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The reason is not to glorify “bit chasing”; a more
fundamental issue is at stake here∶ Numerical
subroutines should deliver results that satisfy simple,
useful mathematical laws whenever possible. …
Without any underlying symmetry properties, the job
of proving interesting results becomes extremely
unpleasant. The enjoyment of one’s tools is an
essential ingredient of successful work.

Donald Knuth, Seminumerical Algorithms, section 4.2.2
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1 Symmedians and symmedian point

Here we discuss two related concepts∶ the “symmedian line” and the “symmedian point” or
“Lemoine point” of a triangle 𝜏 = 𝐴𝐵𝐶. The symmedian line of 𝜏 from vertex 𝐴 is the
symmetric of its median from 𝐴 w.r. to the bisector from 𝐴. The symmedian point 𝐾 is
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Figure 1: Symmedian line from 𝐴 and symmedian point 𝐾

the intersection point of the symmedian lines from the three vertices (See Figure 1). Next
theorem expresses a “characteristic property” of the points 𝑌 of a symmedian line.

Theorem 1. The distances of points 𝑌 of the symmedian line 𝐴𝐴𝑠 from 𝐴, from the adjacent
sides {𝐴𝐵, 𝐴𝐶}, are proportional to these sides∶

𝑌𝑌′

𝑌𝑌″ = 𝐴𝐵
𝐴𝐶. (1)

Proof. This follows from the symmetry w.r.t. the bisector 𝐴𝐴″ and the corresponding
property of the points 𝑋 of the median 𝐴𝐴′, by which, due to the equality of the areas
of triangles {𝐴𝐵𝐴′, 𝐴𝐴′𝐶}, the analogous ratio is inversely proportional to the adjacent sides∶

𝑋𝑋′

𝑋𝑋″ = 𝐴𝐶
𝐴𝐵 . (2)

Projecting the intersection point 𝐾 of two of the symmedians on the sides of the tri‑
angles and applying the theorem, we see that the third symmedian passes also through
that point, thus∶

Theorem 2. The three symmedians of the triangle pass through a common point 𝐾 called the
symmedian point of the triangle.

2 Antiparallels

Closely related to the concept of “symmedian” is the concept of “antiparallels” to a side of
the triangle. An antiparallel 𝜀 = 𝐵′𝐶′ to side 𝐵𝐶 of the triangle is the line defined by any
circle 𝜆 passing through 𝐵, 𝐶 and intersecting the sides {𝐴𝐵, 𝐴𝐶} a second time at the
points {𝐶′, 𝐵′} (See Figure 2). There are two prominent antiparallels to 𝐵𝐶 ∶
1. The tangent 𝜀0 to the circumcircle at 𝐴.
2. The side 𝐵″𝐶″ of the “orthic triangle”, defined by the feet of the altitudes of the triangle.
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Figure 2: Antiparallels 𝜀 to the side 𝐵𝐶

The tangent 𝜀0 is the limiting position for which the points {𝐵′, 𝐶′} coincide with 𝐴 and
the circle 𝜆 coincideswith the circumcircle 𝜅 of the triangle. The line 𝐵″𝐶″ is antiparallel
because the quadrangle 𝐵𝐶𝐵″𝐶″ is “cyclic”.

Theorem 3. All triangles 𝐴𝐵′𝐶′ are similar to 𝐴𝐵𝐶.
This results immediately from the corresponding angle equalities of the triangles∶

𝐶′ = 𝐶 and 𝐵′ = �̂�. (3)

The symmetry on the bisector from 𝐴 maps triangle 𝐴𝐵′𝐶′ to a triangle 𝐴𝐵1𝐶1 with side
𝐵1𝐶1 parallel to 𝐵𝐶 hence the median line from 𝐴 of 𝐴𝐵′𝐶′ maps to the median line of
𝐴𝐵𝐶. This proves the following∶
Theorem 4. The symmedian of 𝐴𝐵𝐶 coincides with the median line of the triangles {𝐴𝐵′𝐶′}.

3 Harmonic quadrangle

Theorem 5. The tangents at {𝐵, 𝐶} to the circumcircle of triangle 𝐴𝐵𝐶 intersect at a point 𝐷
on the symmedian 𝐴𝐴𝑠.
Proof. This follows from the characteristic property of the points of the symmedian line
expressed by equation 1. Calculating the distances of 𝐷 from the sides and using the
sines‑rule we get (See Figure 3)∶

𝐷𝐷′

𝐷𝐷″ = 𝐷𝐵 sin(𝐶)
𝐷𝐶 sin(�̂�)

= sin(𝐶)
sin(�̂�)

= 𝐴𝐵
𝐴𝐶.

Theorem 6. The intersection 𝐴𝑡 of the tangent to the circumcircle at 𝐴 with 𝐵𝐶 is the “har‑
monic conjugate” of 𝐴𝑠 w.r. to {𝐵, 𝐶} and the ratios 𝑋𝐵′/𝑋𝐶′ defined by the sides {𝐴𝐵, 𝐴𝐶}
and the symmedian line from 𝐴 on every parallel 𝐵′𝑋𝐶′ to the side 𝐵𝐶 are equal to the ratio
sin(𝐶)2/ sin(�̂�)2 = 𝑐2/𝑏2.
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Figure 3: Tangents intersecting on the symmedian 𝐴𝐴𝑠

Proof. This because the triangles {𝐴𝐴𝑡𝐵, 𝐶𝐴𝑡𝐴} are similar, implying (See Figure 3)∶

𝐴𝑡𝐶
𝐴𝑡𝐵

= 𝐴𝑡𝐶 ⋅ 𝐴𝑡𝐵
𝐴𝑡𝐵2 = 𝐴𝑡𝐴2

𝐴𝑡𝐵2 = sin(�̂�)2

sin(𝐶)2
= 𝐴𝑠𝐶

𝐴𝑠𝐵
.

It follows that the pencil of lines 𝐴(𝐵, 𝐶, 𝐴𝑠, 𝐴𝑡) is harmonic, hence it defines on the
circumcircle a “harmonic quadrangle”, i.e. a circumscribed quadrangle for which the “cross
ratio” (𝐵𝐶𝐴𝐸) = (𝐵𝐶𝐴𝑡𝐴𝑠) = −1. This kind of quadrangles is also characterized by the
property of being cyclic and having equal products of opposite sides.

Theorem 7. The intersection 𝐸 of the symmedian from 𝐴 with the circumcircle of 𝐴𝐵𝐶 defines
a harmonic quadrangle 𝐴𝐵𝐸𝐶.
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Figure 4: Property of the symmedian related to the harmonic quadrangle 𝐴𝐵𝐸𝐶

Theorem 8. The circle 𝜆 through {𝐵, 𝐶} and the intersection 𝐷 of the tangents at 𝐵, 𝐶 to the
circumcircle 𝜅(𝑂) of the triangle 𝐴𝐵𝐶 passes through the center 𝑂 and intersects the symmedian
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𝐴𝐷 a second time at 𝑃, which defines triangles {𝐴𝑃𝐶 , 𝐵𝑃𝐶} simmilar to 𝐵𝐸𝐶, so that the
symmedian 𝑃𝐸 bisects the angle 𝐵𝑃𝐶. In addition holds the relation 𝑃𝐴2 = 𝑃𝐵 ⋅ 𝑃𝐶.

Proof. The angles {𝑂𝑃𝐷, 𝑂𝐶𝐷} are right showing that 𝜆 passes through 𝑂 (see figure
4). A similar angle chasing shows that the angles of the triangles at 𝑃, 𝐸 are equal to the
supplement of𝐴. Note here that, since 𝐷 is themiddle of the arc 𝐵𝐶 on 𝜆 the symmedian
𝐴𝐷 bisects the angle 𝐵𝑃𝐶. Also 𝐸𝐶𝐵 = 𝐵𝐴𝑃 completes the proof that △𝐴𝐵𝑃 ∼ △𝐶𝐵𝐸 .
Analogously 𝐸𝐵𝑃 = 𝑃𝐴𝐶 completes the proof that △𝐵𝐸𝐶 ∼ △𝐴𝑃𝐶 and shows that 𝑃𝐸
is a bisector of the angle 𝐵𝑃𝐶.

For the proof of the last claim see that the parallel 𝐶𝐶′ to the symmedian 𝐴𝐷 is
parallel to the bisector of 𝐵𝑃𝐶 hence 𝑃𝐶 = 𝑃𝐶′ and line 𝑃𝐵 passes through 𝐶′, hence
𝑃𝐵 ⋅ 𝑃𝐶 = 𝑃𝐵 ⋅ 𝑃𝐶′ = 𝑃𝐴2.

Figure 4 shows also a so‑called “Artzt parabola” of the triangle 𝐴𝐵𝐶, which is the
parabola passing through {𝐵, 𝐶} and being there tangent to the sides {𝐴𝐵, 𝐴𝐶}. Its focus
is point 𝑃 (see section 14).

4 Second Brocard triangle

The “second Brocard triangle” of the triangle 𝐴𝐵𝐶 is defined by its vertices which are the
projections {𝐴2, 𝐵2, 𝐶2} of the circumcenter 𝑂 of △𝐴𝐵𝐶 on respective symmedians.
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Figure 5: The second Brocard triangle 𝐴2𝐵2𝐶2 of △𝐴𝐵𝐶

Theorem 9. The circumcircle 𝜆 of the second Brocard triangle has the symmedian point 𝐾 and
the circumcenter 𝑂 of △𝐴𝐵𝐶 as diametral points.

Proof. This follows directly from the definition of the vertices {𝐴2, 𝐵2, 𝐶2} as projections
of 𝑂 on respective symmedians, implying that each of them is viewing the segment 𝑂𝐾
under a right angle.

The circle with diameter 𝑂𝐾 is called “Brocard circle” of the triangle. We’ll see in
theorem 25 that {𝐴2, 𝑂} are inverses w.r.t. the Apollonian circle 𝜆𝐴 through 𝐴. This
implies that the Brocard circle is orthogonal to 𝜆𝐴. Analogously it is seen that this circle
is orthogonal to all three Apollonian circles {𝜆𝐴, 𝜆𝐵, 𝜆𝐶} of △𝐴𝐵𝐶. This implies that the
circle 𝜆, like the circumcircle 𝜅 belongs to the pencil of circleswhich are orthogonal to the
Apollonian circles, called “Schoute pencil” of the triangle 𝐴𝐵𝐶 (see file Pedal triangles).

Theorem 10. The “cyclocevian” triangle 𝐸𝐹𝐺 of the vertices of the second Brocard triangle is
congruent and inversely oriented to the triangle 𝐴𝐵𝐶.
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Figure 6: The cyclocevian of 𝐴2

Proof. “Cyclocevian” of a point 𝑃 w.r.t. to the triangle 𝐴𝐵𝐶 is called the triangle formed
by the second intersections of the lines {𝑃𝐴, 𝑃𝐵, 𝑃𝐶} and the circumcircle 𝜅. We prove the
theorem for 𝐴2. In the course of proof of theorem 8 we have seen that drawing parallels
to the symmedian 𝐴𝐾 from {𝐵, 𝐶} we get respectively their second intersections {𝐺, 𝐹}
with the circumcircle 𝜅 , which are respectively collinear with {𝐴2𝐶, 𝐴2𝐵} (see figure 6).
This implies easily that the two triangles {𝐴𝐵𝐶, 𝐸𝐺𝐹} are each the reflection of the other
relative to the line 𝑂𝐴2.

5 Gergonne point

The “Gergonne point” 𝐺𝑒 of △𝐴′𝐵′𝐶′ is the intersection point of the lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′}
joining the vertices with the contact points of the opposite sides with the “incircle” 𝜇(𝐼) of
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Figure 7: Gergonne point 𝐺𝑒 of 𝐴′𝐵′𝐶′ = symmedian point 𝐾 of 𝐴𝐵𝐶

△𝐴′𝐵′𝐶′ (see figure 7). A direct consequence of theorem 5 is the following, which proves
also the existence of this point.

Theorem 11. The three lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} are symmedians of the triangle 𝐴𝐵𝐶 and the Ger‑
gonne point 𝐺𝑒 of 𝐴′𝐵′𝐶′ coincides with the symmedian point 𝐾 of 𝐴𝐵𝐶.

The two triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} being “point perspective” w.r. to point 𝐾, are also,
according to “Desargues’ theorem” (see fileDesargues’ theorem), “line perspective” i.e. cor‑
responding sides meet on a line 𝜀. This is, per definition the “trilinear polar” of 𝐾, called
“Lemoine line” of the triangle (see figure 8).
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Figure 8: Lemoine line 𝜀 of triangle 𝐴𝐵𝐶

From theorem 6 follows the following∶

Theorem 12. Points {𝐴″, 𝐵″, 𝐶″} are the poles of lines, respectively {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} relative to
the circumcircle 𝜅 of 𝐴𝐵𝐶.

By the duality of the polarity, this implies that 𝐾 is the pole of the trilinear polar 𝜀.
Hence line 𝑂𝐾 is orthogonal to the trilinear polar. This is the so‑called “Brocard axis” of
the triangle (see file Brocard).

By the fundamental property of “Apollonian circles” (see file Apollonian), by which
these circles are orthogonal to 𝜅, follows the next property∶

Theorem 13. The points {𝐴″, 𝐵″, 𝐶″} are the centers of the Apollonian circles, passing corre‑
spondingly through the vertices {𝐴, 𝐵, 𝐶} of the triangle 𝐴𝐵𝐶.

6 First Lemoine circle

The “first Lemoine circle” of the triangle 𝐴𝐵𝐶 results by drawing parallels to the sides of
the triangle from the symmedian point 𝐾.
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Figure 9: First Lemoine circle of the triangle 𝐴𝐵𝐶
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Theorem 14. The parallels to the sides of the triangle from the symmedian point intersect the
sides in six concyclic points.

The proof results from the fact that the three segments {𝐵1𝐶1, 𝐶2𝐴2, 𝐴3𝐵3} joining the
intersection points (see figure 9) are antiparallel respectively to the sides {𝐵𝐶, 𝐶𝐴, 𝐴𝐵}. To
see this for 𝐵1𝐶1 reflect 𝐾 on the bisector 𝐴𝐷 to the point 𝐾′, which is on the median
𝐴𝑀. Then, the whole parallelogram 𝐴𝐵1𝐾𝐶1 is reflected to the congruent to it 𝐴𝐵′𝐾′𝐶′,
which has the diagonal 𝐵′𝐶′ parallel to 𝐵𝐶, thus proving that 𝐵1𝐶1 is antiparallel to 𝐵𝐶.
Analogously is proved the same property for the segments {𝐶2𝐴2, 𝐴3𝐵3}. This implies
that the quadrangles

𝐵1𝐶1𝐴3𝐴2, 𝐶2𝐴2𝐵1𝐵3, 𝐴3𝐶1𝐶2𝐵3 (4)

are cyclic. From this follows that ̂𝐶1𝐵1𝐴 = ̂𝐵𝐴2𝐶2 = 𝐶. This, in turn, implies that the
trapezium 𝐶1𝐵1𝐴2𝐶2 is isosceles and inscribed in the circumcircle of 𝐶1𝐵1𝐴2𝐴3 . From
this follows that the three quadrangles (4) have pairwise three common points, conse‑
quently their circumcircles coincide and define the so called “first Lemoine circle” of the
triangle.

The lines {𝐵1𝐶1, 𝐶2𝐴2, 𝐴3𝐵3} define also another triangle 𝐴′𝐵′𝐶′ with remarkable prop‑
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Figure 10: Additional properties related to the Lemoine circle

erties (see figure 10).

Theorem 15. Related to the Lemoine circle of the triangle 𝐴𝐵𝐶 and the triangle 𝐴′𝐵′𝐶′ are the
following properties.

1. The segments {𝐵1𝐶1, 𝐶2𝐴2, 𝐴3𝐵3} are equal.
2. The triangles {𝐴𝐵1𝐶1, 𝐵𝐶2𝐴2, 𝐶𝐴3𝐵3} are similar to 𝐴𝐵𝐶.
3. The triangles {𝐴′𝐵3𝐶2, 𝐵′𝐶1𝐴3, 𝐶′𝐴2𝐵1} are isosceli.
4. The incircle 𝜆 of 𝐴′𝐵′𝐶′ is concentric to the Lemoine circle 𝜅 of 𝐴𝐵𝐶 .
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5. The symmedians {𝐴𝐾, 𝐵𝐾, 𝐶𝐾} pass respectively through {𝐴′, 𝐵′, 𝐶′}.
6. The Gergonne point 𝐺𝑒 of 𝐴′𝐵′𝐶′ coincides with the symmedian point 𝐾 of 𝐴𝐵𝐶.

nr‑1, nr‑2 and nr‑3 are immediate consequences of theorem 14.
nr‑4 follows from the equality of segments in nr‑1, since these are equal chords of the
Lemoine circle.
nr‑5 is proved by showing that for the symmedian line 𝐴𝐾𝐴𝑠 the ratios 𝐾𝐴2/𝐾𝐴3 and
𝐴𝑠𝐶2/𝐴𝑠𝐵3 are equal∶

𝐴𝑠𝐶2
𝐴𝑠𝐵3

= 𝐴𝑠𝐵 − 𝐶2𝐵
𝐴𝑠𝐶 − 𝐵3𝐶 = 𝑡 ⋅ 𝐾𝐴2 − 𝐾𝐴2

𝑡 ⋅ 𝐾𝐴3 − 𝐾𝐴3
= 𝐾𝐴2

𝐾𝐴3
.

Nr‑6 is an immediate consequence of the previous properties.
Notice that the first Lemoine circle is a special case of the so called “Tucker circles” of

the triangle (see file Tucker circles).

7 Adams’ circle

The first Lemoine circle of 𝐴𝐵𝐶 seen as a construct relative to the triangle 𝐴′𝐵′𝐶′ is the
so‑called “Adams’ circle” of the triangle 𝐴′𝐵′𝐶′ , reflecting a property, usually formulated
as follows ([Hon95, p.63])∶
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Figure 11: The Adams’ circle of the triangle 𝐴′𝐵′𝐶′

Theorem 16. The parallels to the sides of the cevian triangle 𝐴″𝐵″𝐶″ of the Gergonne point 𝐺′
𝑒

of the triangle 𝐴′𝐵′𝐶′ from point 𝐺′
𝑒 intersect the sides of 𝐴′𝐵′𝐶′ in 6 points lying on a circle

𝜆 concentric to the incircle 𝜅 of 𝐴′𝐵′𝐶′.

The proof follows from the discussion in section 7 and the obvious fact that 𝐴″𝐵″𝐶″ is
homothetic to 𝐴𝐵𝐶 relative to the homothety with center 𝐾 = 𝐺′

𝑒 and ratio 1/2.



8 Conics through parallels 10

8 Conics through parallels

This and the next section give another aspect of the first Lemoine circle. We start with a
point 𝐷 not lying on the side‑lines of the triangle 𝐴𝐵𝐶. Of central importance for this
aspect is the following property.

Theorem 17. The parallels to the sides of a triangle 𝐴𝐵𝐶 passing through a point 𝐷 not lying
on the side‑lines of the triangle define respectively on the non‑parallel sides six points lying on a
conic.
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Figure 12: The conic defined by parallels to the sides from 𝐷

Proof. The proof is a trivial verification of “Carnot’s theorem” ([Yiu13, p.117]), by which
the intersection points {𝑋, 𝑋′, …} are on a conic if and only if the product of ratios

𝑋𝐵
𝑋𝐶 ⋅ 𝑋′𝐵

𝑋′𝐶 ⋅ 𝑌𝐶
𝑌𝐴 ⋅ 𝑌′𝐶

𝑌′𝐴 ⋅ 𝑍𝐴
𝑍𝐵 ⋅ 𝑍′𝐴

𝑍′𝐵 = 1.

In our case this product is easily seen to be equal to

𝑎2

𝑏2 ⋅ 𝑏2

𝑐2 ⋅ 𝑐2

𝑎2 = 1,

where {𝑎, 𝑏, 𝑐} the side lengths of the triangle. Hence the points are indeed on a conic.

Notice that this property can be generalized in the following sense (See Figure 13).
Theorem 18. Given a line 𝜀 intersecting the sides of the triangle 𝐴𝐵𝐶 at the points {𝐴′, 𝐵′, 𝐶′},
consider the intersections {𝑋, 𝑋′, 𝑌, 𝑌′, 𝑍, 𝑍′} of the sides of the triangle with the lines through
{𝐴′, 𝐵′, 𝐶′} and an arbitrary point 𝐷. Then the six points lie on a conic.

The proof of this is reduced to the one of the previous theorem by means of a “projec‑
tivity” leaving the points {𝐴, 𝐵, 𝐶} fixed and sending the line 𝜀 at the line at infinity.

9 Characterization of the first Lemoine circle

Next theorem characterizes the “symmedian point” of the triangle as the one for which the
previous construction of conics delivers a circle. Here the symmedian point 𝐾 of the
triangle 𝐴𝐵𝐶 is identified by its property to have distances from the sides proportional
to these. Thus its “trilinear coordinates” are described by 𝐾 ≅ (𝑎 ∶ 𝑏 ∶ 𝑐).
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Figure 13: Conic defined by a point and a line

Theorem 19. With the notation and conventions of the preceding section the conic is a circle if
and only if the point 𝐷 coincides with the symmedian point of the triangle 𝐴𝐵𝐶.
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Figure 14: The conic is a circle

Proof. If the conic is a circle (See Figure 14), then the three trapezia {𝑋′𝑌𝑌′𝑍, …} are equi‑
lateral and the three segments {𝑋′𝑌, 𝑌′𝑍, 𝑍′𝑋} have equal lengths. By the equality of
the inscribed angles seen in the figure follows that the distance 𝑥𝐵 of 𝐷 from 𝐴𝐶 is
𝑥𝐵 = 𝑍𝑌′ sin(�̂�) . This implies immediately

(𝑥𝐴 ∶ 𝑥𝐵 ∶ 𝑥𝐶) = (sin(𝐴) ∶ sin(�̂�) ∶ sin(𝐶) = (𝑎 ∶ 𝑏 ∶ 𝑐),

thereby proving the necessity part of the theorem.
For the sufficiency consider the triangle 𝐷𝑍𝑌′. By assumption its altitudes satisfy

𝑏
𝑐 = 𝑥𝐵

𝑥𝐶
= 𝑍𝑌′ sin(𝑍)

𝑍𝑌′ sin(𝑌′)
= sin(𝑍)

sin(𝑌′)
= 𝐷𝑌′

𝐷𝑍 .

Thus, the triangles {𝐴𝐵𝐶, 𝐷𝑍𝑌′}, having the angles 𝐴 = �̂� and the containing them sides
proportional, are similar and the angles 𝑍 = �̂�. Analogous argument shows that the angle
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𝑌𝑋′𝑍 is equal to �̂�. This implies that 𝑋′𝑌𝑌′𝑍 is an isosceles trapezium inscribed in a circle
passing through 𝑋. A similar argument shows the analogous property for the trapezia
𝑌′𝑍𝑍′𝑋 and 𝑍′𝑋𝑋′𝑌. This implies that all six points {𝑋, 𝑋′, 𝑌, 𝑌′, 𝑍, 𝑍′} are on the same
circle.

10 Second Lemoine circle

The “second Lemoine circle” of the triangle 𝐴𝐵𝐶 is a circle with center at the symmedian
point 𝐾 , whose existence follows from next theorem
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Figure 15: Second Lemoine circle of the triangle

Theorem 20. (See Figure 15). On the antiparallels to the sides of the triangle 𝐴𝐵𝐶, which are
drawn from the symmedian point 𝐾 , the other sides define respectively equal segments {𝐾𝐴1 = 𝐾𝐴2, …},
which define diameters of a circle 𝜅 with center 𝐾.

The quadrangles
𝐴1𝐵1𝐴2𝐵2, 𝐵1𝐶1𝐵2𝐶2, 𝐶1𝐴2𝐶2𝐴1 (5)

are rectangles. For 𝐴1𝐵1𝐴2𝐵2 , using the fact that the quadrangles

𝐴1𝐴2𝐶𝐵, 𝐵1𝐵2𝐶𝐴, 𝐶1𝐶2𝐵𝐴

are cyclic, this follows from the equality of the angles noticed in figure 15. Analogously
is proved the property for the other quadrangles in (5). The rectangles (5) have pairwise
one common diagonal, and this proves the theorem.

11 Inscribed rectangles

In this section we consider rectangles inscribed in a given triangle, with one side coinci‑
dentwith a side of the triangle. Next theorem relates these rectangleswith the symmedian
point of the triangle (see figure 16).

Theorem 21. The centers 𝑀 of the rectangles, inscribed in the triangle 𝐴𝐵𝐶 and having one
side on the line 𝐵𝐶, are contained in a line 𝜀, which passes through the middle 𝑁 of 𝐵𝐶, the
middle 𝐿 of the altitude 𝐴𝑌 and the symmedian point 𝐾 of the triangle.
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Figure 16: Inscribed rectangles

In fact, the centers 𝑀 of the rectangles are the middles of the segments 𝑃𝐼 joining the
middles of opposite parallels {𝐷𝐻, 𝑍𝐸}. Since all triangles {𝑃𝐼𝑁} are similar, the claim
that 𝑀 describes a line passing through {𝑁, 𝐿} is clear. That this line passes also through
𝐾 follows from the proof of theorem 20, where we saw that there is such a rectangle with
center at 𝐾 .
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Figure 17: Alternative definition of the symmedian point

Theorem 22. The symmedian point 𝐾 of the triangle is the common point of the lines joining the
middles {𝐿𝑖} of the altitudes with the middles {𝑁𝑖} of the opposite sides of the triangle 𝐴𝐵𝐶.

This is a direct corollary of theorem 21. Notice that this point 𝐾 is the “triangle center”
𝑋(69) w.r. to the medial triangle 𝑁1𝑁2𝑁3 ([Kim18]).

12 Medial and Orthic triangle intersections

Consider the “medial triangle” 𝐴″𝐵″𝐶″ with vertices the middles of the sides of triangle
𝐴𝐵𝐶. Each symmedian line of 𝐴𝐵𝐶 intersects the sides of the medial triangle, which are
adjacent to the opposite vertex of the corresponding parallelogram at two points. For ex‑
ample the symmedian 𝐵𝐾 intersects the sides {𝐵″𝐴″, 𝐵″𝐶″} at the points {𝑉2, 𝑈2}. Anal‑
ogously are defined the points {𝑉1, 𝑈1} and {𝑉3, 𝑈3} (see figure 18). Next theorem lists
some properties of these points.

Theorem 23. Let 𝐴′𝐵′𝐶′ be the “orthic” triangle of 𝐴𝐵𝐶, with vertices the feet of the altitudes.
Then the following are valid properties.
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1. The sides of the orthic at {𝐴′, 𝐵′, 𝐶′} pass respectively through the points
{(𝑈1, 𝑉1), (𝑈2, 𝑉2), (𝑈3, 𝑉3)}.

2. The triangles {𝐴′𝐴″𝑉1, … , 𝐴′𝐴″𝑈1, …} are all similar to 𝐴𝐵𝐶.

To show nr‑1 in a case, for example, to show that 𝐴′𝐶′ passes through 𝑉1 , consider for
themoment 𝑉1 as the intersection of lines {𝐴′𝐶′, 𝐴″𝐵″}. Measuring the angles of 𝐴′𝐴″𝑉1
we see that this triangle is similar to 𝐴𝐵𝐶 and the quadrangle 𝐴′𝑉1𝐶𝐵″ is cyclic. All the
angles at {𝐴′, 𝐴″, 𝐵″} can bemeasured using standard properties of the orthic triangle and
show that 𝐵″𝐶𝑉1 is similar to 𝐴𝐵𝐶.
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Figure 18: Intersections of sides of the medial and the orthic

Having that, project 𝑉1 on the sides of 𝐴𝐵𝐶 at points {𝑆, 𝑄}. Then we have∶

𝑉1𝑆
𝑉1𝑄 = 𝑃𝐶′

𝑉1𝑄 = 𝐶𝑃
𝑉1𝑄 = 𝐶𝐵″

𝑉1𝐵″ = 𝐴𝐵
𝐴𝐶,

proving that 𝑉1 satisfies the characteristic property of the points of the symmedian, hence
it is on the symmedian 𝐴𝐾. Analogously are proved the other cases of this claim.
Nr‑2 results, as alluded to before, by measuring the angles of these triangles. Figure 18
gives a hint for this in the case of the triangle 𝐴′𝐴″𝑉1.

13 Vecten squares of the triangle

On the sides of triangle 𝜏 = 𝐴𝐵𝐶 erect squares. These are the “Vecten squares” of the
triangle. The triangle of the opposite sides of the squares 𝜏′ = 𝐴′𝐵′𝐶′ has its sides parallel
to those of 𝜏, hence is similar to it. (see figure 19).
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Figure 19: Vecten squares of the triangle

Theorem 24. The similarity center of {𝜏, 𝜏′} is the symmedian point 𝐾 of 𝜏, which is also the
symmedian point of 𝜏′.

The proof is immediately seen in the figure∶

𝐴𝐴′

𝐴𝐴″ = 𝐴𝐵
𝐴𝐶 = 𝐴′𝐵′

𝐴′𝐶′ ,

showing that 𝐴 is on the symmedian line of 𝜏′ and 𝜏.
The same result holds for the configuration created by erecting squares on the sides,

each lying on the same side with the opposite vertex (see figure 20). The only difference
in this case is that the two triangles 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ are related by an “anti‑homothety”
with center the symmedian point 𝐾 of both triangles.

K
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B'

C'
A

B C

Figure 20: Inner Vecten squares of the triangle

14 Artzt parabolas

The following properties relate the symmedian 𝐴𝐾 to the Apollonian circle 𝜆𝐴(𝑂𝐴),
which is the locus of the points {𝑋 ∶ 𝑋𝐵/𝑋𝐶 = 𝑏/𝑐} and lead also to a characterization
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Figure 21: The Artzt parabolas of △𝐴𝐵𝐶

of the projection 𝐴2 of the circumcenter on the symmedian 𝐴𝐾 as the focus of the “A‑
Artzt parabola” of the triangle 𝐴𝐵𝐶 . By its definition, this parabola is tangent to the sides
{𝐴𝐵, 𝐴𝐶} at the points {𝐵, 𝐶.} Analogously are defined the B‑Artzt parabola tangent to the
sides {𝐵𝐶, 𝐵𝐴} and the C‑Artzt parabola tangent to {𝐶𝐴, 𝐶𝐵} (see figure 21). Notice that
point 𝐴2 is a vertex of the so called “second Brocard triangle” ([Cou80, p.279]). Its isogo‑
nal conjugate 𝐽 appearing in the next theorem is a vertex of the “fourth Brocard triangle”
[Gib21]).
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Figure 22: The projection 𝐴2 of 𝑂 on the symmedian 𝐴𝐾

Theorem 25. Referring to figure 22, we denote by 𝜅(𝑂) the circumcircle of △𝐴𝐵𝐶 and consider
the points: the second intersection 𝐴′ of the symmedian 𝐴𝐾 with 𝜅, the second intersection 𝐹
of the median 𝐴𝑀 with 𝜅 and the reflection 𝐽 of 𝐴′ in 𝐵𝐶.

1. 𝐵𝐴′𝐹𝐶 is a trapezium and 𝐴′𝐹 is parallel to 𝐵𝐶.
2. Point 𝐴′ is on the Apollonian circle 𝜆𝐴(𝑂𝐴) , satisfying 𝐴′𝐵/𝐴′𝐶 = 𝑏/𝑐.
3. Point 𝐴2 is the middle of 𝐴𝐴′, line 𝑂𝐴2 passes through 𝑂𝐴.
4. Point 𝐴2 is the inverse of 𝑂 w.r.t. to 𝜆𝐴.
5. Point 𝐽 is the second intersection of the Apollonian circle 𝜆𝐴 with the median 𝐴𝑀.



14 Artzt parabolas 17

6. 𝐽𝐵𝐹𝐶 is a parallelogram and point 𝐽 is the isogonal conjugate of 𝐴2 .
7. Line 𝐻𝐽 is orthogonal to the median 𝐴𝑀, where 𝐻 is the orthocenter of △𝐴𝐵𝐶.

Proof. Nr‑1 follows from the equality of the angles 𝐵𝐴𝐴′ = 𝐹𝐴𝐶 .
Nr‑2: By nr‑1 and the similar triangles {𝑀𝐹𝐶 ∼ 𝑀𝐵𝐴 , 𝑀𝐹𝐵 ∼ 𝑀𝐶𝐴} we have

𝐴′𝐵
𝐴′𝐶 = 𝐹𝐶

𝐹𝐵 = 𝐹𝐶
𝑀𝐶 ⋅ 𝑀𝐵

𝐹𝐵 = 𝐴𝐵
𝐴𝑀 ⋅ 𝐴𝑀

𝐴𝐶 = 𝐴𝐵
𝐴𝐶 .

Nrs 3‑4 are a direct consequence of nr‑2.
Nr‑5 Follows from the fact that 𝐴′𝑀𝐹 is isosceles and 𝐽𝐴′𝐹 is a right angle. This implies
that 𝐽 is on the median 𝐴𝐹. Obviously it is also on 𝜆𝐴 since 𝐵𝐶 is a diameter of this
circle.
Nr‑6: By nr‑4 point 𝑀 is the middle of both segments {𝐵𝐶, 𝐽𝐹} implying that 𝐽𝐵𝐹𝐶 is a
parallelogram. By theorem 8 and the preceding claim these triangles are similar:

𝐵𝐴2𝐴 ∼ 𝐴𝐴2𝐶 ∼ 𝐵𝐴′𝐶 ∼ 𝐶𝐹𝐵 ∼ 𝐵𝐽𝐶.

This implies 𝐴2𝐵𝐴 = 𝐽𝐵𝐶 ⇒ 𝐽𝐵𝐴 = 𝐴2𝐵𝐶. Analogously is seen that 𝐴2𝐶𝐵 = 𝐽𝐶𝐴. Since
we have also 𝐴2𝐴𝐵 = 𝐽𝐴𝐶 the claim is proved.
nr‑7: This involves a computation in barycentrics (see file Barycentric coordinates) in
which the points have corresponding coordinates

𝐴(1, 0, 0) , 𝐺(1, 1, 1) , 𝐻(𝑆𝐵𝑆𝐶, 𝑆𝐶𝑆𝐴, 𝑆𝐴𝑆𝐵) , 𝐽(𝑎2, 2𝑆𝐴, 2𝑆𝐴) .

We test the orthogonality formula for lines 𝑆𝐴𝑝𝑝′ + 𝑆𝐵𝑞𝑞′ + 𝑆𝐶𝑟𝑟′ = 0, where (𝑝, 𝑞, 𝑟)
and (𝑝′, 𝑞′, 𝑟′) are the points at infinity (their directions) of the lines {𝐴𝐺, 𝐻𝐽} given by
the respective triple products {(𝐴 × 𝐺) × 𝐺 , (𝐻 × 𝐽) × 𝐺}. The result is the expression
2(𝑆𝐵 + 𝑆𝐶 − 𝑎2)(𝑆𝐵𝑆𝐶 + 𝑆𝐶𝑆𝐴 + 𝑆𝐴𝑆𝐵) = 0, according to the identity for the “Conway sym‑
bols”𝑆𝐵 + 𝑆𝐶 = 𝑎2 (see file Conway symbols).
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Figure 23: Generating the Artzt parabola by varying triangle 𝐵∗𝐴2𝐴∗ ∼ 𝐵𝐴2𝐴
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Next theorem complements some properties discussed in theorem 8. Point 𝐷 is de‑
fined as the second intersection of the parallel 𝐶𝐷 to the symmedian 𝐴𝐴′ with the cir‑
cumcircle of triangle 𝐴𝐵𝐶. In that theorem was shown that the projection 𝐴2 of the cir‑
cumcenter on the symmedian 𝐴𝐴′, which is a vertex of the second Brocard triangle, was
a point of the line 𝐵𝐷 (see figure 23).

Theorem 26. Referring to figure 23, the following are valid properties:
1. Triangles 𝐴2𝐵𝐴′ and 𝐴𝐴2𝐷 are similar to 𝐴𝐵𝐶.
2. Triangle 𝐷𝐴2𝐶 is isosceles and triangles 𝐴𝐷𝐴2 and 𝐴′𝐶𝐴2 are equal.
3. Triangles 𝐴2𝐵𝐴′ and 𝐴2𝐴′𝐶 are also similar.
4. Varying triangle 𝐵𝐴2𝐴 to a similar 𝐵∗𝐴2𝐴∗ so that 𝐵∗ moves on 𝐴𝐵 makes vertex 𝐴∗

move on line 𝐴𝐶 and the line 𝜀 = 𝐵∗𝐴∗ is tangent to the parabola.

Nr‑1. In fact, △𝐴𝐵𝐶 is similar to △𝐴2𝐴𝐷. Later has 𝐴𝐷𝐴2 = 𝐴𝐶𝐵 and 𝐴2𝐴𝐷 = 𝐴𝐵𝐶,
because 𝐴𝐷𝐶𝐴′ is equilateral trapeziumand 𝐴2𝐴𝐷 = ̂𝐴2𝐴′𝐶 = 𝐴𝐵𝐶. Obviously △𝐴2𝐵𝐴′

is similar to 𝐴2𝐴𝐷.
Nr‑2 is obvious, since the triangles {𝐴2𝐴𝐷 , 𝐴2𝐴′𝐶} are each the reflection of the other

in line 𝑂𝐴2.
Nr‑3 is a consequence of nr‑2.
Nr‑4 is a general property of parabolas related to a triangle like 𝐴𝐵𝐶 , which has two

sides tangent to the parabola and the third side joins the contact points. In such a case it is
well known ([Cha65, p.52]) that a line 𝐴∗𝐵∗ intersecting the tangents at points such that
𝐴𝐵∗/𝐵∗𝐵 = 𝐶𝐴∗/𝐴∗𝐴 is tangent to the parabola (see file Triangles tangent to parabolas).
The relation 𝐴𝐵∗/𝐵∗𝐵 = 𝐶𝐴∗/𝐴∗𝐴 follows from the similar triangles {𝐴𝐵∗𝐴2 ∼ 𝐶𝐴∗𝐴2}.
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Related topics
1. Barycentric coordinates
2. Brocard
3. Cross Ratio
4. Desargues’ theorem
5. Pedal triangles
6. Projective line
7. The quadratic equation in the plane

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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