝐶′ = 𝐴𝐶 − 𝐵2 = 𝐽2.

Thus, their sum and product are obtainable from the original equation and the two con-
stants are the roots of the equation involving once again the ubiquitous invariants:

𝑥2 − 𝐽1𝑥 + 𝐽2 = 0. (5)

Even which of {𝐴′, 𝐶′} is bigger can be seen from the original equation. In fact, if 𝑠 =
sin(𝜙), 𝑐 = cos(𝜙), where 𝜙 is the angle by which we turn the original axes to the final
axes of the conic, then, by the relations of section 3, the two coefficients are related by the
equation

𝐴′ − 𝐶′ = (𝑐2 − 𝑠2)(𝐴 − 𝐶) + 4𝐵𝑐𝑠.

But the vanishing of 𝐵′ for this coordinate change implies

0 = 𝐵′ = (𝐶 − 𝐴)𝑐𝑠 + 𝐵(𝑐2 − 𝑠2).
If neither 𝐵 nor 𝐶 − 𝐴 vanish, then solving the last for 𝐵 and replacing in the previous
equation gives:

𝐴′ − 𝐶′ = (𝐴 − 𝐶)
(
𝑐2 − 𝑠2 + 4 𝑐2𝑠2

𝑐2 − 𝑠2

)
.

By the conventions made in section 2, angle 𝜙 satisfies −𝜋
4 < 𝜙 ≤ 𝜋

4 , and 𝑐2−𝑠2 = cos(2𝜙) >
0 under this restriction, i.e. (𝐴 − 𝐶) and (𝐴′ − 𝐶′) have the same sign. Thus, which one
from 𝐴′, 𝐶′ is greater from the other can be seen directly from the original equation.

In the case 𝐵 = 0 the axes are already the symmetry axes of the conic. In the case
𝐴− 𝐶 = 0, taking 𝜙 = 𝜋

4 implies 𝐵′ = 0, which means that the axes are the bisectors of the
present orthogonal system of coordinates.

13 Example calculation of the normal form

To see the previous procedure working, let us apply it to the example of section 10

𝑥2 + 2𝑥𝑦 − 𝑦2 + 2𝑥 + 2𝑦 − 1 = 0.

Here we see easily that 𝐽1 = 0, 𝐽2 = −2, 𝐽3 = 4. Thus,

𝐹′ = 𝐽3
𝐽2

= −2,

and 𝐴′, 𝐶′ are the roots of the equation

𝑥2 − 2 = 0 ⇒ 𝐴′ =
√

2, 𝐶′ = −√2.

In the last decision, which of the roots to equal to 𝐴′ and which to 𝐶′, we take into account
that 𝐴′−𝐶′ and 𝐴−𝐶 = 2 must have equal signs. Thus the normal form (dropping again
the primes) is

𝑓1(𝑥, 𝑦) =
√

2𝑥2 − √
2𝑦2 − 2 = 0.

Let us repeat the procedure for the second equation in section 10

𝑥2 + 2𝑥𝑦 − 𝑦2 + 2𝑥 − 2𝑦 + 1 = 0, with 𝐽1 = 0, 𝐽2 = −2, 𝐽3 = −4.
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Figure 9: Conjugate rectangular hyperbolas

Thus, 𝐴′, 𝐶′ satisfy the equation 𝑥2 − 2 = 0 and we have again

𝐹′ = 𝐽3
𝐽2

= 2, 𝐴′ =
√

2, 𝐵′ = −√2 ⇒ 𝑓2(𝑥, 𝑦) =
√

2𝑥2 − √
2𝑦2 + 2 = 0.

By interchanging the roles of 𝑥 and 𝑦 we see that the curves corresponding to these equa-
tions are congruent. Figure 9 shows the two congruent conics, which are “conjugate rect-
angular hyperbolas” resulting, each from the other through a rotation about the origin of
the axes by 90◦.

14 Finding the axes of the conic

As noticed in section 11, the directions of the symmetry axes of a proper central conic can
be determined by the condition 𝐵′ = 0 which must be valid, when the conic is referred
to its normal coordinate system with origin at its center. From section 3, leaving some
special cases aside, this implies

0 = 𝐵′ = (𝐶 − 𝐴)𝑐𝑠 + 𝐵(𝑐2 − 𝑠2) ⇒ 2𝑐𝑠
𝑐2 − 𝑠2 =

2𝐵
𝐴 − 𝐶 .

Since
2𝑐𝑠

𝑐2 − 𝑠2 =
2 cos(𝜙) sin(𝜙)

cos(𝜙)2 − sin(𝜙)2 =
sin(2𝜙)
cos(2𝜙) = tan(2𝜙),

the above equation becomes

tan(2𝜙) = 2𝐵
𝐴 − 𝐶 .

This defines the angle 𝜙 by which the actual axes have to be rotated in order to obtain
the right directions of the conic axes. The special cases left are 𝐵 = 0 i.e. the current
coordinate system is already the right one, and 𝐴 − 𝐶 = 0, in which taking 𝜙 = 𝜋

4 makes
𝐵′ = 0.

For example the first of the equations in section 10:

𝑥2 + 2𝑥𝑦 − 𝑦2 + 2𝑥 + 2𝑦 − 1 = 0,

has 𝐵 = 1, 𝐴 − 𝐶 = 2, hence tan(2𝜙) = 1 ⇒ 2𝜙 = 𝜋
4 ⇒ 𝜙 = 𝜋

8 .
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15 Finding the kind of the conic

The hyperbola is unbounded and the ellipse is bounded. This is the fundamental distinc-
tion of the two kinds of proper central conics. The kind of the conic can be immediately
deduced from the normal form:

𝐴𝑥2 + 𝐶𝑦2 + 𝐹 = 0.

If all coefficients are positive then no real conic exists. If 𝐴, 𝐶 have the same sign, which is
equivalent with the condition that 𝐽2 > 0, then we have an ellipse in the case 𝐹 · 𝐽2 = 𝐽3 < 0
and no real curve if 𝐽3 > 0. In fact, in this case, multiplying the whole equation by -1 if
necessary, we may assume that 𝐴, 𝐶 > 0 and 𝐹 < 0 and the equation becomes

(−𝐹) = 𝐴𝑥2 + 𝐶𝑦2 ≥ 𝑚(𝑥2 + 𝑦2) ⇒ 𝑥2 + 𝑦2 ≤ −𝐹
𝑚
.

where 𝑚 is the smaller of 𝐴, 𝐶. This shows that all points of the curve are at square-
distance from the origin less than −𝐹

𝑚 , hence the curve is bounded i.e. it is an ellipse.
If 𝐴, 𝐶 have different signs, which is equivalent with 𝐽2 < 0, then we have always a

hyperbola. In fact, in this case, we can assume that one coefficient, 𝐴 say, is positive and
{𝐶, 𝐹} are negative and set the equation in the form

𝐴𝑥2 + 𝐶𝑦2 + 𝐹 = 0 ⇒ 𝑥2 =
1
𝐴
(−𝐶𝑦2 − 𝐹),

which shows that (𝑥, 𝑦) can obtain arbitrary big values, hence the curve is unbounded i.e.
it is a hyperbola. If 𝐶 > 0 and {𝐴, 𝐹} negative we solve w.r.t. 𝑦2 and work analogously.

16 Asymptotes

The simplest way to define the asymptotes of a proper central conic is to use its normal
form

𝐴𝑥2 + 𝐶𝑦2 + 𝐹 = 0. (6)

The lines resulting from the equation

𝐴𝑥2 + 𝐶𝑦2 = 0,

are called the asymptotes of the conic. They are two real lines only in the case of hyper-
bolas, i.e. when 𝐽2 < 0. In this case, assuming 𝐴 > 0 and 𝐶 < 0, the quadratic equation
decomposes to a product :

𝐴𝑥2 + 𝐶𝑦2 = (√𝐴𝑥 − √−𝐶𝑦)(√𝐴𝑥 + √−𝐶𝑦) = 0.

The figure shows the hyperbola

2𝑥2 − 𝑦2 − 1 = 0,

and its asymptotes, which are the lines
√

2𝑥 − 𝑦 = 0, and
√

2𝑥 + 𝑦 = 0.

Since the equation of the hyperbola and the equation of its asymptotic lines in the coordi-
nate system of the normal form differ by a constant, going back to the original coordinates
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system the corresponding equations will differ also by a constant. Thus, the equation of
the asymptotic lines in the original coordinate system of the equation of the conic

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0,

must be of the form

𝑓 ′(𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 + 𝑘 = 0, for some constant 𝑘.

Thus, by section 5, the coefficients of this quadratic must satisfy the relation

𝐽′3 =

������𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹 + 𝑘

������ = 𝐽3 + 𝑘𝐽2 = 0 ⇒ 𝑘 = − 𝐽3
𝐽2
.

Thus the equation of the asymptotes in the original coordinate system is

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 +
(
𝐹 − 𝐽3

𝐽2

)
= 0.

17 The angle of the asymptotes

The cosine of the angle of the asymptotes is calculated by the inner product of the unit
vectors in the direction of the lines. By the preceding section, using equation (6) and
assuming {𝐴 > 0, 𝐶 < 0}, these vectors are

1√
𝐴 − 𝐶 (√−𝐶,√𝐴), and 1√

𝐴 − 𝐶 (−√−𝐶,√𝐴).
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And their inner product giving the cosine (cos(𝜃)) of the angle between the asymptotes is

cos(𝜃) = 1√
𝐴 − 𝐶 (√−𝐶,√𝐴) · 1√

𝐴 − 𝐶 (−√−𝐶,√𝐴)

=
𝐴 + 𝐶
𝐴 − 𝐶

=
𝐴 + 𝐶√(𝐴 − 𝐶)2

=
𝐴 + 𝐶√(𝐴 + 𝐶)2 − 4𝐴𝐶

=
𝐴 + 𝐶√(𝐴 + 𝐶)2 − 4(𝐴𝐶 − 𝐵2)

(since 𝐵 = 0),

=
𝐽1√

𝐽21 − 4𝐽2
.

18 Rectangular hyperbola

This kind of proper conic is characterized by the condition

𝐽1 = 𝐴 + 𝐶 = 0.

This implies
𝐽2 = 𝐴𝐶 − 𝐵2 = −𝐴2 − 𝐵2 < 0.

Hence, by section 15, this is a hyperbola. As already noticed, all examples of section 10
and the two examples of section 13 are rectangular hyperbolas. Rectangular hyperbolas
have their asymptotes orthogonal (therefore the name). They are the only conics which
appear as the graph of an “invertible” function (in its domain of definition). The most
prominent example is the graph of the function 𝑦 = 1

𝑥 represented by the quadratic

𝑥𝑦 − 1 = 0,

for which the corresponding invariants are 𝐽1 = 0, 𝐽2 = −1
4 , 𝐽3 = 1

4 , leading to the normal
form

𝐴′𝑥′2 + 𝐶′𝑦′2 + 𝐹′ = 0 : 1
2
𝑥′2 − 1

2
𝑦′2 − 1 = 0.

Figure 11 shows the curve and the two coordinate systems (𝑥, 𝑦) and (𝑥′, 𝑦′).

19 Asymptotes directly

Given the quadratic equation

𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0,

the directions of asymptotes can be directly determined by dropping the linear terms and
equating the remaining expression to zero:

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 = 0.
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𝑥 is a rectangular hyperbola

In fact, as noticed in section 3, the quadratic coefficients𝐴, 𝐵, 𝐶 do not change if we change
to the coordinate system at the center, without to turn the axes. Turning now the axes to
match the axes of the conic is done by a transformation of the form

𝑥 = 𝑐 · 𝑥′ − 𝑠 · 𝑦′,
𝑦 = 𝑠 · 𝑥′ + 𝑐 · 𝑦′.

}
⇔

{
𝑥′ = 𝑐 · 𝑥 + 𝑠 · 𝑦,
𝑦′ = −𝑠 · 𝑥 + 𝑐 · 𝑦.

Taking into account the relations between 𝐴, 𝐵, 𝐶 and 𝐴′, 𝐵′, 𝐶′ given in section 3, we see
by an easy calculation that

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 = 0 ⇔ 𝐴′𝑥′2 + 2𝐵′𝑥′𝑦′ + 𝐶𝑦′2 = 0,

i.e. the last equation involving the (𝑥′, 𝑦′) coordinates is valid, if and only if, the left equa-
tion for the corresponding coordinates in (𝑥, 𝑦) is valid.

A trivial example of this fact is given by the hyperbola 𝑥𝑦 = 1 of the previous section.
In the (𝑥, 𝑦) system the asymptotes are given by equating

𝑥𝑦 = 0 i.e. either 𝑥 = 0 or 𝑦 = 0.

In the (𝑥′, 𝑦′) system the same asymptotes are given by the equation

1
2
𝑥′2 − 1

2
𝑦′2 = 0 ⇔ 𝑥′ − 𝑦′ = 0 or 𝑥′ + 𝑦′ = 0.

This means that in the (𝑥, 𝑦) system the asymptotes coincide with the coordinate axes,
whereas in the (𝑥′, 𝑦′) system the asymptotes coincide with the bisectors of the corre-
sponding coordinate axes.

20 Parabolas

The parabolas are the proper “non-central” conics. They are thus characterized by the two
invariants being:

𝐽3 ≠ 0 and 𝐽2 = 𝐴𝐶 − 𝐵2 = 0.
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The expression −𝐽2 = 𝐵2 − 𝐴𝐶 is seen to be the discriminant of the polynomial 𝐴𝑡2 +
2𝐵𝑡 + 𝐶. Thus its vanishing means that the polynomial has a double root 𝑡 = − 𝐵

𝐴 . The
coefficients {𝐴, 𝐶} must be non-zero, since in the contrary case 𝐵2 − 𝐴𝐶 = 0 would imply
𝐵 = 0 and consequently also 𝐽3 = 0, which has been excluded. In this case the equation
can be written

𝐴𝑡2 + 2𝐵𝑡 + 𝐶 = 𝐴

(
𝑡 + 𝐵

𝐴

)2

.

This, setting 𝑡 = 𝑥
𝑦 , implies

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 = 𝑦2(𝐴𝑡2 + 2𝐵𝑡 + 𝐶) = 𝑦2𝐴

(
𝑥
𝑦
+ 𝐵
𝐴

)2

=
1
𝐴
(𝐴𝑥 + 𝐵𝑦)2.

The original equation then can be written in the form

(𝐴𝑥 + 𝐵𝑦)2 + 2𝐴𝐷𝑥 + 2𝐴𝐸𝑦 + 𝐴𝐹 = 0. (7)

This suggests to make the transformation

𝑥 = 𝑐 · 𝑥′ − 𝑠 · 𝑦′,
𝑦 = 𝑠 · 𝑥′ + 𝑐 · 𝑦′,

}
⇔

{
𝑥′ = 𝑐 · 𝑥 + 𝑠 · 𝑦,
𝑦′ = −𝑠 · 𝑥 + 𝑐 · 𝑦, (8)

where
𝑐 =

𝐴√
𝐴2 + 𝐵2

, 𝑠 =
𝐵√

𝐴2 + 𝐵2
.

By this equation (7) transforms according to the rules of section 3 and we see that the
new coefficients in the (𝑥′, 𝑦′) coordinate system, taking into account that 𝐵2 = 𝐴𝐶 and
dividing the resulting expressions on the right by 𝐴, are

𝐴′ = (𝐴 + 𝐶) = 𝐽1 ,

𝐵′ = 0,
𝐶′ = 0,

𝐷′ =
𝐴𝐷 + 𝐸𝐵√
𝐴2 + 𝐵2

,

𝐸′ =
−𝐷𝐵 + 𝐸𝐴√
𝐴2 + 𝐵2

,

𝐹′ = 𝐹.

Note that 𝐽1 = 𝐴 + 𝐶 ≠ 0. This follows from the fact that 0 = 𝐽2 = 𝐴𝐶 − 𝐵2 implies that
𝐴, 𝐶 have the same sign. Hence 𝐴 + 𝐶 = 0 would imply 𝐴 = 𝐶 = 𝐵 = 0 and the conic
would be non proper, which contradicts our assumption. The same reasoning shows that
𝐴 ≠ 0 and legitimates the aforementioned division.

𝐽1𝑥′2 + 2𝐷′𝑥′ + 2𝐸′𝑦′ + 𝐹 = 0 ⇔
𝑥′2 + 2𝐷

′
𝐽1
𝑥′ + 2𝐸

′
𝐽1
𝑦′ + 𝐹

𝐽1
= 0 ⇔

𝑥′2 + 2𝐷′′𝑥′ + 2𝐸′′𝑦′ + 𝐹′′ = 0 ⇔
(𝑥′ + 𝐷′′)2 + 2𝐸′′𝑦′ + (𝐹′′ − 𝐷′′2) = 0,
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with the obvious substitution𝐷′′ = 𝐷′
𝐽1
, 𝐸′′ = 𝐸′

𝐽1
, 𝐹′′ = 𝐹

𝐽1
.Again 𝐸′′ ≠ 0, since 𝐸′′ = 0 would

imply again that the conic is non-proper. Thus, by dividing through 𝐸′′ and making the
translation of the coordinate system:

𝑥1 = 𝑥′ + 𝐷′′,

𝑦1 = 𝑦′ + 𝐹′′ − 𝐷′′2
𝐸′′ ,

we obtain the equation
𝑥2

1 + 2𝐸′′𝑦1 = 0,

which is the normal form of a parabola.
Using the first form of the equation above and computing the invariant 𝐽3 we see that

𝐽3 = −𝐸′2𝐽1 (which implies that 𝐽3 · 𝐽1 < 0) and since 𝐸′ = 𝐽1𝐸′′ we conclude that

𝐸′′2 = − 𝐽3
𝐽31
. (9)

Notice that the sign of 𝐸′′ is not so important for the shape of the parabola, since 𝑥2±2𝐸𝑦 =
0 represent two parabolas which are symmetric with respect to the 𝑥-axis. Also we notice
that the line 𝑥1 = 0 is an of symmetry of the parabola, since if (𝑥1 , 𝑦1) is a point of the
parabola, then the same is true for the point (−𝑥1 , 𝑦1). The line 𝑥1 = 0 is the “axis” of
the parabola. Making the substitutions back to the original variables (𝑥, 𝑦) we find that
equation 𝑥1 = 0 is equivalent to

𝐴𝑥 + 𝐵𝑦 + 𝐴𝐷 + 𝐵𝐸
𝐽1

= 0, (10)

showing that the axis of symmetry of the parabola is parallel to the line 𝐴𝑥 + 𝐵𝑦 = 0 with
the coefficients of the original equation (1).

21 Parabola Examples

The following cases are all possible parabolas with 𝐴, 𝐵, 𝐶, ... having the values ±1.

(1) 𝑥2 + 2𝑥𝑦 + 𝑦2 + 2𝑥 − 2𝑦 + 1 = 0,
(2) 𝑥2 + 2𝑥𝑦 + 𝑦2 + 2𝑥 − 2𝑦 − 1 = 0,
(3) 𝑥2 + 2𝑥𝑦 + 𝑦2 − 2𝑥 + 2𝑦 + 1 = 0,
(4) 𝑥2 + 2𝑥𝑦 + 𝑦2 − 2𝑥 + 2𝑦 − 1 = 0,

(5) 𝑥2 − 2𝑥𝑦 + 𝑦2 + 2𝑥 + 2𝑦 + 1 = 0,
(6) 𝑥2 − 2𝑥𝑦 + 𝑦2 + 2𝑥 + 2𝑦 − 1 = 0,
(7) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 2𝑥 − 2𝑦 + 1 = 0,
(8) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 2𝑥 − 2𝑦 − 1 = 0,

They all have 𝐽1 = 2, 𝐽2 = 0 and 𝐽3 = −4, so that in the normal form appearing in the
previous section 𝐸′′ = ± 1√

2
and all of them have the normal form:

𝑥2 − √
2𝑦 = 0.

Thus, they are all congruent. Figure 11 displays all of them, the numbers referring to the
corresponding equation of the curve.
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Figure 12: The eight parabolas with coefficients ±1

22 Matrix representation, tangents and secants

Equation (1) can be written using vectors, matrix-multiplication and the symmetric ma-
trix:

𝑀 = ©­«
𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

ª®¬ : 𝑓 (𝑥, 𝑦) = (𝑥, 𝑦, 1) ·𝑀 · ©­«
𝑥
𝑦
1

ª®¬ = 0. (11)

Vectors 𝑋 = ©­«
𝑥
𝑦
1

ª®¬ represent points, and vectors 𝑉 = ©­«
𝑣1
𝑣2
0

ª®¬ represent directions,

so that a line 𝛾(𝑡) of the plane in parametric form, passing through (𝑥0 , 𝑦0) in direction
(𝑣1 , 𝑣2), is represented by

X
0

X

V

Figure 13: Line 𝛾(𝑡) = 𝑋0 + 𝑡𝑉 intersecting again in 𝑋

𝛾(𝑡) = ©­«
𝑥0
𝑦0
1

ª®¬ + 𝑡 · ©­«
𝑣1
𝑣2
0

ª®¬ .
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Assume now 𝛾(𝑡) is a line passing through 𝑋0 lying on the conic and intersecting it a
second time at 𝑋 = 𝑋0 + 𝑡𝑉 (see figure 13). Then both {𝑋0 , 𝑋} satisfy the equation (11)
and, denoting by 𝑋 𝑡 = (𝑥, 𝑦, 1) the transposed row vector of the column vector 𝑋, we
have the property:

0 = 𝑋 𝑡𝑀𝑋 = (𝑋0 + 𝑡𝑉)𝑡𝑀(𝑋0 + 𝑡𝑉)
= 𝑋 𝑡

0𝑀𝑋0 + 2𝑡𝑋 𝑡
0𝑀𝑉 + 𝑡2𝑉 𝑡𝑀𝑉 (12)

= 2𝑋 𝑡
0𝑀𝑉 + 𝑡𝑉 𝑡𝑀𝑉 ⇒ 𝑡 = −2(𝑋 𝑡

0𝑀𝑉)/(𝑉 𝑡𝑀𝑉).
If 𝑋 approaches 𝑋0 then 𝑡 tends to 0 and 𝑉 becomes the direction of the tangent at 𝑋0,
thus satisfying

𝑋 𝑡
0𝑀𝑉 = 0 ⇔ 0 = 𝑋 𝑡

0𝑀(𝑋 − 𝑋0) ⇔ 𝑋 𝑡
0𝑀𝑋 = 0, (13)

latter being the equation of the tangent at 𝑋0. Also if 𝑋0 is not on the conic and 𝑋 =
𝑋0 + 𝑡𝑉 is indeed on the conic, we have

0 = 𝑋 𝑡𝑀𝑋 = 𝑋 𝑡
0𝑀𝑋0 + 2𝑡𝑋 𝑡

0𝑀𝑉 + 𝑡2𝑉 𝑡𝑀𝑉.

If 𝑋 is a tangent point of the tangent from 𝑋0, then the two solutions of the quadratic must
coincide and the discriminant must be zero:

(𝑋 𝑡
0𝑀𝑉)2 − (𝑋 𝑡

0𝑀𝑋0)(𝑉 𝑡𝑀𝑉) = 0.

This, setting for the direction vector𝑉 = 𝑋−𝑋0, where 𝑋 an arbitrary point of the tangent
from 𝑋0, implies after doing the calculation:

(𝑋 𝑡
0𝑀𝑋)2 − (𝑋 𝑡

0𝑀𝑋0)(𝑋 𝑡𝑀𝑋) = 0. (14)

This is a quadratic equation of the pair of tangents from 𝑋0, which can be real or imagi-
nary.

Exercise 2. Show that the equation of the two tangents to the conic 𝛼𝑥2 + 𝛽𝑦2 = 1 from the point
𝑋0(𝑥0 , 𝑦0) can also be written in the form:

𝛼𝛽(𝑥𝑦0 − 𝑦𝑥0)2 − 𝛼(𝑥 − 𝑥0)2 − 𝛽(𝑦 − 𝑦0)2 = 0. (15)

Theorem 3 (Newton’s theorem). Consider two lines {𝛼, 𝛽} parallel to the fixed unit directions
{𝑉,𝑊} (see figure 14) intersecting at the point 𝑃 and also intersecting the conic 𝜅 at the points
{𝑋1 , 𝑋2} the line 𝛼 and the points {𝑌1 , 𝑌2} the line 𝛽. Then the ratio of the products

𝑃𝑋1 · 𝑃𝑋2
𝑃𝑌1 · 𝑃𝑌2

=
𝑊 𝑡𝑀𝑊
𝑉 𝑡𝑀𝑉

,

is independent of the location of 𝑋 and depends only on the (fixed) directions {𝑉,𝑊} of the lines.

In fact, assuming {𝑉(𝑣1 , 𝑣2 , 0),𝑊(𝑤1 , 𝑤2 , 0)} to be unit vectors (i.e. of measure |𝑉 | =
|𝑊 | = 1), the intersection points of the lines with the conic are respectively determined
through the roots of the equations

𝛼 : (𝑃 + 𝑠𝑉)𝑡𝑀(𝑃 + 𝑠𝑉) = 𝑠2𝑉 𝑡𝑀𝑉 + 2𝑠𝑃𝑡𝑀𝑉 + 𝑃𝑡𝑀𝑃 = 0 and
𝛽 : (𝑃 + 𝜎𝑊)𝑡𝑀(𝑃 + 𝜎𝑊) = 𝜎2𝑊 𝑡𝑀𝑊 + 2𝜎𝑃𝑡𝑀𝑊 + 𝑃𝑡𝑀𝑃 = 0 .
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Figure 14: Newton’s theorem

If {𝑠1 , 𝑠2} are the roots of the first equation, and {𝜎1 , 𝜎2} the roots of the second, then

𝑃𝑋1 · 𝑃𝑋2 = 𝑠1𝑠2 = 𝑃𝑡𝑀𝑃/𝑉 𝑡𝑀𝑉 and
𝑃𝑌1 · 𝑃𝑌2 = 𝜎1𝜎2 = 𝑃𝑡𝑀𝑃/𝑊 𝑡𝑀𝑊 ⇒

𝑃𝑋1 · 𝑃𝑋2
𝑃𝑌1 · 𝑃𝑌2

=
𝑠1𝑠2
𝜎1𝜎2

=
𝑃𝑡𝑀𝑃/𝑉 𝑡𝑀𝑉
𝑃𝑡𝑀𝑃/𝑊 𝑡𝑀𝑊

=
𝑊 𝑡𝑀𝑊
𝑉 𝑡𝑀𝑉

,

which is a constant 𝑘, depending only on the unit directions {𝑉,𝑊} of the lines and not
on the location of the particular point 𝑃.

In the case the lines {𝛼, 𝛽} approach tangents to the conic the points {(𝑋1 , 𝑋2), (𝑌1 , 𝑌2)}
tend to coincide with the corresponding contact points {𝑋0 , 𝑌0} and we have:
Corollary 1. With the assumptions of the preceding theorem, if there is a point 𝑃0 from which
the tangents {𝑃0𝑋0 , 𝑃0𝑌0} to the conic 𝜅 are parallel to the fixed unit directions {𝑉,𝑊}, then the
quotient of the squares of the tangents (see figure 14)

(𝑃0𝑋0)2
(𝑃0𝑌0)2

is equal to the constant 𝑘 = 𝑊 𝑡𝑀𝑊
𝑉 𝑡𝑀𝑉 of the theorem.
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Figure 15: The case of hyperbola

Figure 15 shows that there are conics (hyperbolas) and special directions, for which a
point 𝑃0 , as needed by corollary 1, cannot exist. For the directions {𝑉,𝑊} shown there is
no point 𝑃0 from which there can be drawn two tangents respectively parallel to {𝑉,𝑊}.
For all points 𝑃 of the plane, lines through 𝑃 parallel to the shown directions {𝑉,𝑊} are
never tangent to the conic, intersecting it always at two distinct points.
Remark 1. Newton’s theorem could be considered as a generalization of the “power of
a point w.r.t. a circle”. In the circle case the quotient is independent from the directions
{𝑉,𝑊} of the lines, as well as, from the point 𝑃 : 𝑃𝑋1·𝑃𝑋2

𝑃𝑌1·𝑃𝑌2
= 1.
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23 Conjugate directions

Continuing with the matrix representation of the preceding section and using the coordi-
nates of the center 𝑂 = (𝑥0 , 𝑦0 , 1) of a central conic expressed through equations (3), we
see easily that for every direction 𝑉 𝑡 = (𝑣1 , 𝑣2 , 0) the product

𝑂𝑡𝑀𝑉 = 0 .

This can be interpreted by saying: All the lines of the form {𝑋 𝑡𝑀𝑉 = 0}, for a fixed direction
vector 𝑉 (and variable 𝑋), pass through the center of the conic. This will be used to show a
basic property of conics (see figure 16):

V

X

ε

Υ

T

Figure 16: The line 𝜀 of the middles of parallel chords

Theorem 4. The middles of chords 𝑋𝑌 of a conic, parallel to the direction 𝑉, lie on a line through
the center of the conic, whose direction 𝑊 satisfies 𝑊 𝑡𝑀𝑉 = 0. If this line intersects the conic at
a point 𝑇 then the tangent at 𝑇 is parallel to the chords.

In fact, consider a unit vector 𝑉 = (𝑣1 , 𝑣2 , 0)𝑡 defining a fixed direction and a variable
point 𝑋 on the conic. Let 𝑌 = 𝑋 + 𝑠𝑉 be the second intersection point of the conic with
the line {𝑋 + 𝑡𝑉, 𝑡 ∈ R}. Then, 𝑋 as well 𝑌, satisfy both the conic equation:

𝑋 𝑡𝑀𝑋 = 𝑌𝑡𝑀𝑌 = 0 ⇒
(𝑋 + 𝑠𝑉)𝑡𝑀(𝑋 + 𝑠𝑉) = 𝑋 𝑡𝑀𝑋 + 2𝑠𝑋 𝑡𝑀𝑉 + 𝑠2𝑉 𝑡𝑀𝑉 = 0 ⇒

2𝑋 𝑡𝑀𝑉 + 𝑠𝑉 𝑡𝑀𝑉 = 0 ⇔
(
𝑋 + 𝑠

2
𝑉
) 𝑡
𝑀𝑉 = 0 . (16)

Since 𝑀𝑉 is a constant vector, last equation means that all points {𝑍 = 𝑋 + 𝑠
2𝑉} are on

a line 𝜀 : 𝑍𝑡𝑀𝑉 = 0, whose coefficients are given by the coordinates of the vector 𝑀𝑉.
As we noticed at the beginning of the section, the center 𝑂 of the conic is on such a line,
hence the line can be represented parametrically by an equation of the form 𝑍 = 𝑂 + 𝜎𝑊
with 𝑊 a fixed direction 𝑊 𝑡 = (𝑤1 , 𝑤2 , 0). Replacing that in the last equation we find

0 = 𝑍𝑡𝑀𝑉 = (𝑂 + 𝜎𝑊)𝑡𝑀𝑉 = 𝑂𝑡𝑀𝑉 + 𝜎𝑊 𝑡𝑀𝑉 = 𝜎𝑊 𝑡𝑀𝑉 .

Since this holds for all 𝜎 we conclude that 𝑊 𝑡𝑀𝑉 = 0.
The claim about the tangent at 𝑇 follows from the fact that such a tangent is the limit

of chords 𝑋𝑌 parallel to it, whose middles are on the line 𝜀.

Corollary 2. If the chords parallel to the direction 𝑉 have their middles on the line 𝑂 + 𝜎𝑊 then
the chords parallel to the direction 𝑊 have their middles on the line with direction 𝑉.
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This follows immediately from the symmetry of the matrix 𝑀 and, the resulting from
this, symmetry of the relation 𝑊 𝑡𝑀𝑉 = 0, characteristic for both cases of parallel chords.

Two directions {𝑉,𝑊} satisfying the relation 𝑊 𝑡𝑀𝑉 = 0 are called conjugate direc-
tions of the conic. Two diameters along such two directions are called conjugate diame-
ters of the conic.

Parabolas, as we noticed in section 20 are characterized by the condition 𝐴𝐶 − 𝐵2 = 0,
have no real center, but have an axis of symmetry parallel to the direction 𝑈 𝑡 = (−𝐵, 𝐴, 0).
It is again easily verified that for every direction vector 𝑉 𝑡 = (𝑣1 , 𝑣2 , 0), it is valid the
condition

𝑈 𝑡𝑀𝑉 = 0 .

Repeating the procedure in the proof of theorem 4, we come again at equation 16, imply-
ing this time, that for chords of the parabola which are parallel to the direction 𝑉, their
middles are contained on the line 𝑋 𝑡𝑀𝑉 = 0 (variable 𝑋), which contains 𝑋 = 𝑈. This
implies the following property (see figure 17).

Figure 17: Middles of chords parallel to a given direction 𝑉

Theorem 5. Chords of the parabola which are parallel to a fixed direction, have their middles on a
line parallel to the axis of the parabola.

We could say, that for parabolas the “conjugate” of every direction is the direction of
their axis, i.e. the middles of chords parallel to a fixed direction lie on a line parallel to its
axis.

Theorem 6. The tangents at the extremities {𝑋,𝑌} of a chord of the conic intersect at a point 𝑍0
on the conjugate diameter (line 𝜀′) of the chord-direction (see figure 18).
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Figure 18: Tangents at chord-ends intersect on conjugate diameter
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In fact, with the notation of this section, and 𝑌 = 𝑋 + 𝑠𝑉, the tangents at {𝑋,𝑌} are
the lines

𝑍𝑡𝑀𝑋 = 0 and 𝑍𝑡𝑀𝑌 = 0 with variable 𝑍 .

Their intersection point is determined by the vector product

(𝑀𝑋) × (𝑀𝑌) = (𝑀𝑋) × (𝑀(𝑋 + 𝑠𝑉)) = (𝑀𝑋) × (𝑀𝑋 + 𝑠𝑀𝑉) = 𝑠(𝑀𝑋) × (𝑀𝑉).
And this point is on the line with coefficients the coordinates of 𝑀𝑉 of the conjugate
direction-line, since the mixed product

((𝑀𝑋) × (𝑀𝑌)) ·𝑀𝑉 = (𝑠(𝑀𝑋) × (𝑀𝑉)) ·𝑀𝑉 ,

later expression being a determinant with two equal columns.

24 Polar and pol

The tangent line of a conic at a point of it is a particular case of a more general line asso-
ciated to a point with respect to a conic. In fact, given the point 𝑋0, not necessarily on the
conic, equation (13) makes sense and defines a line w.r.t. the variable 𝑋, depending on
𝑋0 and the conic. This more general line 𝑝𝑋0(𝑋) = 𝑋 𝑡

0𝑀𝑋 = 0, defined through equation
(13), is called the polar of 𝑋0 with respect to the conic and 𝑋0 is called the pol of the line
𝑝𝑋0 .

The polar line is characterized geometrically (see figure 19) as the locus of points 𝑋 for
which the Cross Ratio (𝐴𝐵;𝑋0𝑋) = −1, i.e. as the locus of the harmonic conjugates 𝑋 of
𝑋0 with respect to the intersection points {𝐴, 𝐵} of the conic with a variable line through
𝑋0. Denoting the line through 𝑋0 by 𝛾(𝑡) = 𝑋0+𝑡𝑉 , the intersection points are the roots of
equation (12). If these roots are {𝑡1 , 𝑡2}, then the parameter corresponding to the harmonic
conjugate point of𝑋0 is the harmonicmean of {𝑡1 , 𝑡2} given by 𝑡3 = 2𝑡1𝑡2/(𝑡1 + 𝑡2) . By the
well known formulas for the product and the sum of the roots of the quadratic equation
(12):

𝑡3 =
2𝑡1𝑡2
𝑡1 + 𝑡2 = −𝑋

𝑡
0𝑀𝑋0

𝑋 𝑡
0𝑀𝑉

⇒ 𝑋 = 𝑋0 + 𝑡3𝑉 = 𝑋0 −
𝑋 𝑡

0𝑀𝑋0

𝑋 𝑡
0𝑀𝑉

𝑉.

It is then trivially seen that 𝑋 satisfies the equation of the “polar of” 𝑋0 :

𝑋 𝑡
0𝑀𝑋 = 0. (17)

If the polar 𝑝𝑋0 intersects the conic at the points {𝐶, 𝐷}, then the tangents at these points

X
0

C

D

X

A

B

Figure 19: The polar of 𝑋0

pass through 𝑋0. This is seen by considering the vector 𝑋1 representing such a point. It
satisfies two equations: 𝑋 𝑡

1𝑀𝑋1 = 0 of the conic, and 𝑋 𝑡
0𝑀𝑋1 = 0 of the polar. Hence also

the equation of the tangent at 𝑋1 : 𝑋 𝑡
1𝑀(𝑋1 + 𝑡(𝑋0 − 𝑋1)) = 0.
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Remark 2. Notice that the polar of points 𝑋 on the conic coincides with the tangent at
𝑋. Points 𝑋 whose polar intersects the conic are outer points, i.e. points from which
tangents to the conic can be drawn. Points 𝑋 whose polar does not intersect the conic are
inner points of the conic, from which no real tangents to the conic exist.

Theorem 7 (Pole Polar Reciprocity). If point 𝑋 is on the polar of 𝑋0 then also 𝑋0 is on the
polar of 𝑋.

This follows immediately from the symmetry of the expression 𝑋𝑀𝑋0 = 0.

25 Quadratic equation classification

Here we recapitulate the results concerning the kind of the related conic.

1. the quadratic: 𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0.

2. the 3 invariants: 𝐽1 = 𝐴 + 𝐶, 𝐽2 = 𝐴𝐶 − 𝐵2 , 𝐽3 =

������𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

������ .
3. degenerate: 𝐽3 = 0, and 𝐽2 = 0 ⇒ real double line
4. degenerate: 𝐽3 = 0, and 𝐽2 > 0 ⇒ two complex conjugate lines
5. degenerate: 𝐽3 = 0, and 𝐽2 < 0 ⇒ two real lines

6. 𝐽3 ≠ 0 with 𝐴 · 𝐽3 > 0 and 𝐽2 > 0 ⇒ complex conic
7. 𝐽3 ≠ 0 with 𝐴 · 𝐽3 < 0 and 𝐽2 > 0 ⇒ ellipse
8. 𝐽3 ≠ 0 and 𝐽2 < 0 ⇒ hyperbola
9. 𝐽3 ≠ 0 and 𝐽1 = 0 ⇒ rectangular hyperbola

10. 𝐽3 ≠ 0 and 𝐽2 = 0 ⇒ parabola ⇒ 𝐽3 · 𝐽1 < 0

26 Can you easily find a point on the conic?

We take the opportunity of this question to formulate some exercises. To answer the ques-
tion in the general case it needs to do some work. In special cases it is rather easy. For
example, when the linear term is absent and we have an equation of the form

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 = 0, (18)

which is a special case of degeneration (𝐽3 = 0 , 𝐷 = 𝐸 = 𝐹 = 0), we have the point (0, 0)
on the conic. To find more points in that case, we divide with 𝑦 and consider the corre-
sponding quadratic equation w.r.t. 𝑡 = 𝑥/𝑦 :

𝐴𝑡2 + 2𝐵𝑡 + 𝐶 = 0 with discriminant: − 𝐽2 = 𝐵2 − 𝐴𝐶. (19)

If −𝐽2 > 0 (case 24.nr-5), then there are two real roots {𝑡′, 𝑡′′} and the quadratic decom-
poses to

𝐴𝑡2 + 2𝐵𝑡 + 𝐶 = 𝐴(𝑡 − 𝑡′)(𝑡 − 𝑡′′) = 0 ⇔ 𝑡 − 𝑡′ = 0 or 𝑡 − 𝑡′′ = 0,

which setting 𝑡 = 𝑥/𝑦 leads to a couple of lines through (0, 0) :

𝛽 : 𝑥 − 𝑡′ 𝑦 = 0 and 𝛽′ : 𝑥 − 𝑡′′ 𝑦 = 0 ,
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Figure 20: 𝐴𝑥2 + 2𝑏𝑥𝑦 + 𝐶𝑦2 = 0 and 𝐴𝑥2 + 2𝑏𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0

their union representing the entire degenerate conic in this case. In figure 20 we see
an example of these lines. If to the preceding quadratic part we add the linear part
2𝐷𝑥 + 2𝐸𝑦 + 𝐹 then we get the equation of the general conic

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 , (20)

which under the hypothesis −𝐽2 = 𝐵2 − 𝐴𝐶 > 0 and the assumption 𝐽3 ≠ 0 represents a
hyperbola (see 25-nr-8).

Exercise 3. Under the hypothesis: −𝐽2 = 𝐵2 − 𝐴𝐶 > 0 and 𝐽3 ≠ 0 (the conic is a hyperbola)
show that:

1. The intersections {𝑈,𝑉} of the lines {𝛽′, 𝛽} with the line 𝛾 : 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 are
points of the conic (20).

2. The asymptotes {𝛼, 𝛼′} of the hyperbola are parallel to the lines {𝛽, 𝛽′}.
3. The center 𝐾 of the hyperbola, the origin 𝑂(0, 0) and the middle 𝑀 of the segment 𝑈𝑉

are collinear.
4. The polar 𝑝𝑂 of the origin 𝑂 w.r.t. to the conic is a line parallel to 𝛾 at distance from 𝑂

twice the distance of 𝑂 from 𝛾.

The exercise confirms the result of section 19, since changing only the linear part
2𝐷𝑥 + 2𝐸𝑦 + 𝐹 of the equation (20) we obtain hyperbolas with asymptotes parallel to the
lines {𝛽, 𝛽′} which depend only on the quadratic part of the equation.

In case the discriminant 𝐵2 − 𝐴𝐶 = 0, equation (19) has one double root 𝑡′ = −𝐵/𝐴,
the quadratic equation takes the form 𝐴(𝑡 − 𝑡′)2 = 0 and equation (18) reduces to the “dou-
ble line”:

𝛼2 : 𝐴(𝑥 − 𝑡′𝑦)2 = 0 ⇔ (1/𝐴)(𝐴𝑥 + 𝐵𝑦)2 = 0 for 𝐴 ≠ 0 .

If we add the linear terms, i.e. the line 𝛽 : 2𝐷𝑥 + 2𝐸𝑦 + 𝐹, then, assuming 𝐴 ≠ 0, equa-
tion (20) takes the form

(1/𝐴)(𝐴𝑥 + 𝐵𝑦)2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0 , (21)
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and the intersection point 𝑃 of the lines {𝛼, 𝛽}, if any, is a point of the conic. If the
lines intersect, then we can find additional points 𝑃𝑡 by intersecting the conic with lines
𝛼𝑡 : 𝐴𝑥 + 𝐵𝑦 + 𝑡 = 0 parallel to 𝛼 (see figure 21). This leads to a system of two linear
equations:

𝐴𝑥 + 𝐵𝑦 + 𝑡 = 0,
2𝐴𝐷𝑥 + 2𝐴𝐸𝑦 + (𝐴𝐹 + 𝑡2) = 0.

}
⇒


𝑥 =

𝐴𝐵𝐹 − 2𝐴𝐸𝑡 + 𝐵𝑡2
2𝐴(𝐴𝐸 − 𝐵𝐷) ,

𝑦 = − 𝐴𝐹 − 2𝐷𝑡 + 𝑡2
2(𝐴𝐸 − 𝐵𝐷) .

(22)

giving also a parametrization of the conic, which is a parabola according to 25-nr-10. No-
tice that, by section 20, line 𝛼 is parallel to the axis of the parabola. Thus, all parabolas
resulting by maintaining the same quadratic term (𝛼2) and adding different linear terms
(𝛽) have their axis in the same direction. Furthermore line 𝛽 is tangent to the parabola at
𝑃. In fact, the coordinates of 𝑃 are obtained from equations (22) for 𝑡 = 0 :

𝑥𝑃 =
𝐵𝐹

2(𝐴𝐸 − 𝐵𝐷) , 𝑦𝑃 = − 𝐴𝐹
2(𝐴𝐸 − 𝐵𝐷) ,

and the coefficients of the tangent at 𝑃 are obtained by the matrix multiplication:

α

β

α
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P

P
t

Figure 21: (𝐴𝑥 + 𝐵𝑦)2 + 𝐴(2𝐷𝑥 + 2𝑦 + 𝐹) = 0

(𝑥𝑃 , 𝑦𝑃 , 1) · ©­«
𝐴2 𝐴𝐵 𝐴𝐷
𝐴𝐵 𝐵2 𝐴𝐸
𝐴𝐷 𝐴𝐸 𝐴𝐹

ª®¬ = ( 𝐴𝐷 , 𝐴𝐸 , 𝐴𝐹/2 ) ,

which are half the coefficients of 𝛽.
In the case line 𝛽 does not intersect 𝛼, i.e. the two lines are parallel equation (21)

takes the form

(𝐴𝑥 + 𝐵𝑦)2 + 𝐴(𝐴𝑥 + 𝐵𝑦 + 𝐾) = 0 for some constant 𝐾 ,

and changing the variables as in (8) we get an equation of the form

𝑥′2 + 𝐴𝑥′ + 𝐴𝐾 = 0 ⇒ 𝑥′ = 𝑡′ or 𝑥′ = 𝑡′′ , (𝑡′, 𝑡′′) : the roots of the quadratic.

This shows that the conic degenerates to the couple of parallel lines

𝐴𝑥 + 𝐵𝑦 = 𝑡′
√
𝐴2 + 𝐵2 and 𝐴𝑥 + 𝐵𝑦 = 𝑡′

√
𝐴2 + 𝐵2 ,



27 On the focal points 29

which can be real, distinct or coinciding or imaginary.
Turning back to equation (19) and assuming the discriminant is −𝐽2 = 𝐵2 − 𝐴𝐶 < 0,

we get two complex conjugate roots {𝑢 ± 𝑖 · 𝑣} and the quadratic equation can be written
in the form:

𝐴𝑡2 + 2𝐵𝑡 + 𝐶 = 𝐴(𝑡2 − 2𝑢𝑡 + 𝑢2 + 𝑣2) = 0 .

Adding the linear part, replacing 𝑡 with 𝑥/𝑦 and assuming the conic is non degenerate,
equivalently 𝐽3 ≠ 0, we obtain, according to 25-nr-7, an ellipse represented by

𝑥2 − 2𝑢𝑥𝑦 + (𝑢2 + 𝑣2)𝑦2 + 2(𝐷/𝐴)𝑥 + 2(𝐸/𝐴)𝑦 + 𝐹/𝐴 = 0 .

Figure 22 shows the special ellipse 𝜆 for which 𝐷 = 𝐸 = 0 , 𝑘 = 𝐹/𝐴 < 0 and 𝜆′ a real

AA'

B

B'

β β'

λ

λ'

Figure 22: Ellipse: 𝑥2 − 2𝑢𝑥𝑦 + (𝑢2 + 𝑣2)𝑦2 + 2(𝐷/𝐴)𝑥 + 2(𝐸/𝐴)𝑦 + 𝐹/𝐴 = 0

ellipse for 𝐹/𝐴 = 𝑘 and arbitrary coefficients {𝐷, 𝐸}, line 𝛽 represented by 𝐷𝑥 + 𝐸𝑦 = 0
and line 𝛽′ represented by 2(𝐷/𝐴)𝑥 + 2(𝐸/𝐴)𝑦 + 𝑘 = 0 and being parallel to 𝛽. The el-
lipses {𝜆′,𝜆} intersect on line 𝛽 and the intersection points can be found by solving a
quadratic equation. Notice again, that the directions of the axes is the same for the two
ellipses, since these directions depend on the common quadratic part of their equations.

27 On the focal points

Suppose the quadratic equation with 𝐽2 = 𝐴𝐶 − 𝐵2 ≠ 0, representing a central conic, is
expressed with its center at the origin of coordinates:

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐹 = 0 .

Then, the general transformation of the coordinates as in section 3, is equivalent with
a matrix multiplication, and if this produces the normal form, then we have a diagonal
matrix: (

𝑐 𝑠
−𝑠 𝑐

) (
𝐴 𝐵
𝐵 𝐶

) (
𝑐 −𝑠
𝑠 𝑐

)
=

(
𝐴′ 0
0 𝐵′

)
⇔(

𝐴 𝐵
𝐵 𝐶

) (
𝑐 −𝑠
𝑠 𝑐

)
=

(
𝑐 −𝑠
𝑠 𝑐

) (
𝐴′ 0
0 𝐵′

)
⇔(

𝐴 𝐵
𝐵 𝐶

) (
𝑐
𝑠

)
= 𝐴′

(
𝑐
𝑠

)
and

(
𝐴 𝐵
𝐵 𝐶

) (−𝑠
𝑐

)
= 𝐵′

(−𝑠
𝑐

)
.

This shows that the coefficients {𝐴′, 𝐵′} in the normal form

𝐴′𝑥′2 + 𝐵′𝑦′2 + 𝐹 = 0 (23)
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are the eigenvalues of the matrix 𝑀 =

(
𝐴 𝐵
𝐵 𝐶

)
and the axes of the conic are determined

by the eigenvectors of 𝑀. The equation for the eigenvalues is expressed through the
determinant����𝐴 − 𝜆 𝐵

𝐵 𝐶 − 𝜆

���� = 0 ⇔ 𝜆2 − (𝐴 + 𝐶)𝜆 + 𝐵2 − 𝐴𝐶 = 0 ⇔ 𝜆2 − 𝐽1𝜆 + 𝐽2 = 0 ,

which is equation (5) now obtaining a meaning in from the linear algebra viewpoint. If
we know the signs of the coefficients {𝐴′, 𝐵, 𝐹} we can use this method to locate the focal
points of the conic expressed through this equation. In fact equation (23) can be written

𝑥′2( 𝐹
𝐴′
) + 𝑦′2( 𝐹

𝐵′
) + 1 = 0 . (24)

If both denominators are negative, then this represents an ellipse, which dropping the
primes from the variables is expressed through

𝑥2

𝑎2
0
+ 𝑦2

𝑏2
0
= 1 with 𝑎2

0 = − 𝐹
𝐴′ , 𝑏

2
0 = − 𝐹

𝐵′ .

Assuming 𝑎0 > 𝑏0 , the distance of the focus from the origin is

𝑐0 =
√
𝑎2

0 − 𝑏2
0 =

√
𝐹

𝐴′𝐵′ (𝐴′ − 𝐵′) =

√
𝐹
𝐽2
(𝐴′ − 𝐵′) and the focals are ± 𝑐0

(
𝑐
𝑠

)
.

If 𝐹
𝐴′ < 0 and 𝐹

𝐵′ > 0 then equation (24) can be written

𝑥2

𝑎2
0
− 𝑦2

𝑏2
0
= 1 with 𝑎2

0 = − 𝐹
𝐴′ , 𝑏

2
0 =

𝐹
𝐵′ .

Again the distance of the focus from the origin is

𝑐0 =
√
𝑎2

0 + 𝑏2
0 =

√
𝐹
𝐽2
(𝐴′ − 𝐵′) and the focals are ± 𝑐0

(
𝑐
𝑠

)
.

Related topics
1. Cross Ratio
2. Projective line
3. Projective plane

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e-mail to: pamfilos@uoc.gr
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