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1 Inscribed, Escribed, Incenter and Excenters

“Tritangent” circles are circles simultaneously tangent to three lines “in general position”,
i.e. lines not all passing through a point. Such a triple of lines defines a triangle 𝐴𝐵𝐶, six
“outer domains” and four tritangent circles (see figure 1). The “inscribed” in the triangle and
the three “escribed” lying in respective outer domains. Often in the literature by tritangent
is meant only one of the escribed circles. The center of the inscribed is the “incenter” of the
triangle and the centers of the escribed are the “excenters” of the triangle.

The configuration of the four tritangent circles has strong ties with the “bisectors” of
the triangle𝐴𝐵𝐶, since these carry the centers of the circles and are, each, a symmetry axis
of two of the circles. In this file we study the tritangent circles configuration and some of
the related to it topics. Complementary material can be found in [Cou80, p.72].
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Figure 1: The tritangent circles of three lines forming a triangle

Theorem 1. The internal bisector of one triangle angle and the external bisectors of the other two
angles pass through a common point. The same is true for the three internal bisectors.

Proof. We will show that the internal bisector at 𝐵 and the external bisectors at 𝐴 and
𝐶 intersect at the same point, which we denote by 𝐼𝐵. Similar things will hold also for
the other angles, which will define the points 𝐼𝐴 and 𝐼𝐶 (See Figure 1). The proof for the
three internal bisectors is the same, defining the incenter 𝐼 of the triangle. Let 𝐼𝐵 be the
intersection point of two out from the three bisectors of the triangle and specifically of
the external bisectors of the angles 𝐴 and 𝐶. We will show that the internal bisector of
angle �̂� also passes through 𝐼𝐵. Indeed, the distances of 𝐼𝐵 from the sides of angle 𝐴 are
equal |𝐼𝐵𝐸| = |𝐼𝐵𝐷|. Similarly, also the distances of 𝐼𝐵 from the sides of angle 𝐶 are equal
|𝐼𝐵𝐸| = |𝐼𝐵𝐷|. Consequently the three distances will all be equal |𝐼𝐵𝑍| = |𝐼𝐵𝐸| = |𝐼𝐵𝐷|,
therefore they are radii of a circle with center 𝐼𝐵 and radius 𝑟𝐵 = |𝐼𝐵𝐷|. The equality of
the distances |𝐼𝐵𝑍| = |𝐼𝐵𝐷| from the sides of angle �̂� show that 𝐼𝐵 is to be found also on
the bisector of angle �̂�. The fact that the sides are orthogonal to these radii of this circle,
shows that the circle is tangent to all three sides of the triangle.

Exercise 1. Let {𝐼, 𝐼𝐴, 𝐼𝐵, 𝐼𝐶} be respectively the incenter and the excenters of the triangle 𝐴𝐵𝐶
(see figure 1). Show that:
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1. Each of the triples {(𝐴, 𝐼, 𝐼𝐴), (𝐵, 𝐼, 𝐼𝐵), (𝐶, 𝐼, 𝐼𝐶)} consists of collinear points.
2. The line defined by each of these triples is an altitude of the triangle 𝐼𝐴𝐼𝐵𝐼𝐶.
3. Point 𝐼 is the “orthocenter” of the triangle 𝐼𝐴𝐼𝐵𝐼𝐶.
4. Triangle 𝐴𝐵𝐶 is the “orthic” of triangle 𝐼𝐴𝐼𝐵𝐼𝐶.

2 Tangents from the vertices

Theorem 2. The length of the tangent 𝐵𝐷, from the vertex 𝐵 to the corresponding escribed circle
with center 𝐼𝐵, is equal to half the perimeter 𝜏 of the triangle 𝐴𝐵𝐶 (see figure 1).

|𝐵𝐷| = 1
2(𝑎 + 𝑏 + 𝑐) = 𝜏.

Proof. Here, as usual, with {𝑎, 𝑏, 𝑐} we denote the lengths of the sides of the triangle. The
proof follows directly from the equality of the tangents from 𝐵 ∶ |𝐵𝑍| = |𝐵𝐷|, as well as
from 𝐴 and 𝐶 ∶ |𝐴𝑍| = |𝐴𝐸|, |𝐶𝐸| = |𝐶𝐷|. The perimeter therefore is written as

𝑎 + 𝑏 + 𝑐 = (|𝐵𝐶| + |𝐶𝐸|) + (|𝐴𝐸| + |𝐵𝐴|)
= (|𝐵𝐶| + |𝐶𝐷|) + (|𝐵𝐴| + |𝐴𝑍|)
= 2(|𝐵𝐶| + |𝐶𝐷|) = 2|𝐵𝐷|.

C

τ-c

A'

C'

B'

τ-b
B

A

τ-a

(I)

D

Α

Ε
Η

Β F

G

C

(ΙΙ)

Figure 2: Tangents from the vertices Tangent parallel to base

Theorem 3. The tangents {𝐴𝐵′, 𝐴𝐶′} from the vertex 𝐴 of triangle 𝐴𝐵𝐶 to its inscribed circle
have length (see figure 2‑(I)):

|𝐴𝐶′| = |𝐴𝐵′| = 𝜏 − 𝑎,
where 𝜏 = 1

2(𝑎 + 𝑏 + 𝑐) is the half perimeter of the triangle.

Proof. As the proof of the previous proposition, so this one is also relying on the equality
of the tangents from one point to a circle: |𝐴𝐵′| = |𝐴𝐶′|, |𝐵𝐶′| = |𝐵𝐴′|, |𝐶𝐴′| = |𝐶𝐵′| . It
suffices therefore to write the perimeter as

𝑎 + 𝑏 + 𝑐 = 2𝜏 = 2(|𝐴𝐶′| + |𝐵𝐴′| + |𝐴′𝐶|) = 2(|𝐴𝐶′| + 𝑎),

from which the wanted equality follows directly.

Exercise 2. In the triangle 𝐴𝐵𝐶, with |𝐴𝐶| ≥ |𝐴𝐵|, the circle 𝜅 is tangent to the sides {𝐴𝐵, 𝐴𝐶}
and passes through the point 𝐴′ of the base 𝐵𝐶 (see figure 2‑(I)). Show that 𝜅 coincides with the
inscribed circle of the triangle 𝐴𝐵𝐶, if and only if, it holds

|𝐴′𝐶| − |𝐴′𝐵| = |𝐴𝐶| − |𝐴𝐵|.

Then point 𝐴′ coincides with the contact point of the circle with the base 𝐵𝐶.
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Hint: For {𝑥 = |𝐴′𝐵|, 𝑦 = |𝐴′𝐶|}, the above relation is equivalent with the two relations
{𝑦 − 𝑥 = 𝑏 − 𝑐, 𝑦 + 𝑥 = 𝑎}.
Exercise 3. Let 𝐸 be the contact point of the tangent 𝐻𝐺 of the inscribed circle, which is parallel
to the base 𝐵𝐶 of the triangle 𝐴𝐵𝐶. Show that the line 𝐴𝐸 intersects 𝐵𝐶 at a point 𝐷, such that
|𝐴𝐵| + |𝐵𝐷| = |𝐷𝐶| + |𝐶𝐴| = 𝜏. Conclude that |𝐵𝐷| = |𝐹𝐶|, where 𝐹 is the contact point of the
incircle with 𝐵𝐶 (see figure 2‑(II)).

Hint: {𝐴𝐻𝐽, 𝐴𝐵𝐶} are similar and 𝐴𝐻 + 𝐻𝐸 = 𝐴𝐽 + 𝐽𝐸.
Theorem 4. Next table gives the centers of the inscribed and escribed circles of triangle 𝐴𝐵𝐶, as
well as their respective projections on the sides 𝐴𝐵, 𝐵𝐶 and 𝐶𝐴 (see figure 3).

𝐴𝐵 𝐵𝐶 𝐶𝐴
𝐼 𝐷 𝐻 𝑍
𝐼𝐴 𝑀 𝐽 𝑁
𝐼𝐵 𝑅 𝐿 𝑂
𝐼𝐶 𝐾 𝑆 𝑃

The following relations are valid:

𝜏 − 𝑎 = |𝐴𝐷| = |𝐴𝑍| = |𝐶𝐿| = |𝐶𝑂| = |𝐵𝑆| = |𝐵𝐾|
𝜏 − 𝑏 = |𝐵𝐷| = |𝐵𝐻| = |𝐶𝐽| = |𝐶𝑁| = |𝐴𝐾| = |𝐴𝑃|
𝜏 − 𝑐 = |𝐶𝑍| = |𝐶𝐻| = |𝐴𝑅| = |𝐴𝑂| = |𝐵𝑀| = |𝐵𝐽|

|𝐻𝐽| = |𝑐 − 𝑏|, |𝑂𝑍| = |𝑎 − 𝑐|, |𝐾𝐷| = |𝑏 − 𝑎|.
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Figure 3: Segments on the sides

Proof. That it holds 𝜏 − 𝑎 = |𝐴𝐷| = |𝐴𝑍|, we saw in the theorem 3. For the other equalities
on the same line write

|𝐶𝐽| = |𝐵𝐶| − |𝐵𝐽| = 𝜏 − 𝑎.
Similarly follow also the equalities in the second and third line. Equality |𝐻𝐽| = |𝑐 − 𝑏|
follows from the previous

|𝐻𝐽| = |𝐵𝐶| − |𝐵𝐻| − |𝐶𝐽| = 𝑎 − (𝜏 − 𝑏) − (𝜏 − 𝑏) = 𝑏 − 𝑐.

Similarly follow also the two last equalities.
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Exercise 4. Using figure 3 and the previous relations show that
1. |𝑆𝐽| = |𝐾𝑀| = 𝑏, |𝐽𝐿| = |𝑂𝑁| = 𝑐, |𝑂𝑃| = |𝑅𝐾| = 𝑎.
2. |𝐷𝑀| = |𝑍𝑁| = 𝑎, |𝐻𝐿| = |𝐷𝑅| = 𝑏, |𝑍𝑃| = |𝐻𝑆| = 𝑐.
3. |𝑃𝑁| = 𝑎 + 𝑐, |𝑆𝐿| = 𝑏 + 𝑐, |𝑀𝑅| = 𝑎 + 𝑏.
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Figure 4: Common tangents of two circles

Exercise 5. Given are two not congruent and external to each other circles 𝜅(𝑂) and 𝐿(𝑃). Show
that the relations suggested by figure (see figure 4).

1. |𝐾𝐿| = |𝐿𝑁| = |𝐷𝐸| = |𝐸𝑍| etc.
2. |𝐿𝐸| = |𝑁𝐶| etc.
3. The circles 𝜈 = (𝐶𝐷𝑁𝐻), 𝜇 = (𝐵𝐸𝐿𝐽), 𝐽 = (𝐴𝑍𝐾𝐼) are concentric.
4. The circle 𝜇 passes through the centers 𝑂 and 𝑃.
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Figure 5: The common tangent 𝜀 of two circles

Exercise 6. Show that point 𝐶 is contained in the internal common tangent of two external to each
other circles {𝜅1(𝑂1), 𝜅2(𝑂2)} and external to the segment 𝐴′𝐵′ of the contact points, if and only
if, for the other (external) tangents {𝐶𝐴, 𝐶𝐵} the following relation is valid: ||𝐶𝐴| − |𝐶𝐵|| = |𝐴′𝐵′|
(see figure 5).

Hint:Obviously the relation is valid if 𝐶 is on 𝜀 and outside 𝐴′𝐵′. For the converse con‑
sider themovement of 𝐶 on a line 𝜁 parallel to the radical axis 𝜂 of the two circles. Show
that the function 𝑓 (𝑥) = ||𝐶𝐴| − |𝐶𝐵|| = 𝑘/(|𝐶𝐴| + |𝐶𝐵|), with 𝑘 constant, is a decreasing
function of the distance 𝑥 of 𝐶 from the line of centers 𝑂1𝑂2.
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3 Relations between the radii

Most of the following formulas are simple consequences of the relations discussed in sec‑
tion 2. All of them have simple proofs and are formulated as exercises. In some of them
it is of help to use the formula for the area Δ of the triangle in dependence from the
circumradius 𝑅 ∶

Δ = 𝑎 ⋅ 𝑏 ⋅ 𝑐
4𝑅 , (1)

which results from the area formula Δ = 𝑎𝑏 sin(𝛾)/2 = 𝑎𝑏𝑐/(4𝑅), using the well known
sine rule 𝑐/ sin(𝛾) = 2𝑅.
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Figure 6: 𝑀 bisects the perimeter (𝐴𝐵𝐶) = 1
2(𝑎 + 𝑏 − 𝑐) ⋅ 𝑟𝐶

Exercise 7. Find a point 𝑀 on the side 𝐴𝐵 of triangle 𝐴𝐵𝐶 (See Figure 6‑I), such that

|𝑀𝐴| + |𝐴𝐶| = |𝑀𝐵| + |𝐵𝐶|.

Exercise 8. Show that for the radii {𝑟, 𝑟𝐴, 𝑟𝐵, 𝑟𝐶} of the inscribed and escribed circles, the altitudes
{ℎ𝐴, ℎ𝐵, ℎ𝐶} and the area Δ = (𝐴𝐵𝐶) of the triangle 𝐴𝐵𝐶 holds

Δ = 𝜏 ⋅ 𝑟 (2)
= (𝜏 − 𝑎)𝑟𝐴 = (𝜏 − 𝑏)𝑟𝐵 = (𝜏 − 𝑐)𝑟𝐶, (3)

1
𝑟 = 1

𝑟𝐴
+ 1

𝑟𝐵
+ 1

𝑟𝐶
= (4)

= 1
ℎ𝐴

+ 1
ℎ𝐵

+ 1
ℎ𝐶

. (5)

Hint: For the first three equalities see figure 6‑II. For the rest see that 1
ℎ𝐴

= 𝑎
2Δ , which

implies that 1
ℎ𝐴

+ 1
ℎ𝐵

+ 1
ℎ𝐶

= 𝜏
Δ = 1

𝑟 .

Exercise 9. Show the following formulas:

4𝑅 + 𝑟 = 𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶, (6)

𝑅2 = 𝑎2𝑏2𝑐2

2(𝑏2𝑐2 + 𝑐2𝑎2 + 𝑎2𝑏2) − (𝑎4 + 𝑏4 + 𝑐4)
. (7)

Hint: The last equality follows from 𝑎𝑏𝑐 = 4Δ𝑅 and the identity

2(𝑎2𝑏2 + 𝑏2𝑐2 + 𝑐2𝑎2) − 𝑎4 − 𝑏4 − 𝑐4 = (𝑎 + 𝑏 + 𝑐)(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏)(𝑎 + 𝑏 − 𝑐). (8)

Exercise 10. Show that, if the incenter of the triangle 𝐴𝐵𝐶 coincides with its centroid or its
orthocenter, then the triangle is equilateral.



4 Radii of the tritangent circles related to side‑lengths 7

4 Radii of the tritangent circles related to side‑lengths

Theorem 5. The radius 𝑟 of the inscribed and 𝑟𝐴 of the escribed circle of the triangle 𝐴𝐵𝐶 are
given respectively by the formulas

𝑟2 = (𝜏 − 𝑎)(𝜏 − 𝑏)(𝜏 − 𝑐)
𝜏 , 𝑟2

𝐴 = 𝜏(𝜏 − 𝑏)(𝜏 − 𝑐)
𝜏 − 𝑎 . (9)

r
A

I
A

Α
Β

C

Ι

D

J

Η
Ζ

Ε

Κ

τ

τ-b

τ-a

τ-c

r

Figure 7: 𝑟, 𝑟𝐴 as functions of the sides

Proof. In figure 7 are seen two circles: the inscribed 𝐼(𝑟) and the escribed 𝐼𝐴(𝑟𝑎). The proof
uses the relations of section 3 and the similarity between two pairs of triangles. The first
pair of triangles is (𝐴𝐷𝐼, 𝐴𝐸𝐼𝐴). The second pair is (𝐷𝐼𝐵, 𝐸𝐵𝐼𝐴). Both pairs consist of right
triangles and we have:

|𝐷𝐼|
|𝐸𝐼𝐴| = |𝐴𝐷|

|𝐴𝐸| ⇔ 𝑟
𝑟𝐴

= 𝜏 − 𝑎
𝜏 , (10)

|𝐷𝐼|
|𝐷𝐵| = |𝐸𝐵|

|𝐸𝐼𝐴| ⇔ 𝑟
𝜏 − 𝑏 = 𝜏 − 𝑐

𝑟𝐴
. (11)

Solving the second relative to 𝑟𝐴 and substituting into the first expression, we find the
formula for 𝑟2. Squaring the first formula and substituting with the found expression for
𝑟2, we prove the second formula as well.

5 Relations between angles and side‑parts

Next formulas relating the side parts {𝜏 − 𝑎, 𝜏 − 𝑏, 𝜏 − 𝑐} and 𝜏, defined by the tritan‑
gent circles, with the angles follow by inspecting figure 7 and are formulated as exercises.
In these {𝛼, 𝛽, 𝛾} denote the angles of the triangle and 𝑅 its circumradius.

Exercise 11. Show that for every triangle hold the formulas

cot(𝛼) = 𝑏2 + 𝑐2 − 𝑎2

4Δ ⇒ cot(𝛼) + cot(𝛽) + cot(𝛾) = 𝑎2 + 𝑏2 + 𝑐2

4Δ . (12)

Remark 1. For every triangle 𝐴𝐵𝐶 there is a special angle 𝜔, called “Brocard angle” of
the triangle and satisfying cot(𝜔) = cot(𝛼) + cot(𝛽) + cot(𝛾). It follows that

𝑎2 + 𝑏2 + 𝑐2 = 4Δ cot(𝜔).
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Exercise 12. Show that in every triangle the following formulas are valid

sin(𝛼
2) = √(𝜏 − 𝑏)(𝜏 − 𝑐)

𝑏𝑐 , sin(𝛽
2 ) = √(𝜏 − 𝑐)(𝜏 − 𝑎)

𝑐𝑎 , sin(𝛾
2 ) = √(𝜏 − 𝑎)(𝜏 − 𝑏)

𝑎𝑏 .
(13)

Hint: Start with the formula for the cosine and show first that

2 sin(𝛼
2)

2
= (𝑎 − 𝑏 + 𝑐)(𝑎 + 𝑏 − 𝑐)

2𝑏𝑐 . (14)

Exercise 13. Show that for every triangle the following formulas are valid

cos(𝛼
2) = √𝜏(𝜏 − 𝑎)

𝑏𝑐 , cos(𝛽
2 ) = √𝜏(𝜏 − 𝑏)

𝑐𝑎 , cos(𝛾
2 ) = √𝜏(𝜏 − 𝑐)

𝑎𝑏 . (15)

tan(𝛼
2) = √(𝜏 − 𝑏)(𝜏 − 𝑐)

𝜏(𝜏 − 𝑎) , tan(𝛽
2 ) = √(𝜏 − 𝑐)(𝜏 − 𝑎)

𝜏(𝜏 − 𝑏) , tan(𝛾
2 ) = √(𝜏 − 𝑎)(𝜏 − 𝑏)

𝜏(𝜏 − 𝑐) .

(16)

Exercise 14. Show that for every triangle holds next formula and the similars resulting by cyclic
permutations of the letters

cos(𝛼/2) cos(𝛽/2) sin(𝛾/2) = 𝑟𝐴
4𝑅. (17)

Exercise 15. Show that for every triangle the following formulas are valid

𝑎 − 𝑏
𝑐 =

sin (1
2(𝛼 − 𝛽))

cos (1
2𝛾)

, 𝑎 + 𝑏
𝑐 =

cos (1
2(𝛼 − 𝛽))

sin (1
2𝛾)

. (18)

Exercise 16. Given is a triangle 𝐴𝐵𝐶 with centroid 𝑀 and an arbitrary point 𝑋. Show that for
the sum of squares holds

|𝑋𝐴|2 + |𝑋𝐵|2 + |𝑋𝐶|2 = |𝑀𝐴|2 + |𝑀𝐵|2 + |𝑀𝐶|2 + 3|𝑋𝑀|2. (19)

Also show the converse, that is, if the point 𝑀 satisfies the above equation, for every point 𝑋 of the
plane, then it coincides with the centroid of the triangle.

Exercise 17. Show that, for a triangle 𝐴𝐵𝐶 with circumcircle 𝑐(𝑂, 𝑅) and centroid 𝑀, the folow‑
ing formula is valid

|𝑂𝑀|2 = 𝑅2 − 1
9(𝑎2 + 𝑏2 + 𝑐2). (20)

6 Heron’s triangle area formula

This formula relates the area Δ of the triangle 𝐴𝐵𝐶 to its side‑lengths {𝑎, 𝑏, 𝑐} and the
half‑perimeter 𝜏 = (𝑎 + 𝑏 + 𝑐)/2 ∶

Δ2 = 𝜏 ⋅ (𝜏 − 𝑎) ⋅ (𝜏 − 𝑏) ⋅ (𝜏 − 𝑐). (21)

The proof of Heron’s formula follows by substituting in the formula for the area Δ = 𝑟 ⋅ 𝜏
the radius 𝑟 through the formula of theorem 5 (see figure 8‑(I)).
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Figure 8: Heron’s proof Symmetric inscribed hexagon

Exercise 18. Let {𝐵′𝐶′, 𝐶″𝐴′, 𝐴″𝐵″} be tangents of the inscribed circle 𝜅(𝑟) of the triangle 𝐴𝐵𝐶,
respectively parallel to the sides {𝐵𝐶, 𝐶𝐴, 𝐴𝐵}. Show that the hexagon 𝐴′𝐴″𝐵″𝐵′𝐶′𝐶″ is sym‑
metric and has its opposite sides equal and parallel (see figure 8‑(II)). Show also that the sum of
the inradii of the small circles 𝑟𝐴 + 𝑟𝐵 + 𝑟𝐶 = 𝑟. Finally show that the circumcircles of the small
triangles are tangent to the circumcircle of triangle 𝐴𝐵𝐶.

Exercise 19. Show that the area Δ of the triangle 𝐴𝐵𝐶 is expressed with the help of its altitudes
{ℎ𝐴, ℎ𝐵, ℎ𝐶} through the formula:

1
Δ2 = ( 1

ℎ𝐴
+ 1

ℎ𝐵
+ 1

ℎ𝐶
) ⋅ (− 1

ℎ𝐴
+ 1

ℎ𝐵
+ 1

ℎ𝐶
) ⋅ ( 1

ℎ𝐴
− 1

ℎ𝐵
+ 1

ℎ𝐶
) ⋅ ( 1

ℎ𝐴
+ 1

ℎ𝐵
− 1

ℎ𝐶
) .
(22)

Remark 2. In the articles of Baker [Bak85a], [Bak85b] are contained 110 formulas for the
area Δ of the triangle among which the following interesting, in that they relate the area
Δ to the areas of other triangles intimately related to 𝐴𝐵𝐶 ∶

Δ = 𝐿 ⋅ 1
2 cos(𝛼) cos(𝛽) cos(𝛾) , (23)

= 𝑀 ⋅ (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎)
2𝑎𝑏𝑐 , (24)

= 𝑁 ⋅ 2𝑅
𝑟 . (25)

In these 𝐿 is the area of the “orthic” triangle, with vertices the feet of the altitudes, 𝑀 is
the area of the triangle having for vertices the traces of the internal bisectors, and 𝑁 is
the area of the triangle having for vertices the points of tangency of the incircle.

7 A symmetric equilateral hexagon

Intimately related to the triangle 𝐴𝐵𝐶 is the hexagon created by projecting on the sides
of the triangle its excenters and extending them to their intersections {𝐴3, 𝐵3, 𝐶3}. This
creates the hexagon ℎ = 𝐼𝐴𝐵3𝐼𝐶𝐴3𝐼𝐵𝐶3 (see figure 9) of which next theorem sums up the
basic properties.

Theorem 6. The sides of ℎ are equal to the circumdiameter 2𝑅 of 𝐴𝐵𝐶. The hexagon is sym‑
metric w.r. to the circumcenter 𝑂 of 𝐴𝐵𝐶 and its exterior angles equal those of the triangle.

Proof. The claim about the outer angles is obvious. The claim on the equality of sides
follows from the triangles {𝐴3𝐼𝐵𝐼𝐶, 𝐵3𝐼𝐶𝐼𝐴, 𝐶3𝐼𝐴𝐼𝐵} easily seen to be isosceli. The sym‑
metry follows from the equality of sides and the parallelity of opposite sides, since these
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are orthogonal, each to a corresponding side of 𝐴𝐵𝐶. That the center is 𝑂 follows by
considering a diagonal, 𝐼𝐶𝐶3 say. The symmetry center is on the parallel to 𝐼𝐶𝐵3, which
passes through the middle of 𝐴1𝐴2, which is identical with the middle of 𝐵𝐶. Finally,
the claim about 2𝑅 follows by calculating the side 𝐴3𝐼𝐵 in terms of 𝐼𝐵𝐼𝐶, which in turn
is expressible in terms of {𝐼𝐵𝐵″, 𝐼𝐶𝐶″}.

Corollary 1. The lengths of the sides of the triangle 𝐼𝐴𝐼𝐵𝐼𝐶 are

𝐼𝐴𝐼𝐵 = 4𝑅 cos(𝛾/2), 𝐼𝐵𝐼𝐶 = 4𝑅 cos(𝛼/2), 𝐼𝐶𝐼𝐴 = 4𝑅 cos(𝛽/2). (26)

Proof. Follows by applying the cosine formula to triangle 𝐴3𝐼𝐵𝐼𝐶 and his alikes.
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Figure 9: Equilateral symmetric hexagon

Corollary 2. The lengths of the diagonals of the hexagon ℎ are

(𝐼𝐴𝐴3)2 = 4𝑅(𝑅 + 2𝑟𝐴), (𝐼𝐵𝐵3)2 = 4𝑅(𝑅 + 2𝑟𝐵), (𝐼𝐶𝐶3)2 = 4𝑅(𝑅 + 2𝑟𝐶). (27)

Proof. Follows by applying the parallelogram rule 𝑥2 + 𝑦2 = 2(𝑎2 + 𝑏2) relating the di‑
agonals {𝑥, 𝑦} to the sides {𝑎, 𝑏}. Indeed, setting

𝑥 = (𝐼𝐴𝐴3)2, 𝑦 = (𝐼𝐵𝐵3)3, 𝑧 = (𝐼𝐶𝐶3)2, and 𝑢 = (𝐼𝐵𝐼𝐶)2, 𝑣 = (𝐼𝐶𝐼𝐴)2, 𝑤 = (𝐼𝐴𝐼𝐵)2

and applying this rule we obtain the simple linear system w.r. to {𝑥, 𝑦, 𝑧}:

𝑧 + 𝑦 = 2(4𝑅2 + 𝑢),
𝑥 + 𝑧 = 2(4𝑅2 + 𝑣),
𝑦 + 𝑥 = 2(4𝑅2 + 𝑤).
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This has the solution

𝑥 = 𝑣 + 𝑤 − 𝑢 + 4𝑅2, 𝑦 = 𝑤 + 𝑢 − 𝑣 + 4𝑅2, 𝑧 = 𝑢 + 𝑣 − 𝑤 + 4𝑅2,

which, in view of corollary 1, leads to the claimed formulas. To see this, after applying
corollary 1, use the trigonometric identity

cos2(𝛼/2) + cos2(𝛽/2) − cos2(𝛾/2) = 2 cos(𝛼/2) cos(𝛽/2) sin(𝛾/2), (28)

and the formulas of exercise 14.

Remark 3. The formulas of corllary 2 are equivalent to “Euler’s theorem” connecting the
radii {𝑅, 𝑟𝐴} with the distance |𝑂𝐼𝐴| of the centers of the corresponding circles. In fact,
since it holds |𝑂𝐼𝐴| = |𝐼𝐴𝐴3|/2, and the likes for the other centers, these formulas become
equivalent to

|𝑂𝐼𝐴|2 = 𝑅(𝑅 + 2𝑟𝐴), |𝑂𝐼𝐵|2 = 𝑅(𝑅 + 2𝑟𝐵), |𝑂𝐼𝐶|2 = 𝑅(𝑅 + 2𝑟𝐶), (29)

which are Euler’s formulas for the circumcenter and the excenters of the triangle. The cor‑
responding formula for the incenter is handled below.

Remark 4. The correspondence of the hexagon to the triangle 𝐴𝐵𝐶 ↔ ℎ is reversible. The
triangle can be constructed if we know the symmetric equilateral hexagon ℎ. For this it
suffices to construct the triangle of the diagonals 𝐼𝐴𝐼𝐵𝐼𝐶 and take the orthic 𝐴𝐵𝐶 of the
latter. The selection of the other diagonals and the corresponding triangle 𝐴3𝐵3𝐶3 leads,
because of the symmetry w.r. to 𝑂 to a congruent to 𝐴𝐵𝐶 triangle.

Exercise 20. Construct a triangle 𝐴𝐵𝐶 knowing its circumradius 𝑅 and
1. an angle 𝛼 and one of the sides {𝐼𝐴𝐼𝐵, 𝐼𝐴𝐼𝐶.}
2. a sum of two sides 𝑏 + 𝑐 and the corresponding angle 𝛼.
3. two sums of sides {𝑏 + 𝑐, 𝑐 + 𝑎}.
4. an exradius 𝑟𝐴 and the sum 𝑎 + 𝑐 .
5. two exradii {𝑟𝐴, 𝑟𝐵}.
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C D

E

F

B'

Figure 10: Double area (𝐴𝐵𝐶𝐷𝐸𝐹) = 2(𝐵𝐷𝐹)

Exercise 21. In the convex symmetric hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 show that the triangle of the diagonals
𝐵𝐷𝐹 has half the area of the hexagon (see figure 10).

Hint: Show that the hexagon has area equal to the parallelogram 𝐵𝐷𝐵′𝐹.
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Exercise 22. Show that the triangles {𝐴′𝐵′𝐶′, 𝐼𝐴𝐼𝐵𝐼𝐶} are homothetic (see figure 11). Show also
that their homothety center 𝐿 is described in trilinear coordinates through

𝐿 = ( 1
𝜏 − 𝑎 ∶ 1

𝜏 − 𝑏 ∶ 1
𝜏 − 𝑐 ) .

Hint: The homothety results from the parallelity of corresponding sides of the triangles.
The length ratio of two parallel sides, {𝐴𝐶/𝐼𝐴𝐼𝐶} say, is easily computed to be:

𝐴′𝐶′ = 2𝐵𝐶′ sin(𝛽/2), 𝐼𝐴𝐼𝐶 = 4𝑅 cos(𝛽/2) ⇒ 𝐴′𝐶′

𝐼𝐴𝐼𝐶
= 𝜏 − 𝑏

2𝑅 tan(𝛽/2).

Using this and the formulas established so far, we find that
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I
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I
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L

Figure 11: Similar triangles

𝐿𝐴∗ = Δ𝑟𝐴
2𝜏𝑅 − Δ = 𝑟𝑟𝐴

2𝑅 − 𝑟 = ( 𝑟2𝜏
2𝑅 − 𝑟) 1

𝜏 − 𝑎,

in which the factor before 1/(𝜏 − 𝑎) is independent of the particular side of the triangle.

Remark 5. Point 𝐿 coincides with the “triangle center” 𝑋57 in Kimberling’s list ([Kim18]).
It is the “isogonal conjugate” of the so‑called “Mittenpunkt” 𝑋9 = (𝜏 − 𝑎 ∶ 𝜏 − 𝑏 ∶ 𝜏 − 𝑐) of
the triangle 𝐴𝐵𝐶.

8 Euler’s theorem for the incenter/excenter

Every triangle has a circumscribed circle 𝐿 and an inscribed 𝜅. If we hide the triangle
we see two circles (𝜅 in the interior of 𝐿) and the question rises, whether there are other
triangles which have these two circles respectively as inscribed and circumscribed. More
generally, for two circles {𝜅, 𝐿}, the first of which is contained in the second, one may ask,
whether there is a triangle circumscribed to the first and inscribed to the second.

The next Euler’s (1707‑1783) theorem (one of many [Ric08], [Nah06]) leads to the ex‑
pression of the power of the incenter 𝐼 relative to the circumcircle of the triangle as a
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function of the radii of the circumcircle and the incircle (see figure 12‑(I)). The formula
which results gives also a quantitative criterion which answers the previous question, of
the existence of a triangle circumscribed/inscribed to two given circles.

Theorem 7. (Euler’s theorem) In every triangle the radius 𝑅 of its circumcircle, the radius 𝑟 of
its incircle and the distance 𝑂𝐼 of the centers of these circles are related through the formula

|𝑂𝐼|2 = 𝑅(𝑅 − 2𝑟). (30)

Proof. The formula reminds of the power 𝑝(𝐼) = |𝑂𝐼|2 − 𝑅2 of the incenter 𝐼 (center of the
inscribed circle) relative to the circumcircle, especially if we write it as |𝑂𝐼|2 − 𝑅2 = −2𝑟𝑅.
It suffices therefore to show that the power of the incenter 𝐼 relative to the circumcircle is
−2𝑟𝑅. The basic observations which lead to the proof are two.
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Figure 12: Euler’s theorem Triangles with the same incircle and circumcircle

First, that the extension of the bisector 𝐴𝐼 passes through the middle 𝐷 of the arc 𝐵𝐶
and the line segments {𝐷𝐵, 𝐷𝐼, 𝐷𝐶} are equal (See Figure 12‑I). Segments 𝐷𝐵 and 𝐷𝐶 are
of course equal, since 𝐷 is the middle of the arc 𝐵𝐶 . Triangle 𝐵𝐷𝐼 is however isosceles,
because its angle at 𝐵 is the sum 𝛼+𝛽

2 and the same happens with its angle at 𝐼, as external
of the triangle 𝐵𝐼𝐴. The power of 𝐼 then is |𝐴𝐼||𝐼𝐷| = |𝐴𝐼||𝐷𝐶|.

The second observation is that the right triangles 𝐴𝐼𝑁 and 𝐸𝐷𝐶 are similar. Here, 𝑁
is the projection of 𝐼 on 𝐴𝐶, therefore its length is |𝐼𝑁| = 𝑟. Point 𝐸 is the diametrically
opposite of 𝐷. Obviously the triangles are similar because they have their acute angles at
𝐴 and 𝐸 equal. Then their sides are proportional:

|𝐴𝐼|
|𝐼𝑁| = |𝐸𝐷|

|𝐷𝐶| ⇒ |𝐴𝐼||𝐷𝐶| = |𝐼𝑁||𝐸𝐷|,

which, with what we said, translates to the claimed:

− 𝑝(𝐼) = |𝐴𝐼||𝐼𝐷| = |𝐴𝐼||𝐷𝐶| = |𝐼𝑁||𝐸𝐷| = 𝑟(2𝑅).

Theorem 8. If for two circles 𝜅(𝐼, 𝑟) and 𝐿(𝑂, 𝑅) holds the relation |𝑂𝐼|2 = 𝑅(𝑅 − 2𝑟), then for
every point 𝐴 of 𝐿 there exists a triangle 𝐴𝐵𝐶 inscribed in 𝐿 and cirumscribed to 𝜅.

Proof. To begin with, 𝜅 is inside circle 𝐿. This is seen by considering a point 𝑋 of 𝜅 and
calculating the difference

|𝑋𝑂|2 < (|𝑋𝐼| + |𝐼𝑂|)2 < |𝑋𝐼|2 + |𝐼𝑂|2 = 𝑟2 + 𝑅2 − 2𝑅𝑟 = (𝑅 − 𝑟)2,



8 Euler’s theorem for the incenter/excenter 14

where in the previous to last equality we used the assumed relation. We draw therefore
from an arbitrary point 𝐴 of 𝐿 the tangents to 𝜅, which intersect again the circle 𝐿 at 𝐵
and 𝐶 (See Figure 12‑II). It suffices to show that line 𝐵𝐶 is tangent to 𝜅. To see this, we
draw the bisector of the angle 𝐵𝐴𝐶, which intersects the circle 𝐿 at the middle 𝐷 of arc
𝐵𝐶 . Suppose again that 𝐸 is the diametrically opposite of𝐷 and𝑁 is the projection of 𝐼 on
𝐴𝐶. The right triangles 𝐴𝐼𝑁 and 𝐸𝐷𝐶 have their acute angles at 𝐴 and 𝐸 equal, therefore
they are similar. Consequently

|𝐴𝐼|
|𝐼𝑁| = |𝐸𝐷|

|𝐷𝐶| ⇒ |𝐴𝐼||𝐷𝐶| = |𝐼𝑁||𝐸𝐷| = 𝑟(2𝑅).

However, by hypothesis, the power of 𝐼 relative to 𝐿 is also−𝑝(𝐼) = |𝐴𝐼||𝐼𝐷| = 𝑅2 −|𝑂𝐼|2 =
2𝑅𝑟. Therefore

|𝐴𝐼||𝐼𝐷| = |𝐴𝐼||𝐷𝐶| ⇒ |𝐼𝐷| = |𝐷𝐶|.

Thus, there are defined two isosceli triangles, 𝐵𝐷𝐼 and 𝐷𝐼𝐶. Let 𝜔 = 𝐼𝐵𝐴. Taking into
account that angles 𝐷𝐵𝐶 and 𝐷𝐴𝐵 are equal to 𝛼/2 , where 𝛼 = 𝐵𝐴𝐶, we have

𝐵𝐼𝐷 = 𝜔 + 𝛼
2 = 𝐼𝐵𝐷 = 𝐼𝐵𝐶 + 𝛼

2 ⇒ 𝐼𝐵𝐶 = 𝜔.

This means that 𝐵𝐼 is a bisector of the angle 𝐴𝐵𝐶 hence 𝐵𝐶 is also tangent to 𝜅.

Next exercise settles the analogous relation between the circumcenter 𝑂 and the ex‑
center 𝐼𝐴 of a triangle.

Α

Β C

D

Ι

Ι
Α

Ν

Ε

Ο

λ

κ
μ

(I)
Α

Β CΑ'

Ι Μ

Κ
(ΙΙ)

Ρ

κ

λ

N
D

r

C'

μ

Figure 13: Euler’s theorem for escribed Circle 𝐿(𝐼, √2 ⋅ 𝑟)

Exercise 23. Show that the Euler’s theorem 7 as well as 8 holds similarly also for the escribed
circle of triagle 𝐴𝐵𝐶. Specifically, if 𝐼𝐴(𝑟𝐴) is the escribed circle contained in the angle 𝐴, then

|𝑂𝐼𝐴|2 = 𝑅(𝑅 + 2𝑟𝐴). (31)

Conversely, if for two circles 𝜅(𝐼, 𝑟) and 𝐿(𝑂, 𝑅) holds |𝑂𝐼|2 = 𝑅(𝑅 + 2𝑟), then for every point 𝐴
of 𝐿 there is a triangle 𝐴𝐵𝐶 inscribed in 𝐿 and escribed to 𝜅.

Hint:With the notation of figure 13‑(I), the proof of the theorem 7 is transferred verbatim
to this case. An alternative proof was given in section 7. The proof of the converse claim
is similar. The key in the transfer of these proofs is the fact that the circle 𝜇 with diameter
𝐼𝐼𝐴 passes through points {𝐵, 𝐶} and has for center the point 𝐷.
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Exercise 24. Assume that the tangent 𝑁𝐷 of the inscribed circle 𝜅(𝐼, 𝑟), which is parallel to the
base𝐵𝐶 of the triangle𝐴𝐵𝐶, intersects side𝐴𝐵 at the point𝑃. Show that the circle𝜇, with diameter
𝑃𝐶, intersects the altitude 𝐴𝐴′ at a point 𝐾, whose distance from the incenter 𝐼 is equal to √2 ⋅ 𝑟.

Hint: Show that 𝐴 lies on the radical axis of circles 𝐿(𝐼, √2 ⋅ 𝑟) and 𝜇 (see figure 13‑(II)), by
calculating its two powers {𝛿1, 𝛿2} relative to the circles {𝐿, 𝜇}. If {𝜏, 𝑟, 𝜐 = |𝐴𝐴′|} denote
respectively the half perimeter, the radius of the inscribed circle and the altitude from 𝐴,
these powers are

𝛿1 = (𝜏 − 𝑎)2 − 𝑟2 = 𝛿2 = (𝜐 − 2𝑟)𝑏𝑐 cos(𝛼)
𝜐 = 1

2(𝑏2 + 𝑐2 − 𝑎2).
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Figure 14: Rectangle of tritangent centers

Exercise 25. For the triangles {𝐴𝐵𝐶, 𝐴′𝐵𝐶} with common base 𝐵𝐶 we consider the four centers
the tritangent of the inscribed and escribed cirlces in angle 𝐴 (see figure 14). Show that the cor‑
responding quadrilateral 𝐼𝐾𝐿𝑀 is a rectangle centerred at the middle 𝑁 of the arc 𝐵𝐶 of the
circumcircle 𝜅.
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Figure 15: Two similar rectangles
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Exercise 26. Continuing the preceding exercise, consider all four tritangent circles of the two
triangles {𝐴𝐵𝐶 , 𝐴′𝐵𝐶}. Show that their centers are the vertices of two similar rectangles (see
figure 15). For this consider the diameter 𝑁𝑁′ of 𝜅 orthogonal to 𝐵𝐶 and show that the similarity
with center 𝐵, rotation angle 𝑁𝐵𝑁′ and ratio 𝑡 = 𝐵𝑁′/𝐵𝑁 transforms the rectangle with center
𝑁 to that with center 𝑁′.

Exercise 27. Using the notation of this section and figure 15‑I, show the relations:

|𝐶𝐷| = 𝑎
2 cos (𝛼

2 )
= 2𝑅 sin(𝛼

2) , (32)

|𝐼𝐵| = |𝐼𝐼𝐴| sin(𝛾
2 ) = 4𝑅 sin(𝛼

2) sin(𝛾
2 ) , (33)

𝑟 = 4𝑅 sin(𝛼
2) sin(𝛽

2 ) sin(𝛾
2 ) , (34)

𝜏 − 𝑎 = |𝐴𝐼| cos(𝛼
2) = 4𝑅 sin(𝛽

2 ) sin(𝛾
2 ) cos(𝛼

2) , (35)

cos(𝛼
2) = 𝜏

|𝐴𝐼𝐴| , 𝐴𝐷𝐸 = |𝛽 − 𝛾|
2 (36)

|𝐴𝐷| = 2𝑅 cos(|𝛽 − 𝛾|
2 ) , |𝐴𝐸| = 2𝑅 sin(|𝛽 − 𝛾|

2 ) , (37)

𝜏2 − 𝑟2 − 4𝑅𝑟 = 1
2(𝑎2 + 𝑏2 + 𝑐2), 𝜏2 + 𝑟2 + 4𝑟𝑅 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. (38)

Hint: The relations in the first five lines result immediately from the figure and the rule
of sine for triangles. For the relations of the sixth line start from tan (𝛼

2 ) = 𝑟
𝜏−𝑎 and the

relations of theorem 5. The last equation follows from the previous one and the identity
2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = (𝑎 + 𝑏 + 𝑐)2 − (𝑎2 + 𝑏2 + 𝑐2).

9 Some properties of the bisectors

Exercise 28. Show that the line 𝐴𝐷, passing through a vertex of triangle 𝐴𝐵𝐶 and intersecting
the opposite side at 𝐷 and the circumcircle at 𝐸 is a bisector of the angle 𝐵𝐴𝐶, if and only if it holds
(see figure 16‑(I)):

|𝐸𝐷||𝐸𝐴| = |𝐸𝐵|2 = |𝐸𝐶|2. (39)

Hint: Point 𝐸 is the middle of the arc 𝐵𝐶 and the triangles 𝐴𝐵𝐸 and 𝐵𝐷𝐸 are similar.

Exercise 29. Show that for the isosceles triangle 𝐴𝐵𝐶 and the point 𝐷 of its base 𝐵𝐶 and with the
notation {𝑎 = |𝐴𝐵|, 𝑑 = |𝐴𝐷|, 𝑥 = |𝐵𝐷|, 𝑦 = |𝐷𝐶|}, the relation 𝑎2 = 𝑑2 + 𝑥 ⋅ 𝑦 holds true.

Hint: Almost identical to exercise 28 (see figure 16‑(I)).

Exercise 30. Construct a triangle from its elements 𝛼 = |𝐵𝐴𝐶|, 𝑎 = |𝐵𝐶| and 𝛿𝐴 = |𝐴𝐷|, where
𝐴𝐷 is the bisector of angle 𝐴.

Hint: From the first two given elements the circumcircle of the wanted triangle 𝐴𝐵𝐶 can
be constructed and the position of 𝐵, 𝐶 on it can be determined. Using figure 16‑(I), the
conclusion of the previous exercise, and setting 𝑥 = |𝐸𝐴|, we have

𝑥(𝑥 − 𝛿𝐴) = |𝐵𝐸|2,

from which |𝐸𝐴| is determined. With center 𝐸 and radius |𝐸𝐴| we draw a circle which
intersects the previously constructed circumcircle at 𝐴.
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Figure 16: Relation with bisector Relations of segments on the bisector

Exercise 31. Given is a triangle 𝐴𝐵𝐶 with incenter 𝐼, and in the bisector from 𝐴 the excenter
𝑍, the intersection 𝐸 with the circumcircle and the intersection point 𝐷 with 𝐵𝐶. Show that the
circles {𝜅, 𝜆} with centers, respectively, {𝐼, 𝑍} and radii {|𝐼𝐷|, |𝑍𝐷|} define points {𝐷′, 𝑍′} on 𝐴𝐶
(see figure 16‑(II)), such that the triangles {𝐴𝐵𝐸, 𝐴𝐷′𝐼, 𝐴𝐷𝐶, 𝐴𝑍′𝑍} are similar. Also similar are
the triangles {𝐴𝐼𝐵, 𝐴𝐶𝑍}, as well as the triangles {𝐴𝐼𝐶, 𝐴𝐵𝑍} and the following relations hold:

1. |𝐴𝐸| ⋅ |𝐼𝐷| = |𝑍𝐼| ⋅ |𝐴𝐼|.
2. |𝐴𝐸| ⋅ |𝐴𝐷| = |𝐴𝐼| ⋅ |𝐴𝑍| = |𝐴𝐵| ⋅ |𝐴𝐶|.
3. |𝐼𝐴| ⋅ |𝑍𝐷| = |𝑍𝐴| ⋅ |𝐼𝐷|.
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Figure 17: {𝐴, 𝐷, 𝐸} collinear Traces of altitudes, bisectors and medians

Exercise 32. In the triangle 𝐴𝐵𝐶, the middles of the sides are respectively 𝐴′, 𝐵′, 𝐶′, the traces
of the altitudes are 𝐴″, 𝐵″, 𝐶″, the orthocenter is 𝐻 and 𝐴1, 𝐵1, 𝐶1 are the middles of 𝐻𝐴, 𝐻𝐵,
𝐻𝐶. Show that the points of intersection of the lines 𝐷 = (𝐴′𝐶″, 𝐴1𝐵′) and 𝐸 = (𝐴1𝐶′, 𝐴′𝐵″)
are contained in the parallel to 𝐵𝐶 from 𝐴. Moreover line 𝐸𝐴1 is a bisector of the angle 𝐴𝐸𝐴′ and
line 𝐷𝐵′ is a bisector of the angle 𝐴𝐷𝐴′. Show that the circle with diameter 𝐴𝐻 is the inscribed
circle of triangle 𝐷𝐸𝐴′ (see figure 17‑(I)).

Exercise 33. Let {𝐷, 𝐸, 𝐻} be respectively the traces of the altitude, bisector and median on the
side 𝐵𝐶 of the triangle 𝐴𝐵𝐶. Let also 𝑍 be the projection of the incenter 𝐼 on the side 𝐵𝐶. Show
that |𝐻𝑍|2 = |𝐻𝐷| ⋅ |𝐻𝐸| (see figure 17‑(II)). Using |𝑍𝐻| = |𝑏−𝑐|

2 , construct the triangle, whose
given are the lengths {𝜐𝐴 = |𝐴𝐷|, 𝜇𝐴 = |𝐴𝐻|, |𝑏 − 𝑐|}.
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Hint: The relation follows from the equality of the first and last term of the equations

|𝐷𝑍|
|𝑍𝐻| = |𝐴𝐼|

|𝐼𝐽| = |𝐴𝐼|
|𝐵𝐽| = |𝐼𝐾|

|𝐻𝐽| = |𝐼𝑍|
|𝐻𝐽| = |𝑍𝐸|

|𝐸𝐻| ⇒ |𝐸𝐻| ⋅ |𝐻𝐷 − 𝐻𝑍| = |𝑍𝐻| ⋅ |𝑍𝐸|.

10 Euler’s line and circle of the triangle

Theorem 9. The centroid 𝐺 of the triangle 𝐴𝐵𝐶 is contained in the line segment with end points
the circumcenter 𝑂 and the orthocenter 𝐻 and divides it into ratio 1:2 (|𝐺𝐻| = 2|𝐺𝑂|). The line
𝜀 = 𝑂𝐻 is called “Euler line” of the triangle (see figure 18).
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Figure 18: The Euler line 𝐻𝑂

Proof. Consider the diametrically opposite 𝐼 of vertex 𝐵 relative to the circumcircle. 𝐴 and
𝐶 are also on the circumcircle, therefore they see the diameter 𝐵𝐼 under a right angle. It
follows easily that𝐴𝐻𝐶𝐼 is a parallelogram, hence |𝐴𝐻| = |𝐼𝐶|. However, if𝐷 is themiddle
of 𝐵𝐶, 𝑂𝐷 joins side middles of the triangle 𝐵𝐶𝐼, therefore |𝐼𝐶| = 2|𝑂𝐷| and consequently
𝐴𝐻 has twice the length and is parallel to 𝑂𝐷. Suppose 𝐺 is the intersection point of the
median 𝐴𝐷 with 𝑂𝐻. Triangles 𝐴𝐻𝐺 and 𝐷𝑂𝐺 are similar, having corresponding angles
equal. Consequently, their sideswill be proportional and, because |𝐴𝐻| = 2|𝑂𝐷|, the same
will happen also with the other corresponding sides, in other words:

|𝐴𝐺| = 2|𝐺𝐷| and |𝐻𝐺| = 2|𝐺𝑂|,

the first characterizing the centroid and the second proving the claim.

“Euler’s circle” of the triangle, is the one which passes through the three middles of
the sides. Its particularity lies in the fact that it also passes through six more noteworthy
points of the triangle. That’s why it is often called “circle of nine points” of the triangle (see
figure 19).

Theorem 10. The circle 𝜅, which passes through the middles 𝑀, 𝑁, 𝐽 of the sides of triangle 𝐴𝐵𝐶,
has the following properties:

1. It passes also through the traces {𝐷, 𝐸, 𝑍} of the altitudes of the triangle.
2. It passes also through the middles {𝑃, 𝑆, 𝐼} of the line segments which join the vertices with

the orthocenter 𝐻 of the triangle.
3. Its center 𝑃 is the middle of the segment which joins the orthocenter𝐻 with the circumcenter

𝑂 of the triangle.
4. Its radius |𝑃𝐼| is half that of the radius 𝑅 = |𝑂𝐴| of the circumscribed circle 𝐿 of the triangle.
5. Point 𝐻 is a similarity center of 𝜅 and the circumcircle of the triangle, with similarity ratio

1 ∶ 2.
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Proof. The proof relies on the existence of three rectangles which have, by two, a common
diagonal. The rectangles are 𝑆𝑇𝑁𝐽 , 𝑆𝑀𝑁𝐼 and 𝐼𝐽𝑀𝑇 . First, let us see that these rect‑
angles exist. I show that 𝑆𝑇𝑁𝐽 is such a rectangle. The proof for rectangles 𝑆𝑀𝑁𝐼 and
𝐼𝐽𝑀𝑇 is similar.

In 𝑆𝑇𝑁𝐽 then, 𝑆𝐽 joins themiddles of sides of the triangle𝐵𝐻𝐴. Therefore it is parallel
and the half of 𝐻𝐴. Similarly 𝑇𝑁 joins the middles of sides of triangle 𝐴𝐻𝐶. Therefore it
is parallel and the half of 𝐻𝐴. Consequently 𝑆𝐽 and 𝑇𝑁, being parallel and equal, they
define a parallelogram 𝑆𝑇𝑁𝐽 . That this is actually a rectangle, follows from the fact that
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Figure 19: Euler’s circle 𝜅 of the triangle 𝐴𝐵𝐶

𝑆𝑇 joins middles of sides of triangle 𝐻𝐵𝐶, therefore it is parallel and the half of 𝐵𝐶. Since
𝐴𝐷 and 𝐵𝐶 are mutually orthogonal, the same will happen also with their parallels 𝑆𝐽
and 𝑆𝑇 .

The three rectangles have by two a common diagonal, which is the diameter of their
circumscribed circle. This implies that the three circumscribed circles of these rectangles
coincide. This completes the proof of the first two claims of the proposition.

For the proof of the remaining two claims, it suffices to observe that in the triangle
𝐻𝑂𝐴 the segment 𝑃𝐼 joins the middles of the sides, therefore it is parallel and the half
of 𝑂𝐴. However 𝑂𝐴 is a radius of the circumscribed circle 𝐿 and 𝑃𝐼 is a radius of circle
𝜅. Latter follows from the fact |𝐴𝐻| = 2|𝑂𝑀| , therefore 𝐼𝐻𝑀𝑂 is a parallelogram and its
diagonals are bisected at 𝑃 . However 𝐼𝑀, as seen previously, is a diameter of the circle
𝜅. The last claim is a consequence of the two previous ones.

11 Some properties of Euler’s circle

Here we discuss some properties of Euler’s circle formulated as exercises.

Exercise 34. Show that the triangle 𝐴𝐵𝐶 coincides with the orthic triangle of triangle 𝐼𝐴𝐼𝐵𝐼𝐶,
with vertices the excenters of 𝐴𝐵𝐶. Conclude that the circumcircle of the triangle 𝐴𝐵𝐶 coincides
with the Euler circle of 𝐼𝐴𝐼𝐵𝐼𝐶 (see figure 20).
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Exercise 35. The orthocenter 𝐻 of the triangle 𝐴𝐵𝐶 is projected on the bisectors of angle 𝐴,
internal and external, at the points 𝑆 and 𝑃. Show that the line 𝑆𝑃 passes through the middle of
𝐵𝐶 and the center of its Euler circle.

Ι

Α

Β C

Ι
Α

Ι
Β

Ι
C

Α''

Α'

Ο

Ο'

Figure 20: Circumcircle of 𝐴𝐵𝐶 as Euler circle of 𝐼𝐴𝐼𝐵𝐼𝐶

Exercise 36. Show that for every triangle 𝐴𝐵𝐶 with orthocenter 𝐻, the Euler circles of the tri‑
angles 𝐴𝐵𝐶, 𝐴𝐵𝐻, 𝐵𝐶𝐻 and 𝐶𝐴𝐻 coincide (see figure 21‑(I)). Conclude that these four triangles
have circumscribed circles of equal radii.

Exercise 37. The diagonals of the quadrilateral 𝐴𝐵𝐶𝐷 define four triangles 𝐴𝐵𝐶, 𝐶𝐷𝐴, 𝐵𝐶𝐷,
𝐷𝐴𝐵 (see figure 21‑(II)). Show that the Euler circles of these triangles pass through a common
point 𝑂.
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Figure 21: Common Euler circle Intersection of four Euler circles

Hint:Consider the parallelogram 𝐸𝑍𝐻𝐽 of themiddles of the sides of the quadrilateral and
the middles {𝐼, 𝐾} of the diagonals. Let also 𝑂 be the intersection of two of these Euler
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circles e.g. of {𝐴𝐵𝐷, 𝐴𝐶𝐷}. Show that the other Euler circles pass through the same point,
proving f.e. that 𝐽𝑍𝐾 and 𝐽𝑂𝐾 are supplementary angles.

Exercise 38. The intersection point 𝑂 of the diagonals of the quadrilateral 𝐴𝐵𝐶𝐷 defines four
triangles 𝐴𝐵𝑂, 𝐵𝐶𝑂, 𝐶𝐷𝑂, 𝐷𝐴𝑂. Show that the circumcenters {𝐸, 𝑍, 𝐻, 𝐽} of these triangles are
vertices of a parallelogram. Show the same also for the centers {𝐼, 𝐾, 𝐿, 𝑀} of the Euler circles of
these triangles (see figure 22‑(I)).
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Figure 22: Four circumscribed circles Four Euler circles

Exercise 39. For the quadrilateral and the four triangles, defined in the previous exercise, show
that the radical axes of the Euler circles of these triangles define the sides and the diagonals of a
parallelogram, which is similar to 𝐼𝐾𝐿𝑀 (see figure 22‑(II)).
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Figure 23: Property of the center of the Euler circle

Exercise 40. For a triangle 𝐴𝐵𝐶 the middles of its sides are respectively {𝐴′, 𝐵′, 𝐶′}, the traces
of its altitudes are {𝐴″, 𝐵″, 𝐶″}, the orthocenter, the center of mass and the center of its Euler
circle are respectively {𝐻, 𝑀, 𝐸} (see figure 23). Also {𝐴1, 𝐵1, 𝐶1} are respectively the middles of
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{𝐻𝐴, 𝐻𝐵, 𝐻𝐶}. Show that the triangle with vertices the centroids {𝐴2, 𝐵2, 𝐶2} of the respective
triangles {𝐻𝐵𝐶, 𝐻𝐶𝐴, 𝐻𝐴𝐵} is homothetic to𝐴𝐵𝐶 with center of homothecy the point 𝐸 and ratio
of homothecy 1:3. Also the orthocenter of 𝐴2𝐵2𝐶2 coincides with 𝑀.

Exercise 41. Given a triangle 𝐴𝐵𝐶 and a point 𝐷 not contained in the side‑lines of the triangle,
show that the Euler circles {𝜅𝐴, 𝜅𝐵, 𝜅𝐶} respectively of triangles {𝐷𝐵𝐶, 𝐷𝐶𝐴, 𝐷𝐴𝐵} intersect at
a point 𝐿 contained in the Euler circle of the triangle 𝐴𝐵𝐶.

Hint: Consider the second intersection point 𝐿 of circles 𝜅𝐵, 𝜅𝐶 (the first is the middle 𝐸
of the segment 𝐷𝐴) (see figure 24‑(I)). From the inscriptible quadrilateral 𝐿𝐻𝐽𝐸, the angle
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Figure 24: Concurring circles of Euler Symmetric circumscribed hexagon

𝐸𝐿𝐻 is supplementary to 𝐸𝐽𝐻, which is equal to 𝐸𝐷𝐻, because 𝐸𝐽𝐻𝐷 is a parallelogram.
Similarly, 𝑍𝐿𝐸 is supplementary to 𝑍𝐷𝐸 and 𝑍𝐿𝐻 is equal to 𝑍𝐷𝐻. The circle 𝜅𝐴 will also
pass through 𝐿. Next show that point 𝐿 lies on the Euler circle of 𝐴𝐵𝐶 by proving that
point 𝐿 sees 𝐾𝐼 under an angle of measure 180∘ − 𝛽.

Exercise 42. Show that for every acute‑angled triangle 𝐴𝐵𝐶 there exists a convex symmetric
hexagon 𝐴𝐷𝐵𝑍𝐶𝐸 with equal sides, whose center coincides with the center 𝐿 of its Euler circle
(see figure 24‑(II)). Show that, conversely in each convex symmetric hexagon with equal sides, the
triangle which results by taking non successive vertices of it has as center of its Euler circle the
center of symmetry of the hexagon.

Exercise 43. Construct a triangle𝐴𝐵𝐶 for which are given the position of the vertex𝐴, the position
of the projection 𝐷 of 𝐴 on the opposite side 𝐵𝐶 and the position of the center 𝑃 of its Euler circle.

12 Feuerbach’s theorem

In 1822 Feuerbach (1800‑1834), who was a high school teacher, published a small book,
which, among other noteworthy theorems on the triangle ([Joh60, p.190]), contained also
the theorem we prove below. In this proof ([Aud02, p. 110], [CG67, p.117]) the key role
is played by the circle 𝜅 with diameter 𝐾𝐿 , where {𝐾, 𝐿} are the projections on 𝐵𝐶 of the
incenter 𝐼 and of the excenter𝑂 contained in the angle𝐴 of triangle𝐴𝐵𝐶 (see figure 25‑(I)).
From theorem 4we know that this circle has its center at themiddle𝐴′ of 𝐵𝐶. The proof of
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Feuerbach’s theorem results from properties of the inversion relative to that circle. Next
theorem formulates these properties beginning with the acute triangle with 𝑏 > 𝑐, using
arguments which hold in all cases.

Theorem 11. With the previous definitions and notations, hold the properties:
1. The circle 𝜅 is orthogonal to the inscribed 𝜆 as well as to the escribed 𝜇.
2. The intersection point 𝐽 of the bisector 𝐴𝐼 with 𝐵𝐶 is the inverse relative to 𝜅 of the trace 𝐴″

of the altitude.
3. The angles with 𝐵𝐶, of the tangent 𝜀 to 𝜆 from 𝐽 and the tangent to the Euler circle at the

middle 𝐴′ of 𝐵𝐶 are equal to |𝛽 − 𝛾|.
4. The inversion relative to 𝜅 maps the Euler circle 𝜈 to the line 𝜀.
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Figure 25: The circle 𝜅 and its inversion

Proof. Nr‑1 is obvious, since the radii of the circles at𝐾 and 𝐿, respectively, are orthogonal
to the corresponding ones of 𝜅.

Nr‑2 follows fromcalculationsweperformed inprevious sections. According to propo‑
sition 4, the radius of 𝜅 is equal to 𝑟 = |𝑏 − 𝑐|/2. The length |𝐴′𝐴″| is calculated by consid‑
ering the power of 𝐵 relative to the circle with diameter 𝐴𝐶, and is found to be equal to
|𝑏2−𝑐2|

2𝑎 . The length |𝐴′𝐽| is calculated through the ratio in which the bisector divides 𝐵𝐶,
and is found to be equal to 𝑎|𝑐−𝑏|

𝑏+𝑐 . The claim follows from the fact 𝑟2 = |𝐴′𝐽||𝐴′𝐴″|.
Nr‑3 follows, on one hand from the figure 25‑(II), which shows that the measure of the

angle at 𝐴 is equal to |𝛽 − 𝛾|, and on the other from the fact, that the angle at 𝐽 will have
measure |180∘ − 2𝐵𝐽𝐴|, which is also easily seen to be equal to |𝛽 − 𝛾|.

Nr‑4 follows from the properties of inversion and the previous claims. Indeed, since
the Euler circle 𝜈 passes through the center of inversion and through 𝐴″, 𝐽, its image will
be a line passing through 𝐽 and forming at 𝐽 an angle equal to that formed by the circle 𝜈
with 𝐵𝐶, therefore coincident with 𝜀. This conclusion follows from nr‑3.
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Theorem 12. (Feuerbach) In every triangle the Euler circle is tangent to the inscribed, as well as,
to its three escribed circles.

Proof. With the notation of the previous theorem, we consider the inversion relative to
circle 𝜅 (see figure 25‑(I)). In it the inverse of the inscribed 𝜆 is itself and, according to the
previous proposition, the inverse of the Euler circle 𝜈 is the line 𝜀, i.e. the second tangent
to 𝜆 from 𝐽. Since 𝜀 is tangent to 𝑙𝑎𝑚𝑏𝑑𝑎, its inverse, which is the circle 𝜈, will be also
tangent to 𝜆 at a point 𝐹, which is the inverse of the contact point 𝐾′ of 𝜀 with 𝜆. Note
that, because of the symmetry of 𝜆 relative to the bisector 𝐴𝐼, point 𝐾′ is the symmetric of
𝐾 relative to 𝐴𝐼.

The same argument is applied also to the escribed circle 𝜇 with center 𝑂. This circle,
as well, is orthogonal to 𝜅 and has 𝜀 as a tangent. Therefore the inverse of this circle is
itself and the inverse of the line 𝜀, which is the Euler circle, will be tangent to it.

What we said proves then that the Euler circle is tangent simultaneously to the in‑
scribed and escribed contained in the angle 𝐴. Similarly we prove that the Euler circle is
tangent to the escribed circles contained in the other angles.
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Related material
1. Circle Pencils
2. Inversion
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3. Isodynamic points of the triangle
4. Pedals
5. Tritangent circles of the triangle

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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