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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot, Little Gidding
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1 Homotheties

Homotheties of the plane and their generalization, the “similarities”, to be discussed be‑
low, are transformations which generalize those of “isometries” or “congruences” of the
plane (see file Isometries).

Given a number 𝜅 ≠ 0 and point 𝑂 of the plane, we call “homothety” of “center” 𝑂
and “ratio” 𝜅 the transformation which corresponds: a) to point 𝑂, itself, b) to every point
𝑋 ≠ 𝑂 the point 𝑋′ on the line 𝑂𝑋, such that the following signed ratio relation holds:

𝑂𝑋′

𝑂𝑋 = 𝜅.

A direct consequence of the definition is, that for every point 𝑂 the homothety of center
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Figure 1: Homothety

𝑂 and ratio 𝜅 = 1 is the identity transformation. Often, when the ratio is 𝜅 < 0 we say
that the transformation is an “antihomothety”. Its characteristic is that point 𝑂 is between
𝑋 and 𝑋′.

Theorem 1. The composition of two homotheties with center 𝑂 and ratios 𝜅 and 𝜆 is a homothety
of center 𝑂 and ratio 𝜅 ⋅ 𝜆.

Proof. Obvious consequence of the definition. If 𝑓 and 𝑔 are the two homotheties with the
same center 𝑂 and ratios respectively 𝜅 and 𝜆, then, for every point 𝑋, points 𝑌 = 𝑓 (𝑋),
𝑍 = 𝑔(𝑌) and 𝑂 will be four points on the same line and will satisfy,

𝑂𝑌
𝑂𝑋 = 𝜅, 𝑂𝑍

𝑂𝑌 = 𝜆 ⇒ 𝑂𝑍
𝑂𝑋 = 𝑂𝑍

𝑂𝑌 ⋅ 𝑂𝑌
𝑂𝑋 = 𝜆 ⋅ 𝜅 .

Corollary 1. The inverse transformation of a homothety 𝑓 , of center𝑂 and ratio 𝜅, is the homothety
with the same center and ratio 1

𝜅 .

Remark 1. The homothety is a special transformation closely connected with Thales’ the‑
orem and the “similarity of triangles”, i.e “triangles which have equal corresponding angles”
𝐿𝑒𝑓 𝑡𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤 “triangles which have proportional corresponding sides”.

Two triangles, andmore general two shapes {Σ, Σ′} are called “homothetic”when there
exists a homothety 𝑓 mapping one onto the other 𝑓 (Σ) = Σ′.

Exercise 1. Find all homotheties that transform a given point 𝑋 to another point 𝑋′ ≠ 𝑋.

Homothetic triangles are particular cases of “similar triangles” and are the key to in‑
vestigate properties of more general homothetic shapes.

2 Homotheties and triangles

Theorem 2. A homothety 𝑓 with center 𝑂 maps a triangle 𝑂𝑋𝑌 to a similar triangle 𝑂𝑋′𝑌′

with {𝑋′ = 𝑓 (𝑋), 𝑌′ = 𝑓 (𝑌)}, the sides {𝑋𝑌, 𝑋′𝑌′} being parallel.

Proof. A simple application of Thales’ theorem.

Corollary 1. A homothety maps a line 𝜀 to a parallel line 𝜀′.

Exercise 2. Find all homotheties that transform a given line 𝜀 to a given parallel to it 𝜀′. Distin‑
guish the cases {𝜀 ≠ 𝜀′ , 𝜀 = 𝜀′}.

Theorem 3. A homothety maps a triangle 𝐴𝐵𝐶 to a similar triangle 𝐴′𝐵′𝐶′.

Proof. Application of the previous corollary and Thales’ theorem.

Corollary 2. A homothety 𝑓 preserves the angles and multiplies the distances between points with
its ratio. In other words, for every pair of points𝑋,𝑌 and their images𝑋′ = 𝑓 (𝑋),𝑌′ = 𝑓 (𝑌) holds
|𝑋′𝑌′| = 𝜅|𝑋𝑌| and for every three points the respective angles are preserved ̂𝑌′𝑋′𝑍′ = 𝑌𝑋𝑍.
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Exercise 3. Show that there is no genuine homothety with ratio 𝑘 ≠ 1 mapping a triangle to
itself.

Theorem 4. Two triangles 𝐴𝐵𝐶 and 𝐴′𝐵′C′, which have their corresponding sides parallel are
similar.
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Figure 2: Triangles with corresponding sides parallel

Proof. Translate triangle 𝐴′𝐵′C′ and place it in such a way, that the vertices 𝐴 and 𝐴′

coincide and the lines of their sides 𝐴𝐵, 𝐴C coincide respectively with 𝐴′𝐵′ and 𝐴′C′ (See
Figure 2). The translated triangle will take the position 𝐴𝐵1C1 or 𝐴𝐵2C2, with its third
side parallel to 𝐵C. Therefore, it will be similar to 𝐴𝐵𝐶, while it is also congruent to the
initial 𝐴′𝐵′C′.

Theorem 5. For two triangles 𝐴𝐵𝐶 and 𝐴′𝐵′C′, which have parallel corresponding sides, the
lines 𝐴𝐴′, 𝐵𝐵′ and CC′, which join the vertices with the corresponding equal angles, either pass
through a common point and the triangles are homothetic, or are parallel and the triangles are
congruent.
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Figure 3: Homothetic triangles

Proof. Let 𝑂 be the intersection point of 𝐴𝐴′ and 𝐵𝐵′. We will show that CC′ also passes
through point 𝑂. According to Thales, we have equal ratios |𝐴𝐵|

|𝐴′𝐵′| =
|𝑂𝐴|
|𝑂𝐴′|=

|𝑂𝐵|
|𝑂𝐵′| =𝜅. Con‑

sider therefore on 𝑂C point C″ with |𝑂C|
|𝑂C″|=𝜅. The created triangle 𝐴′𝐵′C″ has sides pro‑

portional to those of𝐴𝐵𝐶, therefore it is similar to it and consequently has the same angles.
It follows, that 𝐴′𝐵′C′ and 𝐴′𝐵′C″ have 𝐴′𝐵′ in common and same angles at 𝐴′ and 𝐵′,
therefore they coincide and C′ = C″, in other words, 𝑂C passes through C′ too.

This reasoning shows also that, if the two lines 𝐴𝐴′ and 𝐵𝐵′ do not intersect, that is if
they are parallel, then the third line will also be necessarily parallel to them and 𝐴𝐵𝐵′𝐴′,
𝐵CC′𝐵′ and 𝐴CC′𝐴′ will be parallelograms, therefore the triangles will have correspond‑
ing sides equal.
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3 Homotheties with different centers

Theorem 6. The composition of two homotheties 𝑓 and 𝑔 with different centers𝑂 and 𝑃 and ratios
respectively 𝜅 and 𝜆, with 𝜅 ⋅ 𝜆 ≠ 1, is a homothety with center 𝑇 on the line 𝑂𝑃 and ratio equal
to 𝜅 ⋅ 𝜆.

Proof. The proof is an interesting application of Menelaus’ theorem (see file Menelaus’
theorem). Let 𝑋 be an arbitrary point and 𝑌 = 𝑓 (𝑋), 𝑍 = 𝑔(𝑌). This defines the triangle
𝑂𝑌𝑃 and the points 𝑋, 𝑍 are contained in its sides 𝑂𝑌 and 𝑌𝑃 respectively. Let 𝑇 be the
intersection point of 𝑍𝑋 with 𝑂𝑃. Applying Menelaus’ theorem we have,

OP

X

Y
Z

T

Figure 4: Composition of homotheties with 𝜅𝜆 ≠ 1

𝑋𝑂
𝑋𝑌 ⋅ 𝑍𝑌

𝑍𝑃 ⋅ 𝑇𝑃
𝑇𝑂 = 1 ⇒ 𝑇𝑃

𝑇𝑂 = 𝑋𝑌
𝑋𝑂 ⋅ 𝑍𝑃

𝑍𝑌 .

However, for the oriented line segments holds

𝑋𝑌 = 𝑋𝑂 + 𝑂𝑌 ⇒ 𝑋𝑌
𝑋𝑂 = 𝑋𝑂 + 𝑂𝑌

𝑋𝑂 = 1 + 𝑂𝑌
𝑋𝑂 = 1 − 𝜅,

𝑍𝑌 = 𝑍𝑃 + 𝑃𝑌 ⇒ 𝑍𝑌
𝑍𝑃 = 𝑍𝑃 + 𝑃𝑌

𝑍𝑃 = 1 + 𝑃𝑌
𝑍𝑃 = 1 − 1

𝜆 ⇒

𝑇𝑃
𝑇𝑂 = 𝑋𝑌

𝑋𝑂 ⋅ 𝑍𝑃
𝑍𝑌 = (1 − 𝜅) ⋅ ⎛⎜⎜

⎝

1
1 − 1

𝜆

⎞⎟⎟
⎠

= 𝜆 ⋅ (1 − 𝜅)
𝜆 − 1 .

The last formula shows, that the position of 𝑇 on the line 𝑂𝑃 is fixed and independent
of 𝑋. In addition, the ratio 𝜇 = 𝑇𝑍

𝑇𝑋 is calculated, by applying Menelaus’ theorem to the
triangle 𝑂𝑋𝑇, this time with 𝑃𝑌 as secant:

𝑃𝑇
𝑃𝑂 ⋅ 𝑍𝑋

𝑍𝑇 ⋅ 𝑌𝑂
𝑌𝑋 = 1 ⇒

𝑍𝑋
𝑍𝑇 = 𝑌𝑋

𝑌𝑂 ⋅ 𝑃𝑂
𝑃𝑇 ⇔

𝑍𝑇 + 𝑇𝑋
𝑍𝑇 = 𝑌𝑂 + 𝑂𝑋

𝑌𝑂 ⋅ 𝑃𝑇 + 𝑇𝑂
𝑃𝑇 ⇔

1 − 1
𝜇 = (1 + 𝑂𝑋

𝑌𝑂) (1 + 𝑇𝑂
𝑃𝑇 ) ⇔

1 − 1
𝜇 = (1 − 1

𝜅 ) (1 − 𝜆 − 1
𝜆(1 − 𝜅)) ⇔

𝜇 = 𝜅𝜆 .

Theorem 7. The composition of two homotheties 𝑓 and 𝑔 with different centers 𝑂 and 𝑃 respec‑
tively and ratios 𝜅 and 𝜆 with 𝜅 ⋅ 𝜆 = 1 is a translation by interval parallel to 𝑂𝑃.
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Figure 5: Composition of homotheties with 𝜅𝜆 = 1

Proof. Let 𝑋 be an arbitrary point and 𝑌 = 𝑓 (𝑋), 𝑍 = 𝑔(𝑌). This defines the triangle 𝑂𝑌𝑃
and the points 𝑋, 𝑍 are contained in its sides 𝑂𝑌 and 𝑌𝑃 respectively. According to the
hypothesis

𝑌𝑋
𝑌𝑂 = 𝑌𝑂 + 𝑂𝑋

𝑌𝑂 = 1 − 1
𝜅 , 𝑌𝑍

𝑌𝑃 = 𝑌𝑃 + 𝑃𝑍
𝑌𝑃 = 1 − 𝑃𝑍

𝑌𝑃 = 1 − 𝜆 = 1 − 1
𝜅 .

The equality of the ratios shows, that the line segment 𝑋𝑍 is parallel to 𝑂𝑃. From the
similarity of triangles 𝑌𝑂𝑃 and 𝑌𝑋𝑍, follows that

𝑋𝑍 = (1 − 𝜆)𝑂𝑃,

therefore 𝑋𝑍 has fixed length and direction.

4 Homotheties and translations

Theorem 8. The composition 𝑔 ∘ 𝑓 of a homothety and a translation 𝑔 is a homothety.

Proof. Assume that the homothety has center 𝑂 and ratio 𝜅 and the translation is defined
by the fixed, oriented line segment 𝐴𝐵. Let also 𝑋 ≠ 𝑂 be arbitrary and 𝑌 = 𝑓 (𝑋), 𝑍 =
𝑔(𝑌). Assume finally that 𝑃 is the intersection of the line 𝑋𝑍 and the line 𝜀 is the parallel

A B
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O
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ε

Figure 6: Compositions of homotheties and a translation

to 𝐴𝐵 from 𝑂 (See Figure 6). From the similarity of the triangles 𝑋𝑌𝑍 and 𝑂𝑋𝑃 follows
that

𝑂𝑃
𝐴𝐵 = 𝑂𝑃

𝑌𝑍 = 𝑂𝑋
𝑌𝑋 = 𝑂𝑋

𝑌𝑂 + 𝑂𝑋 = 1
𝑌𝑂+𝑂𝑋

𝑂𝑋
= 1

1 − 𝜅 ⇒ 𝑂𝑃 = 1
1 − 𝜅 𝐴𝐵.

It follows that the position of 𝑃 on 𝜀 is fixed and independent of 𝑋. Also for the ratio,

𝑃𝑍
𝑃𝑋 = 𝑂𝑌

𝑂𝑋 = 𝜅.

Therefore the composition 𝑔 ∘ 𝑓 is a homothety of center 𝑃 and ratio 𝜅.

Exercise 4. Show that the composition 𝑔 ∘ 𝑓 of a translation 𝑓 and a homothety 𝑔 is a homothety.

Remark 2. The last theorems and the exercise show that homotheties and translations
build a closed, as we say, set of transformations with respect to composition. We saw
something similar also for rotations and translations (see file Isometries).
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Figure 7: Composition of a homothety and a reflection

Exercise 5. Consider a line 𝜀 and a point 𝑂 at distance 𝑎 from it. Let 𝑓1 be the homothety with
center at 𝑂 and ratio 𝑘 and 𝑓2 the reflection in 𝜀. Show that the compositions 𝑔 = 𝑓2 ∘ 𝑓1 and
ℎ = 𝑓1 ∘ 𝑓2 differ by a translation. In other words, for every point 𝑋 of the plane it is valid
ℎ(𝑋) − 𝑔(𝑋) = 𝑏, where 𝑏 is a line segment of length |2𝑎(1 − 𝑘)| and direction orthogonal to 𝜀
(See Figure 7).

Exercise 6. Given two circles with different radii, show that there exist homotheties which map
one to the other. How many are there? What are their centers and ratios?

Exercise 7. Given two circles 𝜅 and 𝜆, draw a line intersecting them, which forms chords 𝐴𝐵,
CD, having given lengths ([2, 𝑝. 21]).

Exercise 8. Show that a shape �, with more than one points, for which there is a homothety 𝑓 ,
different from the identity, leaving Σ invariant (𝑓 (Σ) = Σ), extends to infinity. Find a shape
example with this property.

Hint: If 𝑓 leaves � invariant, then also the inverse homothety 𝑔 = 𝑓 −1 will leave it invariant.
If {𝑂, 𝑘} is the center and the ratio of 𝑓 , then {𝑂, 1

𝑘 }will be respectively the center and ratio
of the inverse homothety. Thus, we can assume 𝑘 > 1. Then if𝑋 is an arbitrary point ofΣ,
the 𝑋′ = 𝑓 (𝑋) will satisfy |𝑂𝑋′| = 𝑘|𝑂𝑋|. Repeating this procedure we find 𝑋″ = 𝑓 (𝑋′),
with |𝑂𝑋″| = 𝑘2|𝑂𝑋| and after 𝑛 similar steps, we find points 𝑋(𝑛) = 𝑓 (𝑋(𝑛−1)), with
|𝑂𝑋(𝑛)| = 𝑘𝑛|𝑂𝑋|.

A shape example with the aforementioned property is a set of lines through a fixed
point 𝑂.

5 Representation and group properties of homotheties

Fixing a cartesian coordinate system, the homothety with center 𝑂 and ratio 𝑘 is repre‑
sented using vectors by :

𝑌 = 𝑂 + 𝑘 ⋅ (𝑋 − 𝑂) ⇔ {𝑦1 = 𝑜1 + 𝑘(𝑥1 − 𝑜1) , 𝑦2 = 𝑜2 + 𝑘(𝑥2 − 𝑜2)}. (1)

Using matrices, this is equivalent to :

⎛⎜⎜⎜
⎝

𝑦1
𝑦2
1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑘 0 (1 − 𝑘)𝑜1
0 𝑘 (1 − 𝑘)𝑜2
0 0 1

⎞⎟⎟⎟
⎠

⋅ ⎛⎜⎜⎜
⎝

𝑥1
𝑥2
1

⎞⎟⎟⎟
⎠

. (2)

The product of two such matrices is of the same form :

⎛⎜⎜⎜
⎝

𝑘 0 (1 − 𝑘)𝑜1
0 𝑘 (1 − 𝑘)𝑜2
0 0 1

⎞⎟⎟⎟
⎠

⋅ ⎛⎜⎜⎜
⎝

𝑘′ 0 (1 − 𝑘′)𝑜′
1

0 𝑘′ (1 − 𝑘′)𝑜′
2

0 0 1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑘″ 0 (1 − 𝑘″)𝑜″
1

0 𝑘″ (1 − 𝑘″)𝑜″
2

0 0 1

⎞⎟⎟⎟
⎠

, (3)
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with 𝑘″ = 𝑘 ⋅ 𝑘′ and 𝑂″ = 𝑘(1 − 𝑘′)
1 − 𝑘𝑘′ 𝑂 + 1 − 𝑘

1 − 𝑘𝑘′ 𝑂′ .

Equation (2) shows that the general homothetic transformation is a product of a homoth‑
ety centered at the origin and a translation with corresponding matrix representations:

⎛⎜⎜⎜
⎝

𝑘 0 0
0 𝑘 0
0 0 1

⎞⎟⎟⎟
⎠

and
⎛⎜⎜⎜
⎝

1 0 (1 − 𝑘)𝑜1
0 1 (1 − 𝑘)𝑜2
0 0 1

⎞⎟⎟⎟
⎠

.

In the language of “groups” the preceding discussion and matrix representations reflect
the following properties:

1. The set of “homotheties + translations” constitutes a group 𝐺.

2. The homotheties with a given fixed center 𝑂 constitute a subgroup 𝐺𝑂 of 𝐺.

3. The set of translations constitute also a subgroup 𝑇 of 𝐺.

6 Similarities, general definitions

The first encounter with the notion of similarity is perhaps that of “similar triangles”, i.e.
“triangles having equal respective angles” ⇔ “triangles having proportional respective sides”.
The material discussed here handles this notion and its generalizations for more general
shapes, like polygons, from the viewpoint of transformations of the plane.

“Similarity” is called a transformation 𝑓 of the plane, which multiplies the distances
of points with a constant 𝜅 > 0, which is called “ratio” or “scale” of the similarity. By
definition then, for every pair of points {𝑋 , 𝑌} a similarity corresponds points

𝑋′ = 𝑓 (𝑋) , 𝑌′ = 𝑓 (𝑌) , which satisfy |𝑋′𝑌′| = 𝜅 ⋅ |𝑋𝑌| .

This general definition includes the “isometries” or “congruences”, for which 𝜅 = 1, and
the homotheties. Simillarities not coincident with isometries, in other words, similarities
for which 𝜅 ≠ 1 are called “proper” similarities. As we will see further down (Theorem
15), proper similarities are divided into two categories: “direct similarities” or “rotational
similarities” and “antisimilarities” or “reflective similarities” [3, 𝑝. 217].

A direct similarity or rotational similarity is defined as a composition 𝑔 ∘ 𝑓 of a rotation 𝑓
and a homothety 𝑔, which shares the same center with 𝑓 . The rotation angle of 𝑓 is called
“angle of similarity”. An antisimilarity is defined as a composition 𝑔 ∘ 𝑓 of a reflection 𝑓 and
a homothety 𝑔 with center on the axis of the reflection 𝑓 . The axis of 𝑓 is called “axis of
antisimilarity”.

Remark 3. In both categories therefore there exists a point, the center 𝑂 of the homothety
𝑔 which is fixed under the transformation. Obviously, proper similarities cannot have
also a second fixed point 𝑇 different from 𝑂. For if they had, then for the two points and
their images 𝑂′ = 𝑓 (𝑂) = 𝑂, 𝑇′ = 𝑓 (𝑇) = 𝑇 would hold |𝑂𝑇| = |𝑂′𝑇′|, while a proper
similarity requires |𝑂′𝑇′| = 𝜅|𝑂𝑇| with 𝜅 ≠ 1. This unique fixed point is called “center” of
the proper similarity.

The order of the transformations, which participate in the definition of a proper sim‑
ilarity, is irrelevant because of the following theorem.
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Figure 8: Commutativity of rotation and concentric homothety

Theorem 9. The two transformations, which participate in the definition of a proper similarity,
commute (𝑔 ∘ 𝑓 = 𝑓 ∘ 𝑔).

Proof. Let us see the proof for the direct similarities, which are compositions 𝑔 ∘ 𝑓 of rota‑
tions 𝑓 and homotheties 𝑔 (See Figure 8). The proof for antisimilarities is similar. For the
proof then, it suffices to observe the orbit of an arbitrary point 𝑋 under the application of
the two transformations. According to 𝑔 ∘ 𝑓 , we first rotate 𝑋, about the center 𝑂 of the
rotation, to 𝑌 and next we take the homothetic 𝑍 of 𝑌. It holds therefore (𝑋𝑂𝑌) = 𝜔 and
𝑂𝑍
𝑂𝑌 = 𝜅, where 𝜔 is the angle of rotation of 𝑓 and 𝜅 the homothety ratio of 𝑔. According
to 𝑓 ∘ 𝑔, we first take the homothetic 𝑌′ of 𝑋 and next we rotate 𝑌′ by 𝜔. It is obvious that
the two processes give the same final result, which is the point 𝑍.

O
X

Y

ω

Χ'

Figure 9: Triangles 𝑂𝑋𝑌 for direct similarities

Theorem 10. For every direct similarity 𝑓 with center 𝑂 and rotation angle, which is not a mul‑
tiple of 𝜋, the triangles 𝑂𝑋𝑌 with 𝑌 = 𝑓 (𝑋), which result for the different positions of 𝑋 on the
plane, are similar.

Proof. Direct consequence of the definition, according to which 𝑋𝑂𝑌 is the rotation angle
𝜔 and the ratio |𝑂𝑌|

|𝑂𝑋| is the ratio 𝜅 of the similarity,

ε
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Χ'
Υ

O

(Ι)
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εΑO

κ
(ΙΙ)

Figure 10: Antisimilarity ... and Apollonian circles

Theorem 11. For every antisimilarity 𝑓 with center 𝑂 and axis 𝜀 and every point 𝑋 of the plane,
for which points 𝑂, 𝑋, 𝑌 = 𝑓 (𝑋) are not collinear, the angles 𝑋𝑂𝑌 have the same bisectors, which
coincide with 𝜀 and its orthogonal 𝜀′ at 𝑂. Points 𝑋 of 𝜀 and 𝜀′ are the only points for which 𝑂,
𝑋, 𝑌 are collinear.
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Proof. Direct consequence of the definition, according to which the lines 𝑂𝑋, 𝑂𝑌 are al‑
ways symmetric relative to 𝜀 (See Figure 10‑I).

Exercise 9. Show that, if 𝑓 is an anitsimilarity with center at 𝑂 and axis 𝜀, then for every point
𝑋 different from 𝑂 and its image 𝑌 = 𝑓 (𝑋), holds |𝑘| = |𝑂𝑌|

|𝑂𝑋| = |𝐴𝑌|
|𝐴𝑋| , where 𝑘 is the similarity

ratio and 𝐴 is the intersection point of line 𝑋𝑌 with line 𝜀. Conclude that the Apollonian circle
𝜅 of the segment 𝑋𝑌 for the ratio |𝑘| (see file Apollonian circles), passes through points {𝑂, 𝐴}
and points {𝑋, 𝑌} are inverse with respect to 𝜅 (See Figure 10‑II).

A B

A'

B'
ε

Ο

Figure 11: {𝐴𝐵, 𝐴′𝐵′} equally inclined to the axis 𝜀

Exercise 10. Show that, if 𝑓 is an anitsimilarity with center at 𝑂 and axis 𝜀, then for any two
points {𝐴, 𝐵} and their images {𝐴′, 𝐵′} the segments {𝐴𝐵, 𝐴′𝐵′} are equally inclined to the axis,
i.e. a bisector of their angle is parallel to 𝜀 (see figure 11).

Exercise 11. Show that for every triple of non collinear points 𝑋, 𝑌, 𝑍 and their images 𝑋′, 𝑌′,
𝑍′ through a similarity, triangles 𝑋𝑌𝑍 and 𝑋′𝑌′𝑍′ are similar.

Exercise 12. Show that a direct similaritymaps a triangle𝐴𝐵C to a similar triangle𝐴′𝐵′C′, which
is also similarly oriented to 𝐴𝐵C. An antisimilarity reverses the orientation of the triangles.

Exercise 13. Show that a similarity maps a line 𝜀 to a line 𝜀′ and a circle 𝜅 to a circle 𝜅′.

Exercise 14. Show that two similarities 𝑓 , 𝑔, which are coincident at two different points 𝐴 and
𝐵, they are coincident at every point of the line 𝐴𝐵. Conclude then, that the composition of the
transformations 𝑔−1 ∘ 𝑓 is either the identity transformation or a reflection.

Exercise 15. Show that two similarities 𝑓 , 𝑔, which are coincident at three non collinear points,
they are coincident at every point of the plane.

7 Similarities defined by two segments

A basic property of similarities is expressed with the following theorem:

Theorem 12. For two line segments 𝐴𝐵 and 𝐴′𝐵′ of the plane, of different length, there exists a
unique direct similarity which maps 𝐴 to 𝐴′ and 𝐵 to 𝐵′, consequently mapping 𝐴𝐵 to 𝐴′𝐵′.
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Α
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Figure 12: Similarity from two line segments

Proof. Leaving the special cases for the end, let us assume that the two segments are in
general position and the lines they define intersect at a point 𝑇. This defines two circles
(𝐴𝐴′𝑇) and (𝐵𝐵′𝑇)which intersect not only at 𝑇 but also at a second point𝑂. The quadri‑
laterals 𝑇𝐵𝑂𝐵′ and 𝑇𝐴𝑂𝐴′ are inscriptible in circle, therefore their angles at 𝑂 are equal
as supplementary to the angle at 𝑇. This shows that (𝐴𝑂𝐴′) = (𝐵𝑂𝐵′) and defines the
rotation 𝑓 of the similarity. From this property follows that the angles of triangles 𝐴′𝐵′𝑂
and 𝐴𝐵𝑂 at 𝑂 are equal as are their angles at 𝐴′ and 𝐴 (as internal and opposite external
in quadrilateral 𝐴𝑂𝐴′𝑇). It follows that the two triangles are similar and the similarity
ratio is 𝜅 = |𝐴′𝐵′|

|𝐴𝐵| . The wanted similarity then is the composition of the rotation 𝑓 and the
similarity with ratio 𝜅 and center 𝑂.
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Α'
A

B

Β'
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Ο
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Figure 13: Similarity from two parallel line segments

In the special case where 𝑇 does not exist, that is when 𝐴𝐵 and 𝐴′𝐵′ are parallel and not
collinear, then 𝑂 is the intersection point of 𝐴𝐴′ and 𝐵𝐵′. If 𝐴𝐵 and 𝐴′𝐵′ are equally
oriented, then the wanted similarity is the homothety with center 𝑂 and ratio 𝜅 = |𝐴′𝐵′|

|𝐴𝐵| .
If 𝐴𝐵 and 𝐴′𝐵′ are inversely oriented, then the wanted similarity is the composition of
the rotation 𝑓 by 𝜋 about 𝑂 (which coincides with point symmetry relative to 𝑂) and the
homothety with ratio 𝜅 = |𝐴′𝐵′|

|𝐴𝐵| relative to 𝑂. The reasoning for collinear 𝐴𝐵 and 𝐴′𝐵′ is
similar, but I leave this case as an exercise.

The uniqueness of this similarity follows from the fact that the arguments can be re‑
versed. If 𝑂 is the center of a similarity, which maps 𝐴𝐵 to 𝐴′𝐵′, then for the angles,
(𝐴𝑂𝐴′) = (𝐵𝑂𝐵′) and further the triangles 𝐴𝑂𝐵 and 𝐴′𝑂𝐵′ will be similar. This however
means that the quadrilaterals 𝐴𝑂𝐴′𝑇 and 𝐵𝑂𝐵′𝑇 are inscriptible in circles and 𝑂 is the
intersection point of the circles (𝐴𝑇𝐴′) and (𝐵𝑇𝐵′), as in the previous case.

Theorem 13. For two line segments 𝐴𝐵 and 𝐴′𝐵′ of the plane, of different length, there exists a
unique antisimilarity, which maps 𝐴 to 𝐴′ and 𝐵 to 𝐵′, consequently mapping 𝐴𝐵 to 𝐴′𝐵′.

Proof. We want an antisimilarity whose ratio 𝜅 = |𝐴′𝐵′|
|𝐴𝐵| we know. Therefore it suffices to

find its center 𝑂′. This point will be on the bisectors of the angles ̂𝐴𝑂′𝐴′ and 𝐵𝑂𝐵′ (the‑
orem 11). These bisectors will intersect the respective sides 𝐴𝐴′ and 𝐵𝐵′ of the triangles
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Figure 14: Antisimilarity from two line segments

𝐴𝑂𝐴′ and 𝐵𝑂𝐵′ at points which divide them in ratio 𝜅. Therefore 𝑂′ will be contained in
the two Apollonian circles 𝑘𝐴 and 𝑘𝐵, which are respectively the loci of the points which
divide segments 𝐴𝐴′ and 𝐵𝐵′ in ratio 𝜅. Consequently it will coincide with an intersec‑
tion point of these circles. A similar property will be valid also for the center 𝑂 of the
direct similarity, which is guaranteed by the previous theorem. Therefore this, too will
be contained in the intersection of 𝑘𝐴 and 𝑘𝐵. Consequently the two circles will intersect.
From the equality of ratios

|𝑂𝐴|
|𝑂𝐴′| = |𝑂𝐵|

|𝑂𝐵′| = |𝑂′𝐴|
|𝑂′𝐴′| = |𝑂′𝐵|

|𝑂′𝐵′| = |𝐴𝐵|
|𝐴′𝐵′| ,

it follows that triangles 𝑂′𝐴𝐵 and 𝑂′𝐴′𝐵′ are similar and 𝑂𝐴𝐵, 𝑂𝐴′𝐵′ are also equal.
In the case where the two circles intersect at exactly two points (See Figure 14), it is

impossible for both pairs of similar triangles to consist of similarly oriented triangles.
This, because otherwise we would have two direct similarities with centers at 𝑂 and 𝑂′,
something which is excluded by the previous theorem. Therefore one of the two pairs
will consist of reversely oriented triangles and consequently one of the two will be an
antisimilarity and the other a direct similarity (see remark 4).

Α
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Α'

Β'

Ο

Γ
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Δ

Δ'

Figure 15: Coincidence of centers of similarity and antisimilarity

If the two points 𝑂 and 𝑂′ coincide then 𝐴𝐴′ and 𝐵𝐵′ must be parallel (See Figure 15).
Indeed, then, the bisectors of the angles 𝐴𝑂𝐴′ and 𝐵𝑂𝐵′ will coincide and the two circles
𝑘𝐴 and 𝑘𝐵 will be tangent at 𝑂. However the lines 𝐴𝐴′ and 𝐵𝐵′ contain the diametrically
opposite pairs of points C, C′ and D, D′ respectively, which are defined by the mutually
orthogonal bisectors which pass through 𝑂. Because of the circle tangency at 𝑂, the di‑
ameters CC′ and DD′, which are excised by the two orthogonal lines on the circles are
parallel, something which proves the claim. In this case the direct similarity has rotation
angle 𝐴𝑂𝐴′ and the antisimilarity has axis line CD.

In the special case, in which the lines 𝐴𝐵 and 𝐴′𝐵′ are parallel, the two Apollonian
circles pass through the intersection point 𝑂 of 𝐴𝐴′ and 𝐵𝐵′, which is a homothety center
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Figure 16: Centers of similarity and antisimilarity when 𝐴𝐵||𝐴′𝐵′

and, consequently, the center of a direct similarity between 𝐴𝐴′ and 𝐵𝐵′. The antisimilar‑
ity center coincides in this case also with the other intersection point 𝑂′ of the two circles
(See Figure 16).

Exercise 16. Complete the proof of the last two theorems, by examining the case where 𝐴𝐵 and
𝐴′𝐵′ are on the same line.
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Figure 17: The line 𝑄𝑇 and the right angle ̂𝑄𝐷1𝐷2

Theorem 14. Let {𝐷1, 𝐷2} be the similarity centers of the direct and indirect(antisimilarity) map‑
ping the segment 𝐴𝐵 onto 𝐴′𝐵′ (see figure 17). Let also𝑄 denote the intersection 𝐴𝐵 ∩ 𝐴′𝐵′

and consider the circles {𝜅1 = (𝐵𝑄𝐵′), 𝜅2 = (𝐴𝑄𝑄′)}, whose second intersection defines 𝐷1. The
second intersection point 𝐷2 ≠ 𝐷1 of the Apollonian circles {𝜆1, 𝜆2} of the segments {𝐴𝐴′, 𝐵𝐵′}
w.r.t. the ratio 𝑟 = 𝐴𝐵/𝐴′𝐵′ defines the center of the antisimilarity mapping 𝐴𝐵 onto 𝐴′𝐵′. Let
also {𝑆 = 𝜅1 ∩ 𝜆1, 𝑇 = 𝜅2 ∩ 𝜆2}. The following are valid properties.

1. Triangles {𝐴𝑆𝐴′, 𝐵𝑇𝐵′} are similar.
2. Points {𝑇, 𝑆, 𝑄} are collinear.
3. 𝐷2 is collinear with {𝑇, 𝑆, 𝑄}.
4. The angle ̂𝐷2𝐷1𝑄 is right.
5. The lines {𝑄𝐷1, 𝑄𝐷2} are harmonic conjugate w.r.t. {𝐴𝐵, 𝐴′𝐵′}.
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Proof. Nr‑1 is valid because the ratios 𝑆𝐴/𝑆𝐴′ = 𝑇𝐵/𝑇𝐵′ = 𝑟 and the angles are equal:
̂𝑆 = 𝑇 = 𝜋 − 𝑄.
Nr‑2 is valid because 𝐴𝑄𝑆 = 𝐴𝐴′𝑆 = 𝐵𝐵′𝑇 = 𝐵𝑄𝑇.
Nr‑3 is valid because the line 𝑇𝑆 is characterized by the ratio of distances of its points

from the segments 𝑑(𝑋, 𝐴𝐵)/𝑑(𝑋, 𝐴′𝐵′) = 𝑟, satisfied by {𝑆, 𝑇}. But 𝐷2 satisfies also this
condition, hence belongs to that line.

Nr‑4 follows by an angle chasing argument. ̂𝐷2𝐷1𝑂2 = ̂𝐷1𝑇𝐷2 because 𝐷1𝑂2 is tan‑
gent to 𝜆2 at 𝐷1. This follows from the fact that 𝜅2 passing through {𝐵, 𝐵′}, which are in‑
verse relative to 𝜆2 is orthogonal to 𝜆2. Also ̂𝑂2𝐷1𝑄 = 1

2(𝜋 − ̂𝐷1𝑂2𝑄) = 𝜋/2 − 𝐷1𝑇𝑄.
Nr‑5 is a consequence of the characterization of their points to have ratio of distances

from {𝐴𝐵, 𝐴′𝐵′}: 𝑑(𝑋, 𝐴𝐵)/𝑑(𝑋, 𝐴′𝐵′) = 𝑟.

Remark 4. Thepreceding theoremmakesmore precise the distinction between the centers
{𝐷1, 𝐷2} respectively of the direct similarity and the antisimilarity mapping the segment
𝐴𝐵 onto 𝐴′𝐵′ : In the right angled triangle 𝑄𝐷1𝐷2 the right angle is at 𝐷1.
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Figure 18: Collinear points {𝑂2, 𝑆, 𝑀}

Exercise 17. With the notation and conventions of the preceding theorem show that:
1. The triangle 𝐷1𝑂2𝑃2 is similar to △𝐷2𝐷1𝑄 (see figure 18).
2. The line 𝑂2𝑆 passes through the second intersection point 𝑀 of the two circles 𝜆1 and

𝑃2𝐷1𝑂2 .

Hint: For nr‑2 consider 𝑀 as second intersection of the circle 𝜈2 = (𝑃2𝐷1𝑂2) with line
𝑂2𝑆 and show that 𝑀 ∈ 𝜆2. For this it suffices to show that 𝐷1𝑀𝑆 = ̂𝐷1𝐷2𝑆.

8 Similarities and orientation

Theorem 15. Every proper similarity is a direct similarity, if it preserves the orientation of tri‑
angles and an antisimilarity if it reverses the orientation of triangles.
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Proof. Indeed, let 𝑋, 𝑌 be two different points and 𝑋′ = 𝑓 (𝑋), 𝑌′ = 𝑓 (𝑌) their images by
the similarity. Assume also that 𝑓 preserves the orientation of triangles and 𝑔 is the direct
similarity, which maps 𝑋 to 𝑋′ and 𝑌 to 𝑌′ (Theorem 12). Then the two similarities 𝑓 and
𝑔 coincide on the entire line 𝑋𝑌 (Exercise 12). Let 𝑍 be a point not on the line 𝑋𝑌. The
triangle 𝑋𝑌𝑍 maps by 𝑓 to the similar and similarly oriented (to 𝑋𝑌𝑍) triangle 𝑋′𝑌′𝑍′.
The same happens with 𝑔. It also maps 𝑋𝑌𝑍 to a similar and similarly oriented triangle
𝑋′𝑌′𝑍″. Triangles 𝑋𝑌𝑍, 𝑋′𝑌′𝑍′, 𝑋′𝑌′𝑍″ are similar and similarly oriented, and the last
two have 𝑋′𝑌′ in common. Therefore they either coincide or one is the mirror image of
the other. The latter however cannot happen, because then the two triangles would have
reverse orientation. Therefore the triangles coincide and consequently 𝑍′ = 𝑍″, in other
words 𝑓 and 𝑔 are coincident on three non collinear points, therefore they are coincident
everywhere and holds 𝑓 = 𝑔.

The case where the transformation 𝑓 reverses the orientation of the triangles is proved
similarly.

Corollary 2. Every proper similarity has exactly one fixed point.

Exercise 18. Determine the fixed point of a given proper similarity 𝑓 .

Hint:Use Theorem 12 for direct similarities and Theorem 13 for antisimilarities ([4, 𝑝. 74]).

9 Similarities and triangles

Exercise 19. Show that, for two similar but not congruent triangles𝐴𝐵C and𝐴′𝐵′C′, there exists
a unique proper similarity which maps 𝐴𝐵C to 𝐴′𝐵′C′.

Hint: Use the similarity (direct or antisimilarity) which maps 𝐴𝐵 to 𝐴′𝐵′.

The next two exercises show, that in the definition of the proper similarity it is not neces‑
sary to restrict ourselves to homotheties and rotations (resp. reflections) with coincident
centers (resp. with homothety center on the the axis of the reflection). Even if the cen‑
ters are different (resp. the center is not on the axis of reflection), the composition of a
homothety and a rotation (resp. reflection) is a proper similarity.

Exercise 20. Show that the composition 𝑔 ∘ 𝑓 of a homothety 𝑓 with center 𝑂 and a rotation 𝑔 with
center 𝑃 ≠ 𝑂 is a direct similarity with rotation angle that of 𝑔, ratio that of 𝑓 and center which is
determined by 𝑓 and 𝑔. Show that the same happens also for the composition 𝑓 ∘ 𝑔.
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Figure 19: Composition of homothety and rotation



9 Similarities and triangles 15

Hint: Let 𝜅 be the ratio of the homothety 𝑓 and 𝜔 be the angle of the rotation 𝑔. There
exists an isosceles triangle 𝑃𝐴𝐵, with vertex at the center 𝑃 of the rotation, whose two
other vertices 𝐴, 𝐵 are centers of the similarities 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 ((I) and (II) in figure 19,
respectively). This triangle can be constructed using two characteristic properties it has:
a) an apical angle equal to 𝜔 and b) 𝐵 = 𝑓 (𝐴).

Indeed, if such a triangle exists, then 𝐵 will see the line segment 𝑂𝑃 under the angle
𝜋−𝜔

2 and 𝐴 will see 𝑂𝑃 under the angle 𝜋+𝜔
2 . Both of the latter if 𝜅 > 1. If 𝜅 < 1 the roles

of 𝐴 and 𝐵 must be reversed. Let us then assume that 𝜅 > 1 and that 𝑓 (𝐴) = 𝐵. Point 𝐵 is
on the intersection of the arc of the points which see 𝑂𝑃 under angle 𝜋−𝜔

2 and of the arc
which results through the homothety 𝑓 from the arc of points which see 𝑂𝑃 under angle
𝜋+𝜔

2 . Consequently point 𝐵 is constructible and from it the isosceles 𝑃𝐴𝐵 with angle 𝜔
at 𝑃 is also constructible. Then 𝑔(𝑓 (𝐴)) = 𝑔(𝐵) = 𝐴, therefore point 𝐴 is a fixed point of
ℎ = 𝑔 ∘ 𝑓 .

Let 𝑋 an arbitrary point, 𝑌 = 𝑓 (𝑋) and 𝑍 = 𝑔(𝑌). The angle (𝑋𝐴𝑍) = 𝜔. Indeed,
the triangles 𝑃𝐴𝑍 and 𝑃𝐵𝑌 are congruent, because they have |𝑃𝐴| = |𝑃𝐵| by hypothesis,
|𝑃𝑌| = |𝑃𝑍|, since point 𝑍 results from 𝑌 through a rotation about 𝑃 and the angles 𝐴𝑃𝑍,
𝐵𝑃𝑌 are equal since both added to 𝑍𝑃𝐵 give 𝜔. Also, because of the similarity, 𝜅 = |𝑂𝐵|

|𝑂𝐴| =
|𝑂𝑌|
|𝑂𝑋| , therefore 𝐴𝑋 and 𝐵𝑌 are parallel and |𝐵𝑌| = |𝐴𝑍|. Therefore |𝐴𝑍|

|𝐴𝑋| = 𝜅 and the
angle between the lines 𝐴𝑍 and 𝐴𝑋 is equal to the angle between 𝐴𝑍 and 𝐵𝑌, which is
𝜔. Consequently, the correspondence 𝑍 = 𝑔(𝑓 (𝑋)) coincides with the composition 𝑔′ ∘ 𝑓 ′,
where 𝑓 ′ is the rotation about 𝐴 by 𝜔 and 𝑔′ is the homothety relative to 𝐴 with ratio 𝜅.
We have then 𝑔∘𝑓 = 𝑔′ ∘𝑓 ′ and the second composition satisfies the definition of the direct
rotation.

The proof of the claim for the other ordering of the composition, that is 𝑓 ∘ 𝑔 (corre‑
sponding to case (II) in figure 19) is similar.

Exercise 21. Show that the composition 𝑔 ∘ 𝑓 of a homothety 𝑓 with center 𝑂 and a reflection 𝑔
with axis 𝜀, which does not contain 𝑂, is an antisimilarity with axis a line 𝜀′, parallel to 𝜀 and
center the projection 𝑃 of 𝑂 on 𝜀′. Show that the same happens also for the composition 𝑓 ∘ 𝑔.
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Figure 20: Composition of homothety and reflection

Hint: The key role here is played by the circle with center the projection 𝑀 of 𝑂 on the
axis of 𝑔 and radius 𝑟 = 𝜅−1

𝜅+1 |𝑂𝑀|. The intersection point 𝑃 of this circle with𝑂𝑀, which is
contained between points 𝑂 and 𝑀 is proven to be a fixed point of 𝑔 ∘ 𝑓 . Its diametrically
opposite is proven to be a fixed point of 𝑓 ∘ 𝑔 (cases (I) and (II) respectively in figure 20).
The rest follows easily from the figures, in which 𝑋 is an arbitrary point of the plane,
𝑌 = 𝑓 (𝑋) (resp. 𝑌 = 𝑔(𝑋)) and 𝑍 = 𝑔(𝑌) (resp. 𝑍 = 𝑓 (𝑌)). In the first case 𝑔 ∘ 𝑓 = 𝑔′ ∘ 𝑓 ′,
where 𝑓 ′ is the homothety with center 𝑃 and ratio equal to the ratio 𝜅 of 𝑓 and 𝑔′ is the
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reflection relative to the line 𝜀′, which is parallel to 𝜀 and passes through point 𝑃. In the
second case 𝑓 ∘ 𝑔 = 𝑓 ″ ∘ 𝑔″, where 𝑔″ is the reflection relative to 𝜀′, which is parallel to
𝜀 and passes through point 𝑃 and 𝑓 ″ is the homothety with center 𝑃 and ratio equal to
𝜅. The figures show the trajectory of the arbitrary point 𝑋 under the application of these
new transformations. In the first case point 𝑋 maps by 𝑓 ′ to 𝑋′, which next, by 𝑔′ maps to
𝑍. In the second case point 𝑋 maps by 𝑔″ to 𝑌′, which, by 𝑓 ″ maps to 𝑍′.

Exercise 22. Show that the composition of two direct similarities is a direct similarity with rota‑
tion the sum of the rotations and ratio the product of the ratios if their angles sum up to 𝜔 + 𝜔′ ≠
2𝑘𝜋 and the ratios 𝜅 and 𝜅′ satisfy 𝜅 ⋅ 𝜅′ ≠ 1, otherwise it is a translation.

Hint: Combination of the two previous exercises and of the fact, that the product of rota‑
tions is a rotation (see file Isometries). Write the two similarities in their “normal” form,
as compositions of homotheties and rotations with the same center: 𝑔 ∘ 𝑓 and 𝑔′ ∘ 𝑓 ′. Then
their compositionwould be (𝑔′∘𝑓 ′)∘(𝑔∘𝑓 ) = (𝑔′∘𝑓 ′)∘(𝑓 ∘𝑔) = 𝑔′∘(𝑓 ′∘𝑓 )∘𝑔. Consider next
the aforementioned fact about the composition of two rotations, which is also a rotation,
applied to 𝑓 ′ ∘ 𝑓 and subsequently to the resulting rotation or translation ℎ apply Exercise
20 or Theorem 8, etc ([9, 𝑝. 42, II]).

Exercise 23. State and prove an exercise similar to the previous one for the composition of two
antisimilarities and the composition of an antismilarity and a direct similarity.

As it happens with isometries and congruence, so it happens also with similarity trans‑
formations, which are at the root of a general definition of the similarity for plane shapes:
Two shapes 𝑆, 𝑆′ of the plane are called “similar”, when there exists a similarity 𝑓 which
maps one to the other (𝑓 (𝑆) = 𝑆′).

10 Triangles varying by similarity

Theorem 16. The triangle 𝐴𝐵𝐶 varies in such a way, that the measure of its angles remain fixed,
its vertex at 𝐴 also remains fixed and its vertex 𝐵 moves along a fixed line 𝜀. Then, its third vertex
C moves along another fixed line 𝜁 , which forms with 𝜀 an angle equal to 𝐵𝐴C.
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Figure 21: Variable triangle with fixed angles

Proof. Let 𝐴𝐵𝐶 be one triangle with the aforementioned properties (See Figure 21). Con‑
sider the circumscribed circle of this triangle and the second intersection point 𝑂 of this
circle (different from 𝐵) with line 𝜀. Because 𝑂 sees 𝐵C under the same angle as 𝐴, the
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angle at 𝑂 will be fixed and equal to the triangle angle 𝛼 (the angles remain fixed, only
the dimensions and the position of the triangle change). Because the quadrilateral 𝐴𝑂𝐵C
is inscribed in the circle, the angle 𝐴𝑂𝐵, which is opposite to 𝛾, will be its supplemen‑
tary, something which completely determines the position of point 𝑂. Consequently, C
is contained in the line, which passes through point 𝑂 and forms angle 𝛼 with 𝜀.
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Figure 22: Vertices on lines Vertices on line and circle

Exercise 24. Construct a triangle 𝐴𝐵C with given angles, whose vertices {𝐴, 𝐵, 𝐶} are contained
respectively in three lines {𝛼 , 𝛽 , 𝛾}.

Hint:Consider an arbitrary pointC of𝛾 and trianglesC𝐴′𝐵′ with angles equal respectively
to the given and the vertex 𝐴′ on line 𝛼 (See Figure 22‑I). Then (Theorem 16) vertex 𝐵′ is
contained always in a fixed line 𝜀. Consider the intersection point 𝐵 of 𝜀 and of 𝛽 and
define the triangle 𝐴𝐵C.

Exercise 25. Construct a triangle 𝐴𝐵C with given angles, whose vertex at 𝐴 is a fixed point, the
vertex at 𝐵 is contained in a line 𝜀 and the vertex C is contained in a circle 𝜅 (See Figure 22‑II).
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Figure 23: Equilateral inscribed in square Equilateral between parallels

Hint: Consider all equilateral triangles 𝑃𝑍′𝐸′, with 𝑍′ on line 𝐴𝐵. According to Theorem
16, the other vertex 𝐸′ of all these triangles varies on a definite line 𝜀 (See Figure 23‑I). One
intersection point 𝐸 of this line and the square, different from the intersection point 𝐻 of
𝜀 with 𝐴𝐵, defines the base of the wanted triangle 𝑃𝑍𝐸.

Exercise 26. Construct an equilateral triangle, which has one vertex at a given point and the other
two vertices on given parallel lines (See Figure 23‑II). Also construct an equilateral triangle which
has its three vertices on three given parallel lines.
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Figure 24: 𝑀 and 𝑀′ have the same relative position with respect to the polygon

11 Relative position in similar figures

Given two similar polygons 𝑝 = 𝐴𝐵CD... and 𝑝′ = 𝐴′𝐵′C′D′..., we say that the points 𝑀
and 𝑀′ have respectively the same “relative position” with respect to the polygons, when
all the triangles which are formed by connecting𝑀 and𝑀′ with corresponding vertices of
the polygons are respectively similar. In figure 24 points𝑀 and𝑀′ have the same relative
position with respect to the two similar polygons. The ratios |𝑀𝐴|

|𝑀′𝐴′| = |𝑀𝐵|
|𝑀′𝐵′| = ... are all

equal to the similarity ratio of the two polygons. It follows directly from the definition,
that the distances between two points with the same relative positions have themselves
ratio |𝑀𝑁|

|𝑀′𝑁′| equal to the ratio of similarity of the two polygons. More generally, it can
be proved easily, that if the points 𝑋, 𝑌, 𝑍, ... and 𝑋′, 𝑌′, 𝑍′, ... have respectively the
same relative position with respect to the similar polygons 𝑝 and 𝑝′, then the polygons
𝑋𝑌𝑍... and 𝑋′𝑌′𝑍′... are similar and their similarity ratio is equal to the similarity ratio of
𝑝, 𝑝′. Some special points in 𝑝, 𝑝′ which have the same relative position, are corresponding
vertices, the middles of corresponding sides, etc.

Remark 5. Two similar polygons {𝑝, 𝑝′} define a similarity 𝑓 which maps one to the other:
𝑓 (𝑝) = 𝑝′. Thus, to say that {𝑋, 𝑋′} have the same relative position with respect to {𝑝, 𝑝′}
is the same with saying that they correspond under 𝑓 ∶ 𝑓 (𝑋) = 𝑋′.

Often in applications we consider polygons 𝑝 = 𝐴𝐵CD... which vary, remain however
similar to a fixed polygon. We say then that the polygon varies “by similarity”. Points
which are co‑varied with such a polygon, retaining however their relative position with
respect to the similar polygons, we say that they remain “similarly invariant”. In figure 24
polygon 𝑝′ = 𝐴′𝐵′C′... results by similarity from 𝑝 = 𝐴𝐵C... and, following this change,
points 𝑀, 𝑁 remain similarly invariant relative to the changing polygon, taking the same
relative positions 𝑀′, 𝑁′ with respect to the similar polygon 𝑝′. Such a variation by simi‑
larity we met already in Theorem 16, which can be re‑expressed as follows:

If the triangle 𝐴𝐵C varies by similarity, so that one of its vertices remains fixed, while another
moves on a line, then the third vertex as well moves on a line.

The next two theorems generalize this property.

Theorem 17. Suppose that the polygon 𝑝 = 𝐴𝐵CD... varies by similarity and in such a way, that
the point 𝑀 of its plane retains its position fixed, not only its relative position with respect to 𝑝,
but also its absolute position on the plane. Suppose further that, under this variation, the similarly
invariant point 𝑋 of the polygon moves on a line 𝜀𝑋, then every other similarly invariant point 𝑌
of 𝑝 will move on a line 𝜀𝑌.

Proof. This follows directly by applying Theorem 16 to triangle𝑀𝑋𝑌, which, according to
the previous comments, varies but remains similar to itself. Let us note that the polygon’s
vertices are special points which remain similarly invariant, therefore they too will draw
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Figure 25: Variation by similarity with 𝑀’s position relatively and absolutely fixed

lines. In figure 25 the line 𝜀C is shown, which the vertex C of the polygon slides on. In
the same figure can also be seen a similar polygon 𝑝0 = 𝐴0𝐵0C0... to 𝑝, on which the
corresponding points 𝑀0, 𝑋0, 𝑌0 can be distinguished. These points have in 𝑝0 the same
relative position with that of 𝑀, 𝑋, 𝑌 in 𝑝.

Theorem 18. Suppose that the polygon 𝑝 = 𝐴𝐵CD... varies by similarity and in such a way, that
the point of its plane 𝑀 retains its position fixed, not only its relative position with respect to 𝑝,
but also its absolute position on the plane. Suppose also that, during this variation, the similarly
invariant point 𝑋 of the polygon moves on a circle 𝜅𝑋, then every other similarly invariant point
𝑌 of 𝑝 will be moving on a circle 𝜅𝑌.
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Figure 26: Variation by similarity with the position of 𝑀 relatively and absolutely fixed II

Proof. During the variation of the polygon 𝑝, the triangle 𝑀𝑋𝑌, whose vertices remain
similarly invariant, will remain similar to itself. The angles of this triangle will remain
fixed, point 𝑀 will remain fixed and 𝑋 will move on a fixed circle 𝜅𝑋(𝑂, 𝜌) (See Figure
26). We consider the triangle𝑀𝑂𝑋 andwe construct its similar𝑀𝑂′𝑌, such that the angle

̂𝑌𝑀𝑂′ is equal to𝑋𝑀𝑂 and𝑂′𝑌𝑀 is equal to𝑂𝑋𝑀. Triangles𝑀𝑂𝑂′ and𝑀𝑋𝑌 have then
their sides at 𝑀 proportional and their angles at 𝑀 equal. Consequently the triangles are
similar. Because 𝑂𝑀 is fixed, it follows that 𝑀𝑂′ is also fixed, consequently point 𝑂′

will be fixed. From the similarity of triangles 𝑂𝑋𝑀, 𝑂′𝑌𝑀 it follows that 𝜌′ = |𝑂′𝑌| will
also be fixed, therefore 𝑌 will be moving on the circle 𝜅𝑌(𝑂′, 𝜌′). Figure 26 also shows a
polygon 𝑝0 = 𝐴0𝐵0C0..., similar to 𝑝, on which the corresponding points 𝑀0, 𝑋0, 𝑌0 are
shown. These points have on 𝑝0 the same relative position with that of 𝑀, 𝑋, 𝑌 on 𝑝.

12 Polygons on the sides of a triangle

Theorem 19. The ratio of areas of two similar polygonsΠ and Π ′ is

𝜖(Π)
𝜖(Π ′) = 𝜅2,
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where 𝜅 is the similarity ratio of the two polygons.

Proof. From one vertex in Π and its corresponding in Π ′ draw the diagonals and divide
Π and respectively Π ′ into triangles respectively similar to the previous. The areas of
the polygons are written as a sum of the areas of these triangles 𝜖(Π) = 𝜖(𝑡1) + 𝜖(𝑡2) + ...
and respectively 𝜖(Π ′) = 𝜖(𝑡′

1) + 𝜖(𝑡′
2) + … . The corresponding triangles are similar

therefore𝜖(𝑡′
1) = 𝜅2𝜖(𝑡1), 𝜖(𝑡′

2) = 𝜅2𝜖(𝑡2), ... and the assertion follows using these rela‑
tions in the previous equations for areas:

𝜖(Π ′) = 𝜖(𝑡′
1) + 𝜖(𝑡′

2) + ...
= 𝜅2𝜖(𝑡1) + 𝜅2𝜖(𝑡2) + ...
= 𝜅2 ⋅ (𝜖(𝑡1) + 𝜖(𝑡2) + ...)
= 𝜅2𝜖(Π),

Remark 6. The preceding relation, between areas of similar polygons, leads to another
form of the Pythagorean theorem in which, instead of squares on the sides of the right
triangle, we construct on the sides polygons similar to a given polygon.
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Figure 27: Generalized theorem of Pythagoras

Theorem 20. Given is a polygon Π = 𝐴𝐵CD... and a right triangle. On the sides of the right
triangle are constructed polygons Π1 , Π2 , Π3 similar to Π , such that the sides of the right
triangle 𝑎, 𝑏, 𝑐 are homologous to the side 𝐴𝐵 of Π (See Figure 27). Then the sum of the areas of
the polygons on the orthogonal sides is equal to the area of the polygon on the hypotenuse

𝜖(Π1) + 𝜖(Π2) = 𝜖(Π3).

Proof. Let |𝐴𝐵| = 𝑑 be the length of the side 𝐴𝐵 of Π . According to Theorem 19, the ratios
of areas will be

𝜖(Π1)
𝜖(Π) = 𝑎2

𝑑2 , 𝜖(Π2)
𝜖(Π) = 𝑏2

𝑑2 , 𝜖(Π3)
𝜖(Π) = 𝑐2

𝑑2 .

The claim follows directly by solving for 𝑎2, 𝑏2, 𝑐2 the previous relations and replacing in
the theorem of Pythagoras: 𝑎2 + 𝑏2 = 𝑐2.

Exercise 27. Construct a square D𝐸𝑍𝐻, inscribed in the triangle 𝐴𝐵𝐶 with its side D𝐸 on 𝐵C.

Hint: Let us suppose that the square has been constructed (See Figure 28‑I). We extend
𝐴D and 𝐴𝐸 until they meet the orthogonals of 𝐵C at 𝐵 and C, respectively, at points 𝐾
and 𝐼. (𝐴𝐻D, 𝐴𝐵𝐾) and (𝐴𝑍𝐸, 𝐴C𝐼) are pairs of similar triangles, consequently

|𝐻D|
|𝐵𝐾| = |𝐴𝐻|

|𝐴𝐵| , |𝑍𝐸|
|C𝐼| = |𝐴𝑍|

|𝐴C| .
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Figure 28: Square inscribed in triangle Hexagon inscribed in triangle

Because 𝐻𝑍 and 𝐵C are parallel, the ratios on the right sides of the equalities are equal,
therefore the ratios on the left sides will be equal. This implies that |𝐵𝐾| = |C𝐼|, therefore
𝐵C𝐼𝐾 is a rectangle and consequently the triangles 𝐴D𝐸 and 𝐴𝐾𝐼 are similar. Because
|D𝐸|
|𝐾𝐼| = |𝐴D|

|𝐴𝐾| = |𝐴𝐻|
|𝐴𝐵| , it follows that 𝐾𝐼 and 𝐵𝐾 are equal, therefore 𝐵C𝐼𝐾 is a square. This

square can be constructed directly and by drawing 𝐴𝐾 and 𝐴𝐼 we define D𝐸 on 𝐵C and
from this D𝐸𝑍𝐻, which is proved being a square with similar reasoning.

Exercise 28. Construct an equilateral hexagon with three sides on the sides of triangle 𝐴𝐵𝐶 and
three parallel to them.

Hint: Let Θ𝐼𝐾Λ𝑀𝑁 be the wanted hexagon (See Figure 28‑II). Construct the similar to it
on side 𝐵C. For this, define equal segments on the extensions of 𝐴𝐵 and 𝐴C respectively:
|𝐵𝐻| = |𝐵C| = |CD| and consider the middle 𝑂 of 𝐻D. Next consider the symmetric 𝐸, 𝑍
relative to 𝑂 of 𝐵, C respectively. The first hexagon is equilateral by assumption and the
second by construction. Also the two hexagons have corresponding sides parallel, hence
they are also homothetic. The three points 𝐴, 𝑁 and 𝑍 are collinear, as well as the three
points 𝐴, 𝑀 and 𝐸. Triangles 𝐼Θ𝑁 and 𝐵𝐻𝑍 are isosceli with equal apical angles Θ and
𝐻. Therefore 𝐼𝑁 and 𝐵𝑍 are parallel and their ratio is

|𝐼𝑁|
|𝐵𝑍| = |Θ𝐼|

|𝐻𝐵| = |𝐼𝐾|
|𝐵C| .

However 𝐴𝐼𝐾 and 𝐴𝐵𝐶 are similar, consequently

|𝐼𝐾|
|𝐵C| = |𝐴𝐼|

|𝐴𝐵| = 𝜅.

The twohexagons, Θ𝐼𝐾Λ𝑀𝑁 and𝐻𝐵CD𝐸𝑍 are homothetic relative to𝐴with homothetic
ratio 𝜅. The equilateral hexagon 𝐻𝐵CD𝐸𝑍 can be constructed directly and, by drawing
𝐴𝑍 and 𝐴𝐸, we define the points 𝑁 and 𝑀 on 𝐵C. From there on the construction of
Θ𝐼𝐾Λ𝑀𝑁 is easy, through parallels to the sides of the triangle 𝐴𝐵𝐶.

Exercise 29. Show that the equilateral hexagon of the preceding exercise is unique, consequently
the three hexagons which result from the previous construction, but starting from a different tri‑
angle side, coincide.

Hint: From the previous exercise, it follows that for every hexagon like Θ𝐼𝐾Λ𝑀𝑁 (See
Figure 28‑II), its vertex 𝑁 is contained in a line 𝐴𝑍 which is dependent only from the
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triangle 𝐴𝐵C. This line intersects 𝐵C at exactly one point, 𝑁, and consequently there is
only one triangle 𝐼Θ𝑁 defined and similar to 𝐵𝐻𝑍 with its vertex 𝑁 on 𝐵C. From the
uniqueness of 𝑁 follows that of Θ , next of 𝐼 etc. The second part of the exercise is a direct
logical consequence of its first part.
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Figure 29: Escribed equilateral hexagons Circumscribed parallelogram

Exercise 30. Construct the three escribed equilateral hexagons on the sides of triangle 𝐴𝐵𝐶 (See
Figure 29‑I). Show that the lines which join the centers of symmetryΠ , 𝑃 andΣ of these hexagons
pass through corresponding vertices of the triangle 𝐴𝐵𝐶.

Hint: Show first that the halves of two such polygons, like for example the quadrilaterals
𝐶𝐷𝐻𝐵 and 𝐶𝐴𝑀𝑂 are similar.

Exercise 31. From the vertices of the convex quadrilateral 𝐴𝐵𝐶𝐷 draw parallels to the diagonals,
which do not contain them. This forms a parallelogram 𝐻ϴ𝐼𝐾 (See Figure 29‑II). Show that the
point Π of the intersection of its diagonals, the intersection point Σ of the diagonals of 𝐴𝐵𝐶𝐷 as
well as the middles of its diagonals, define the vertices of another parallelogram. Also show that
the parallelogram Λ𝑀𝑁Ξ of the middles of the sides of 𝐴𝐵𝐶𝐷 is homothetic to 𝐻ϴ𝐼𝐾 and find
the ratio and the center of the homothety.
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Figure 30: Homothetic to quadrilateral

Exercise 32. In the convex quadrilateral𝐴𝐵𝐶𝐷we define the centroids𝐻,ϴ,𝐾,𝑀 of the triangles
𝐴𝐵𝐶, 𝐵𝐶𝐷, 𝐶𝐷𝐴, 𝐷𝐴𝐵, respectively. Show that𝐻ϴ𝐾𝑀 is homothetic to𝐴𝐵𝐶𝐷with homothety
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ratio 1
3 and homothety center the common middle 𝑂 of the line segments which join the middles of

its opposite sides (See Figure 30).

Hint: First show that the triangles like 𝐵𝑁𝐸 and 𝐾𝑃Π are homothetic relative to the ho‑
mothety with center 𝑂 and ratio 3. Points 𝑃, Π are respectively the middles of 𝐾ϴ and
𝐾𝑀.

Next exercise gives an application of similarity, which produces a relatively simple
solution to a complex problem. The problem is related to the construction of triangles on
the sides of a given triangle. Given a triangle 𝐴𝐵C and three other triangles 𝜏1, 𝜏2, 𝜏3,
we choose a side on each one of the three last triangles. Next we construct on the sides of
triangle 𝐴𝐵C externally lying triangles 𝐵DC, C𝐸𝐴, 𝐴𝑍𝐵 respectively similar to 𝜏1, 𝜏2, 𝜏3,
on𝐴𝐵C, so that the respectively similar to the selected sides of the three triangles coincide
with the sides of the triangle ([5, 𝑝. 141]). I call such a construction briefly: a welding by
similarity of 𝜏1, 𝜏2, 𝜏3 onto 𝐴𝐵C. The resulting points {𝐷, 𝐸, 𝑍} I call vertices of the welding
(See Figure 31).
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Figure 31: Triangles on the sides of 𝐴𝐵C

Exercise 33. Construct the triangle 𝐴𝐵C from the triangles 𝜏1, 𝜏2, 𝜏3 and the respective vertices
D, 𝐸, 𝑍 of a welding by similarity on 𝐴𝐵C.

Hint: From the given triangles and points D, 𝐸, 𝑍 there are defined respectively three
similarities 𝑓 , 𝑔, ℎ. Similrarity 𝑓 has center 𝑍, angle 𝜔1 = (𝐴𝑍𝐵) and ratio 𝜅1 = |𝑍𝐵|

|𝑍𝐴| .
Similarity 𝑔 has center D, angle 𝜔2 = (𝐵DC) and ratio 𝜅2 = |DC|

|D𝐵| . Finally, the similarity
ℎ has center 𝐸, angle 𝜔3 = (C𝐸𝐴) and ratio 𝜅3 = |𝐸𝐴|

|𝐸C| . The angles and the ratios of
the similarities are determined completely from the given triangles 𝜏1, 𝜏2, 𝜏3. We then
observe that point 𝐴 satisfies

𝑓 (𝐴) = 𝐵, 𝑔(𝐵) = C, ℎ(C) = 𝐴 ⇒ (ℎ ∘ 𝑔 ∘ 𝑓 )(𝐴) = 𝐴.

Point𝐴 therefore coincides with the unique fixed point of the composed similarity ℎ∘𝑔∘𝑓 .
Consequently point 𝐴 is determined from the givens (even if its actual construction is
somewhat involved). As soon as 𝐴 is determined, the rest of the vertices of the wanted
triangle are constructed by applying the similarities: 𝐵 = 𝑓 (𝐴) and C = 𝑔(𝐵).

The preceding exercise includes many interesting special cases, which offer themselves
for further study, for example, when the three triangles 𝜏1, 𝜏2, 𝜏3 coincide or have a more
special form (isosceles, equilateral) or when for the corresponding ratios holds 𝑘1𝑘2𝑘3 = 1.



13 Representation and group properties of similarities 24

13 Representation and group properties of similarities

Fixing a cartesian coordinate system, a rotation about the origin and a reflection on a line
through the origin is described respectively by the matrices 𝑅𝜙 of the form:

(cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙) ) and (cos(𝜙) sin(𝜙)

sin(𝜙) − cos(𝜙)) .

The reflective behavior of the second matrix is seen by applying it to the vectors

𝑎 = (cos(𝜙/2), sin(𝜙/2))𝑡 and 𝑏 = (− sin(𝜙/2), cos(𝜙/2))𝑡 ,

of which, the first maps to itself and the second, which is orthogonal to the first, maps
to its negative. This identifies the line of the first vector {𝑡𝑎, 𝑡 ∈ ℝ} with the axis 𝜀 of the
reflection. The general similarity, according to the definition, is described by the vector
equation:

𝑋′ = 𝑂 + 𝑅𝜙(𝑋 − 𝑂) multiplied by 𝑋″ = 𝑂 + 𝑘(𝑋′ − 𝑂) .

This in matrix notation is expressed through the product of matrices

𝐻 ⋅ 𝑅 with 𝐻 = ⎛⎜⎜⎜
⎝

𝑘 0 (1 − 𝑘)𝑜1
0 𝑘 (1 − 𝑘)𝑜2
0 0 1

⎞⎟⎟⎟
⎠

and 𝑅 = ⎛⎜⎜⎜
⎝

𝑢 𝑣 𝑜1 − (𝑢𝑜1 + 𝑣𝑜2)
𝑤 𝑧 𝑜2 − (𝑤𝑜1 + 𝑧𝑜2)
0 0 1

⎞⎟⎟⎟
⎠

,

where the constants represent the matrix:

𝑅𝜙 = (𝑢 𝑣
𝑤 𝑧) ⇒ 𝐻 ⋅ 𝑅 = ⎛⎜⎜⎜

⎝

𝑘𝑢 𝑘𝑣 (1 − 𝑘𝑢)𝑜1 − 𝑘𝑣𝑜2
𝑘𝑤 𝑘𝑧 −𝑘𝑤𝑜1 + (1 − 𝑘𝑧)𝑜2
0 0 1

⎞⎟⎟⎟
⎠

.

In the language of “groups” the preceding discussion and matrix representations reflect
the following properties:

1. The set of “similarities” constitutes a group 𝐺.

2. The “direct” similarities constitute a subgroup 𝐺+ of 𝐺 . They are characterized
by the sign of the determinant of the matrix representing the similarity, which is
positive.

3. The “antisimilarities” constitute a “coset” 𝐺− in 𝐺, so that 𝐺 = 𝐺+ ∪ 𝐺−. The an‑
tisimilarities are characterized by the sign of the determinant of their matrix repre‑
sentation, which is negative.

4. The homotheties constitute a subgroup 𝐻 of 𝐺+.

14 Logarithmic spiral and pursuit curves

Exercise 34. Starting from a “golden” rectangle𝐾𝑃ϴ𝐼 and successively subtracting the squares of
its small sides, we construct a sequence of other, pairwise similar rectangles (See Figure 32). Show
that each one of them, for example 𝑀ϴ𝐻Λ, results from its previous 𝑍𝐼ϴ𝐻 through a similarity
𝑓 with center the intersection point 𝑂 of 𝐾ϴ, 𝐻𝐼, rotation angle 𝜋

2 and ratio 𝑥 = √5−1
2 .
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Figure 32: Golden section rectangles and logarithmic spiral

Hint: Simple use of the definitions and the properties of the golden section .

Figure 32, shows a curve, called a logarithmic spiral, which passes through a vertex of
the initial rectangle 𝑃, as well as its successive positions 𝑍 = 𝑓 (𝑃), 𝑀 = 𝑓 (𝑍), 𝑁 = 𝑓 (𝑀),
� = 𝑓 (𝑁), ..., which result by applying repeatedly the similarity 𝑓 ([1, 𝑝. 227]). Similar
sequences of points and logarithmic spirals containing them result by starting from any
point 𝑃 ≠ 𝑂 and taking the successive 𝑓 (𝑃), 𝑓 2(𝑃), 𝑓 3(𝑃), ..., etc.

Figure 33: Logarithmic spirals as pursuit curves

This kind of curve shows up also as a “pursuit trajectory” in “pursuit problems” , like
that with 4 bugs initially placed at the vertices of a square. The bugs start pursuing each
other, moving at a constant speed. Each time their positions are at the vertices of a square,
which gradually shrinks and simultaneously rotates, until they all meet at the center of
the square. Figure 33, on the left, shows the positions of the bugs at different moments
in time and the corresponding square defined by their positions. The same figure, on the



BIBLIOGRAPHY 26

right, shows the corresponding curves for three bugs, which start at the vertices of an
equilateral triangle ([8, 𝑝. 136], [6, 𝑝. 203], [7, 𝑝. 109]).

Exercise 35. On the sides {𝐴𝐵, C𝐴} of the triangle 𝐴𝐵C we take respectively points {𝐸, D} such
that {𝐴𝐸 = 𝑥 ⋅ 𝐴𝐵, CD = 𝑥 ⋅ C𝐴}. Show that the segment D𝐸 becomes minimal, when it is or‑
thogonal to the median 𝐴𝑀 of the triangle. Compute the minimal length of D𝐸 and the value of 𝑥
for which this is obtained.

Hint: Draw CD′ parallel, equal and equal oriented to D𝐸. Show that D′ lies on the me‑
dian 𝐴𝑀 of the triangle. The minimal D𝐸 is the altitude from C of 𝐴C𝐴′, where 𝐴′ the
symmetric of 𝐴 relative to 𝑀.
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