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Preface

Many professional programmers are not well prepared to tackle algorithm design
problems. This is a pity, because the techniques of algorithm design form one
of the core practical technologies of computer science.

This book is intended as a manual on algorithm design, providing access to
combinatorial algorithm technology for both students and computer profession-
als. It is divided into two parts: Techniques and Resources. The former is a
general introduction to the design and analysis of computer algorithms. The Re-
sources section is intended for browsing and reference, and comprises the catalog
of algorithmic resources, implementations, and an extensive bibliography.

To the Reader

I have been gratified by the warm reception previous editions of The Algorithm
Design Manual have received, with over 60,000 copies sold in various formats
since first being published by Springer-Verlag in 1997. Translations have ap-
peared in Chinese, Japanese, and Russian. It has been recognized as a unique
guide to using algorithmic techniques to solve problems that often arise in prac-
tice.

Much has changed in the world since the second edition of The Algorithm
Design Manual was published in 2008. The popularity of my book soared as
software companies increasingly emphasized algorithmic questions during em-
ployment interviews, and many successful job candidates have trusted The Al-
gorithm Design Manual to help them prepare for their interviews.

Although algorithm design is perhaps the most classical area of computer
science, it continues to advance and change. Randomized algorithms and data
structures have become increasingly important, particularly techniques based
on hashing. Recent breakthroughs have reduced the algorithmic complexity of
the best algorithms known for such fundamental problems as finding minimum
spanning trees, graph isomorphism, and network flows. Indeed, if we date the
origins of modern algorithm design and analysis to about 1970, then roughly
20% of modern algorithmic history has happened since the second edition of
The Algorithm Design Manual.

The time has come for a new edition of my book, incorporating changes
in the algorithmic and industrial world plus the feedback I have received from
hundreds of readers. My major goals for the third edition are:
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• To introduce or expand coverage of important topics like hashing, ran-
domized algorithms, divide and conquer, approximation algorithms, and
quantum computing in the first part of the book (Practical Algorithm
Design).

• To update the reference material for all the catalog problems in the second
part of the book (The Hitchhiker’s Guide to Algorithms).

• To take advantage of advances in color printing to produce more informa-
tive and eye-catching illustrations.

Three aspects of The Algorithm Design Manual have been particularly beloved:
(1) the hitchhiker’s guide to algorithms, (2) the war stories, and (3) the elec-
tronic component of the book. These features have been preserved and strength-
ened in this third edition:

• The Hitchhiker’s Guide to Algorithms – Since finding out what is known
about an algorithmic problem can be a difficult task, I provide a catalog of
the seventy-five most important algorithmic problems arising in practice.
By browsing through this catalog, the student or practitioner can quickly
identify what their problem is called, what is known about it, and how
they should proceed to solve it.

I have updated every section in response to the latest research results and
applications. Particular attention has been paid to updating discussion
of available software implementations for each problem, reflecting sources
such as GitHub, which have emerged since the previous edition.

• War stories – To provide a better perspective on how algorithm problems
arise in the real world, I include a collection of “war stories”, tales from my
experience on real problems. The moral of these stories is that algorithm
design and analysis is not just theory, but an important tool to be pulled
out and used as needed.

The new edition of the book updates the best of the old war stories,
plus adds new tales on randomized algorithms, divide and conquer, and
dynamic programming.

• Online component – Full lecture notes and a problem solution Wiki is
available on my website www.algorist.com. My algorithm lecture videos
have been watched over 900,000 times on YouTube. This website has been
updated in parallel with the book.

Equally important is what is not done in this book. I do not stress the
mathematical analysis of algorithms, leaving most of the analysis as informal
arguments. You will not find a single theorem anywhere in this book. When
more details are needed, the reader should study the cited programs or refer-
ences. The goal of this manual is to get you going in the right direction as
quickly as possible.
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To the Instructor

This book covers enough material for a standard Introduction to Algorithms
course. It is assumed that the reader has completed the equivalent of a second
programming course, typically titled Data Structures or Computer Science II.

A full set of lecture slides for teaching this course are available online at
www.algorist.com. Further, I make available online video lectures using these
slides to teach a full-semester algorithm course. Let me help teach your course,
through the magic of the Internet!

I have made several pedagogical improvements throughout the book, includ-
ing:

• New material – To reflect recent developments in algorithm design, I have
added new chapters on randomized algorithms, divide and conquer, and
approximation algorithms. I also delve deeper into topics such as hashing.
But I have been careful to heed the readers who begged me to keep the
book of modest length. I have (painfully) removed less important material
to keep total expansion by page count under 10% over the previous edition.

• Clearer exposition – Reading through my text ten years later, I was thrilled
to find many sections where my writing seemed ethereal, but other places
that were a muddled mess. Every page in this manuscript has been edited
or rewritten for greater clarity, correctness and flow.

• More interview resources – The Algorithm Design Manual remains very
popular for interview prep, but this is a fast-paced world. I include more
and fresher interview problems, plus coding challenges associated with
interview sites like LeetCode and Hackerrank. I also include a new section
with advice on how to best prepare for interviews.

• Stop and think – Each of my course lectures begins with a “Problem of
the Day,” where I illustrate my thought process as I solve a topic-specific
homework problem – false starts and all. This edition had more Stop and
Think sections, which perform a similar mission for the reader.

• More and better homework problems – The third edition of The Algorithm
Design Manual has more and better homework exercises than the previous
one. I have added over a hundred exciting new problems, pruned some
less interesting problems, and clarified exercises that proved confusing or
ambiguous.

• Updated code style – The second edition featured algorithm implementa-
tions in C, replacing or augmenting pseudocode descriptions. These have
generally been well received, although certain aspects of my programming
have been condemned by some as old fashioned. All programs have been
revised and updated, and are structurally highlighted in color.

• Color images – My companion book The Data Science Design Manual
was printed with color images, and I was excited by how much this made
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concepts clearer. Every single image in the The Algorithm Design Manual
is now rendered in living color, and the process of review has improved
the contents of most figures in the text.

Acknowledgments

Updating a book dedication every ten years focuses attention on the effects
of time. Over the lifespan of this book, Renee became my wife and then the
mother of our two children, Bonnie and Abby, who are now no longer children.
My father has left this world, but Mom and my brothers Len and Rob remain
a vital presence in my life. I dedicate this book to my family, new and old, here
and departed.

I would like to thank several people for their concrete contributions to this
new edition. Michael Alvin, Omar Amin, Emily Barker, and Jack Zheng were
critical to building the website infrastructure and dealing with a variety of
manuscript preparation issues. Their roles were played by Ricky Bradley, An-
drew Gaun, Zhong Li, Betson Thomas, and Dario Vlah on previous editions.
The world’s most careful reader, Robert Piché of Tampere University, and Stony
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Part I

Practical Algorithm Design



Chapter 1

Introduction to Algorithm
Design

What is an algorithm? An algorithm is a procedure to accomplish a specific
task. An algorithm is the idea behind any reasonable computer program.

To be interesting, an algorithm must solve a general, well-specified problem.
An algorithmic problem is specified by describing the complete set of instances
it must work on and of its output after running on one of these instances. This
distinction, between a problem and an instance of a problem, is fundamental.
For example, the algorithmic problem known as sorting is defined as follows:

Problem: Sorting

Input: A sequence of n keys a1, . . . , an.

Output: The permutation (reordering) of the input sequence such that a′1 ≤
a′2 ≤ · · · ≤ a′n−1 ≤ a′n.

An instance of sorting might be an array of names, like {Mike, Bob, Sally,
Jill, Jan}, or a list of numbers like {154, 245, 568, 324, 654, 324}. Determining
that you are dealing with a general problem instead of an instance is your first
step towards solving it.

An algorithm is a procedure that takes any of the possible input instances
and transforms it to the desired output. There are many different algorithms
that can solve the problem of sorting. For example, insertion sort is a method
that starts with a single element (thus trivially forming a sorted list) and then
incrementally inserts the remaining elements so that the list remains sorted.
An animation of the logical flow of this algorithm on a particular instance (the
letters in the word “INSERTIONSORT”) is given in Figure 1.1.

This algorithm, implemented in C, is described below:

3© The Editor(s) (if applicable) and The Author(s), under exclusive license to
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Springer Nature Switzerland AG 2020
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Figure 1.1: Animation of insertion sort in action (time flows downward).

void insertion_sort(item_type s[], int n) {

int i, j; /* counters */

for (i = 1; i < n; i++) {

j = i;

while ((j > 0) && (s[j] < s[j - 1])) {

swap(&s[j], &s[j - 1]);

j = j-1;

}

}

}

Note the generality of this algorithm. It works just as well on names as it
does on numbers. Or anything else, given the appropriate comparison operation
(<) to test which of two keys should appear first in sorted order. It can be
readily verified that this algorithm correctly orders every possible input instance
according to our definition of the sorting problem.

There are three desirable properties for a good algorithm. We seek algo-
rithms that are correct and efficient, while being easy to implement. These
goals may not be simultaneously achievable. In industrial settings, any pro-
gram that seems to give good enough answers without slowing the application
down is often acceptable, regardless of whether a better algorithm exists. The
issue of finding the best possible answer or achieving maximum efficiency usually
arises in industry only after serious performance or legal troubles.

This chapter will focus on algorithm correctness, with our discussion of ef-
ficiency concerns deferred to Chapter 2. It is seldom obvious whether a given
algorithm correctly solves a given problem. Correct algorithms usually come
with a proof of correctness, which is an explanation of why we know that the
algorithm must take every instance of the problem to the desired result. But be-
fore we go further, it is important to demonstrate why it’s obvious never suffices
as a proof of correctness, and is usually flat-out wrong.
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Figure 1.2: A good instance for the nearest-neighbor heuristic. The rainbow
coloring (red to violet) reflects the order of incorporation.

1.1 Robot Tour Optimization

Let’s consider a problem that arises often in manufacturing, transportation,
and testing applications. Suppose we are given a robot arm equipped with a
tool, say a soldering iron. When manufacturing circuit boards, all the chips and
other components must be fastened onto the substrate. More specifically, each
chip has a set of contact points (or wires) that need be soldered to the board.
To program the robot arm for this job, we must first construct an ordering of
the contact points so that the robot visits (and solders) the first contact point,
then the second point, third, and so forth until the job is done. The robot arm
then proceeds back to the first contact point to prepare for the next board, thus
turning the tool-path into a closed tour, or cycle.

Robots are expensive devices, so we want the tour that minimizes the time
it takes to assemble the circuit board. A reasonable assumption is that the
robot arm moves with fixed speed, so the time to travel between two points is
proportional to their distance. In short, we must solve the following algorithm
problem:

Problem: Robot Tour Optimization

Input: A set S of n points in the plane.

Output: What is the shortest cycle tour that visits each point in the set S?

You are given the job of programming the robot arm. Stop right now and
think up an algorithm to solve this problem. I’ll be happy to wait for you. . .

Several algorithms might come to mind to solve this problem. Perhaps the
most popular idea is the nearest-neighbor heuristic. Starting from some point
p0, we walk first to its nearest neighbor p1. From p1, we walk to its nearest
unvisited neighbor, thus excluding only p0 as a candidate. We now repeat this
process until we run out of unvisited points, after which we return to p0 to close
off the tour. Written in pseudo-code, the nearest-neighbor heuristic looks like
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Figure 1.3: A bad instance for the nearest-neighbor heuristic, with the optimal
solution. Colors are sequenced as ordered in the rainbow.

this:

NearestNeighbor(P )
Pick and visit an initial point p0 from P
p = p0
i = 0
While there are still unvisited points

i = i+ 1
Select pi to be the closest unvisited point to pi−1

Visit pi
Return to p0 from pn−1

This algorithm has a lot to recommend it. It is simple to understand and
implement. It makes sense to visit nearby points before we visit faraway points
to reduce the total travel time. The algorithm works perfectly on the example
in Figure 1.2. The nearest-neighbor rule is reasonably efficient, for it looks at
each pair of points (pi, pj) at most twice: once when adding pi to the tour, the
other when adding pj . Against all these positives there is only one problem.
This algorithm is completely wrong.

Wrong? How can it be wrong? The algorithm always finds a tour, but it
doesn’t necessarily find the shortest possible tour. It doesn’t necessarily even
come close. Consider the set of points in Figure 1.3, all of which lie along a line.
The numbers describe the distance that each point lies to the left or right of
the point labeled “0”. When we start from the point “0” and repeatedly walk
to the nearest unvisited neighbor, we might keep jumping left–right–left–right
over “0” as the algorithm offers no advice on how to break ties. A much better
(indeed optimal) tour for these points starts from the left-most point and visits
each point as we walk right before returning at the left-most point.

Try now to imagine your boss’s delight as she watches a demo of your robot
arm hopscotching left–right–left–right during the assembly of such a simple
board.
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“But wait,” you might be saying. “The problem was in starting at point
“0.” Instead, why don’t we start the nearest-neighbor rule using the left-most
point as the initial point p0? By doing this, we will find the optimal solution
on this instance.”

That is 100% true, at least until we rotate our example by 90 degrees. Now
all points are equally left-most. If the point “0” were moved just slightly to the
left, it would be picked as the starting point. Now the robot arm will hopscotch
up–down–up–down instead of left–right–left–right, but the travel time will be
just as bad as before. No matter what you do to pick the first point, the
nearest-neighbor rule is doomed to work incorrectly on certain point sets.

Maybe what we need is a different approach. Always walking to the closest
point is too restrictive, since that seems to trap us into making moves we didn’t
want. A different idea might repeatedly connect the closest pair of endpoints
whose connection will not create a problem, such as premature termination of
the cycle. Each vertex begins as its own single vertex chain. After merging
everything together, we will end up with a single chain containing all the points
in it. Connecting the final two endpoints gives us a cycle. At any step during
the execution of this closest-pair heuristic, we will have a set of single vertices
and the end of vertex-disjoint chains available to merge. In pseudocode:

ClosestPair(P )
Let n be the number of points in set P .
For i = 1 to n− 1 do

d = ∞
For each pair of endpoints (s, t) from distinct vertex chains

if dist(s, t) ≤ d then sm = s, tm = t, and d = dist(s, t)
Connect (sm, tm) by an edge

Connect the two endpoints by an edge

This closest-pair rule does the right thing in the example in Figure 1.3.
It starts by connecting “0” to its two immediate neighbors, the points 1 and
−1. Subsequently, the next closest pair will alternate left–right, growing the
central path by one link at a time. The closest-pair heuristic is somewhat more
complicated and less efficient than the previous one, but at least it gives the
right answer in this example.

But not on all examples. Consider what this algorithm does on the point set
in Figure 1.4(l). It consists of two rows of equally spaced points, with the rows
slightly closer together (distance 1 − ε) than the neighboring points are spaced
within each row (distance 1+ ε). Thus, the closest pairs of points stretch across
the gap, not around the boundary. After we pair off these points, the closest re-
maining pairs will connect these pairs alternately around the boundary. The to-
tal path length of the closest-pair tour is 3(1−ε)+2(1+ε)+

√
(1− ε)2 + (2 + 2ε)2.

Compared to the tour shown in Figure 1.4(r), we travel over 20% farther than
necessary when ε → 0. Examples exist where the penalty is considerably worse
than this.

Thus, this second algorithm is also wrong. Which one of these algorithms
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1 + ε

1 + ε
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Figure 1.4: A bad instance for the closest-pair heuristic, with the optimal solu-
tion.

performs better? You can’t tell just by looking at them. Clearly, both heuristics
can end up with very bad tours on innocent-looking input.

At this point, you might wonder what a correct algorithm for our problem
looks like. Well, we could try enumerating all possible orderings of the set of
points, and then select the one that minimizes the total length:

OptimalTSP(P )
d = ∞
For each of the n! permutations Pi of point set P

If (cost(Pi) ≤ d) then d = cost(Pi) and Pmin = Pi

Return Pmin

Since all possible orderings are considered, we are guaranteed to end up
with the shortest possible tour. This algorithm is correct, since we pick the
best of all the possibilities. But it is also extremely slow. Even a powerful
computer couldn’t hope to enumerate all the 20! = 2,432,902,008,176,640,000
orderings of 20 points within a day. For real circuit boards, where n ≈ 1,000,
forget about it. All of the world’s computers working full time wouldn’t come
close to finishing the problem before the end of the universe, at which point it
presumably becomes moot.

The quest for an efficient algorithm to solve this problem, called the traveling
salesman problem (TSP), will take us through much of this book. If you need
to know how the story ends, check out the catalog entry for TSP in Section 19.4
(page 594).

Take-Home Lesson: There is a fundamental difference between algorithms,
procedures that always produce a correct result, and heuristics, which may
usually do a good job but provide no guarantee of correctness.

1.2 Selecting the Right Jobs

Now consider the following scheduling problem. Imagine you are a highly in
demand actor, who has been presented with offers to star in n different movie
projects under development. Each offer comes specified with the first and last
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Process Terminated

"Discrete" Mathematics

Halting State Programming Challenges

Calculated Bets

Tarjan of the Jungle

The President’s Algorist
Steiner’s Tree

The Four Volume Problem

Figure 1.5: An instance of the non-overlapping movie scheduling problem. The
four red titles define an optimal solution.

day of filming. Whenever you accept a job, you must commit to being available
throughout this entire period. Thus, you cannot accept two jobs whose intervals
overlap.

For an artist such as yourself, the criterion for job acceptance is clear: you
want to make as much money as possible. Because each film pays the same fee,
this implies you seek the largest possible set of jobs (intervals) such that no two
of them conflict with each other.

For example, consider the available projects in Figure 1.5. You can star in
at most four films, namely “Discrete” Mathematics, Programming Challenges,
Calculated Bets, and one of either Halting State or Steiner’s Tree.

You (or your agent) must solve the following algorithmic scheduling problem:

Problem: Movie Scheduling Problem
Input: A set I of n intervals on the line.
Output: What is the largest subset of mutually non-overlapping intervals that
can be selected from I?

Now you (the algorist) are given the job of developing a scheduling algorithm
for this task. Stop right now and try to find one. Again, I’ll be happy to wait. . .

There are several ideas that may come to mind. One is based on the notion
that it is best to work whenever work is available. This implies that you should
start with the job with the earliest start date – after all, there is no other job
you can work on then, at least during the beginning of this period:

EarliestJobFirst(I)
Accept the earliest starting job j from I that does not overlap any
previously accepted job, and repeat until no more such jobs remain.

This idea makes sense, at least until we realize that accepting the earliest
job might block us from taking many other jobs if that first job is long. Check
out Figure 1.6(l), where the epic War and Peace is both the first job available
and long enough to kill off all other prospects.

This bad example naturally suggests another idea. The problem with War
and Peace is that it is too long. Perhaps we should instead start by taking
the shortest job, and keep seeking the shortest available job at every turn.
Maximizing the number of jobs we do in a given period is clearly connected to
the notion of banging them out as quickly as possible. This yields the heuristic:
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War and Peace

(l) (r)

Figure 1.6: Bad instances for the (l) earliest job first and (r) shortest job first
heuristics. The optimal solutions are in red.

ShortestJobFirst(I)
While (I �= ∅) do

Accept the shortest possible job j from I.
Delete j, and any interval that intersects j, from I.

Again this idea makes sense, at least until we realize that accepting the
shortest job might block us from taking two other jobs, as shown in Figure
1.6(r). While the maximum potential loss here seems smaller than with the
previous heuristic, it can still limit us to half the optimal payoff.

At this point, an algorithm where we try all possibilities may start to look
good. As with the TSP problem, we can be certain exhaustive search is correct.
If we ignore the details of testing whether a set of intervals are in fact disjoint,
it looks something like this:

ExhaustiveScheduling(I)
j = 0
Smax = ∅
For each of the 2n subsets Si of intervals I

If (Si is mutually non-overlapping) and (size(Si) > j)
then j = size(Si) and Smax = Si.

Return Smax

But how slow is it? The key limitation is enumerating the 2n subsets of
n things. The good news is that this is much better than enumerating all n!
orders of n things, as proposed for the robot tour optimization problem. There
are only about one million subsets when n = 20, which can be enumerated
within seconds on a decent computer. However, when fed n = 100 movies, we
get 2100 subsets, which is much much greater than the 20! that made our robot
cry “uncle” in the previous problem.

The difference between our scheduling and robotics problems is that there is
an algorithm that solves movie scheduling both correctly and efficiently. Think
about the first job to terminate—that is, the interval x whose right endpoint
is left-most among all intervals. This role is played by “Discrete” Mathematics
in Figure 1.5. Other jobs may well have started before x, but all of these must
at least partially overlap each other. Thus, we can select at most one from the
group. The first of these jobs to terminate is x, so any of the overlapping jobs
potentially block out other opportunities to the right of it. Clearly we can never
lose by picking x. This suggests the following correct, efficient algorithm:
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OptimalScheduling(I)
While (I �= ∅) do

Accept the job j from I with the earliest completion date.
Delete j, and any interval which intersects j, from I.

Ensuring the optimal answer over all possible inputs is a difficult but often
achievable goal. Seeking counterexamples that break pretender algorithms is an
important part of the algorithm design process. Efficient algorithms are often
lurking out there; this book will develop your skills to help you find them.

Take-Home Lesson: Reasonable-looking algorithms can easily be incorrect. Al-
gorithm correctness is a property that must be carefully demonstrated.

1.3 Reasoning about Correctness

Hopefully, the previous examples have opened your eyes to the subtleties of
algorithm correctness. We need tools to distinguish correct algorithms from
incorrect ones, the primary one of which is called a proof.

A proper mathematical proof consists of several parts. First, there is a
clear, precise statement of what you are trying to prove. Second, there is a set
of assumptions of things that are taken to be true, and hence can be used as
part of the proof. Third, there is a chain of reasoning that takes you from these
assumptions to the statement you are trying to prove. Finally, there is a little
square ( ) or QED at the bottom to denote that you have finished, representing
the Latin phrase for “thus it is demonstrated.”

This book is not going to emphasize formal proofs of correctness, because
they are very difficult to do right and quite misleading when you do them wrong.
A proof is indeed a demonstration. Proofs are useful only when they are honest,
crisp arguments that explain why an algorithm satisfies a non-trivial correctness
property. Correct algorithms require careful exposition, and efforts to show both
correctness and not incorrectness.

1.3.1 Problems and Properties

Before we start thinking about algorithms, we need a careful description of the
problem that needs to be solved. Problem specifications have two parts: (1) the
set of allowed input instances, and (2) the required properties of the algorithm’s
output. It is impossible to prove the correctness of an algorithm for a fuzzily-
stated problem. Put another way, ask the wrong question and you will get the
wrong answer.

Some problem specifications allow too broad a class of input instances. Sup-
pose we had allowed film projects in our movie scheduling problem to have gaps
in production (e.g. filming in September and November but a hiatus in Octo-
ber). Then the schedule associated with any particular film would consist of a
given set of intervals. Our star would be free to take on two interleaving but not
overlapping projects (such as the above-mentioned film nested with one filming
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in August and October). The earliest completion algorithm would not work for
such a generalized scheduling problem. Indeed, no efficient algorithm exists for
this generalized problem, as we will see in Section 11.3.2.

Take-Home Lesson: An important and honorable technique in algorithm de-
sign is to narrow the set of allowable instances until there is a correct and
efficient algorithm. For example, we can restrict a graph problem from general
graphs down to trees, or a geometric problem from two dimensions down to
one.

There are two common traps when specifying the output requirements of a
problem. The first is asking an ill-defined question. Asking for the best route
between two places on a map is a silly question, unless you define what best
means. Do you mean the shortest route in total distance, or the fastest route,
or the one minimizing the number of turns? All of these are liable to be different
things.

The second trap involves creating compound goals. The three route-planning
criteria mentioned above are all well-defined goals that lead to correct, efficient
optimization algorithms. But you must pick a single criterion. A goal like Find
the shortest route from a to b that doesn’t use more than twice as many turns as
necessary is perfectly well defined, but complicated to reason about and solve.

I encourage you to check out the problem statements for each of the seventy-
five catalog problems in Part II of this book. Finding the right formulation for
your problem is an important part of solving it. And studying the definition of
all these classic algorithm problems will help you recognize when someone else
has thought about similar problems before you.

1.3.2 Expressing Algorithms

Reasoning about an algorithm is impossible without a careful description of the
sequence of steps that are to be performed. The three most common forms of
algorithmic notation are (1) English, (2) pseudocode, or (3) a real programming
language. Pseudocode is perhaps the most mysterious of the bunch, but it is
best defined as a programming language that never complains about syntax
errors.

All three methods are useful because there is a natural tradeoff between
greater ease of expression and precision. English is the most natural but least
precise programming language, while Java and C/C++ are precise but difficult
to write and understand. Pseudocode is generally useful because it represents
a happy medium.

The choice of which notation is best depends upon which method you are
most comfortable with. I usually prefer to describe the ideas of an algorithm in
English (with pictures!), moving to a more formal, programming-language-like
pseudocode or even real code to clarify sufficiently tricky details.

A common mistake my students make is to use pseudocode to dress up an
ill-defined idea so that it looks more formal. Clarity should be the goal. For
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example, the ExhaustiveScheduling algorithm on page 10 would have better
been written in English as:

ExhaustiveScheduling(I)
Test all 2n subsets of intervals from I, and return the largest subset

consisting of mutually non-overlapping intervals.

Take-Home Lesson: The heart of any algorithm is an idea. If your idea is
not clearly revealed when you express an algorithm, then you are using too
low-level a notation to describe it.

1.3.3 Demonstrating Incorrectness

The best way to prove that an algorithm is incorrect is to produce an instance on
which it yields an incorrect answer. Such instances are called counterexamples.
No rational person will ever defend the correctness of an algorithm after a
counter-example has been identified. Very simple instances can instantly defeat
reasonable-looking heuristics with a quick touché. Good counterexamples have
two important properties:

• Verifiability – To demonstrate that a particular instance is a counterex-
ample to a particular algorithm, you must be able to (1) calculate what
answer your algorithm will give in this instance, and (2) display a better
answer so as to prove that the algorithm didn’t find it.

• Simplicity – Good counter-examples have all unnecessary details stripped
away. They make clear exactly why the proposed algorithm fails. Simplic-
ity is important because you must be able to hold the given instance in
your head in order to reason about it. Once a counterexample has been
found, it is worth simplifying it down to its essence. For example, the
counterexample of Figure 1.6(l) could have been made simpler and better
by reducing the number of overlapped segments from five to two.

Hunting for counterexamples is a skill worth developing. It bears some
similarity to the task of developing test sets for computer programs, but relies
more on inspiration than exhaustion. Here are some techniques to aid your
quest:

• Think small – Note that the robot tour counter-examples I presented
boiled down to six points or less, and the scheduling counter-examples
to only three intervals. This is indicative of the fact that when algorithms
fail, there is usually a very simple example on which they fail. Amateur
algorists tend to draw a big messy instance and then stare at it helplessly.
The pros look carefully at several small examples, because they are easier
to verify and reason about.
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• Think exhaustively – There are usually only a small number of possible
instances for the first non-trivial value of n. For example, there are only
three distinct ways two intervals on the line can occur: as disjoint intervals,
as overlapping intervals, and as properly nesting intervals, one within the
other. All cases of three intervals (including counter-examples to both of
the movie heuristics) can be systematically constructed by adding a third
segment in each possible way to these three instances.

• Hunt for the weakness – If a proposed algorithm is of the form “always
take the biggest” (better known as the greedy algorithm), think about why
that might prove to be the wrong thing to do. In particular, . . .

• Go for a tie – A devious way to break a greedy heuristic is to provide
instances where everything is the same size. Suddenly the heuristic has
nothing to base its decision on, and perhaps has the freedom to return
something suboptimal as the answer.

• Seek extremes – Many counter-examples are mixtures of huge and tiny,
left and right, few and many, near and far. It is usually easier to verify or
reason about extreme examples than more muddled ones. Consider two
tightly bunched clouds of points separated by a much larger distance d.
The optimal TSP tour will be essentially 2d regardless of the number of
points, because what happens within each cloud doesn’t really matter.

Take-Home Lesson: Searching for counterexamples is the best way to disprove
the correctness of a heuristic.

Stop and Think: Greedy Movie Stars?

Problem: Recall the movie star scheduling problem, where we seek to find the
largest possible set of non-overlapping intervals in a given set S. A natural
greedy heuristic selects the interval i, which overlaps the smallest number of
other intervals in S, removes them, and repeats until no intervals remain.

Give a counter-example to this proposed algorithm.

Solution: Consider the counter-example in Figure 1.7. The largest possible
independent set consists of the four intervals in red, but the interval of lowest
degree (shown in pink) overlaps two of these, After we grab it, we are doomed
to finding a solution of only three intervals.

But how would you go about constructing such an example? My thought
process started with an odd-length chain of intervals, each of which overlaps
one interval to the left and one to the right. Picking an even-length chain would
mess up the optimal solution (hunt for the weakness). All intervals overlap two
others, except for the left and right-most intervals (go for the tie). To make
these terminal intervals unattractive, we can pile other intervals on top of them
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Figure 1.7: Counter-example to the greedy heuristic for movie star scheduling.
Picking the pink interval, which intersects the fewest others, blocks us from the
optimal solution (the four red intervals).

(seek extremes). The length of our chain (7) is the shortest that permits this
construction to work.

1.4 Induction and Recursion

Failure to find a counterexample to a given algorithm does not mean “it is
obvious” that the algorithm is correct. A proof or demonstration of correctness
is needed. Often mathematical induction is the method of choice.

When I first learned about mathematical induction it seemed like complete
magic. You proved a formula like

∑n
i=1 i = n(n+ 1)/2 for some basis case like

n = 1 or 2, then assumed it was true all the way to n− 1 before proving it was
in fact true for general n using the assumption. That was a proof? Ridiculous!

When I first learned the programming technique of recursion it also seemed
like complete magic. The program tested whether the input argument was some
basis case like 1 or 2. If not, you solved the bigger case by breaking it into pieces
and calling the subprogram itself to solve these pieces. That was a program?
Ridiculous!

The reason both seemed like magic is because recursion is mathematical
induction in action. In both, we have general and boundary conditions, with
the general condition breaking the problem into smaller and smaller pieces. The
initial or boundary condition terminates the recursion. Once you understand
either recursion or induction, you should be able to see why the other one also
works.

I’ve heard it said that a computer scientist is a mathematician who only
knows how to prove things by induction. This is partially true because computer
scientists are lousy at proving things, but primarily because so many of the
algorithms we study are either recursive or incremental.

Consider the correctness of insertion sort, which we introduced at the be-
ginning of this chapter. The reason it is correct can be shown inductively:
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Figure 1.8: Large-scale changes in the optimal solution (red boxes) after insert-
ing a single interval (dashed) into the instance.

• The basis case consists of a single element, and by definition a one-element
array is completely sorted.

• We assume that the first n− 1 elements of array A are completely sorted
after n− 1 iterations of insertion sort.

• To insert one last element x to A, we find where it goes, namely the unique
spot between the biggest element less than or equal to x and the smallest
element greater than x. This is done by moving all the greater elements
back by one position, creating room for x in the desired location.

One must be suspicious of inductive proofs, however, because very subtle
reasoning errors can creep in. The first are boundary errors. For example,
our insertion sort correctness proof above boldly stated that there was a unique
place to insert x between two elements, when our basis case was a single-element
array. Greater care is needed to properly deal with the special cases of inserting
the minimum or maximum elements.

The second and more common class of inductive proof errors concerns cava-
lier extension claims. Adding one extra item to a given problem instance might
cause the entire optimal solution to change. This was the case in our scheduling
problem (see Figure 1.8). The optimal schedule after inserting a new segment
may contain none of the segments of any particular optimal solution prior to
insertion. Boldly ignoring such difficulties can lead to very convincing inductive
proofs of incorrect algorithms.

Take-Home Lesson: Mathematical induction is usually the right way to verify
the correctness of a recursive or incremental insertion algorithm.

Stop and Think: Incremental Correctness

Problem: Prove the correctness of the following recursive algorithm for incre-
menting natural numbers, that is, y → y + 1:

Increment(y)
if (y = 0) then return(1) else

if (y mod 2) = 1 then
return(2 · Increment(�y/2	))

else return(y + 1)
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Solution: The correctness of this algorithm is certainly not obvious to me. But
as it is recursive and I am a computer scientist, my natural instinct is to try to
prove it by induction. The basis case of y = 0 is obviously correctly handled.
Clearly the value 1 is returned, and 0 + 1 = 1.

Now assume the function works correctly for the general case of y = n− 1.
Given this, we must demonstrate the truth for the case of y = n. The cases
corresponding to even numbers are obvious, because y+1 is explicitly returned
when (y mod 2) = 0.

For odd numbers, the answer depends on what Increment(�y/2	) returns.
Here we want to use our inductive assumption, but it isn’t quite right. We have
assumed that Increment worked correctly for y = n−1, but not for a value that
is about half of it. We can fix this problem by strengthening our assumption to
declare that the general case holds for all y ≤ n − 1. This costs us nothing in
principle, but is necessary to establish the correctness of the algorithm.

Now, the case of odd y (i.e. y = 2m + 1 for some integer m) can be dealt
with as:

2 · Increment(�(2m+ 1)/2	) = 2 · Increment(�m+ 1/2	)
= 2 · Increment(m)

= 2(m+ 1)

= 2m+ 2 = y + 1

and the general case is resolved.

1.5 Modeling the Problem

Modeling is the art of formulating your application in terms of precisely de-
scribed, well-understood problems. Proper modeling is the key to applying
algorithmic design techniques to real-world problems. Indeed, proper model-
ing can eliminate the need to design or even implement algorithms, by relating
your application to what has been done before. Proper modeling is the key to
effectively using the “Hitchhiker’s Guide” in Part II of this book.

Real-world applications involve real-world objects. You might be working on
a system to route traffic in a network, to find the best way to schedule classrooms
in a university, or to search for patterns in a corporate database. Most algo-
rithms, however, are designed to work on rigorously defined abstract structures
such as permutations, graphs, and sets. To exploit the algorithms literature,
you must learn to describe your problem abstractly, in terms of procedures on
such fundamental structures.

1.5.1 Combinatorial Objects

Odds are very good that others have probably stumbled upon any algorithmic
problem you care about, perhaps in substantially different contexts. But to find
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Figure 1.9: Modeling real-world structures with trees and graphs.

out what is known about your particular “widget optimization problem,” you
can’t hope to find it in a book under widget. You must first formulate widget
optimization in terms of computing properties of common structures such as
those described below:

• Permutations are arrangements, or orderings, of items. For example,
{1, 4, 3, 2} and {4, 3, 2, 1} are two distinct permutations of the same set
of four integers. We have already seen permutations in the robot opti-
mization problem, and in sorting. Permutations are likely the object in
question whenever your problem seeks an “arrangement,” “tour,” “order-
ing,” or “sequence.”

• Subsets represent selections from a set of items. For example, {1, 3, 4}
and {2} are two distinct subsets of the first four integers. Order does
not matter in subsets the way it does with permutations, so the subsets
{1, 3, 4} and {4, 3, 1} would be considered identical. Subsets arose as can-
didate solutions in the movie scheduling problem. They are likely the
object in question whenever your problem seeks a “cluster,” “collection,”
“committee,” “group,” “packaging,” or “selection.”

• Trees represent hierarchical relationships between items. Figure 1.9(a)
shows part of the family tree of the Skiena clan. Trees are likely the
object in question whenever your problem seeks a “hierarchy,” “dominance
relationship,” “ancestor/descendant relationship,” or “taxonomy.”

• Graphs represent relationships between arbitrary pairs of objects. Figure
1.9(b) models a network of roads as a graph, where the vertices are cities
and the edges are roads connecting pairs of cities. Graphs are likely the
object in question whenever you seek a “network,” “circuit,” “web,” or
“relationship.”

• Points define locations in some geometric space. For example, the loca-
tions of McDonald’s restaurants can be described by points on a map/plane.
Points are likely the object in question whenever your problems work on
“sites,” “positions,” “data records,” or “locations.”
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• Polygons define regions in some geometric spaces. For example, the bor-
ders of a country can be described by a polygon on a map/plane. Polygons
and polyhedra are likely the object in question whenever you are working
on “shapes,” “regions,” “configurations,” or “boundaries.”

• Strings represent sequences of characters, or patterns. For example, the
names of students in a class can be represented by strings. Strings are
likely the object in question whenever you are dealing with “text,” “char-
acters,” “patterns,” or “labels.”

These fundamental structures all have associated algorithm problems, which
are presented in the catalog of Part II. Familiarity with these problems is im-
portant, because they provide the language we use to model applications. To
become fluent in this vocabulary, browse through the catalog and study the in-
put and output pictures for each problem. Understanding these problems, even
at a cartoon/definition level, will enable you to know where to look later when
the problem arises in your application.

Examples of successful application modeling will be presented in the war
stories spaced throughout this book. However, some words of caution are in
order. The act of modeling reduces your application to one of a small number
of existing problems and structures. Such a process is inherently constraining,
and certain details might not fit easily into the given target problem. Also,
certain problems can be modeled in several different ways, some much better
than others.

Modeling is only the first step in designing an algorithm for a problem. Be
alert for how the details of your applications differ from a candidate model, but
don’t be too quick to say that your problem is unique and special. Temporarily
ignoring details that don’t fit can free the mind to ask whether they really were
fundamental in the first place.

Take-Home Lesson: Modeling your application in terms of well-defined struc-
tures and algorithms is the most important single step towards a solution.

1.5.2 Recursive Objects

Learning to think recursively is learning to look for big things that are made
from smaller things of exactly the same type as the big thing. If you think of
houses as sets of rooms, then adding or deleting a room still leaves a house
behind.

Recursive structures occur everywhere in the algorithmic world. Indeed, each
of the abstract structures described above can be thought about recursively. You
just have to see how you can break them down, as shown in Figure 1.10:

• Permutations – Delete the first element of a permutation of n things
{1, . . . , n} and you get a permutation of the remaining n− 1 things. This
may require renumbering to keep the object a permutation of consecu-
tive integers. For example, removing the first element of {4, 1, 5, 2, 3} and
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9
9 −

4 −
{4,1,5,2,3}  {1,4,2,3}4

{1,2,7,9}  {1,2,7}

Figure 1.10: Recursive decompositions of combinatorial objects. Permutations,
subsets, trees, and graphs (left column). Point sets, polygons, and strings (right
column). Note that the elements of a permutation of {1, . . . , n} get renumbered
after element deletion in order to remain a permutation of {1, . . . , n− 1}.

renumbering gives {1, 4, 2, 3}, a permutation of {1, 2, 3, 4}. Permutations
are recursive objects.

• Subsets – Every subset of {1, . . . , n} contains a subset of {1, . . . , n − 1}
obtained by deleting element n, if it is present. Subsets are recursive
objects.

• Trees – Delete the root of a tree and what do you get? A collection of
smaller trees. Delete any leaf of a tree and what do you get? A slightly
smaller tree. Trees are recursive objects.

• Graphs – Delete any vertex from a graph, and you get a smaller graph.
Now divide the vertices of a graph into two groups, left and right. Cut
through all edges that span from left to right, and what do you get? Two
smaller graphs, and a bunch of broken edges. Graphs are recursive objects.

• Points – Take a cloud of points, and separate them into two groups by
drawing a line. Now you have two smaller clouds of points. Point sets are
recursive objects.

• Polygons – Inserting any internal chord between two non-adjacent ver-
tices of a simple polygon cuts it into two smaller polygons. Polygons are
recursive objects.

• Strings – Delete the first character from a string, and what do you get?
A shorter string. Strings are recursive objects.1

1An alert reader of the previous edition observed that salads are recursive objects, in ways
that hamburgers are not. Take a bite (or an ingredient) out of a salad, and what is left is a
smaller salad. Take a bite out of a hamburger, and what is left is something disgusting.
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Recursive descriptions of objects require both decomposition rules and basis
cases, namely the specification of the smallest and simplest objects where the
decomposition stops. These basis cases are usually easily defined. Permutations
and subsets of zero things presumably look like {}. The smallest interesting tree
or graph consists of a single vertex, while the smallest interesting point cloud
consists of a single point. Polygons are a little trickier; the smallest genuine
simple polygon is a triangle. Finally, the empty string has zero characters in it.
The decision of whether the basis case contains zero or one element is more a
question of taste and convenience than any fundamental principle.

Recursive decompositions will define many of the algorithms we will see in
this book. Keep your eyes open for them.

1.6 Proof by Contradiction

Although some computer scientists only know how to prove things by induction,
this isn’t true of everyone. The best sometimes use contradiction.

The basic scheme of a contradiction argument is as follows:

• Assume that the hypothesis (the statement you want to prove) is false.

• Develop some logical consequences of this assumption.

• Show that one consequence is demonstrably false, thereby showing that
the assumption is incorrect and the hypothesis is true.

The classic contradiction argument is Euclid’s proof that there are an infinite
number of prime numbers: integers n like 2, 3, 5, 7, 11, . . . that have no non-
trivial factors, only 1 and n itself. The negation of the claim would be that there
are only a finite number of primes, say m, which can be listed as p1, . . . , pm. So
let’s assume this is the case and work with it.

Prime numbers have particular properties with respect to division. Suppose
we construct the integer formed as the product of “all” of the listed primes:

N =

m∏

i=1

pi

This integer N has the property that it is divisible by each and every one of the
known primes, because of how it was built.

But consider the integer N+1. It can’t be divisible by p1 = 2, because N is.
The same is true for p2 = 3 and every other listed prime. Since N + 1 doesn’t
have any non-trivial factor, this means it must be prime. But you asserted that
there are exactly m prime numbers, none of which are N + 1. This assertion is
false, so there cannot be a bounded number of primes. Touché!

For a contradiction argument to be convincing, the final consequence must
be clearly, ridiculously false. Muddy outcomes are not convincing. It is also
important that this contradiction be a logical consequence of the assumption.
We will see contradiction arguments for minimum spanning tree algorithms in
Section 8.1.
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1.7 About the War Stories

The best way to learn how careful algorithm design can have a huge impact on
performance is to look at real-world case studies. By carefully studying other
people’s experiences, we learn how they might apply to our work.

Scattered throughout this text are several of my own algorithmic war sto-
ries, presenting our successful (and occasionally unsuccessful) algorithm design
efforts on real applications. I hope that you will be able to internalize these
experiences so that they will serve as models for your own attacks on problems.

Every one of the war stories is true. Of course, the stories improve somewhat
in the retelling, and the dialogue has been punched up to make them more
interesting to read. However, I have tried to honestly trace the process of going
from a raw problem to a solution, so you can watch how this process unfolded.

The Oxford English Dictionary defines an algorist as “one skillful in reckon-
ings or figuring.” In these stories, I have tried to capture some of the mindset
of the algorist in action as they attack a problem.

The war stories often involve at least one problem from the problem catalog
in Part II. I reference the appropriate section of the catalog when such a problem
occurs. This emphasizes the benefits of modeling your application in terms of
standard algorithm problems. By using the catalog, you will be able to pull out
what is known about any given problem whenever it is needed.

1.8 War Story: Psychic Modeling

The call came for me out of the blue as I sat in my office.
“Professor Skiena, I hope you can help me. I’m the President of Lotto

Systems Group Inc., and we need an algorithm for a problem arising in our
latest product.”

“Sure,” I replied. After all, the dean of my engineering school is always
encouraging our faculty to interact more with industry.

“At Lotto Systems Group, we market a program designed to improve our
customers’ psychic ability to predict winning lottery numbers.2 In a standard
lottery, each ticket consists of six numbers selected from, say, 1 to 44. However,
after proper training, our clients can visualize (say) fifteen numbers out of the
44 and be certain that at least four of them will be on the winning ticket. Are
you with me so far?”

“Probably not,” I replied. But then I recalled how my dean encourages us
to interact with industry.

“Our problem is this. After the psychic has narrowed the choices down to
fifteen numbers and is certain that at least four of them will be on the winning
ticket, we must find the most efficient way to exploit this information. Suppose
a cash prize is awarded whenever you pick at least three of the correct numbers
on your ticket. We need an algorithm to construct the smallest set of tickets
that we must buy in order to guarantee that we win at least one prize.”

2Yes, this is a true story.
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Tickets

1  2  3 
1  4  5 
2  4  5 
3  4  5

Winning Pairs

1  2    2  3  3  4 
1  3  2  4  3  5 
1  4  2  5  4  5 
1  5

Figure 1.11: Covering all pairs of {1, 2, 3, 4, 5} with tickets {1, 2, 3}, {1, 4, 5},
{2, 4, 5}, {3, 4, 5}. Pair color reflects the covering ticket.

“Assuming the psychic is correct?”
“Yes, assuming the psychic is correct. We need a program that prints out

a list of all the tickets that the psychic should buy in order to minimize their
investment. Can you help us?”

Maybe they did have psychic ability, for they had come to the right place.
Identifying the best subset of tickets to buy was very much a combinatorial
algorithm problem. It was going to be some type of covering problem, where
each ticket bought would “cover” some of the possible 4-element subsets of the
psychic’s set. Finding the absolute smallest set of tickets to cover everything was
a special instance of the NP-complete problem set cover (discussed in Section
21.1 (page 678)), and presumably computationally intractable.

It was indeed a special instance of set cover, completely specified by only
four numbers: the size n of the candidate set S (typically n ≈ 15), the number of
slots k for numbers on each ticket (typically k ≈ 6), the number of psychically-
promised correct numbers j from S (say j = 4), and finally, the number of
matching numbers l necessary to win a prize (say l = 3). Figure 1.11 illustrates
a covering of a smaller instance, where n = 5, k = 3, and l = 2, and no psychic
contribution (meaning j = 5).

“Although it will be hard to find the exact minimum set of tickets to buy,
with heuristics I should be able to get you pretty close to the cheapest covering
ticket set,” I told him. “Will that be good enough?”

“So long as it generates better ticket sets than my competitor’s program,
that will be fine. His system doesn’t always guarantee a win. I really appreciate
your help on this, Professor Skiena.”

“One last thing. If your program can train people to pick lottery winners,
why don’t you use it to win the lottery yourself?”

“I look forward to talking to you again real soon, Professor Skiena. Thanks
for the help.”

I hung up the phone and got back to thinking. It seemed like the perfect
project to give to a bright undergraduate. After modeling it in terms of sets
and subsets, the basic components of a solution seemed fairly straightforward:

• We needed the ability to generate all subsets of k numbers from the can-
didate set S. Algorithms for generating and ranking/unranking subsets of
sets are presented in Section 17.5 (page 521).
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• We needed the right formulation of what it meant to have a covering set
of purchased tickets. The obvious criteria would be to pick a small set of
tickets such that we have purchased at least one ticket containing each of
the

(
n
l

)
l-subsets of S that might pay off with the prize.

• We needed to keep track of which prize combinations we have thus far
covered. We seek tickets to cover as many thus-far-uncovered prize com-
binations as possible. The currently covered combinations are a subset of
all possible combinations. Data structures for subsets are discussed in Sec-
tion 15.5 (page 456). The best candidate seemed to be a bit vector, which
would answer in constant time “is this combination already covered?”

• We needed a search mechanism to decide which ticket to buy next. For
small enough set sizes, we could do an exhaustive search over all possible
subsets of tickets and pick the smallest one. For larger problems, a ran-
domized search process like simulated annealing (see Section 12.6.3 (page
406)) would select tickets-to-buy to cover as many uncovered combina-
tions as possible. By repeating this randomized procedure several times
and picking the best solution, we would be likely to come up with a good
set of tickets.

The bright undergraduate, Fayyaz Younas, rose to the challenge. Based
on this framework, he implemented a brute-force search algorithm and found
optimal solutions for problems with n ≤ 5 in a reasonable time. He implemented
a random search procedure to solve larger problems, tweaking it for a while
before settling on the best variant. Finally, the day arrived when we could call
Lotto Systems Group and announce that we had solved the problem.

“Our program found an optimal solution for n = 15, k = 6, j = 4, l = 3
meant buying 28 tickets.”

“Twenty-eight tickets!” complained the president. “You must have a bug.
Look, these five tickets will suffice to cover everything twice over: {2, 4, 8, 10, 13, 14},
{4, 5, 7, 8, 12, 15}, {1, 2, 3, 6, 11, 13}, {3, 5, 6, 9, 10, 15}, {1, 7, 9, 11, 12, 14}.” We
fiddled with this example for a while before admitting that he was right.

We hadn’t modeled the problem correctly! In fact, we didn’t need to explicitly
cover all possible winning combinations. Figure 1.12 illustrates the principle by
giving a two-ticket solution to our previous four-ticket example. Although the
pairs {2, 4}, {2, 5}, {3, 4}, or {3, 5} do not explicitly appear in one of our two
tickets, these pairs plus any possible third ticket number must create a pair in
either {1, 2, 3} or {1, 4, 5}. We were trying to cover too many combinations, and
the penny-pinching psychics were unwilling to pay for such extravagance.

Fortunately, this story has a happy ending. The general outline of our search-
based solution still holds for the real problem. All we must fix is which subsets
we get credit for covering with a given set of tickets. After this modification,
we obtained the kind of results they were hoping for. Lotto Systems Group
gratefully accepted our program to incorporate into their product, and we hope
they hit the jackpot with it.
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Tickets Winning Pairs

1  2   3 1  2
1  3
1  4 4  5
1  5

{1 4 5}

{1 2 3}

2  3
2  4

3  4
3  5

2  5
1  4   5

1

32 4

5
{1 4 5}

{1 2 3}
1

32 5

4
{1 4 5}

{1 2 3}
1

23 4

5
{1 4 5}

{1 2 3}
1

23 5

4

Figure 1.12: Guaranteeing a winning pair from {1, 2, 3, 4, 5} using only tickets
{1, 2, 3} and {1, 4, 5}. The bottom figure shows how all missing pairs imply a
covered pair on expansion.

The moral of this story is to make sure that you model your problem cor-
rectly before trying to solve it. In our case, we came up with a reasonable model,
but didn’t work hard enough to validate it before we started to program. Our
misinterpretation would have become obvious had we worked out a small ex-
ample by hand and bounced it off our sponsor before beginning work. Our
success in recovering from this error is a tribute to the basic correctness of our
initial formulation, and our use of well-defined abstractions for such tasks as (1)
ranking/unranking k-subsets, (2) the set data structure, and (3) combinatorial
search.

1.9 Estimation

When you don’t know the right answer, the best thing to do is guess. Principled
guessing is called estimation. The ability to make back-of-the-envelope estimates
of diverse quantities such as the running time of a program is a valuable skill in
algorithm design, as it is in any technical enterprise.

Estimation problems are best solved through some kind of logical reasoning
process, typically a mix of principled calculations and analogies. Principled
calculations give the answer as a function of quantities that either you already
know, can look up on Google, or feel confident enough to guess. Analogies
reference your past experiences, recalling those that seem similar to some aspect
of the problem at hand.

I once asked my class to estimate the number of pennies in a hefty glass jar,
and got answers ranging from 250 to 15,000. Both answers will seem pretty silly
if you make the right analogies:

• A penny roll holds 50 coins in a tube roughly the length and width of your
biggest finger. So five such rolls can easily be held in your hand, with no
need for a hefty jar.
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• 15,000 pennies means $150 in value. I have never managed to accumulate
that much value in coins even in a hefty pile of change—and here I am
only using pennies!

But the class average estimate proved very close to the right answer, which
turned out to be 1879. There are at least three principled ways I can think of
to estimate the number of coins in the jar:

• Volume – The jar was a cylinder with about 5 inches diameter, and the
coins probably reached a level equal to about ten pennies tall stacked end
to end. Figure a penny is ten times longer than it is thick. The bottom
layer of the jar was a circle of radius about five pennies. So

(10× 10)× (π × 2.52) ≈ 1962.5

• Weight – Lugging the jar felt like carrying around a bowling ball. Mul-
tiplying the number of US pennies in a pound (181 when I looked it up)
times a 10 lb. ball gave a frighteningly accurate estimate of 1810.

• Analogy – The coins had a height of about 8 inches in the jar, or twice
that of a penny roll. Figure I could stack about two layers of ten rolls per
layer in the jar, or a total estimate of 1,000 coins.

A best practice in estimation is to try to solve the problem in different ways
and see if the answers generally agree in magnitude. All of these are within a
factor of two of each other, giving me confidence that my answer is about right.

Try some of the estimation exercises at the end of this chapter, and see how
many different ways you can approach them. If you do things right, the ratio
between your high and low estimates should be somewhere within a factor of two
to ten, depending upon the nature of the problem. A sound reasoning process
matters a lot more here than the actual numbers you get.

Chapter Notes

Every algorithm book reflects the design philosophy of its author. For stu-
dents seeking alternative presentations and viewpoints, I particularly recom-
mend the books of Cormen, et al. [CLRS09], Kleinberg and Tardos [KT06],
Manber [Man89], and Roughgarden [Rou17].

Formal proofs of algorithm correctness are important, and deserve a fuller
discussion than this chapter is able to provide. See Gries [Gri89] for a thorough
introduction to the techniques of program verification.

The movie scheduling problem represents a very special case of the general
independent set problem, which will be discussed in Section 19.2 (page 589).
The restriction limits the allowable input instances to interval graphs, where
the vertices of the graph G can be represented by intervals on the line and
(i, j) is an edge of G iff the intervals overlap. Golumbic [Gol04] provides a full
treatment of this interesting and important class of graphs.
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Jon Bentley’s Programming Pearls columns are probably the best known
collection of algorithmic “war stories,” collected in two books [Ben90, Ben99].
Brooks’s The Mythical Man Month [Bro95] is another wonderful collection of
war stories that, although focused more on software engineering than algorithm
design, remain a source of considerable wisdom. Every programmer should read
these books for pleasure as well as insight.

Our solution to the lotto ticket set covering problem is presented in more
detail in Younas and Skiena [YS96].

1.10 Exercises

Finding Counterexamples

1-1. [3] Show that a+ b can be less than min(a, b).

1-2. [3] Show that a× b can be less than min(a, b).

1-3. [5] Design/draw a road network with two points a and b such that the fastest
route between a and b is not the shortest route.

1-4. [5] Design/draw a road network with two points a and b such that the shortest
route between a and b is not the route with the fewest turns.

1-5. [4] The knapsack problem is as follows: given a set of integers S = {s1, s2, . . . , sn},
and a target number T , find a subset of S that adds up exactly to T . For ex-
ample, there exists a subset within S = {1, 2, 5, 9, 10} that adds up to T = 22
but not T = 23.

Find counterexamples to each of the following algorithms for the knapsack prob-
lem. That is, give an S and T where the algorithm does not find a solution that
leaves the knapsack completely full, even though a full-knapsack solution exists.

(a) Put the elements of S in the knapsack in left to right order if they fit, that
is, the first-fit algorithm.

(b) Put the elements of S in the knapsack from smallest to largest, that is, the
best-fit algorithm.

(c) Put the elements of S in the knapsack from largest to smallest.

1-6. [5] The set cover problem is as follows: given a set S of subsets S1, . . . , Sm of
the universal set U = {1, ..., n}, find the smallest subset of subsets T ⊆ S such
that ∪ti∈T ti = U . For example, consider the subsets S1 = {1, 3, 5}, S2 = {2, 4},
S3 = {1, 4}, and S4 = {2, 5}. The set cover of {1, . . . , 5} would then be S1 and
S2.

Find a counterexample for the following algorithm: Select the largest subset for
the cover, and then delete all its elements from the universal set. Repeat by
adding the subset containing the largest number of uncovered elements until all
are covered.

1-7. [5] The maximum clique problem in a graph G = (V,E) asks for the largest
subset C of vertices V such that there is an edge in E between every pair of
vertices in C. Find a counterexample for the following algorithm: Sort the
vertices of G from highest to lowest degree. Considering the vertices in order
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of degree, for each vertex add it to the clique if it is a neighbor of all vertices
currently in the clique. Repeat until all vertices have been considered.

Proofs of Correctness

1-8. [3] Prove the correctness of the following recursive algorithm to multiply two
natural numbers, for all integer constants c ≥ 2.

Multiply(y, z)

if z = 0 then return(0) else

return(Multiply(cy, �z/c�) + y · (z mod c))

1-9. [3] Prove the correctness of the following algorithm for evaluating a polynomial
anx

n + an−1x
n−1 + · · ·+ a1x+ a0.

Horner(a, x)

p = an

for i from n− 1 to 0

p = p · x+ ai

return p

1-10. [3] Prove the correctness of the following sorting algorithm.

Bubblesort (A)

for i from n to 1

for j from 1 to i− 1

if (A[j] > A[j + 1])

swap the values of A[j] and A[j + 1]

1-11. [5] The greatest common divisor of positive integers x and y is the largest integer
d such that d divides x and d divides y. Euclid’s algorithm to compute gcd(x, y)
where x > y reduces the task to a smaller problem:

gcd(x, y) = gcd(y, x mod y)

Prove that Euclid’s algorithm is correct.

Induction

1-12. [3] Prove that
∑n

i=1 i = n(n+ 1)/2 for n ≥ 0, by induction.

1-13. [3] Prove that
∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6 for n ≥ 0, by induction.

1-14. [3] Prove that
∑n

i=1 i
3 = n2(n+ 1)2/4 for n ≥ 0, by induction.

1-15. [3] Prove that

n∑

i=1

i(i+ 1)(i+ 2) = n(n+ 1)(n+ 2)(n+ 3)/4

1-16. [5] Prove by induction on n ≥ 1 that for every a �= 1,

n∑

i=0

ai =
an+1 − 1

a− 1
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1-17. [3] Prove by induction that for n ≥ 1,

n∑

i=1

1

i(i+ 1)
=

n

n+ 1

1-18. [3] Prove by induction that n3 + 2n is divisible by 3 for all n ≥ 0.

1-19. [3] Prove by induction that a tree with n vertices has exactly n− 1 edges.

1-20. [3] Prove by induction that the sum of the cubes of the first n positive integers
is equal to the square of the sum of these integers, that is,

n∑

i=1

i3 = (
n∑

i=1

i)2

Estimation

1-21. [3] Do all the books you own total at least one million pages? How many total
pages are stored in your school library?

1-22. [3] How many words are there in this textbook?

1-23. [3] How many hours are one million seconds? How many days? Answer these
questions by doing all arithmetic in your head.

1-24. [3] Estimate how many cities and towns there are in the United States.

1-25. [3] Estimate how many cubic miles of water flow out of the mouth of the
Mississippi River each day. Do not look up any supplemental facts. Describe all
assumptions you made in arriving at your answer.

1-26. [3] How many Starbucks or McDonald’s locations are there in your country?

1-27. [3] How long would it take to empty a bathtub with a drinking straw?

1-28. [3] Is disk drive access time normally measured in milliseconds (thousandths of
a second) or microseconds (millionths of a second)? Does your RAM memory
access a word in more or less than a microsecond? How many instructions can
your CPU execute in one year if the machine is left running all the time?

1-29. [4] A sorting algorithm takes 1 second to sort 1,000 items on your machine.
How long will it take to sort 10,000 items. . .

(a) if you believe that the algorithm takes time proportional to n2, and

(b) if you believe that the algorithm takes time roughly proportional to n log n?

Implementation Projects

1-30. [5] Implement the two TSP heuristics of Section 1.1 (page 5). Which of them
gives better solutions in practice? Can you devise a heuristic that works better
than both of them?

1-31. [5] Describe how to test whether a given set of tickets establishes sufficient
coverage in the Lotto problem of Section 1.8 (page 22). Write a program to find
good ticket sets.
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Interview Problems

1-32. [5] Write a function to perform integer division without using either the / or *
operators. Find a fast way to do it.

1-33. [5] There are twenty-five horses. At most, five horses can race together at a
time. You must determine the fastest, second fastest, and third fastest horses.
Find the minimum number of races in which this can be done.

1-34. [3] How many piano tuners are there in the entire world?

1-35. [3] How many gas stations are there in the United States?

1-36. [3] How much does the ice in a hockey rink weigh?

1-37. [3] How many miles of road are there in the United States?

1-38. [3] On average, how many times would you have to flip open the Manhattan
phone book at random in order to find a specific name?

LeetCode

1-1. https://leetcode.com/problems/daily-temperatures/

1-2. https://leetcode.com/problems/rotate-list/

1-3. https://leetcode.com/problems/wiggle-sort-ii/

HackerRank

1-1. https://www.hackerrank.com/challenges/array-left-rotation/

1-2. https://www.hackerrank.com/challenges/kangaroo/

1-3. https://www.hackerrank.com/challenges/hackerland-radio-transmitters/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

1-1. “The 3n+ 1 Problem”—Chapter 1, problem 100.

1-2. “The Trip”—Chapter 1, problem 10137.

1-3. “Australian Voting”—Chapter 1, problem 10142.

https://leetcode.com/problems/daily-temperatures/
https://leetcode.com/problems/rotate-list/
https://leetcode.com/problems/wiggle-sort-ii/
https://www.hackerrank.com/challenges/array-left-rotation/
https://www.hackerrank.com/challenges/kangaroo/
https://www.hackerrank.com/challenges/hackerland-radio-transmitters/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 2

Algorithm Analysis

Algorithms are the most important and durable part of computer science be-
cause they can be studied in a language- and machine-independent way. This
means we need techniques that let us compare the efficiency of algorithms with-
out implementing them. Our two most important tools are (1) the RAM model
of computation and (2) the asymptotic analysis of computational complexity.

Assessing algorithmic performance makes use of the “Big Oh” notation that
proves essential to compare algorithms, and design better ones. This method
of keeping score will be the most mathematically demanding part of this book.
But once you understand the intuition behind this formalism it becomes a lot
easier to deal with.

2.1 The RAM Model of Computation

Machine-independent algorithm design depends upon a hypothetical computer
called the Random Access Machine, or RAM. Under this model of computation,
we are confronted with a computer where:

• Each simple operation (+, *, –, =, if, call) takes exactly one time step.

• Loops and subroutines are not considered simple operations. Instead,
they are the composition of many single-step operations. It makes no
sense for sort to be a single-step operation, since sorting 1,000,000 items
will certainly take much longer than sorting ten items. The time it takes
to run through a loop or execute a subprogram depends upon the number
of loop iterations or the specific nature of the subprogram.

• Each memory access takes exactly one time step. Furthermore, we have
as much memory as we need. The RAM model takes no notice of whether
an item is in cache or on the disk.

Under the RAM model, we measure run time by counting the number of
steps an algorithm takes on a given problem instance. If we assume that our
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RAM executes a given number of steps per second, this operation count converts
naturally to the actual running time.

The RAM is a simple model of how computers perform. Perhaps it sounds
too simple. After all, multiplying two numbers takes more time than adding two
numbers on most processors, which violates the first assumption of the model.
Fancy compiler loop unrolling and hyperthreading may well violate the second
assumption. And certainly memory-access times differ greatly depending on
where your data sits in the storage hierarchy. This makes us zero for three on
the truth of our basic assumptions.

And yet, despite these objections, the RAM proves an excellent model for
understanding how an algorithm will perform on a real computer. It strikes a
fine balance by capturing the essential behavior of computers while being simple
to work with. We use the RAM model because it is useful in practice.

Every model in science has a size range over which it is useful. Take, for
example, the model that the Earth is flat. You might argue that this is a bad
model, since it is quite well established that the Earth is round. But, when
laying the foundation of a house, the flat Earth model is sufficiently accurate
that it can be reliably used. It is so much easier to manipulate a flat-Earth
model that it is inconceivable that you would try to think spherically when you
don’t have to.1

The same situation is true with the RAM model of computation. We make
an abstraction that is generally very useful. It is difficult to design an algorithm
where the RAM model gives you substantially misleading results. The robust-
ness of this model enables us to analyze algorithms in a machine-independent
way.

Take-Home Lesson: Algorithms can be understood and studied in a language-
and machine-independent manner.

2.1.1 Best-Case, Worst-Case, and Average-Case Complex-
ity

Using the RAM model of computation, we can count how many steps our algo-
rithm takes on any given input instance by executing it. However, to understand
how good or bad an algorithm is in general, we must know how it works over
all possible instances.

To understand the notions of the best, worst, and average-case complexity,
think about running an algorithm over all possible instances of data that can be
fed to it. For the problem of sorting, the set of possible input instances includes
every possible arrangement of n keys, for all possible values of n. We can
represent each input instance as a point on a graph (shown in Figure 2.1) where
the x-axis represents the size of the input problem (for sorting, the number of
items to sort), and the y-axis denotes the number of steps taken by the algorithm
in this instance.

1The Earth is not completely spherical either, but a spherical Earth provides a useful model
for such things as longitude and latitude.



2.1. THE RAM MODEL OF COMPUTATION 33

Worst Case

Average Case

Best Case

Problem Size

of Steps
Number 

1                     2                     3                    4     . . . . . . n

Figure 2.1: Best-case, worst-case, and average-case complexity.

These points naturally align themselves into columns, because only integers
represent possible input sizes (e.g., it makes no sense to sort 10.57 items). We
can define three interesting functions over the plot of these points:

• The worst-case complexity of the algorithm is the function defined by the
maximum number of steps taken in any instance of size n. This represents
the curve passing through the highest point in each column.

• The best-case complexity of the algorithm is the function defined by the
minimum number of steps taken in any instance of size n. This represents
the curve passing through the lowest point of each column.

• The average-case complexity or expected time of the algorithm, which is
the function defined by the average number of steps over all instances of
size n.

The worst-case complexity generally proves to be most useful of these three
measures in practice. Many people find this counterintuitive. To illustrate why,
try to project what will happen if you bring $n into a casino to gamble. The
best case, that you walk out owning the place, is so unlikely that you should not
even think about it. The worst case, that you lose all $n, is easy to calculate
and distressingly likely to happen.

The average case, that the typical bettor loses 87.32% of the money that he
or she brings to the casino, is both difficult to establish and its meaning subject
to debate. What exactly does average mean? Stupid people lose more than
smart people, so are you smarter or stupider than the average person, and by
how much? Card counters at blackjack do better on average than customers
who accept three or more free drinks. We avoid all these complexities and obtain
a very useful result by considering the worst case.

That said, average-case analysis for expected running time will prove very
important with respect to randomized algorithms, which use random numbers
to make decisions within the algorithm. If you make n independent $1 red-
black bets on roulette in the casino, your expected loss is indeed well defined at
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$(2n/38), because American roulette wheels have eighteen red, eighteen black,
and two green slots 0 and 00 where every bet loses.

Take-Home Lesson: Each of these time complexities defines a numerical func-
tion for any given algorithm, representing running time as a function of input
size. These functions are just as well defined as any other numerical function,
be it y = x2 − 2x+1 or the price of Alphabet stock as a function of time. But
time complexities are such complicated functions that we must simplify them
for analysis using the “Big Oh” notation.

2.2 The Big Oh Notation

The best-case, worst-case, and average-case time complexities for any given
algorithm are numerical functions over the size of possible problem instances.
However, it is very difficult to work precisely with these functions, because they
tend to:

• Have too many bumps – An algorithm such as binary search typically runs
a bit faster for arrays of size exactly n = 2k − 1 (where k is an integer),
because the array partitions work out nicely. This detail is not particularly
important, but it warns us that the exact time complexity function for any
algorithm is liable to be very complicated, with lots of little up and down
bumps as shown in Figure 2.2.

• Require too much detail to specify precisely – Counting the exact number
of RAM instructions executed in the worst case requires the algorithm be
specified to the detail of a complete computer program. Furthermore, the
precise answer depends upon uninteresting coding details (e.g. did the
code use a case statement or nested ifs?). Performing a precise worst-case
analysis like

T (n) = 12754n2 + 4353n+ 834 lg2 n+ 13546

would clearly be very difficult work, but provides us little extra information
than the observation that “the time grows quadratically with n.”

It proves to be much easier to talk in terms of simple upper and lower bounds
of time-complexity functions using the Big Oh notation. The Big Oh simplifies
our analysis by ignoring levels of detail that do not impact our comparison of
algorithms.

The Big Oh notation ignores the difference between multiplicative constants.
The functions f(n) = 2n and g(n) = n are identical in Big Oh analysis. This
makes sense given our application. Suppose a given algorithm in (say) C lan-
guage ran twice as fast as one with the same algorithm written in Java. This
multiplicative factor of two can tell us nothing about the algorithm itself, be-
cause both programs implement exactly the same algorithm. We should ignore
such constant factors when comparing two algorithms.

The formal definitions associated with the Big Oh notation are as follows:
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1 2 3 4 .......

n0

n

f(n)

lower bound

upper bound

Figure 2.2: Upper and lower bounds valid for n > n0 smooth out the behavior
of complex functions.

c · g(n) c1 · g(n)

c2 · g(n)c · g(n)
f (n) f (n) f (n)

n0

(a) (b) (c)

n0 n0

Figure 2.3: Illustrating notations: (a) f(n) = O(g(n)), (b) f(n) = Ω(g(n)), and
(c) f(n) = Θ(g(n)).

• f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus, there
exists some constant c such that f(n) ≤ c · g(n) for every large enough n
(that is, for all n ≥ n0, for some constant n0).

• f(n) = Ω(g(n)) means c ·g(n) is a lower bound on f(n). Thus, there exists
some constant c such that f(n) ≥ c · g(n) for all n ≥ n0.

• f(n) = Θ(g(n)) means c1 · g(n) is an upper bound on f(n) and c2 · g(n)
is a lower bound on f(n), for all n ≥ n0. Thus, there exist constants c1
and c2 such that f(n) ≤ c1 · g(n) and f(n) ≥ c2 · g(n) for all n ≥ n0. This
means that g(n) provides a nice, tight bound on f(n).

Got it? These definitions are illustrated in Figure 2.3. Each of these defi-
nitions assumes there is a constant n0 beyond which they are satisfied. We are
not concerned about small values of n, anything to the left of n0. After all,
we don’t really care whether one sorting algorithm sorts six items faster than
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another, but we do need to know which algorithm proves faster when sorting
10,000 or 1,000,000 items. The Big Oh notation enables us to ignore details and
focus on the big picture.

Take-Home Lesson: The Big Oh notation and worst-case analysis are tools
that greatly simplify our ability to compare the efficiency of algorithms.

Make sure you understand this notation by working through the following
examples. Certain constants (c and n0) are chosen in the explanations below
because they work and make a point, but other pairs of constants will do exactly
the same job. You are free to choose any constants that maintain the same
inequality (ideally constants that make it obvious that the inequality holds):

f(n) = 3n2 − 100n+ 6 = O(n2), because for c = 3, 3n2 > f(n);

f(n) = 3n2 − 100n+ 6 = O(n3), because for c = 1, n3 > f(n) when n > 3;

f(n) = 3n2 − 100n+ 6 �= O(n), because for any c > 0, cn < f(n) when n > (c+ 100)/3,

since n > (c+ 100)/3 ⇒ 3n > c+ 100 ⇒ 3n2 > cn+ 100n > cn+ 100n− 6

⇒ 3n2 − 100n+ 6 = f(n) > cn;

f(n) = 3n2 − 100n+ 6 = Ω(n2), because for c = 2, 2n2 < f(n) when n > 100;

f(n) = 3n2 − 100n+ 6 �= Ω(n3), because for any c > 0, f(n) < c · n3 when n > 3/c+ 3;

f(n) = 3n2 − 100n+ 6 = Ω(n), because for any c > 0, f(n) < 3n2 + 6n2 = 9n2,

which is < cn3 when n > max(9/c, 1);

f(n) = 3n2 − 100n+ 6 = Θ(n2), because both O and Ω apply;

f(n) = 3n2 − 100n+ 6 �= Θ(n3), because only O applies;

f(n) = 3n2 − 100n+ 6 �= Θ(n), because only Ω applies.

The Big Oh notation provides for a rough notion of equality when comparing
functions. It is somewhat jarring to see an expression like n2 = O(n3), but its
meaning can always be resolved by going back to the definitions in terms of
upper and lower bounds. It is perhaps most instructive to read the “=” here as
meaning one of the functions that are. Clearly, n2 is one of the functions that
are O(n3).

Stop and Think: Back to the Definition

Problem: Is 2n+1 = Θ(2n)?
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Solution: Designing novel algorithms requires cleverness and inspiration. How-
ever, applying the Big Oh notation is best done by swallowing any creative
instincts you may have. All Big Oh problems can be correctly solved by going
back to the definition and working with that.

• Is 2n+1 = O(2n)? Well, f(n) = O(g(n)) iff there exists a constant c such
that for all sufficiently large n, f(n) ≤ c · g(n). Is there? Yes, because
2n+1 = 2 · 2n, and clearly 2 · 2n ≤ c · 2n for any c ≥ 2.

• Is 2n+1 = Ω(2n)? Go back to the definition. f(n) = Ω(g(n)) iff there
exists a constant c > 0 such that for all sufficiently large n f(n) ≥ c · g(n).
This would be satisfied for any 0 < c ≤ 2. Together the Big Oh and Ω
bounds imply 2n+1 = Θ(2n).

Stop and Think: Hip to the Squares?

Problem: Is (x+ y)2 = O(x2 + y2)?

Solution: Working with the Big Oh means going back to the definition at the
slightest sign of confusion. By definition, this expression is valid iff we can find
some c such that (x+ y)2 ≤ c(x2 + y2) for all sufficiently large x and y.

My first move would be to expand the left side of the equation, that is,
(x + y)2 = x2 + 2xy + y2. If the middle 2xy term wasn’t there, the inequality
would clearly hold for any c > 1. But it is there, so we need to relate 2xy to
x2 + y2. What if x ≤ y? Then 2xy ≤ 2y2 ≤ 2(x2 + y2). What if x ≥ y? Then
2xy ≤ 2x2 ≤ 2(x2 + y2). Either way, we now can bound 2xy by two times the
right-side function x2 + y2. This means that (x+ y)2 ≤ 3(x2 + y2), and so the
result holds.

2.3 Growth Rates and Dominance Relations

With the Big Oh notation, we cavalierly discard the multiplicative constants.
Thus, the functions f(n) = 0.001n2 and g(n) = 1000n2 are treated identically,
even though g(n) is a million times larger than f(n) for all values of n.

The reason why we are content with such coarse Big Oh analysis is provided
by Figure 2.4, which shows the growth rate of several common time analysis
functions. In particular, it shows how long algorithms that use f(n) operations
take to run on a fast computer, where each operation costs one nanosecond
(10−9 seconds). The following conclusions can be drawn from this table:

• All such algorithms take roughly the same time for n = 10.

• Any algorithm with n! running time becomes useless for n ≥ 20.
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n lgn n n lgn n2 2n n!
10 0.003 μs 0.01 μs 0.033 μs 0.1 μs 1 μs 3.63 ms
20 0.004 μs 0.02 μs 0.086 μs 0.4 μs 1 ms 77.1 years
30 0.005 μs 0.03 μs 0.147 μs 0.9 μs 1 sec 8.4 × 1015 yrs
40 0.005 μs 0.04 μs 0.213 μs 1.6 μs 18.3 min
50 0.006 μs 0.05 μs 0.282 μs 2.5 μs 13 days

100 0.007 μs 0.1 μs 0.644 μs 10 μs 4 × 1013 yrs
1,000 0.010 μs 1.00 μs 9.966 μs 1 ms
10,000 0.013 μs 10 μs 130 μs 100 ms
100,000 0.017 μs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 μs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 μs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 μs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 μs 1 sec 29.90 sec 31.7 years

Figure 2.4: Running times of common functions measured in nanoseconds.
The function lg n denotes the base-2 logarithm of n.

• Algorithms whose running time is 2n have a greater operating range, but
become impractical for n > 40.

• Quadratic-time algorithms, whose running time is n2, remain usable up
to about n = 10, 000, but quickly deteriorate with larger inputs. They are
likely to be hopeless for n > 1,000,000.

• Linear-time and n lg n algorithms remain practical on inputs of one billion
items.

• An O(lg n) algorithm hardly sweats for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent
idea of whether a given algorithm is appropriate for a problem of a given size.

2.3.1 Dominance Relations

The Big Oh notation groups functions into a set of classes, such that all the
functions within a particular class are essentially equivalent. Functions f(n) =
0.34n and g(n) = 234,234n belong in the same class, namely those that are order
Θ(n). Furthermore, when two functions f and g belong to different classes, they
are different with respect to our notation, meaning either f(n) = O(g(n)) or
g(n) = O(f(n)), but not both.

We say that a faster growing function dominates a slower growing one, just
as a faster growing company eventually comes to dominate the laggard. When
f and g belong to different classes (i.e. f(n) �= Θ(g(n))), we say g dominates f
when f(n) = O(g(n)). This is sometimes written g � f .

The good news is that only a few different function classes tend to occur
in the course of basic algorithm analysis. These suffice to cover almost all the
algorithms we will discuss in this text, and are listed in order of increasing
dominance:
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• Constant functions, f(n) = 1: Such functions might measure the cost
of adding two numbers, printing out “The Star Spangled Banner,” or
the growth realized by functions such as f(n) = min(n, 100). In the big
picture, there is no dependence on the parameter n.

• Logarithmic functions, f(n) = log n: Logarithmic time complexity shows
up in algorithms such as binary search. Such functions grow quite slowly
as n gets big, but faster than the constant function (which is standing
still, after all). Logarithms will be discussed in more detail in Section 2.7
(page 48).

• Linear functions, f(n) = n: Such functions measure the cost of looking
at each item once (or twice, or ten times) in an n-element array, say to
identify the biggest item, the smallest item, or compute the average value.

• Superlinear functions, f(n) = n lg n: This important class of functions
arises in such algorithms as quicksort and mergesort. They grow just a
little faster than linear (recall Figure 2.4), but enough so to rise to a higher
dominance class.

• Quadratic functions, f(n) = n2: Such functions measure the cost of look-
ing at most or all pairs of items in an n-element universe. These arise in
algorithms such as insertion sort and selection sort.

• Cubic functions, f(n) = n3: Such functions enumerate all triples of items
in an n-element universe. These also arise in certain dynamic program-
ming algorithms, to be developed in Chapter 10.

• Exponential functions, f(n) = cn for a given constant c > 1: Functions
like 2n arise when enumerating all subsets of n items. As we have seen,
exponential algorithms become useless fast, but not as fast as. . .

• Factorial functions, f(n) = n!: Functions like n! arise when generating all
permutations or orderings of n items.

The intricacies of dominance relations will be further discussed in Section
2.10.2 (page 58). However, all you really need to understand is that:

n! � 2n � n3 � n2 � n log n � n � log n � 1

Take-Home Lesson: Although esoteric functions arise in advanced algorithm
analysis, a small set of time complexities suffice for most algorithms we will see
in this book.

2.4 Working with the Big Oh

You learned how to do simplifications of algebraic expressions back in high
school. Working with the Big Oh requires dusting off these tools. Most of what
you learned there still holds in working with the Big Oh, but not everything.
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2.4.1 Adding Functions

The sum of two functions is governed by the dominant one, namely:

f(n) + g(n) → Θ(max(f(n), g(n)))

This is very useful in simplifying expressions: for example it gives us that
n3+n2+n+1 = Θ(n3). Everything else is small potatoes besides the dominant
term.

The intuition is as follows. At least half the bulk of f(n) + g(n) must come
from the larger value. The dominant function will, by definition, provide the
larger value as n → ∞. Thus, dropping the smaller function from consideration
reduces the value by at most a factor of 1/2, which is just a multiplicative
constant. For example, if f(n) = O(n2) and g(n) = O(n2), then f(n) + g(n) =
O(n2) as well.

2.4.2 Multiplying Functions

Multiplication is like repeated addition. Consider multiplication by any constant
c > 0, be it 1.02 or 1,000,000. Multiplying a function by a constant cannot affect
its asymptotic behavior, because we can multiply the bounding constants in the
Big Oh analysis to account for it. Thus,

O(c · f(n)) → O(f(n))

Ω(c · f(n)) → Ω(f(n))

Θ(c · f(n)) → Θ(f(n))

Of course, c must be strictly positive (i.e. c > 0) to avoid any funny business,
since we can wipe out even the fastest growing function by multiplying it by
zero.

On the other hand, when two functions in a product are increasing, both
are important. An O(n! log n) function dominates n! by just as much as log n
dominates 1. In general,

O(f(n)) ·O(g(n)) → O(f(n) · g(n))
Ω(f(n)) · Ω(g(n)) → Ω(f(n) · g(n))
Θ(f(n)) ·Θ(g(n)) → Θ(f(n) · g(n))

Stop and Think: Transitive Experience

Problem: Show that Big Oh relationships are transitive. That is, if f(n) =
O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution: We always go back to the definition when working with the Big Oh.
What we need to show here is that f(n) ≤ c3 · h(n) for n > n3 given that
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f(n) ≤ c1 · g(n) and g(n) ≤ c2 · h(n), for n > n1 and n > n2, respectively.
Cascading these inequalities, we get that

f(n) ≤ c1 · g(n) ≤ c1c2 · h(n)
for n > n3 = max(n1, n2).

2.5 Reasoning about Efficiency

Coarse reasoning about an algorithm’s running time is usually easy, given a
precise description of the algorithm. In this section, I will work through several
examples, perhaps in greater detail than necessary.

2.5.1 Selection Sort

Here we’ll analyze the selection sort algorithm, which repeatedly identifies the
smallest remaining unsorted element and puts it at the end of the sorted portion
of the array. An animation of selection sort in action appears in Figure 2.5, and
the code is shown below:

void selection_sort(item_type s[], int n) {

int i, j; /* counters */

int min; /* index of minimum */

for (i = 0; i < n; i++) {

min = i;

for (j = i + 1; j < n; j++) {

if (s[j] < s[min]) {

min = j;

}

}

swap(&s[i], &s[min]);

}

}

The outer for loop goes around n times. The nested inner loop goes around
n − (i + 1) times, where i is the index of the outer loop. The exact number of
times the if statement is executed is given by:

T (n) =
n−1∑

i=0

n−1∑

j=i+1

1 =

n−1∑

i=0

n− i− 1

What this sum is doing is adding up the non-negative integers in decreasing
order starting from n− 1, that is,

T (n) = (n− 1) + (n− 2) + (n− 3) + . . .+ 2 + 1
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Figure 2.5: Animation of selection sort in action.

How can we reason about such a formula? We must solve the summation
formula using the techniques of Section 2.6 (page 46) to get an exact value. But,
with the Big Oh, we are only interested in the order of the expression. One way
to think about it is that we are adding up n− 1 terms, whose average value is
about n/2. This yields T (n) ≈ (n− 1)n/2 = O(n2).

Proving the Theta

Another way to think about this algorithm’s running time is in terms of upper
and lower bounds. We have n terms at most, each of which is at most n − 1.
Thus, T (n) ≤ n(n− 1) = O(n2). The Big Oh is an upper bound.

The Big Ω is a lower bound. Looking at the sum again, we have n/2 terms
each of which is bigger than n/2, followed by n/2 terms each greater than zero..
Thus, T (n) ≥ (n/2) · (n/2) + (n/2) · 0 = Ω(n2). Together with the Big Oh
result, this tells us that the running time is Θ(n2), meaning that selection sort
is quadratic.

Generally speaking, turning a Big Oh worst-case analysis into a Big Θ in-
volves identifying a bad input instance that forces the algorithm to perform as
poorly as possible. But selection sort is distinctive among sorting algorithms
in that it takes exactly the same time on all n! possible input instances. Since
T (n) = n(n− 1)/2 for all n ≥ 0, T (n) = Θ(n2).

2.5.2 Insertion Sort

A basic rule of thumb in Big Oh analysis is that worst-case running time fol-
lows from multiplying the largest number of times each nested loop can iterate.
Consider the insertion sort algorithm presented on page 3, whose inner loops
are repeated here:
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for (i = 1; i < n; i++) {

j = i;

while ((j > 0) && (s[j] < s[j - 1])) {

swap(&s[j], &s[j - 1]);

j = j-1;

}

}

How often does the inner while loop iterate? This is tricky because there
are two different stopping conditions: one to prevent us from running off the
bounds of the array (j > 0) and the other to mark when the element finds its
proper place in sorted order (s[j] < s[j− 1]). Since worst-case analysis seeks an
upper bound on the running time, we ignore the early termination and assume
that this loop always goes around i times. In fact, we can simplify further
and assume it always goes around n times since i < n. Since the outer loop
goes around n times, insertion sort must be a quadratic-time algorithm, that is,
O(n2).

This crude “round it up” analysis always does the job, in that the Big Oh
running time bound you get will always be correct. Occasionally, it might be
too pessimistic, meaning the actual worst-case time might be of a lower order
than implied by such analysis. Still, I strongly encourage this kind of reasoning
as a basis for simple algorithm analysis.

Proving the Theta

The worst case for insertion sort occurs when each newly inserted element must
slide all the way to the front of the sorted region. This happens if the input
is given in reverse sorted order. Each of the last n/2 elements of the input
must slide over at least n/2 elements to find the correct position, taking at least
(n/2)2 = Ω(n2) time.

2.5.3 String Pattern Matching

Pattern matching is the most fundamental algorithmic operation on text strings.
This algorithm implements the find command available in any web browser or
text editor:

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so, where?

Perhaps you are interested in finding where “Skiena” appears in a given news
article (well, I would be interested in such a thing). This is an instance of string
pattern matching with t as the news article and p = “Skiena”.

There is a fairly straightforward algorithm for string pattern matching that
considers the possibility that p may start at each possible position in t and then
tests if this is so.
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Figure 2.6: Searching for the substring abba in the text abaababbaba. Blue
characters represent pattern-text matches, with red characters mismatches. The
search stops as soon as a match is found.

int findmatch(char *p, char *t) {

int i, j; /* counters */

int plen, tlen; /* string lengths */

plen = strlen(p);

tlen = strlen(t);

for (i = 0; i <= (tlen-plen); i = i + 1) {

j = 0;

while ((j < plen) && (t[i + j] == p[j])) {

j = j + 1;

}

if (j == plen) {

return(i); /* location of the first match */

}

}

return(-1); /* there is no match */

}

What is the worst-case running time of these two nested loops? The inner
while loop goes around at most m times, and potentially far less when the
pattern match fails. This, plus two other statements, lies within the outer for
loop. The outer loop goes around at most n − m times, since no complete
alignment is possible once we get too far to the right of the text. The time
complexity of nested loops multiplies, so this gives a worst-case running time of
O((n−m)(m+ 2)).

We did not count the time it takes to compute the length of the strings using
the function strlen. Since the implementation of strlen is not given, we must
guess how long it should take. If it explicitly counts the number of characters
until it hits the end of the string, this will take time linear in the length of the
string. Thus, the total worst-case running time is O(n+m+ (n−m)(m+ 2)).

Let’s use our knowledge of the Big Oh to simplify things. Since m + 2 =
Θ(m), the “+2” isn’t interesting, so we are left with O(n + m + (n − m)m).
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Multiplying this out yields O(n+m+nm−m2), which still seems kind of ugly.

However, in any interesting problem we know that n ≥ m, since p can’t be a
substring of t when the pattern is longer than the text itself. One consequence
of this is that n+m ≤ 2n = Θ(n). Thus, our worst-case running time simplifies
further to O(n+ nm−m2).

Two more observations and we are done. First, note that n ≤ nm, since
m ≥ 1 in any interesting pattern. Thus, n+nm = Θ(nm), and we can drop the
additive n, simplifying our analysis to O(nm−m2).

Finally, observe that the −m2 term is negative, and thus only serves to
lower the value within. Since the Big Oh gives an upper bound, we can drop
any negative term without invalidating the upper bound. The inequality n ≥ m
implies that mn ≥ m2, so the negative term is not big enough to cancel the term
that is left. Thus, we can express the worst-case running time of this algorithm
simply as O(nm).

After you get enough experience, you will be able to do such an algorithm
analysis in your head without even writing the algorithm down. After all, algo-
rithm design for a given task involves mentally rifling through different possibil-
ities and selecting the best approach. This kind of fluency comes with practice,
but if you are confused about why a given algorithm runs in O(f(n)) time, start
by writing the algorithm out carefully and then employ the kind of reasoning
we used in this section.

Proving the Theta

The analysis above gives a quadratic-time upper bound on the running time of
this simple pattern matching algorithm. To prove the theta, we must show an
example where it actually does take Ω(mn) time.

Consider what happens when the text t = “aaaa . . . aaaa” is a string of n
a’s, and the pattern p = “aaaa . . . aaab” is a string of m− 1 a’s followed by a b.
Wherever the pattern is positioned on the text, the while loop will successfully
match the first m − 1 characters before failing on the last one. There are
n−m+ 1 possible positions where p can sit on t without overhanging the end,
so the running time is:

(n−m+ 1)(m) = mn−m2 +m = Ω(mn)

Thus, this string matching algorithm runs in worst-case Θ(nm) time. Faster
algorithms do exist: indeed we will see an expected linear-time algorithm for
this problem in Section 6.7.

2.5.4 Matrix Multiplication

Nested summations often arise in the analysis of algorithms with nested loops.
Consider the problem of matrix multiplication:
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Problem: Matrix Multiplication
Input: Two matrices, A (of dimension x× y) and B (dimension y × z).
Output: An x× z matrix C where C[i][j] is the dot product of the ith row of A
and the jth column of B.

Matrix multiplication is a fundamental operation in linear algebra, presented
with an entry in the catalog in Section 16.3 (page 472). That said, the elemen-
tary algorithm for matrix multiplication is implemented as three nested loops:

for (i = 1; i <= a->rows; i++) {

for (j = 1; j <= b->columns; j++) {

c->m[i][j] = 0;

for (k = 1; k <= b->rows; k++) {

c->m[i][j] += a->m[i][k] * b->m[k][j];

}

}

}

How can we analyze the time complexity of this algorithm? Three nested
loops should smell O(n3) to you by this point, but let’s be precise. The number
of multiplications M(x, y, z) is given by the following summation:

M(x, y, z) =

x∑

i=1

y∑

j=1

z∑

k=1

1

Sums get evaluated from the right inward. The sum of z ones is z, so

M(x, y, z) =
x∑

i=1

y∑

j=1

z

The sum of y z’s is just as simple, yz, so

M(x, y, z) =
x∑

i=1

yz

Finally, the sum of x yz’s is xyz.
Thus, the running of this matrix multiplication algorithm is O(xyz). If we

consider the common case where all three dimensions are the same, this becomes
O(n3). The same analysis holds for an Ω(n3) lower bound, because the matrix
dimensions govern the number of iterations of the for loops. Simple matrix
multiplication is a cubic algorithm that runs in Θ(n3) time. Faster algorithms
exist: see Section 16.3.

2.6 Summations

Mathematical summation formulae are important to us for two reasons. First,
they often arise in algorithm analysis. Second, proving the correctness of such
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formulae is a classic application of mathematical induction. Several exercises on
inductive proofs of summations appear as exercises at the end of this chapter.
To make them more accessible, I review the basics of summations here.

Summation formulae are concise expressions describing the addition of an
arbitrarily large set of numbers, in particular the formula

n∑

i=1

f(i) = f(1) + f(2) + . . .+ f(n)

Simple closed forms exist for summations of many algebraic functions. For
example, since the sum of n ones is n,

n∑

i=1

1 = n

When n is even, the sum of the first n = 2k integers can be seen by pairing up
the ith and (n− i+ 1)th integers:

n∑

i=1

i =

k∑

i=1

(i+ (2k − i+ 1)) = k(2k + 1) = n(n+ 1)/2

The same result holds for odd n with slightly more careful analysis.
Recognizing two basic classes of summation formulae will get you a long way

in algorithm analysis:

• Sum of a power of integers – We encountered the sum of the first n positive
integers S(n) =

∑n
i=1 i = n(n + 1)/2 in the analysis of selection sort.

From the big picture perspective, the important thing is that the sum is
quadratic, not that the constant is 1/2. In general,

S(n, p) =
n∑

i=1

ip = Θ(np+1)

for p ≥ 0. Thus, the sum of squares is cubic, and the sum of cubes is
quartic (if you use such a word).

For p < −1, this sum S(n, p) always converges to a constant as n → ∞,
while for p ≥ 0 it diverges. The interesting case between these is the
Harmonic numbers, H(n) =

∑n
i=1 1/i = Θ(log n).

• Sum of a geometric progression – In geometric progressions, the index of
the loop affects the exponent, that is,

G(n, a) =

n∑

i=0

ai = (an+1 − 1)/(a− 1)

How we interpret this sum depends upon the base of the progression, in
this case a. When |a| < 1, G(n, a) converges to a constant as n → ∞.
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This series convergence proves to be the great “free lunch” of algorithm
analysis. It means that the sum of a linear number of things can be
constant, not linear. For example, 1+1/2+1/4+1/8+ . . . ≤ 2 no matter
how many terms we add up.

When a > 1, the sum grows rapidly with each new term, as in 1+ 2+4+
8 + 16 + 32 = 63. Indeed, G(n, a) = Θ(an+1) for a > 1.

Stop and Think: Factorial Formulae

Problem: Prove that
∑n

i=1 i× i! = (n+ 1)!− 1 by induction.

Solution: The inductive paradigm is straightforward. First verify the basis
case. The case n = 0 gives an empty sum, which by definition evaluates to 0.
Alternately we can do n = 1:

1∑

i=1

i× i! = 1 and (1 + 1)!− 1 = 2− 1 = 1

Now assume the statement is true up to n. To prove the general case of
n+ 1, observe that separating out the largest term

n+1∑

i=1

i× i! = (n+ 1)× (n+ 1)! +

n∑

i=1

i× i!

reveals the left side of our inductive assumption. Substituting the right side
gives us

n+1∑

i=1

i× i! = (n+ 1)× (n+ 1)! + (n+ 1)!− 1

= (n+ 1)!× ((n+ 1) + 1)− 1

= (n+ 2)!− 1

This general trick of separating out the largest term from the summation
to reveal an instance of the inductive assumption lies at the heart of all such
proofs.

2.7 Logarithms and Their Applications

Logarithm is an anagram of algorithm, but that’s not why we need to know
what logarithms are. You’ve seen the button on your calculator, but may have
forgotten why it is there. A logarithm is simply an inverse exponential function.
Saying bx = y is equivalent to saying that x = logb y. Further, this equivalence
is the same as saying blogb y = y.
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Figure 2.7: A height h tree with d children per node has dh leaves. Here h = 3
and d = 3 (left). The number of bit patterns grows exponentially with pattern
length (right). These would be described by the root-to-leaf paths of a binary
tree of height h = 3.

Exponential functions grow at a distressingly fast rate, as anyone who has
ever tried to pay off a credit card balance understands. Thus, inverse exponential
functions (logarithms) grow refreshingly slowly. Logarithms arise in any process
where things are repeatedly halved. We’ll now look at several examples.

2.7.1 Logarithms and Binary Search

Binary search is a good example of an O(log n) algorithm. To locate a particular
person p in a telephone book2 containing n names, you start by comparing
p against the middle, or (n/2)nd name, say Monroe, Marilyn. Regardless of
whether p belongs before this middle name (Dean, James) or after it (Presley,
Elvis), after just one comparison you can discard one half of all the names
in the book. The number of steps the algorithm takes equals the number of
times we can halve n until only one name is left. By definition, this is exactly
log2 n. Thus, twenty comparisons suffice to find any name in the million-name
Manhattan phone book!

Binary search is one of the most powerful ideas in algorithm design. This
power becomes apparent if we imagine trying to find a name in an unsorted
telephone book.

2.7.2 Logarithms and Trees

A binary tree of height 1 can have up to 2 leaf nodes, while a tree of height 2
can have up to 4 leaves. What is the height h of a rooted binary tree with n
leaf nodes? Note that the number of leaves doubles every time we increase the
height by 1. To account for n leaves, n = 2h, which implies that h = log2 n.

What if we generalize to trees that have d children, where d = 2 for the case
of binary trees? A tree of height 1 can have up to d leaf nodes, while one of
height 2 can have up to d2 leaves. The number of possible leaves multiplies by
d every time we increase the height by 1, so to account for n leaves, n = dh,
which implies that h = logd n, as shown in Figure 2.7.

2If necessary, ask your grandmother what telephone books were.
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The punch line here is that short trees can have very many leaves, which is
the main reason why binary trees prove fundamental to the design of fast data
structures.

2.7.3 Logarithms and Bits

There are two bit patterns of length 1 (0 and 1), four of length 2 (00, 01, 10,
and 11), and eight of length 3 (see Figure 2.7 (right)). How many bits w do we
need to represent any one of n different possibilities, be it one of n items or the
integers from 0 to n− 1?

The key observation is that there must be at least n different bit patterns
of length w. Since the number of different bit patterns doubles as you add each
bit, we need at least w bits where 2w = n. In other words, we need w = log2 n
bits.

2.7.4 Logarithms and Multiplication

Logarithms were particularly important in the days before pocket calculators.
They provided the easiest way to multiply big numbers by hand, either implicitly
using a slide rule or explicitly by using a book of logarithms.

Logarithms are still useful for multiplication, particularly for exponentiation.
Recall that loga(xy) = loga(x)+ loga(y); that is, the log of a product is the sum
of the logs. A direct consequence of this is

loga n
b = b · loga n

How can we compute ab for any a and b using the exp(x) and ln(x) functions
on your calculator, where exp(x) = ex and ln(x) = loge(x)? We know

ab = exp(ln(ab)) = exp(b ln(a))

so the problem is reduced to one multiplication plus one call to each of these
functions.

2.7.5 Fast Exponentiation

Suppose that we need to exactly compute the value of an for some reasonably
large n. Such problems occur in primality testing for cryptography, as dis-
cussed in Section 16.8 (page 490). Issues of numerical precision prevent us from
applying the formula above.

The simplest algorithm performs n−1 multiplications, by computing a×a×
. . . × a. However, we can do better by observing that n = �n/2	 + n/2�. If n
is even, then an = (an/2)2. If n is odd, then an = a(a�n/2�)2. In either case, we
have halved the size of our exponent at the cost of, at most, two multiplications,
so O(lg n) multiplications suffice to compute the final value.
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function power(a, n)
if (n = 0) return(1)
x = power(a, �n/2	)
if (n is even) then return(x2)

else return(a× x2)

This simple algorithm illustrates an important principle of divide and con-
quer. It always pays to divide a job as evenly as possible. When n is not a power
of two, the problem cannot always be divided perfectly evenly, but a difference
of one element between the two sides as shown here cannot cause any serious
imbalance.

2.7.6 Logarithms and Summations

The Harmonic numbers arise as a special case of a sum of a power of inte-
gers, namely H(n) = S(n,−1). They are the sum of the progression of simple
reciprocals, namely,

H(n) =
n∑

i=1

1/i = Θ(log n)

The Harmonic numbers prove important, because they usually explain “where
the log comes from” when one magically pops out from algebraic manipulation.
For example, the key to analyzing the average-case complexity of quicksort is
the summation n

∑n
i=1 1/i. Employing the Harmonic number’s Θ bound imme-

diately reduces this to Θ(n log n).

2.7.7 Logarithms and Criminal Justice

Figure 2.8 will be our final example of logarithms in action. This table appears
in the Federal Sentencing Guidelines, used by courts throughout the United
States. These guidelines are an attempt to standardize criminal sentences, so
that a felon convicted of a crime before one judge receives the same sentence
that they would before a different judge. To accomplish this, the judges have
prepared an intricate point function to score the depravity of each crime and
map it to time-to-serve.

Figure 2.8 gives the actual point function for fraud—a table mapping dollars
stolen to points. Notice that the punishment increases by one level each time
the amount of money stolen roughly doubles. That means that the level of
punishment (which maps roughly linearly to the amount of time served) grows
logarithmically with the amount of money stolen.

Think for a moment about the consequences of this. Many a corrupt CEO
certainly has. It means that your total sentence grows extremely slowly with
the amount of money you steal. Embezzling an additional $100,000 gets you
3 additional punishment levels if you’ve already stolen $10,000, adds only 1
level if you’ve stolen $50,000, and has no effect if you’ve stolen a million. The
corresponding benefit of stealing really large amounts of money becomes even
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Loss (apply the greatest) Increase in level

(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(S) More than $80,000,000 add 18

Figure 2.8: The Federal Sentencing Guidelines for fraud

greater. The moral of logarithmic growth is clear: If you’re gonna do the crime,
make it worth the time!3

Take-Home Lesson: Logarithms arise whenever things are repeatedly halved
or doubled.

2.8 Properties of Logarithms

As we have seen, stating bx = y is equivalent to saying that x = logb y. The
b term is known as the base of the logarithm. Three bases are of particular
importance for mathematical and historical reasons:

• Base b = 2: The binary logarithm, usually denoted lg x, is a base 2 loga-
rithm. We have seen how this base arises whenever repeated halving (i.e.,
binary search) or doubling (i.e., nodes in trees) occurs. Most algorithmic
applications of logarithms imply binary logarithms.

• Base b = e: The natural logarithm, usually denoted ln x, is a base e =
2.71828 . . . logarithm. The inverse of ln x is the exponential function
exp(x) = ex on your calculator. Thus, composing these functions gives us
the identity function,

exp(lnx) = x and ln(exp x) = x
3Life imitates art. After publishing this example in the previous edition, I was approached

by the U.S. Sentencing Commission seeking insights to improve these guidelines.
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• Base b = 10: Less common today is the base-10 or common logarithm, usu-
ally denoted as log x. This base was employed in slide rules and logarithm
books in the days before pocket calculators.

We have already seen one important property of logarithms, namely that

loga(xy) = loga(x) + loga(y)

The other important fact to remember is that it is easy to convert a logarithm
from one base to another. This is a consequence of the following formula:

loga b =
logc b

logc a

Thus, changing the base of log b from base-a to base-c simply involves multi-
plying by logc a. It is easy to convert a common log function to a natural log
function, and vice versa.

Two implications of these properties of logarithms are important to appre-
ciate from an algorithmic perspective:

• The base of the logarithm has no real impact on the growth rate: Compare
the following three values: log2(1, 000, 000) = 19.9316, log3(1, 000, 000) =
12.5754, and log100(1, 000, 000) = 3. A big change in the base of the
logarithm produces little difference in the value of the log. Changing the
base of the log from a to c involves multiplying by logc a. This conversion
factor is absorbed in the Big Oh notation whenever a and c are constants.
Thus, we are usually justified in ignoring the base of the logarithm when
analyzing algorithms.

• Logarithms cut any function down to size: The growth rate of the loga-
rithm of any polynomial function is O(lg n). This follows because

loga n
b = b · loga n

The effectiveness of binary search on a wide range of problems is a con-
sequence of this observation. Note that performing a binary search on a
sorted array of n2 things requires only twice as many comparisons as a
binary search on n things.

Logarithms efficiently cut any function down to size. It is hard to do
arithmetic on factorials except after taking logarithms, since

n! =

n∏

i=1

i → log n! =

n∑

i=1

log i = Θ(n log n)

provides another way logarithms pop up in algorithm analysis.
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Stop and Think: Importance of an Even Split

Problem: How many queries does binary search take on the million-name
Manhattan phone book if each split were 1/3-to-2/3 instead of 1/2-to-1/2?

Solution: When performing binary searches in a telephone book, how important
is it that each query split the book exactly in half? Not very much. For the
Manhattan telephone book, we now use log3/2(1, 000, 000) ≈ 35 queries in the
worst case, not a significant change from log2(1, 000, 000) ≈ 20. Changing the
base of the log does not affect the asymptotic complexity. The effectiveness of
binary search comes from its logarithmic running time, not the base of the log.

2.9 War Story: Mystery of the Pyramids

That look in his eyes should have warned me off even before he started talking.
“We want to use a parallel supercomputer for a numerical calculation up to

1,000,000,000, but we need a faster algorithm to do it.”
I’d seen that distant look before. Eyes dulled from too much exposure to the

raw horsepower of supercomputers—machines so fast that brute force seemed
to eliminate the need for clever algorithms; at least until the problems got hard
enough.

“I am working with a Nobel prize winner to use a computer on a famous
problem in number theory. Are you familiar with Waring’s problem?”

I knew some number theory. “Sure. Waring’s problem asks whether every
integer can be expressed at least one way as the sum of at most four integer
squares. For example, 78 = 82+32+22+12 = 72+52+22. I remember proving
that four squares suffice to represent any integer in my undergraduate number
theory class. Yes, it’s a famous problem but one that got solved 200 years ago.”

“No, we are interested in a different version of Waring’s problem. A pyra-
midal number is a number of the form (m3 −m)/6, for m ≥ 2. Thus, the first
several pyramidal numbers are 1, 4, 10, 20, 35, 56, 84, 120, and 165. The con-
jecture since 1928 is that every integer can be represented by the sum of at most
five such pyramidal numbers. We want to use a supercomputer to prove this
conjecture on all numbers from 1 to 1,000,000,000.”

“Doing a billion of anything will take a substantial amount of time,” I
warned. “The time you spend to compute the minimum representation of each
number will be critical, since you are going to do it one billion times. Have you
thought about what kind of an algorithm you are going to use?”

“We have already written our program and run it on a parallel supercom-
puter. It works very fast on smaller numbers. Still, it takes much too much
time as soon as we get to 100,000 or so.”

“Terrific,” I thought. Our supercomputer junkie had discovered asymptotic
growth. No doubt his algorithm ran in something like quadratic time, and went
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into vapor lock as soon as n got large.

“We need a faster program in order to get to a billion. Can you help us? Of
course, we can run it on our parallel supercomputer when you are ready.”

I am a sucker for this kind of challenge, finding fast algorithms to speed up
programs. I agreed to think about it and got down to work.

I started by looking at the program that the other guy had written. He had
built an array of all the Θ(n1/3) pyramidal numbers from 1 to n inclusive.4 To
test each number k in this range, he did a brute force test to establish whether
it was the sum of two pyramidal numbers. If not, the program tested whether
it was the sum of three of them, then four, and finally five, until it first got an
answer. About 45% of the integers are expressible as the sum of three pyramidal
numbers. Most of the remaining 55% require the sum of four, and usually each
of these can be represented in many different ways. Only 241 integers are known
to require the sum of five pyramidal numbers, the largest being 343,867. For
about half of the n numbers, this algorithm presumably went through all of the
three-tests and at least some of the four-tests before terminating. Thus, the

total time for this algorithm would be at least O(n × (n1/3)
3
) = O(n2) time,

where n = 1,000,000,000. No wonder his program cried “Uncle.”

Anything that was going to do significantly better on a problem this large
had to avoid explicitly testing all triples. For each value of k, we were seeking
the smallest set of pyramidal numbers that add up to exactly to k. This problem
is called the knapsack problem, and is discussed in Section 16.10 (page 497). In
our case, the weights are the pyramidal numbers no greater than n, with an
additional constraint that the knapsack holds exactly k items.

A standard approach to solving knapsack precomputes the sum of smaller
subsets of the items for use in computing larger subsets. If we have a table of
all sums of two numbers and want to know whether k is expressible as the sum
of three numbers, we can ask whether k is expressible as the sum of a single
number plus a number in this two-table.

Therefore, I needed a table of all integers less than n that can be ex-
pressed as the sum of two of the 1,816 non-trivial pyramidal numbers less than
1,000,000,000. There can be at most 1, 8162 = 3,297,856 of them. Actually,
there are only about half this many, after we eliminate duplicates and any sum
bigger than our target. Building a sorted array storing these numbers would be
no big deal. Let’s call this sorted data structure of all pair-sums the two-table.

To find the minimum decomposition for a given k, I would first check whether
it was one of the 1,816 pyramidal numbers. If not, I would then check whether
k was in the sorted table of the sums of two pyramidal numbers. To see whether
k was expressible as the sum of three such numbers, all I had to do was check
whether k − p[i] was in the two-table for 1 ≤ i ≤ 1, 816. This could be done
quickly using binary search. To see whether k was expressible as the sum of
four pyramidal numbers, I had to check whether k− two[i] was in the two-table

4Why n1/3? Recall that pyramidal numbers are of the form (m3 − m)/6. The largest
m such that the resulting number is at most n is roughly 3

√
6n, so there are Θ(n1/3) such

numbers.



56 CHAPTER 2. ALGORITHM ANALYSIS

for any 1 ≤ i ≤ |two|. However, since almost every k was expressible in many
ways as the sum of four pyramidal numbers, this test would terminate quickly,
and the total time taken would be dominated by the cost of the threes. Testing
whether k was the sum of three pyramidal numbers would take O(n1/3 lg n).
Running this on each of the n integers gives an O(n4/3 lg n) algorithm for the
complete job. Comparing this to his O(n2) algorithm for n = 1,000,000,000
suggested that my algorithm was a cool 30,000 times faster than his original!

My first attempt to code this solved up to n = 1, 000, 000 on my ancient
Sparc ELC in about 20 minutes. From here, I experimented with different
data structures to represent the sets of numbers and different algorithms to
search these tables. I tried using hash tables and bit vectors instead of sorted
arrays, and experimented with variants of binary search such as interpolation
search (see Section 17.2 (page 510)). My reward for this work was solving up
to n = 1, 000, 000 in under three minutes, a factor of six improvement over my
original program.

With the real thinking done, I worked to tweak a little more performance
out of the program. I avoided doing a sum-of-four computation on any k when
k− 1 was the sum-of-three, since 1 is a pyramidal number, saving about 10% of
the total run time using this trick alone. Finally, I got out my profiler and tried
some low-level tricks to squeeze a little more performance out of the code. For
example, I saved another 10% by replacing a single procedure call with inline
code.

At this point, I turned the code over to the supercomputer guy. What he
did with it is a depressing tale, which is reported in Section 5.8 (page 161).

In writing up this story, I went back to rerun this program, which is now
older than my current graduate students. Even though single-threaded, it ran
in 1.113 seconds. Turning on the compiler optimizer reduced this to a mere
0.334 seconds: this is why you need to remember to turn your optimizer on
when you are trying to make your program run fast. This code has gotten hun-
dreds of times faster by doing nothing, except waiting for 25 years of hardware
improvements. Indeed a server in our lab can now run up to a billion in under
three hours (174 minutes and 28.4 seconds) using only a single thread. Even
more amazingly, I can run this code to completion in 9 hours, 37 minutes, and
34.8 seconds on the same crummy Apple MacBook laptop that I am writing this
book on, despite its keys falling off as I type.

The primary lesson of this war story is to show the enormous potential
for algorithmic speedups, as opposed to the fairly limited speedup obtainable
via more expensive hardware. I sped his program up by about 30,000 times.
His million-dollar computer (at that time) had 16 processors, each reportedly
five times faster on integer computations than the $3,000 machine on my desk.
That gave him a maximum potential speedup of less than 100 times. Clearly,
the algorithmic improvement was the big winner here, as it is certain to be in
any sufficiently large computation.
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2.10 Advanced Analysis (*)

Ideally, each of us would be fluent in working with the mathematical techniques
of asymptotic analysis. And ideally, each of us would be rich and good looking
as well.

In this section I will survey the major techniques and functions employed
in advanced algorithm analysis. I consider this optional material—it will not
be used elsewhere in the textbook section of this book. That said, it will make
some of the complexity functions reported in the Hitchhiker’s Guide a little less
mysterious.

2.10.1 Esoteric Functions

The bread-and-butter classes of complexity functions were presented in Section
2.3.1 (page 38). More esoteric functions also make appearances in advanced
algorithm analysis. Although we will not see them much in this book, it is still
good business to know what they mean and where they come from.

• Inverse Ackermann’s function f(n) = α(n): This function arises in the
detailed analysis of several algorithms, most notably the Union-Find data
structure discussed in Section 8.1.3 (page 250). It is sufficient to think of
this as geek talk for the slowest growing complexity function. Unlike the
constant function f(n) = 1, α(n) eventually gets to infinity as n → ∞,
but it certainly takes its time about it. The value of α(n) is smaller than
5 for any value of n that can be written in this physical universe.

• f(n) = log log n: The “log log” function is just that—the logarithm of
the logarithm of n. One natural example of how it might arise is doing a
binary search on a sorted array of only lg n items.

• f(n) = log n/ log log n: This function grows a little slower than log n,
because it is divided by an even slower growing function. To see where
this arises, consider an n-leaf rooted tree of degree d. For binary trees,
that is, when d = 2, the height h is given

n = 2h → h = lg n

by taking the logarithm of both sides of the equation. Now consider the
height of such a tree when the degree d = log n. Then

n = (log n)
h → h = log n/ log log n

• f(n) = log2 n: This is the product of two log functions, (log n)×(log n). It
might arise if we wanted to count the bits looked at when doing a binary
search on n items, each of which was an integer from 1 to (say) n2. Each
such integer requires a lg(n2) = 2 lg n bit representation, and we look at
lg n of them, for a total of 2 lg2 n bits.
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The “log squared” function typically arises in the design of intricate nested
data structures, where each node in (say) a binary tree represents another
data structure, perhaps ordered on a different key.

• f(n) =
√
n: The square root is not very esoteric, but represents the class of

“sublinear polynomials” since
√
n = n1/2. Such functions arise in building

d-dimensional grids that contain n points. A
√
n×√

n square has area n,
and an n1/3 ×n1/3 ×n1/3 cube has volume n. In general, a d-dimensional
hypercube of length n1/d on each side has volume n.

• f(n) = n(1+ε): Epsilon (ε) is the mathematical symbol to denote a con-
stant that can be made arbitrarily small but never quite goes away.

It arises in the following way. Suppose I design an algorithm that runs in
2c · n(1+1/c) time, and I get to pick whichever c I want. For c = 2, this
is 4n3/2 or O(n3/2). For c = 3, this is 8n4/3 or O(n4/3), which is better.
Indeed, the exponent keeps getting better the larger I make c.

The problem is that I cannot make c arbitrarily large before the 2c term be-
gins to dominate. Instead, we report this algorithm as running in O(n1+ε),
and leave the best value of ε to the beholder.

2.10.2 Limits and Dominance Relations

The dominance relation between functions is a consequence of the theory of
limits, which you may recall from taking calculus. We say that f(n) dominates
g(n) if limn→∞ g(n)/f(n) = 0.

Let’s see this definition in action. Suppose f(n) = 2n2 and g(n) = n2.
Clearly f(n) > g(n) for all n, but it does not dominate since

lim
n→∞

g(n)

f(n)
= lim

n→∞
n2

2n2
= lim

n→∞
1

2
�= 0

This is to be expected because both functions are in the class Θ(n2). What
about f(n) = n3 and g(n) = n2? Since

lim
n→∞

g(n)

f(n)
= lim

n→∞
n2

n3
= lim

n→∞
1

n
= 0

the higher-degree polynomial dominates. This is true for any two polynomials,
that is, na dominates nb if a > b since

lim
n→∞

nb

na
= lim

n→∞nb−a → 0

Thus, n1.2 dominates n1.1999999.
Now consider two exponential functions, say f(n) = 3n and g(n) = 2n. Since

lim
n→∞

g(n)

f(n)
=

2n

3n
= lim

n→∞(
2

3
)n = 0
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the exponential with the higher base dominates.
Our ability to prove dominance relations from scratch depends upon our

ability to prove limits. Let’s look at one important pair of functions. Any
polynomial (say f(n) = nε) dominates logarithmic functions (say g(n) = lg n).
Since n = 2lgn,

f(n) = (2lgn)ε = 2ε lgn

Now consider

lim
n→∞

g(n)

f(n)
= lg n/2ε lgn

In fact, this does go to 0 as n → ∞.

Take-Home Lesson: By interleaving the functions here with those of Section
2.3.1 (page 38), we see where everything fits into the dominance pecking order:

n! � cn � n3 � n2 � n1+ε � n log n � n � √
n �

log2 n � log n � log n/ log log n � log log n � α(n) � 1

Chapter Notes

Most other algorithm texts devote considerably more efforts to the formal anal-
ysis of algorithms than I have here, and so I refer the theoretically inclined
reader elsewhere for more depth. Algorithm texts more heavily stressing anal-
ysis include Cormen et al. [CLRS09] and Kleinberg and Tardos [KT06].

The book Concrete Mathematics by Graham, Knuth, and Patashnik [GKP89]
offers an interesting and thorough presentation of mathematics for the analysis
of algorithms. Niven and Zuckerman [NZM91] is my favorite introduction to
number theory, including Waring’s problem, discussed in the war story.

The notion of dominance also gives rise to the “Little Oh” notation. We say
that f(n) = o(g(n)) iff g(n) dominates f(n). Among other things, the Little
Oh proves useful for asking questions. Asking for an o(n2) algorithm means you
want one that is better than quadratic in the worst case—and means you would
be willing to settle for O(n1.999 log2 n).

2.11 Exercises

Program Analysis

2-1. [3] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using the Big Oh notation.

Mystery(n)

r = 0

for i = 1 to n− 1 do

for j = i+ 1 to n do

for k = 1 to j do
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r = r + 1

return(r)

2-2. [3] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using Big Oh notation.

Pesky(n)

r = 0

for i = 1 to n do

for j = 1 to i do

for k = j to i+ j do

r = r + 1

return(r)

2-3. [5] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using Big Oh notation.

Pestiferous(n)

r = 0

for i = 1 to n do

for j = 1 to i do

for k = j to i+ j do

for l = 1 to i+ j − k do

r = r + 1

return(r)

2-4. [8] What value is returned by the following function? Express your answer as
a function of n. Give the worst-case running time using Big Oh notation.

Conundrum(n)

r = 0

for i = 1 to n do

for j = i+ 1 to n do

for k = i+ j − 1 to n do

r = r + 1

return(r)

2-5. [5] Consider the following algorithm: (the print operation prints a single aster-
isk; the operation x = 2x doubles the value of the variable x).

for k = 1 to n:
x = k
while (x < n):

print ’*’
x = 2x

Let f(n) be the time complexity of this algorithm (or equivalently the number
of times * is printed). Provide correct bounds for O(f(n)) and Ω(f(n)), ideally
converging on Θ(f(n)).

2-6. [5] Suppose the following algorithm is used to evaluate the polynomial

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0
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p = a0;

xpower = 1;

for i = 1 to n do

xpower = x · xpower;

p = p+ ai ∗ xpower

(a) How many multiplications are done in the worst case? How many addi-
tions?

(b) How many multiplications are done on the average?

(c) Can you improve this algorithm?

2-7. [3] Prove that the following algorithm for computing the maximum value in an
array A[1..n] is correct.

max(A)

m = A[1]

for i = 2 to n do

if A[i] > m then m = A[i]

return (m)

Big Oh

2-8. [3] (a) Is 2n+1 = O(2n)?

(b) Is 22n = O(2n)?

2-9. [3] For each of the following pairs of functions, f(n) is in O(g(n)), Ω(g(n)), or
Θ(g(n)). Determine which relationships are correct and briefly explain why.

(a) f(n) = log n2; g(n) = log n + 5

(b) f(n) =
√
n; g(n) = log n2

(c) f(n) = log2 n; g(n) = log n

(d) f(n) = n; g(n) = log2 n

(e) f(n) = n log n+ n; g(n) = log n

(f) f(n) = 10; g(n) = log 10

(g) f(n) = 2n; g(n) = 10n2

(h) f(n) = 2n; g(n) = 3n

2-10. [3] For each of the following pairs of functions f(n) and g(n), determine whether
f(n) = O(g(n)), g(n) = O(f(n)), or both.

(a) f(n) = (n2 − n)/2, g(n) = 6n

(b) f(n) = n+ 2
√
n, g(n) = n2

(c) f(n) = n log n, g(n) = n
√
n/2

(d) f(n) = n+ log n, g(n) =
√
n

(e) f(n) = 2(log n)2, g(n) = log n+ 1

(f) f(n) = 4n log n+ n, g(n) = (n2 − n)/2
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2-11. [5] For each of the following functions, which of the following asymptotic bounds
hold for f(n): O(g(n)), Ω(g(n)), or Θ(g(n))?

(a) f(n) = 3n2, g(n) = n2

(b) f(n) = 2n4 − 3n2 + 7, g(n) = n5

(c) f(n) = log n, g(n) = log n+ 1
n

(d) f(n) = 2k logn, g(n) = nk

(e) f(n) = 2n, g(n) = 22n

2-12. [3] Prove that n3 − 3n2 − n+ 1 = Θ(n3).

2-13. [3] Prove that n2 = O(2n).

2-14. [3] Prove or disprove: Θ(n2) = Θ(n2 + 1).

2-15. [3] Suppose you have algorithms with the five running times listed below. (As-
sume these are the exact running times.) How much slower do each of these
algorithms get when you (a) double the input size, or (b) increase the input size
by one?

(a) n2 (b) n3 (c) 100n2 (d) n log n (e) 2n

2-16. [3] Suppose you have algorithms with the six running times listed below. (As-
sume these are the exact number of operations performed as a function of the
input size n.) Suppose you have a computer that can perform 1010 operations
per second. For each algorithm, what is the largest input size n that you can
complete within an hour? (a) n2 (b) n3 (c) 100n2 (d) n log n (e) 2n (f) 22

n

2-17. [3] For each of the following pairs of functions f(n) and g(n), give an appropriate
positive constant c such that f(n) ≤ c · g(n) for all n > 1.

(a) f(n) = n2 + n+ 1, g(n) = 2n3

(b) f(n) = n
√
n+ n2, g(n) = n2

(c) f(n) = n2 − n+ 1, g(n) = n2/2

2-18. [3] Prove that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) =
O(g1(n) + g2(n)).

2-19. [3] Prove that if f1(n) = Ω(g1(n)) and f2(n) = Ω(g2(n)), then f1(n) + f2(n) =
Ω(g1(n) + g2(n)).

2-20. [3] Prove that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) · f2(n) =
O(g1(n) · g2(n)).

2-21. [5] Prove that for all k ≥ 0 and all sets of real constants {ak, ak−1, . . . , a1, a0},

akn
k + ak−1n

k−1 + ....+ a1n+ a0 = O(nk)

2-22. [5] Show that for any real constants a and b, b > 0

(n+ a)b = Θ(nb)

2-23. [5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.
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n 2n n lg n lnn
n− n3 + 7n5 lg n

√
n en

n2 + lg n n2 2n−1 lg lg n
n3 (lg n)2 n! n1+ε where 0 < ε < 1

2-24. [8] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

nπ πn
(
n
5

) √
2
√
n

(
n

n−4

)
2log

4 n n5(log n)2 n4
(

n
n−4

)

2-25. [8] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

∑n
i=1 i

i nn (log n)logn 2(log n2)

n! 2log
4 n n(log n)2

(
n

n−4

)

2-26. [5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

√
n n 2n

n log n n− n3 + 7n5 n2 + log n
n2 n3 log n

n
1
3 + log n (log n)2 n!

lnn n
logn

log log n

(1/3)n (3/2)n 6

2-27. [5] Find two functions f(n) and g(n) that satisfy the following relationship. If
no such f and g exist, write “None.”

(a) f(n) = o(g(n)) and f(n) �= Θ(g(n))

(b) f(n) = Θ(g(n)) and f(n) = o(g(n))

(c) f(n) = Θ(g(n)) and f(n) �= O(g(n))

(d) f(n) = Ω(g(n)) and f(n) �= O(g(n))

2-28. [5] True or False?

(a) 2n2 + 1 = O(n2)

(b)
√
n = O(log n)

(c) log n = O(
√
n)

(d) n2(1 +
√
n) = O(n2 log n)

(e) 3n2 +
√
n = O(n2)

(f)
√
n log n = O(n)

(g) log n = O(n−1/2)

2-29. [5] For each of the following pairs of functions f(n) and g(n), state whether
f(n) = O(g(n)), f(n) = Ω(g(n)), f(n) = Θ(g(n)), or none of the above.

(a) f(n) = n2 + 3n+ 4, g(n) = 6n+ 7

(b) f(n) = n
√
n, g(n) = n2 − n
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(c) f(n) = 2n − n2, g(n) = n4 + n2

2-30. [3] For each of these questions, answer yes or no and briefly explain your answer.

(a) If an algorithm takes O(n2) worst-case time, is it possible that it takes O(n)
on some inputs?

(b) If an algorithm takes O(n2) worst-case time, is it possible that it takes O(n)
on all inputs?

(c) If an algorithm takes Θ(n2) worst-case time, is it possible that it takes O(n)
on some inputs?

(d) If an algorithm takes Θ(n2) worst-case time, is it possible that it takes O(n)
on all inputs?

(e) Is the function f(n) = Θ(n2), where f(n) = 100n2 for even n and f(n) =
20n2 − n log2 n for odd n?

2-31. [3] For each of the following, answer yes, no, or can’t tell. Explain your reasoning.

(a) Is 3n = O(2n)?

(b) Is log 3n = O(log 2n)?

(c) Is 3n = Ω(2n)?

(d) Is log 3n = Ω(log 2n)?

2-32. [5] For each of the following expressions f(n) find a simple g(n) such that
f(n) = Θ(g(n)).

(a) f(n) =
∑n

i=1
1
i
.

(b) f(n) =
∑n

i=1� 1
i
�.

(c) f(n) =
∑n

i=1 log i.

(d) f(n) = log(n!).

2-33. [5] Place the following functions into increasing order: f1(n) = n2 log2 n,
f2(n) = n(log2 n)

2, f3(n) =
∑n

i=0 2
i and, f4(n) = log2(

∑n
i=0 2

i).

2-34. [5] Which of the following are true?

(a)
∑n

i=1 3
i = Θ(3n−1).

(b)
∑n

i=1 3
i = Θ(3n).

(c)
∑n

i=1 3
i = Θ(3n+1).

2-35. [5] For each of the following functions f find a simple function g such that
f(n) = Θ(g(n)).

(a) f1(n) = (1000)2n + 4n.

(b) f2(n) = n+ n log n+
√
n.

(c) f3(n) = log(n20) + (log n)10.

(d) f4(n) = (0.99)n + n100.

2-36. [5] For each pair of expressions (A,B) below, indicate whether A is O, o, Ω, ω,
or Θ of B. Note that zero, one, or more of these relations may hold for a given
pair; list all correct ones.
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A B
(a) n100 2n

(b) (lg n)12
√
n

(c)
√
n ncos(πn/8)

(d) 10n 100n

(e) nlgn (lg n)n

(f) lg (n!) n lg n

Summations

2-37. [5] Find an expression for the sum of the ith row of the following triangle, and
prove its correctness. Each entry is the sum of the three entries directly above
it. All non-existing entries are considered 0.

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

2-38. [3] Assume that Christmas has n days. Exactly how many presents did my “true
love” send to me? (Do some research if you do not understand this question.)

2-39. [5] An unsorted array of size n contains distinct integers between 1 and n+ 1,
with one element missing. Give an O(n) algorithm to find the missing integer,
without using any extra space.

2-40. [5] Consider the following code fragment:

for i=1 to n do

for j=i to 2*i do

output ‘‘foobar’’

Let T (n) denote the number of times ‘foobar’ is printed as a function of n.

a. Express T (n) as a summation (actually two nested summations).

b. Simplify the summation. Show your work.

2-41. [5] Consider the following code fragment:

for i=1 to n/2 do

for j=i to n-i do

for k=1 to j do

output ‘‘foobar’’

Assume n is even. Let T (n) denote the number of times “foobar” is printed as
a function of n.

(a) Express T (n) as three nested summations.

(b) Simplify the summation. Show your work.

2-42. [6] When you first learned to multiply numbers, you were told that x× y means
adding x a total of y times, so 5 × 4 = 5 + 5 + 5 + 5 = 20. What is the time
complexity of multiplying two n-digit numbers in base b (people work in base 10,
of course, while computers work in base 2) using the repeated addition method,
as a function of n and b. Assume that single-digit by single-digit addition or
multiplication takes O(1) time. (Hint: how big can y be as a function of n and
b?)
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2-43. [6] In grade school, you learned to multiply long numbers on a digit-by-digit
basis, so that 127 × 211 = 127 × 1 + 127 × 10 + 127 × 200 = 26, 797. Analyze
the time complexity of multiplying two n-digit numbers with this method as a
function of n (assume constant base size). Assume that single-digit by single-
digit addition or multiplication takes O(1) time.

Logarithms

2-44. [5] Prove the following identities on logarithms:

(a) loga(xy) = loga x+ loga y

(b) loga x
y = y loga x

(c) loga x = logb x

logb a

(d) xlogb y = ylogb x

2-45. [3] Show that �lg(n+ 1)� = �lg n�+ 1

2-46. [3] Prove that that the binary representation of n ≥ 1 has �lg2 n� + 1 bits.

2-47. [5] In one of my research papers I give a comparison-based sorting algorithm
that runs in O(n log(

√
n)). Given the existence of an Ω(n log n) lower bound for

sorting, how can this be possible?

Interview Problems

2-48. [5] You are given a set S of n numbers. You must pick a subset S′ of k numbers
from S such that the probability of each element of S occurring in S′ is equal
(i.e., each is selected with probability k/n). You may make only one pass over
the numbers. What if n is unknown?

2-49. [5] We have 1,000 data items to store on 1,000 nodes. Each node can store copies
of exactly three different items. Propose a replication scheme to minimize data
loss as nodes fail. What is the expected number of data entries that get lost
when three random nodes fail?

2-50. [5] Consider the following algorithm to find the minimum element in an array
of numbers A[0, . . . , n]. One extra variable tmp is allocated to hold the current
minimum value. Start from A[0]; tmp is compared against A[1], A[2], . . . , A[N ]
in order. When A[i] < tmp, tmp = A[i]. What is the expected number of times
that the assignment operation tmp = A[i] is performed?

2-51. [5] You are given ten bags of gold coins. Nine bags contain coins that each weigh
10 grams. One bag contains all false coins that weigh 1 gram less. You must
identify this bag in just one weighing. You have a digital balance that reports
the weight of what is placed on it.

2-52. [5] You have eight balls all of the same size. Seven of them weigh the same, and
one of them weighs slightly more. How can you find the ball that is heavier by
using a balance and only two weighings?

2-53. [5] Suppose we start with n companies that eventually merge into one big com-
pany. How many different ways are there for them to merge?

2-54. [7] Six pirates must divide $300 among themselves. The division is to proceed
as follows. The senior pirate proposes a way to divide the money. Then the
pirates vote. If the senior pirate gets at least half the votes he wins, and that



2.11. EXERCISES 67

division remains. If he doesn’t, he is killed and then the next senior-most pirate
gets a chance to propose the division. Now tell what will happen and why (i.e.
how many pirates survive and how the division is done)? All the pirates are
intelligent and the first priority is to stay alive and the next priority is to get as
much money as possible.

2-55. [7] Reconsider the pirate problem above, where we start with only one indivisible
dollar. Who gets the dollar, and how many are killed?

LeetCode

2-1. https://leetcode.com/problems/remove-k-digits/

2-2. https://leetcode.com/problems/counting-bits/

2-3. https://leetcode.com/problems/4sum/

HackerRank

2-1. https://www.hackerrank.com/challenges/pangrams/

2-2. https://www.hackerrank.com/challenges/the-power-sum/

2-3. https://www.hackerrank.com/challenges/magic-square-forming/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

2-1. “Primary Arithmetic”—Chapter 5, problem 10035.

2-2. “A Multiplication Game”—Chapter 5, problem 847.

2-3. “Light, More Light”—Chapter 7, problem 10110.

https://leetcode.com/problems/remove-k-digits/
https://leetcode.com/problems/counting-bits/
https://leetcode.com/problems/4sum/
https://www.hackerrank.com/challenges/pangrams/
https://www.hackerrank.com/challenges/the-power-sum/
https://www.hackerrank.com/challenges/magic-square-forming/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 3

Data Structures

Putting the right data structure into a slow program can work the same wonders
as transplanting fresh parts into a sick patient. Important classes of abstract
data types such as containers, dictionaries, and priority queues have many func-
tionally equivalent data structures that implement them. Changing the data
structure does not affect the correctness of the program, since we presumably
replace a correct implementation with a different correct implementation. How-
ever, the new implementation may realize different trade-offs in the time to
execute various operations, so the total performance can improve dramatically.
Like a patient in need of a transplant, only one part might need to be replaced
in order to fix the problem.

But it is better to be born with a good heart than have to wait for a replace-
ment. The maximum benefit from proper data structures results from designing
your program around them in the first place. We assume that the reader has
had some previous exposure to elementary data structures and pointer manip-
ulation. Still, data structure courses (CS II) focus more on data abstraction
and object orientation than the nitty-gritty of how structures should be repre-
sented in memory. This material will be reviewed here to make sure you have
it down.

As with most subjects, in data structures it is more important to really un-
derstand the basic material than to have exposure to more advanced concepts.
This chapter will focus on each of the three fundamental abstract data types
(containers, dictionaries, and priority queues) and show how they can be im-
plemented with arrays and lists. Detailed discussion of the trade-offs between
more sophisticated implementations is deferred to the relevant catalog entry for
each of these data types.

3.1 Contiguous vs. Linked Data Structures

Data structures can be neatly classified as either contiguous or linked, depend-
ing upon whether they are based on arrays or pointers. Contiguously allocated
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structures are composed of single slabs of memory, and include arrays, matrices,
heaps, and hash tables. Linked data structures are composed of distinct chunks
of memory bound together by pointers, and include lists, trees, and graph ad-
jacency lists.

In this section, I review the relative advantages of contiguous and linked data
structures. These trade-offs are more subtle than they appear at first glance,
so I encourage readers to stick with me here even if you may be familiar with
both types of structures.

3.1.1 Arrays

The array is the fundamental contiguously allocated data structure. Arrays are
structures of fixed-size data records such that each element can be efficiently
located by its index or (equivalently) address.

A good analogy likens an array to a street full of houses, where each array
element is equivalent to a house, and the index is equivalent to the house number.
Assuming all the houses are of equal size and numbered sequentially from 1 to n,
we can compute the exact position of each house immediately from its address.1

Advantages of contiguously allocated arrays include:

• Constant-time access given the index – Because the index of each element
maps directly to a particular memory address, we can access arbitrary
data items instantly provided we know the index.

• Space efficiency – Arrays consist purely of data, so no space is wasted with
links or other formatting information. Further, end-of-record information
is not needed because arrays are built from fixed-size records.

• Memory locality – Many programming tasks require iterating through all
the elements of a data structure. Arrays are good for this because they
exhibit excellent memory locality. Physical continuity between succes-
sive data accesses helps exploit the high-speed cache memory on modern
computer architectures.

The downside of arrays is that we cannot adjust their size in the middle
of a program’s execution. Our program will fail as soon as we try to add the
(n+1)st customer, if we only allocated room for n records. We can compensate
by allocating extremely large arrays, but this can waste space, again restricting
what our programs can do.

Actually, we can efficiently enlarge arrays as we need them, through the
miracle of dynamic arrays. Suppose we start with an array of size 1, and double
its size from m to 2m whenever we run out of space. This doubling process
allocates a new contiguous array of size 2m, copies the contents of the old array

1Houses in Japanese cities are traditionally numbered in the order they were built, not by
their physical location. This makes it extremely difficult to locate a Japanese address without
a detailed map.
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to the lower half of the new one, and then returns the space used by the old
array to the storage allocation system.

The apparent waste in this procedure involves recopying the old contents on
each expansion. How much work do we really do? It will take log2 n (also known
as lg n) doublings until the array gets to have n positions, plus one final doubling
on the last insertion when n = 2j for some j. There are recopying operations
after the first, second, fourth, eighth, . . . , nth insertions. The number of copy
operations at the ith doubling will be 2i−1, so the total number of movements
M will be:

M = n+

lgn∑

i=1

2i−1 = 1 + 2 + 4 + . . .+
n

2
+ n =

lgn∑

i=i

n

2i
≤ n

∞∑

i=0

1

2i
= 2n

Thus, each of the n elements move only two times on average, and the total
work of managing the dynamic array is the same O(n) as it would have been if
a single array of sufficient size had been allocated in advance!

The primary thing lost in using dynamic arrays is the guarantee that each
insertion takes constant time in the worst case. Note that all accesses and most
insertions will be fast, except for those relatively few insertions that trigger
array doubling. What we get instead is a promise that the nth element insertion
will be completed quickly enough that the total effort expended so far will still
be O(n). Such amortized guarantees arise frequently in the analysis of data
structures.

3.1.2 Pointers and Linked Structures

Pointers are the connections that hold the pieces of linked structures together.
Pointers represent the address of a location in memory. A variable storing a
pointer to a given data item can provide more freedom than storing a copy of
the item itself. A cell-phone number can be thought of as a pointer to its owner
as they move about the planet.

Pointer syntax and power differ significantly across programming languages,
so we begin with a quick review of pointers in C language. A pointer p is
assumed to give the address in memory where a particular chunk of data is
located.2 Pointers in C have types declared at compile time, denoting the data
type of the items they can point to. We use *p to denote the item that is pointed
to by pointer p, and &x to denote the address of (i.e.pointer to) a particular
variable x. A special NULL pointer value is used to denote structure-terminating
or unassigned pointers.

All linked data structures share certain properties, as revealed by the fol-
lowing type declaration for linked lists:

2C permits direct manipulation of memory addresses in ways that may horrify Java pro-
grammers, but I will avoid doing any such tricks.
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Figure 3.1: Linked list example showing data and pointer fields.

typedef struct list {

item_type item; /* data item */

struct list *next; /* point to successor */

} list;

In particular:

• Each node in our data structure (here list) contains one or more data
fields (here item) that retain the data that we need to store.

• Each node contains a pointer field to at least one other node (here next).
This means that much of the space used in linked data structures is de-
voted to pointers, not data.

• Finally, we need a pointer to the head of the structure, so we know where
to access it.

The list here is the simplest linked structure. The three basic operations sup-
ported by lists are searching, insertion, and deletion. In doubly linked lists, each
node points both to its predecessor and its successor element. This simplifies
certain operations at a cost of an extra pointer field per node.

Searching a List

Searching for item x in a linked list can be done iteratively or recursively. I
opt for recursively in the implementation below. If x is in the list, it is either
the first element or located in the rest of the list. Eventually, the problem is
reduced to searching in an empty list, which clearly cannot contain x.

list *search_list(list *l, item_type x) {

if (l == NULL) {

return(NULL);

}

if (l->item == x) {

return(l);

} else {

return(search_list(l->next, x));

}

}
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Insertion into a List

Insertion into a singly linked list is a nice exercise in pointer manipulation, as
shown below. Since we have no need to maintain the list in any particular order,
we might as well insert each new item in the most convenient place. Insertion
at the beginning of the list avoids any need to traverse the list, but does require
us to update the pointer (denoted l) to the head of the data structure.

void insert_list(list **l, item_type x) {

list *p; /* temporary pointer */

p = malloc(sizeof(list));

p->item = x;

p->next = *l;

*l = p;

}

Two C-isms to note. First, the malloc function allocates a chunk of memory
of sufficient size for a new node to contain x. Second, the funny double star
in **l denotes that l is a pointer to a pointer to a list node. Thus, the last
line, *l=p; copies p to the place pointed to by l, which is the external variable
maintaining access to the head of the list.

Deletion From a List

Deletion from a linked list is somewhat more complicated. First, we must find
a pointer to the predecessor of the item to be deleted. We do this recursively:

list *item_ahead(list *l, list *x) {

if ((l == NULL) || (l->next == NULL)) {

return(NULL);

}

if ((l->next) == x) {

return(l);

} else {

return(item_ahead(l->next, x));

}

}

The predecessor is needed because it points to the doomed node, so its next
pointer must be changed. The actual deletion operation is simple, once ruling
out the case that the to-be-deleted element does not exist. Special care must
be taken to reset the pointer to the head of the list (l) when the first element
is deleted:
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void delete_list(list **l, list **x) {

list *p; /* item pointer */

list *pred; /* predecessor pointer */

p = *l;

pred = item_ahead(*l, *x);

if (pred == NULL) { /* splice out of list */

*l = p->next;

} else {

pred->next = (*x)->next;

}

free(*x); /* free memory used by node */

}

C language requires explicit deallocation of memory, so we must free the
deleted node after we are finished with it in order to return the memory to the
system. This leaves the incoming pointer as a dangling reference to a location
that no longer exists, so care must be taken not to use this pointer again.
Such problems can generally be avoided in Java because of its stronger memory
management model.

3.1.3 Comparison

The advantages of linked structures over static arrays include:

• Overflow on linked structures never occurs unless the memory is actually
full.

• Insertion and deletion are simpler than for static arrays.

• With large records, moving pointers is easier and faster than moving the
items themselves.

Conversely, the relative advantages of arrays include:

• Space efficiency: linked structures require extra memory for storing pointer
fields.

• Efficient random access to items in arrays.

• Better memory locality and cache performance than random pointer jump-
ing.

Take-Home Lesson: Dynamic memory allocation provides us with flexibility
on how and where we use our limited storage resources.

One final thought about these fundamental data structures is that both
arrays and linked lists can be thought of as recursive objects:



3.2. CONTAINERS: STACKS AND QUEUES 75

• Lists – Chopping the first element off a linked list leaves a smaller linked
list. This same argument works for strings, since removing characters from
a string leaves a string. Lists are recursive objects.

• Arrays – Splitting the first k elements off of an n element array gives
two smaller arrays, of size k and n− k, respectively. Arrays are recursive
objects.

This insight leads to simpler list processing, and efficient divide-and-conquer
algorithms such as quicksort and binary search.

3.2 Containers: Stacks and Queues

I use the term container to denote an abstract data type that permits storage
and retrieval of data items independent of content. By contrast, dictionaries are
abstract data types that retrieve based on key values or content, and will be
discussed in Section 3.3 (page 76).

Containers are distinguished by the particular retrieval order they support.
In the two most important types of containers, this retrieval order depends on
the insertion order:

• Stacks support retrieval by last-in, first-out (LIFO) order. Stacks are
simple to implement and very efficient. For this reason, stacks are probably
the right container to use when retrieval order doesn’t matter at all, such
as when processing batch jobs. The put and get operations for stacks are
usually called push and pop:

– Push(x,s): Insert item x at the top of stack s.

– Pop(s): Return (and remove) the top item of stack s.

LIFO order arises in many real-world contexts. People crammed into a
subway car exit in LIFO order. Food inserted into my refrigerator usu-
ally exits the same way, despite the incentive of expiration dates. Algo-
rithmically, LIFO tends to happen in the course of executing recursive
algorithms.

• Queues support retrieval in first-in, first-out (FIFO) order. This is surely
the fairest way to control waiting times for services. Jobs processed in
FIFO order minimize the maximum time spent waiting. Note that the
average waiting time will be the same regardless of whether FIFO or LIFO
is used. Many computing applications involve data items with infinite
patience, which renders the question of maximum waiting time moot.

Queues are somewhat trickier to implement than stacks and thus are most
appropriate for applications (like certain simulations) where the order is
important. The put and get operations for queues are usually called en-
queue and dequeue.
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– Enqueue(x,q): Insert item x at the back of queue q.

– Dequeue(q): Return (and remove) the front item from queue q.

We will see queues later as the fundamental data structure controlling
breadth-first search (BFS) in graphs.

Stacks and queues can be effectively implemented using either arrays or
linked lists. The key issue is whether an upper bound on the size of the container
is known in advance, thus permitting the use of a statically allocated array.

3.3 Dictionaries

The dictionary data type permits access to data items by content. You stick
an item into a dictionary so you can find it when you need it. The primary
operations dictionaries support are:

• Search(D,k) – Given a search key k, return a pointer to the element in
dictionary D whose key value is k, if one exists.

• Insert(D,x) – Given a data item x, add it to the dictionary D.

• Delete(D,x) – Given a pointer x to a given data item in the dictionary D,
remove it from D.

Certain dictionary data structures also efficiently support other useful oper-
ations:

• Max(D) or Min(D) – Retrieve the item with the largest (or smallest) key
from D. This enables the dictionary to serve as a priority queue, as will
be discussed in Section 3.5 (page 87).

• Predecessor(D,x) or Successor(D,x) – Retrieve the item from D whose key
is immediately before (or after) item x in sorted order. These enable us
to iterate through the elements of the data structure in sorted order.

Many common data processing tasks can be handled using these dictionary
operations. For example, suppose we want to remove all duplicate names from a
mailing list, and print the results in sorted order. Initialize an empty dictionary
D, whose search key will be the record name. Now read through the mailing list,
and for each record search to see if the name is already in D. If not, insert it into
D. After reading through the mailing list, we print the names in the dictionary.
By starting from the first item Min(D) and repeatedly calling Successor until
we obtain Max(D), we traverse all elements in sorted order.

By defining such problems in terms of abstract dictionary operations, we can
ignore the details of the data structure’s representation and focus on the task
at hand.
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In the rest of this section, we will carefully investigate simple dictionary
implementations based on arrays and linked lists. More powerful dictionary
implementations such as binary search trees (see Section 3.4 (page 81)) and
hash tables (see Section 3.7 (page 93)) are also attractive options in practice.
A complete discussion of different dictionary data structures is presented in the
catalog in Section 15.1 (page 440). I encourage the reader to browse through
the data structures section of the catalog to better learn what your options are.

Stop and Think: Comparing Dictionary Implementations (I)

Problem: What are the asymptotic worst-case running times for all seven fun-
damental dictionary operations (search, insert, delete, successor, predecessor,
minimum, and maximum) when the data structure is implemented as:

• An unsorted array.

• A sorted array.

Solution: This problem (and the one following it) reveals some of the inherent
trade-offs of data structure design. A given data representation may permit
efficient implementation of certain operations at the cost that other operations
are expensive.

In addition to the array in question, we will assume access to a few extra
variables such as n, the number of elements currently in the array. Note that
we must maintain the value of these variables in the operations where they
change (e.g., insert and delete), and charge these operations the cost of this
maintenance.

The basic dictionary operations can be implemented with the following costs
on unsorted and sorted arrays. The starred element indicates cleverness.

Unsorted Sorted
Dictionary operation array array
Search(A, k) O(n) O(log n)
Insert(A, x) O(1) O(n)
Delete(A, x) O(1)∗ O(n)
Successor(A, x) O(n) O(1)
Predecessor(A, x) O(n) O(1)
Minimum(A) O(n) O(1)
Maximum(A) O(n) O(1)

We must understand the implementation of each operation to see why. First,
let’s discuss the operations when maintaining an unsorted array A.

• Search is implemented by testing the search key k against (potentially)
each element of an unsorted array. Thus, search takes linear time in the
worst case, which is when key k is not found in A.
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• Insertion is implemented by incrementing n and then copying item x to
the nth cell in the array, A[n]. The bulk of the array is untouched, so this
operation takes constant time.

• Deletion is somewhat trickier, hence the asterisk in the table above. The
definition states that we are given a pointer x to the element to delete,
so we need not spend any time searching for the element. But removing
the xth element from the array A leaves a hole that must be filled. We
could fill the hole by moving each of the elements from A[x + 1] to A[n]
down one position, but this requires Θ(n) time when the first element is
deleted. The following idea is better: just overwrite A[x] with A[n], and
decrement n. This only takes constant time.

• The definitions of the traversal operations, Predecessor and Successor,
refer to the item appearing before/after x in sorted order. Thus, the
answer is not simply A[x− 1] (or A[x+ 1]), because in an unsorted array
an element’s physical predecessor (successor) is not necessarily its logical
predecessor (successor). Instead, the predecessor of A[x] is the biggest
element smaller than A[x]. Similarly, the successor of A[x] is the smallest
element larger than A[x]. Both require a sweep through all n elements of
A to determine the winner.

• Minimum andMaximum are similarly defined with respect to sorted order,
and so require linear-cost sweeps to identify in an unsorted array. It is
tempting to set aside extra variables containing the current minimum
and maximum values, so we can report them in O(1) time. But this is
incompatible with constant-time deletion, as deleting the minimum valued
item mandates a linear-time search to find the new minimum.

Implementing a dictionary using a sorted array completely reverses our no-
tions of what is easy and what is hard. Searches can now be done in O(log n)
time, using binary search, because we know the median element sits in A[n/2].
Since the upper and lower portions of the array are also sorted, the search can
continue recursively on the appropriate portion. The number of halvings of n
until we get to a single element is lg n�.

The sorted order also benefits us with respect to the other dictionary retrieval
operations. The minimum and maximum elements sit in A[1] and A[n], while
the predecessor and successor to A[x] are A[x− 1] and A[x+ 1], respectively.

Insertion and deletion become more expensive, however, because making
room for a new item or filling a hole may require moving many items arbitrarily.
Thus, both become linear-time operations.

Take-Home Lesson: Data structure design must balance all the different op-
erations it supports. The fastest data structure to support both operations A
and B may well not be the fastest structure to support just operation A or B.
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Stop and Think: Comparing Dictionary Implementations (II)

Problem: What are the asymptotic worst-case running times for each of
the seven fundamental dictionary operations when the data structure is im-
plemented as

• A singly linked unsorted list.

• A doubly linked unsorted list.

• A singly linked sorted list.

• A doubly linked sorted list.

Solution: Two different issues must be considered in evaluating these implemen-
tations: singly vs. doubly linked lists and sorted vs. unsorted order. Operations
with subtle implementations are denoted with an asterisk:

Singly linked Doubly linked
Dictionary operation unsorted sorted unsorted sorted
Search(L, k) O(n) O(n) O(n) O(n)
Insert(L, x) O(1) O(n) O(1) O(n)
Delete(L, x) O(n)∗ O(n)∗ O(1) O(1)
Successor(L, x) O(n) O(1) O(n) O(1)
Predecessor(L, x) O(n) O(n)∗ O(n) O(1)
Minimum(L) O(1)∗ O(1) O(n) O(1)
Maximum(L) O(1)∗ O(1)∗ O(n) O(1)

As with unsorted arrays, search operations are destined to be slow while
maintenance operations are fast.

• Insertion/Deletion – The complication here is deletion from a singly linked
list. The definition of the Delete operation states we are given a pointer
x to the item to be deleted. But what we really need is a pointer to the
element pointing to x in the list, because that is the node that needs to
be changed. We can do nothing without this list predecessor, and so must
spend linear time searching for it on a singly linked list. Doubly linked lists
avoid this problem, since we can immediately retrieve the list predecessor
of x.3

3Actually, there is a way to delete an element from a singly linked list in constant time, as
shown in Figure 3.2. Overwrite the node that x points to with the contents of what x.next

points to, then deallocate the node that x.next originally pointed to. Special care must be
taken if x is the first node in the list, or the last node (by employing a permanent sentinel
element that is always the last node in the list). But this would prevent us from having
constant-time minimum/maximum operations, because we no longer have time to find new
extreme elements after deletion.
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Figure 3.2: By overwriting the contents of a node-to-delete, and deleting its
original successor, we can delete a node without access to its list predecessor.

Deletion is faster for sorted doubly linked lists than sorted arrays, because
splicing out the deleted element from the list is more efficient than filling
the hole by moving array elements. The predecessor pointer problem again
complicates deletion from singly linked sorted lists.

• Search – Sorting provides less benefit for linked lists than it did for arrays.
Binary search is no longer possible, because we can’t access the median
element without traversing all the elements before it. What sorted lists
do provide is quick termination of unsuccessful searches, for if we have not
found Abbott by the time we hit Costello we can deduce that he doesn’t
exist in the list. Still, searching takes linear time in the worst case.

• Traversal operations – The predecessor pointer problem again complicates
implementing Predecessor with singly linked lists. The logical successor is
equivalent to the node successor for both types of sorted lists, and hence
can be implemented in constant time.

• Minimum/Maximum – The minimum element sits at the head of a sorted
list, and so is easily retrieved. The maximum element is at the tail of the
list, which normally requires Θ(n) time to reach in either singly or doubly
linked lists.

However, we can maintain a separate pointer to the list tail, provided we
pay the maintenance costs for this pointer on every insertion and deletion.
The tail pointer can be updated in constant time on doubly linked lists: on
insertion check whether last->next still equals NULL, and on deletion set
last to point to the list predecessor of last if the last element is deleted.

We have no efficient way to find this predecessor for singly linked lists. So
why can we implement Maximum in O(1)? The trick is to charge the cost
to each deletion, which already took linear time. Adding an extra linear
sweep to update the pointer does not harm the asymptotic complexity of
Delete, while gaining us Maximum (and similarly Minimum) in constant
time as a reward for clear thinking.
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Figure 3.3: The five distinct binary search trees on three nodes. All nodes in
the left (resp. right) subtree of node x have keys < x (resp. > x).

3.4 Binary Search Trees

We have seen data structures that allow fast search or flexible update, but not
fast search and flexible update. Unsorted, doubly linked lists supported insertion
and deletion in O(1) time but search took linear time in the worst case. Sorted
arrays support binary search and logarithmic query times, but at the cost of
linear-time update.

Binary search requires that we have fast access to two elements—specifically
the median elements above and below the given node. To combine these ideas,
we need a “linked list” with two pointers per node. This is the basic idea behind
binary search trees.

A rooted binary tree is recursively defined as either being (1) empty, or
(2) consisting of a node called the root, together with two rooted binary trees
called the left and right subtrees, respectively. The order among “sibling” nodes
matters in rooted trees, that is, left is different from right. Figure 3.3 gives the
shapes of the five distinct binary trees that can be formed on three nodes.

A binary search tree labels each node in a binary tree with a single key
such that for any node labeled x, all nodes in the left subtree of x have keys
< x while all nodes in the right subtree of x have keys > x.4 This search tree
labeling scheme is very special. For any binary tree on n nodes, and any set of n
keys, there is exactly one labeling that makes it a binary search tree. Allowable
labelings for three-node binary search trees are given in Figure 3.3.

3.4.1 Implementing Binary Search Trees

Binary tree nodes have left and right pointer fields, an (optional) parent pointer,
and a data field. These relationships are shown in Figure 3.4; a type declaration
for the tree structure is given below:

4Allowing duplicate keys in a binary search tree (or any other dictionary structure) is bad
karma, often leading to very subtle errors. To better support repeated items, we can add a
third pointer to each node, explicitly maintaining a list of all items with the given key.
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Figure 3.4: Relationships in a binary search tree. Parent and sibling pointers
(left). Finding the minimum and maximum elements in a binary search tree
(center). Inserting a new node in the correct position (right).

typedef struct tree {

item_type item; /* data item */

struct tree *parent; /* pointer to parent */

struct tree *left; /* pointer to left child */

struct tree *right; /* pointer to right child */

} tree;

The basic operations supported by binary trees are searching, traversal, in-
sertion, and deletion.

Searching in a Tree

The binary search tree labeling uniquely identifies where each key is located.
Start at the root. Unless it contains the query key x, proceed either left or right
depending upon whether x occurs before or after the root key. This algorithm
works because both the left and right subtrees of a binary search tree are them-
selves binary search trees. This recursive structure yields the recursive search
algorithm below:

tree *search_tree(tree *l, item_type x) {

if (l == NULL) {

return(NULL);

}

if (l->item == x) {

return(l);

}

if (x < l->item) {

return(search_tree(l->left, x));

} else {

return(search_tree(l->right, x));

}

}
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This search algorithm runs in O(h) time, where h denotes the height of the
tree.

Finding Minimum and Maximum Elements in a Tree

By definition, the smallest key must reside in the left subtree of the root, since
all keys in the left subtree have values less than that of the root. Therefore,
as shown in Figure 3.4 (center), the minimum element must be the left-most
descendant of the root. Similarly, the maximum element must be the right-most
descendant of the root.

tree *find_minimum(tree *t) {

tree *min; /* pointer to minimum */

if (t == NULL) {

return(NULL);

}

min = t;

while (min->left != NULL) {

min = min->left;

}

return(min);

}

Traversal in a Tree

Visiting all the nodes in a rooted binary tree proves to be an important com-
ponent of many algorithms. It is a special case of traversing all the nodes and
edges in a graph, which will be the foundation of Chapter 7.

A prime application of tree traversal is listing the labels of the tree nodes.
Binary search trees make it easy to report the labels in sorted order. By defini-
tion, all the keys smaller than the root must lie in the left subtree of the root,
and all keys bigger than the root in the right subtree. Thus, visiting the nodes
recursively, in accord with such a policy, produces an in-order traversal of the
search tree:

void traverse_tree(tree *l) {

if (l != NULL) {

traverse_tree(l->left);

process_item(l->item);

traverse_tree(l->right);

}

}
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Each item is processed only once during the course of traversal, so it runs in
O(n) time, where n denotes the number of nodes in the tree.

Different traversal orders come from changing the position of process item

relative to the traversals of the left and right subtrees. Processing the item first
yields a pre-order traversal, while processing it last gives a post-order traversal.
These make relatively little sense with search trees, but prove useful when the
rooted tree represents arithmetic or logical expressions.

Insertion in a Tree

There is exactly one place to insert an item x into a binary search tree T so we
can be certain where to find it again. We must replace the NULL pointer found
in T after an unsuccessful query for the key of x.

This implementation uses recursion to combine the search and node insertion
stages of key insertion. The three arguments to insert tree are (1) a pointer
l to the pointer linking the search subtree to the rest of the tree, (2) the key x

to be inserted, and (3) a parent pointer to the parent node containing l. The
node is allocated and linked in after hitting the NULL pointer. Note that we pass
the pointer to the appropriate left/right pointer in the node during the search,
so the assignment *l = p; links the new node into the tree:

void insert_tree(tree **l, item_type x, tree *parent) {

tree *p; /* temporary pointer */

if (*l == NULL) {

p = malloc(sizeof(tree));

p->item = x;

p->left = p->right = NULL;

p->parent = parent;

*l = p;

return;

}

if (x < (*l)->item) {

insert_tree(&((*l)->left), x, *l);

} else {

insert_tree(&((*l)->right), x, *l);

}

}

Allocating the node and linking it into the tree is a constant-time operation,
after the search has been performed in O(h) time. Here h denotes the height of
the search tree.
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Figure 3.5: Deleting tree nodes with 0, 1, and 2 children. Colors show the nodes
affected as a result of the deletion.

Deletion from a Tree

Deletion is somewhat trickier than insertion, because removing a node means
appropriately linking its two descendant subtrees back into the tree somewhere
else. There are three cases, illustrated in Figure 3.5. Study this figure. Leaf
nodes have no children, and so may be deleted simply by clearing the pointer
to the given node.

The case of a doomed node having one child is also straightforward. We
can link this child to the deleted node’s parent without violating the in-order
labeling property of the tree.

But what of a node with two children? Our solution is to relabel this node
with the key of its immediate successor in sorted order. This successor must
be the smallest value in the right subtree, specifically the left-most descendant
in the right subtree p. Moving this descendant to the point of deletion results
in a properly labeled binary search tree, and reduces our deletion problem to
physically removing a node with at most one child—a case that has been resolved
above. The full implementation has been omitted here because it looks a little
ghastly, but the code follows logically from the description above.

The worst-case complexity analysis is as follows. Every deletion requires the
cost of at most two search operations, each taking O(h) time where h is the
height of the tree, plus a constant amount of pointer manipulation.

3.4.2 How Good are Binary Search Trees?

When implemented using binary search trees, all three dictionary operations
take O(h) time, where h is the height of the tree. The smallest height we can
hope for occurs when the tree is perfectly balanced, meaning that h = log n�.
This is very good, but the tree must be perfectly balanced.

Our insertion algorithm puts each new item at a leaf node where it should
have been found. This makes the shape (and more importantly height) of the
tree determined by the order in which we insert the keys.



86 CHAPTER 3. DATA STRUCTURES

Unfortunately, bad things can happen when building trees through insertion.
The data structure has no control over the order of insertion. Consider what
happens if the user inserts the keys in sorted order. The operations insert(a),
followed by insert(b), insert(c), insert(d), . . . will produce a skinny, linear-
height tree where only right pointers are used.

Thus, binary trees can have heights ranging from lg n to n. But how tall are
they on average? The average case analysis of algorithms can be tricky because
we must carefully specify what we mean by average. The question is well defined
if we assume each of the n! possible insertion orderings to be equally likely, and
average over those. If this assumption is valid then we are in luck, because with
high probability the resulting tree will have Θ(log n) height. This will be shown
in Section 4.6 (page 130).

This argument is an important example of the power of randomization. We
can often develop simple algorithms that offer good performance with high prob-
ability. We will see that a similar idea underlies the fastest known sorting algo-
rithm, quicksort.

3.4.3 Balanced Search Trees

Random search trees are usually good. But if we get unlucky with our order of
insertion, we can end up with a linear-height tree in the worst case. This worst
case is outside of our direct control, since we must build the tree in response to
the requests given by our potentially nasty user.

What would be better is an insertion/deletion procedure that adjusts the
tree a little after each insertion, keeping it close enough to be balanced that the
maximum height is logarithmic. Sophisticated balanced binary search tree data
structures have been developed that guarantee the height of the tree always to
be O(log n). Therefore, all dictionary operations (insert, delete, query) take
O(log n) time each. Implementations of balanced tree data structures such as
red–black trees and splay trees are discussed in Section 15.1 (page 440).

From an algorithm design viewpoint, it is important to know that these trees
exist and that they can be used as black boxes to provide an efficient dictionary
implementation. When figuring the costs of dictionary operations for algorithm
analysis, we can assume the worst-case complexities of balanced binary trees to
be a fair measure.

Take-Home Lesson: Picking the wrong data structure for the job can be
disastrous in terms of performance. Identifying the very best data structure is
usually not as critical, because there can be several choices that perform in a
similar manner.

Stop and Think: Exploiting Balanced Search Trees

Problem: You are given the task of reading n numbers and then printing
them out in sorted order. Suppose you have access to a balanced dictionary
data structure, which supports the operations search, insert, delete, minimum,
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maximum, successor, and predecessor each in O(log n) time. How can you sort
in O(n log n) time using only:

1. insert and in-order traversal?

2. minimum, successor, and insert?

3. minimum, insert, and delete?

Solution: Every algorithm for sorting items using a binary search tree has to
start by building the actual tree. This involves initializing the tree (basically
setting the pointer t to NULL), and then reading/inserting each of the n items
into t. This costs O(n log n), since each insertion takes at most O(log n) time.
Curiously, just building the data structure is a rate-limiting step for each of our
sorting algorithms!

The first problem allows us to do insertion and in-order traversal. We can
build a search tree by inserting all n elements, then do a traversal to access the
items in sorted order.

The second problem allows us to use the minimum and successor operations
after constructing the tree. We can start from the minimum element, and then
repeatedly find the successor to traverse the elements in sorted order.

The third problem does not give us successor, but does allow us delete. We
can repeatedly find and delete the minimum element to once again traverse all
the elements in sorted order.

In summary, the solutions to the three problems are:

Sort1()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t)

Traverse(t)

Sort2()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t);

y = Minimum(t)
While (y �= NULL) do

print(y→item)
y = Successor(y,t)

Sort3()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t);

y = Minimum(t)
While (y �= NULL) do

print(y→item)
Delete(y,t)
y = Minimum(t)

Each of these algorithms does a linear number of logarithmic-time opera-
tions, and hence runs in O(n log n) time. The key to exploiting balanced binary
search trees is using them as black boxes.

3.5 Priority Queues

Many algorithms need to process items in a specific order. For example, suppose
you must schedule jobs according to their importance relative to other jobs. Such
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scheduling requires sorting the jobs by importance, and then processing them
in this sorted order.

The priority queue is an abstract data type that provides more flexibility
than simple sorting, because it allows new elements to enter a system at arbi-
trary intervals. It can be much more cost-effective to insert a new job into a
priority queue than to re-sort everything on each such arrival.

The basic priority queue supports three primary operations:

• Insert(Q,x)– Given item x, insert it into the priority queue Q.

• Find-Minimum(Q) or Find-Maximum(Q)– Return a pointer to the item
whose key value is smallest (or largest) among all keys in priority queue
Q.

• Delete-Minimum(Q) or Delete-Maximum(Q)– Remove the item whose key
value is minimum (or maximum) from priority queue Q.

Naturally occurring processes are often informally modeled by priority queues.
Single people maintain a priority queue of potential dating candidates, mentally
if not explicitly. One’s impression on meeting a new person maps directly to
an attractiveness or desirability score, which serves as the key field for insert-
ing this new entry into the “little black book” priority queue data structure.
Dating is the process of extracting the most desirable person from the data
structure (Find-Maximum), spending an evening to evaluate them better, and
then reinserting them into the priority queue with a possibly revised score.

Take-Home Lesson: Building algorithms around data structures such as dictio-
naries and priority queues leads to both clean structure and good performance.

Stop and Think: Basic Priority Queue Implementations

Problem: What is the worst-case time complexity of the three basic priority
queue operations (insert, find-minimum, and delete-minimum) when the basic
data structure is as follows:

• An unsorted array.

• A sorted array.

• A balanced binary search tree.

Solution: There is surprising subtlety when implementing these operations,
even using a data structure as simple as an unsorted array. The unsorted array
dictionary (discussed on page 77) implements insertion and deletion in constant
time, and search and minimum in linear time. A linear-time implementation of
delete-minimum can be composed from find-minimum, followed by delete.
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Figure 3.6: A triangulated model of a dinosaur (l), with several triangle strips
peeled off the model (r).

For sorted arrays, we can implement insert and delete in linear time, and
minimum in constant time. However, priority queue deletions involve only the
minimum element. By storing the sorted array in reverse order (largest value on
top), the minimum element will always be the last one in the array. Deleting the
tail element requires no movement of any items, just decrementing the number
of remaining items n, and so delete-minimum can be implemented in constant
time.

All this is fine, yet the table below claims we can implement find-minimum
in constant time for each data structure:

Unsorted Sorted Balanced
array array tree

Insert(Q, x) O(1) O(n) O(log n)
Find-Minimum(Q) O(1) O(1) O(1)
Delete-Minimum(Q) O(n) O(1) O(log n)

The trick is using an extra variable to store a pointer/index to the minimum
entry in each of these structures, so we can simply return this value whenever we
are asked to find-minimum. Updating this pointer on each insertion is easy—we
update it iff the newly inserted value is less than the current minimum. But what
happens on a delete-minimum? We can delete that minimum element we point
to, and then do a search to restore this canned value. The operation to identify
the new minimum takes linear time on an unsorted array and logarithmic time
on a tree, and hence can be folded into the cost of each deletion.

Priority queues are very useful data structures. Indeed, they will be the hero
of two of our war stories. A particularly nice priority queue implementation
(the heap) will be discussed in the context of sorting in Section 4.3 (page 115).
Further, a complete set of priority queue implementations is presented in Section
15.2 (page 445) of the catalog.

3.6 War Story: Stripping Triangulations

Geometric models used in computer graphics are commonly represented by a
triangulated surface, as shown in Figure 3.6(l). High-performance rendering
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Figure 3.7: Extracting a triangle strip from a triangular mesh: A strip with
partial coverage using alternating left and right turns (left), and a strip with
complete coverage by exploiting the flexibility of arbitrary turns (right).

engines have special hardware for rendering and shading triangles. This render-
ing hardware is so fast that the computational bottleneck becomes the cost of
feeding the triangulation structure into the hardware engine.

Although each triangle can be described by specifying its three endpoints,
an alternative representation proves more efficient. Instead of specifying each
triangle in isolation, suppose that we partition the triangles into strips of adja-
cent triangles and walk along the strip. Since each triangle shares two vertices
in common with its neighbors, we save the cost of retransmitting the two ex-
tra vertices and any associated information. To make the description of the
triangles unambiguous, the OpenGL triangular-mesh renderer assumes that all
turns alternate left and right. The strip in Figure 3.7 (left) completely describes
five triangles of the mesh with the vertex sequence [1,2,3,4,5,7,6] and the im-
plied left/right order. The strip on the right describes all seven triangles with
specified turns: [1,2,3,l-4,r-5,l-7,r-6,r-1,r-3].

The task was to find a small number of strips that together cover all the
triangle in a mesh, without overlap. This can be thought of as a graph problem.
The graph of interest has a vertex for every triangle of the mesh, and an edge
between every pair of vertices representing adjacent triangles. This dual graph
representation captures all the information about the triangulation (see Section
18.12 (page 581)) needed to partition it into strips.

Once we had the dual graph, the project could begin in earnest. We sought
to partition the dual graph’s vertices into as few paths or strips as possible.
Partitioning it into one path implied that we had discovered a Hamiltonian path,
which by definition visits each vertex exactly once. Since finding a Hamiltonian
path is NP-complete (see Section 19.5 (page 598)), we knew not to look for an
optimal algorithm, but concentrate instead on heuristics.

The simplest approach for strip cover would start from an arbitrary triangle
and then do a left–right walk until the walk ends, either by hitting the boundary
of the object or a previously visited triangle. This heuristic had the advantage
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Figure 3.8: A bounded-height priority queue for triangle strips.

that it would be fast and simple, although there is no reason to expect that it
must find the smallest possible set of left–right strips for a given triangulation.

The greedy heuristic should result in a relatively small number of strips,
however. Greedy heuristics always try to grab the best possible thing first. In
the case of the triangulation, the natural greedy heuristic would be to identify
the starting triangle that yields the longest left–right strip, and peel that one
off first.

Being greedy does not guarantee you the best possible solution overall, since
the first strip you peel off might break apart a lot of potential strips we would
have wanted to use later. Still, being greedy is a good rule of thumb if you want
to get rich. Removing the longest strip leaves the fewest number of triangles
remaining for later strips, so greedy should outperform the naive heuristic of
pick anything.

But how much time does it take to find the largest strip to peel off next?
Let k be the length of the walk possible from an average vertex. Using the
simplest possible implementation, we could walk from each of the n vertices to
find the largest remaining strip to report in O(kn) time. Repeating this for
each of the roughly n/k strips we extract yields an O(n2)-time implementation,
which would be hopelessly slow on even a small model of 20,000 triangles.

How could we speed this up? It seems wasteful to re-walk from each triangle
after deleting a single strip. We could maintain the lengths of all the possible
future strips in a data structure. However, whenever we peel off a strip, we
must update the lengths of all affected strips. These strips will be shortened
because they walked through a triangle that now no longer exists. There are
two aspects of such a data structure:

• Priority queue – Since we were repeatedly identifying the longest remain-
ing strip, we needed a priority queue to store the strips ordered according
to length. The next strip to peel always sits at the top of the queue. Our
priority queue had to permit reducing the priority of arbitrary elements of
the queue whenever we updated the strip lengths to reflect what triangles
were peeled away. Because all of the strip lengths were bounded by a fairly
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Triangle Naive Greedy Greedy
Model name count cost cost time
Diver 3,798 8,460 4,650 6.4 sec
Heads 4,157 10,588 4,749 9.9 sec
Framework 5,602 9,274 7,210 9.7 sec
Bart Simpson 9,654 24,934 11,676 20.5 sec
Enterprise 12,710 29,016 13,738 26.2 sec
Torus 20,000 40,000 20,200 272.7 sec
Jaw 75,842 104,203 95,020 136.2 sec

Figure 3.9: A comparison of the naive and greedy heuristics for several triangular
meshes. Cost is the number of strips. Running time generally scales with
triangle count, except for the highly symmetric torus with very long strips.

small integer (hardware constraints prevent any strip from having more
than 256 vertices), we used a bounded-height priority queue (an array of
buckets, shown in Figure 3.8 and described in Section 15.2 (page 445)).
An ordinary heap would also have worked just fine.

To update the queue entry associated with each triangle, we needed to
quickly find where it was. This meant that we also needed a . . .

• Dictionary – For each triangle in the mesh, we had to find where it was in
the queue. This meant storing a pointer to each triangle in a dictionary.
By integrating this dictionary with the priority queue, we built a data
structure capable of a wide range of operations.

Although there were various other complications, such as quickly recalcu-
lating the length of the strips affected by the peeling, the key idea needed to
obtain better performance was to use the priority queue. Run time improved
by several orders of magnitude after employing this data structure.

How much better did the greedy heuristic do than the naive heuristic? Study
the table in Figure 3.9. In all cases, the greedy heuristic led to a set of strips
that cost less, as measured by the total number of vertex occurrences in the
strips. The savings ranged from about 10% to 50%, which is quite remarkable
since the greatest possible improvement (going from three vertices per triangle
down to one) yields a savings of only 66.6%.

After implementing the greedy heuristic with our priority queue data struc-
ture, the program ran in O(n · k) time, where n is the number of triangles and
k is the length of the average strip. Thus, the torus, which consisted of a small
number of very long strips, took longer than the jaw, even though the latter
contained over three times as many triangles.

There are several lessons to be gleaned from this story. First, when working
with a large enough data set, only linear or near-linear algorithms are likely
to be fast enough. Second, choosing the right data structure is often the key
to getting the time complexity down. Finally, using the greedy heuristic can



3.7. HASHING 93

significantly improve performance over the naive approach. How much this
improvement will be can only be determined by experimentation.

3.7 Hashing

Hash tables are a very practical way to maintain a dictionary. They exploit the
fact that looking an item up in an array takes constant time once you have its
index. A hash function is a mathematical function that maps keys to integers.
We will use the value of our hash function as an index into an array, and store
our item at that position.

The first step of the hash function is usually to map each key (here the string
S) to a big integer. Let α be the size of the alphabet on which S is written.
Let char(c) be a function that maps each symbol of the alphabet to a unique
integer from 0 to α− 1. The function

H(S) = α|S| +
|S|−1∑

i=0

α|S|−(i+1) × char(si)

maps each string to a unique (but large) integer by treating the characters of
the string as “digits” in a base-α number system.

This creates unique identifier numbers, but they are so large they will quickly
exceed the number of desired slots in our hash table (denoted by m). We must
reduce this number to an integer between 0 and m−1, by taking the remainder
H ′(S) = H(S) mod m. This works on the same principle as a roulette wheel.
The ball travels a long distance, around and around the circumference-m wheel
�H(S)/m	 times before settling down to a random bin. If the table size is
selected with enough finesse (ideally m is a large prime not too close to 2i − 1),
the resulting hash values should be fairly uniformly distributed.

3.7.1 Collision Resolution

No matter how good our hash function is, we had better be prepared for col-
lisions, because two distinct keys will at least occasionally hash to the same
value. There are two different approaches for maintaining a hash table:

• Chaining represents a hash table as an array of m linked lists (“buckets”),
as shown in Figure 3.10. The ith list will contain all the items that hash
to the value of i. Search, insertion, and deletion thus reduce to the corre-
sponding problem in linked lists. If the n keys are distributed uniformly
in a table, each list will contain roughly n/m elements, making them a
constant size when m ≈ n.

Chaining is very natural, but devotes a considerable amount of memory to
pointers. This is space that could be used to make the table larger, which
reduces the likelihood of collisions. In fact, the highest-performing hash
tables generally rely on an alternative method called open addressing.
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Figure 3.10: Collision resolution by chaining, after hashing the first eight Fi-
bonacci numbers in increasing order, with hash function H(x) = (2x + 1)
mod 10. Insertions occur at the head of each list in this figure.
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Figure 3.11: Collision resolution by open addressing and sequential probing,
after inserting the first eight Fibonacci numbers in increasing order with H(x) =
(2x + 1) mod 10. The red elements have been bumped to the first open slot
after the desired location.

• Open addressing maintains the hash table as a simple array of elements
(not buckets). Each cell is initialized to null, as shown in Figure 3.11.
On each insertion, we check to see whether the desired cell is empty; if
so, we insert the item there. But if the cell is already occupied, we must
find some other place to put the item. The simplest possibility (called
sequential probing) inserts the item into the next open cell in the table.
Provided the table is not too full, the contiguous runs of non-empty cells
should be fairly short, hence this location should be only a few cells away
from its intended position.

Searching for a given key now involves going to the appropriate hash value
and checking to see if the item there is the one we want. If so, return it.
Otherwise we must keep checking through the length of the run. Deletion
in an open addressing scheme can get ugly, since removing one element
might break a chain of insertions, making some elements inaccessible. We
have no alternative but to reinsert all the items in the run that follows the
new hole.

Chaining and open addressing both cost O(m) to initialize an m-element
hash table to null elements prior to the first insertion.
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When using chaining with doubly linked lists to resolve collisions in an m-
element hash table, the dictionary operations for n items can be implemented
in the following expected and worst case times:

Hash table Hash table
(expected) (worst case)

Search(L, k) O(n/m) O(n)
Insert(L, x) O(1) O(1)
Delete(L, x) O(1) O(1)
Successor(L, x) O(n+m) O(n+m)
Predecessor(L, x) O(n+m) O(n+m)
Minimum(L) O(n+m) O(n+m)
Maximum(L) O(n+m) O(n+m)

Traversing all the elements in the table takes O(n + m) time for chaining,
since we have to scan all m buckets looking for elements, even if the actual num-
ber of inserted items is small. This reduces to O(m) time for open addressing,
since n must be at most m.

Pragmatically, a hash table often is the best data structure to maintain a
dictionary. The applications of hashing go far beyond dictionaries, however, as
we will see below.

3.7.2 Duplicate Detection via Hashing

The key idea of hashing is to represent a large object (be it a key, a string, or
a substring) by a single number. We get a representation of the large object
by a value that can be manipulated in constant time, such that it is relatively
unlikely that two different large objects map to the same value.

Hashing has a variety of clever applications beyond just speeding up search.
I once heard Udi Manber—at one point responsible for all search products at
Google—talk about the algorithms employed in industry. The three most im-
portant algorithms, he explained, were “hashing, hashing, and hashing.”

Consider the following problems with nice hashing solutions:

• Is a given document unique within a large corpus? – Google crawls yet
another webpage. How can it tell whether this is new content never seen
before, or just a duplicate page that exists elsewhere on the web?

Explicitly comparing the new document D against all n previous docu-
ments is hopelessly inefficient for a large corpus. However, we can hash
D to an integer, and compare H(D) to the hash codes of the rest of the
corpus. Only if there is a collision might D be a possible duplicate. Since
we expect few spurious collisions, we can explicitly compare the few doc-
uments sharing a particular hash code with little total effort.

• Is part of this document plagiarized? – A lazy student copies a portion
of a web document into their term paper. “The web is a big place,” he
smirks. “How will anyone ever find the page I stole this from?”
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This is a more difficult problem than the previous application. Adding,
deleting, or changing even one character from a document will completely
change its hash code. The hash codes produced in the previous application
thus cannot help for this more general problem.

However, we could build a hash table of all overlapping windows (sub-
strings) of length w in all the documents in the corpus. Whenever there
is a match of hash codes, there is likely a common substring of length w
between the two documents, which can then be further investigated. We
should choose w to be long enough so such a co-occurrence is very unlikely
to happen by chance.

The biggest downside of this scheme is that the size of the hash table
becomes as large as the document corpus itself. Retaining a small but
well-chosen subset of these hash codes is exactly the goal of min-wise
hashing, discussed in Section 6.6.

• How can I convince you that a file isn’t changed? – In a closed-bid auction,
each party submits their bid in secret before the announced deadline. If
you knew what the other parties were bidding, you could arrange to bid
$1 more than the highest opponent and walk off with the prize as cheaply
as possible. The “right” auction strategy would thus be to hack into the
computer containing the bids just prior to the deadline, read the bids, and
then magically emerge as the winner.

How can this be prevented? What if everyone submits a hash code of their
actual bid prior to the deadline, and then submits the full bid only after
the deadline? The auctioneer will pick the largest full bid, but checks
to make sure the hash code matches what was submitted prior to the
deadline. Such cryptographic hashing methods provide a way to ensure
that the file you give me today is the same as the original, because any
change to the file will change the hash code.

Although the worst-case bounds on anything involving hashing are dismal,
with a proper hash function we can confidently expect good behavior. Hashing
is a fundamental idea in randomized algorithms, yielding linear expected-time
algorithms for problems that are Θ(n log n) or Θ(n2) in the worst case.

3.7.3 Other Hashing Tricks

Hash functions provide useful tools for many things beyond powering hash ta-
bles. The fundamental idea is of many-to-one mappings, where many is con-
trolled so it is very unlikely to be too many.

3.7.4 Canonicalization

Consider a word game that gives you a set of letters S, and asks you to find
all dictionary words that can be made by reordering them. For example, I can
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make three words from the four letters in S = (a, e, k, l), namely kale, lake, and
leak.

Think how you might write a program to find the matching words for S,
given a dictionary D of n words. Perhaps the most straightforward approach is
to test each word d ∈ D against the characters of S. This takes time linear in
n for each S, and the test is somewhat tricky to program.

What if we instead hash every word in D to a string, by sorting the word’s
letters. Now kale goes to aekl, as do lake and leak. By building a hash table
with the sorted strings as keys, all words with the same letter distribution get
hashed to the same bucket. Once you have built this hash table, you can use it
for different query sets S. The time for each query will be proportional to the
number of matching words in D, which is a lot smaller than n.

Which set of k letters can be used to make the most dictionary words? This
seems like a much harder problem, because there are αk possible letter sets,
where α is the size of the alphabet. But observe that the answer is simply the
hash code with the largest number of collisions. Sweeping over a sorted array
of hash codes (or walking through each bucket in a chained hash table) makes
this fast and easy.

This is a good example of the power of canonicalization, reducing compli-
cated objects to a standard (i.e. “canonical”) form. String transformations like
reducing letters to lower case or stemming (removing word suffixes like -ed, -s,
or -ing) result in increased matches, because multiple strings collide on the same
code. Soundex is a canonicalization scheme for names, so spelling variants of
“Skiena” like “Skina,”, “Skinnia,” and “Schiena” all get hashed to the same
Soundex code, S25. Soundex is described in more detail in Section 21.4.

For hash tables, collisions are very bad. But for pattern matching problems
like these, collisions are exactly what we want.

3.7.5 Compaction

Suppose that you wanted to sort all n books in the library, not by their titles but
by the contents of the actual text. Bulwer-Lytton’s [BL30] “It was a dark and
stormy night. . . ” would appear before this book’s “What is an algorithm?. . . ”
Assuming the average book is m ≈ 100,000 words long, doing this sort seems
an expensive and clumsy job since each comparison involves two books.

But suppose we instead represent each book by the first (say) 100 characters,
and sort these strings. There will be collisions involving duplicates of the same
prefix, involving multiple editions or perhaps plagiarism, but these will be quite
rare. After sorting the prefixes, we can then resolve the collisions by comparing
the full texts. The world’s fastest sorting programs use this idea, as discussed
in Section 17.1.

This is an example of hashing for compaction, also called fingerprinting,
where we representing large objects by small hash codes. It is easier to work
with small objects than large ones, and the hash code generally preserves the
identity of each item. The hash function here is trivial (just take the prefix) but
it is designed to accomplish a specific goal—not to maintain a hash table. More
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sophisticated hash functions can make the probability of collisions between even
slightly different objects vanishingly low.

3.8 Specialized Data Structures

The basic data structures described thus far all represent an unstructured set
of items so as to facilitate retrieval operations. These data structures are well
known to most programmers. Not as well known are data structures for repre-
senting more specialized kinds of objects, such as points in space, strings, and
graphs.

The design principles of these data structures are the same as for basic
objects. There exists a set of basic operations we need to perform repeatedly.
We seek a data structure that allows these operations to be performed very
efficiently. These specialized data structures are important for efficient graph
and geometric algorithms, so one should be aware of their existence:

• String data structures – Character strings are typically represented by
arrays of characters, perhaps with a special character to mark the end of
the string. Suffix trees/arrays are special data structures that preprocess
strings to make pattern matching operations faster. See Section 15.3 (page
448) for details.

• Geometric data structures – Geometric data typically consists of collec-
tions of data points and regions. Regions in the plane can be described by
polygons, where the boundary of the polygon is a closed chain of line
segments. A polygon P can be represented using an array of points
(v1, . . . , vn, v1), such that (vi, vi+1) is a segment of the boundary of P .
Spatial data structures such as kd-trees organize points and regions by ge-
ometric location to support fast search operations. See Section 15.6 (page
460).

• Graph data structures – Graphs are typically represented using either ad-
jacency matrices or adjacency lists. The choice of representation can have
a substantial impact on the design of the resulting graph algorithms, and
will be discussed in Chapter 7 and in the catalog in Section 15.4.

• Set data structures – Subsets of items are typically represented using a
dictionary to support fast membership queries. Alternatively, bit vectors
are Boolean arrays such that the ith bit is 1 if i is in the subset. Data
structures for manipulating sets is presented in the catalog in Section 15.5.

3.9 War Story: String ’em Up

The human genome encodes all the information necessary to build a person.
Sequencing the genome has had an enormous impact on medicine and molecular
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Figure 3.12: The concatenation of two fragments can be in S only if all sub-
fragments are.

biology. Algorists like me have become interested in bioinformatics, for several
reasons:

• DNA sequences can be accurately represented as strings of characters on
the four-letter alphabet (A,C,T,G). The needs of biologist have sparked
new interest in old algorithmic problems such as string matching (see
Section 21.3 (page 685)) as well as creating new problems such as shortest
common superstring (see Section 21.9 (page 709)).

• DNA sequences are very long strings. The human genome is approximately
three billion base pairs (or characters) long. Such large problem size means
that asymptotic (Big Oh) complexity analysis is fully justified on biological
problems.

• Enough money is being invested in genomics for computer scientists to
want to claim their piece of the action.

One of my interests in computational biology revolved around a proposed
technique for DNA sequencing called sequencing by hybridization (SBH). This
procedure attaches a set of probes to an array, forming a sequencing chip. Each
of these probes determines whether or not the probe string occurs as a sub-
string of the DNA target. The target DNA can now be sequenced based on the
constraints of which strings are (and are not) substrings of the target.

We sought to identify all the strings of length 2k that are possible substrings
of an unknown string S, given the set of all length-k substrings of S. For exam-
ple, suppose we know that AC, CA, and CC are the only length-2 substrings
of S. It is possible that ACCA is a substring of S, since the center substring is
one of our possibilities. However, CAAC cannot be a substring of S, since AA
is not a substring of S. We needed to find a fast algorithm to construct all the
consistent length-2k strings, since S could be very long.

The simplest algorithm to build the 2k strings would be to concatenate all
O(n2) pairs of k-strings together, and then test to make sure that all (k − 1)
length-k substrings spanning the boundary of the concatenation were in fact
substrings, as shown in Figure 3.12. For example, the nine possible concatena-
tions of AC, CA, and CC are ACAC, ACCA, ACCC, CAAC, CACA, CACC,
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CCAC, CCCA, and CCCC. Only CAAC can be eliminated, because of the
absence of AA as a substring of S.

We needed a fast way of testing whether the k − 1 substrings straddling
the concatenation were members of our dictionary of permissible k-strings. The
time it takes to do this depends upon which dictionary data structure we use.
A binary search tree could find the correct string within O(log n) comparisons,
where each comparison involved testing which of two length-k strings appeared
first in alphabetical order. The total time using such a binary search tree would
be O(k log n).

That seemed pretty good. So my graduate student, Dimitris Margaritis,
used a binary search tree data structure for our implementation. It worked
great up until the moment we ran it.

“I’ve tried the fastest computer we have, but our program is too slow,”
Dimitris complained. “It takes forever on string lengths of only 2,000 characters.
We will never get up to n = 50,000.”

We profiled our program and discovered that almost all the time was spent
searching in this data structure. This was no surprise, since we did this k −
1 times for each of the O(n2) possible concatenations. We needed a faster
dictionary data structure, since search was the innermost operation in such a
deep loop.

“How about using a hash table?” I suggested. “It should take O(k) time to
hash a k-character string and look it up in our table. That should knock off a
factor of O(log n).”

Dimitris went back and implemented a hash table implementation for our
dictionary. Again, it worked great, up until the moment we ran it.

“Our program is still too slow,” Dimitris complained. “Sure, it is now about
ten times faster on strings of length 2,000. So now we can get up to about 4,000
characters. Big deal. We will never get up to 50,000.”

“We should have expected this,” I mused. “After all, lg2(2,000) ≈ 11. We
need a faster data structure to search in our dictionary of strings.”

“But what can be faster than a hash table?” Dimitris countered. “To look
up a k-character string, you must read all k characters. Our hash table already
does O(k) searching.”

“Sure, it takes k comparisons to test the first substring. But maybe we
can do better on the second test. Remember where our dictionary queries are
coming from. When we concatenate ABCD with EFGH, we are first testing
whether BCDE is in the dictionary, then CDEF . These strings differ from
each other by only one character. We should be able to exploit this so each
subsequent test takes constant time to perform. . . ”

“We can’t do that with a hash table,” Dimitris observed. “The second key
is not going to be anywhere near the first in the table. A binary search tree
won’t help, either. Since the keys ABCD and BCDE differ according to the
first character, the two strings will be in different parts of the tree.”

“But we can use a suffix tree to do this,” I countered. “A suffix tree is a
trie containing all the suffixes of a given set of strings. For example, the suffixes
of ACAC are {ACAC,CAC,AC,C}. Coupled with suffixes of string CACT ,
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Figure 3.13: Suffix tree on ACAC and CACT , with the pointer to the suffix
of ACAC. Green nodes correspond to suffixes of ACAC, with blue nodes to
suffixes of CACT .

we get the suffix tree of Figure 3.13. By following a pointer from ACAC to its
longest proper suffix CAC, we get to the right place to test whether CACT is
in our set of strings. One character comparison is all we need to do from there.”

Suffix trees are amazing data structures, discussed in considerably more
detail in Section 15.3 (page 448). Dimitris did some reading about them, then
built a nice suffix tree implementation for our dictionary. Once again, it worked
great up until the moment we ran it.

“Now our program is faster, but it runs out of memory,” Dimitris com-
plained. “The suffix tree builds a path of length k for each suffix of length k,
so all told there can be Θ(n2) nodes in the tree. It crashes when we go beyond
2,000 characters. We will never get up to strings with 50,000 characters.”

I wasn’t ready to give up yet. “There is a way around the space problem, by
using compressed suffix trees,” I recalled. “Instead of explicitly representing long
paths of character nodes, we can refer back to the original string.” Compressed
suffix trees always take linear space, as described in Section 15.3 (page 448).

Dimitris went back one last time and implemented the compressed suffix
tree data structure. Now it worked great! As shown in Figure 3.14, we ran
our simulation for strings of length n = 65,536 without incident. Our results
showed that interactive SBH could be a very efficient sequencing technique.
Based on these simulations, we were able to arouse interest in our technique
from biologists. Making the actual wet laboratory experiments feasible provided
another computational challenge, which is reported in Section 12.8 (page 414).

The take-home lessons for programmers should be apparent. We isolated a
single operation (dictionary string search) that was being performed repeatedly
and optimized the data structure to support it. When an improved dictionary
structure still did not suffice, we looked deeper into the kind of queries we were
performing, so that we could identify an even better data structure. Finally,
we didn’t give up until we had achieved the level of performance we needed. In
algorithms, as in life, persistence usually pays off.
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String Binary Hash Suffix Compressed
length tree table tree tree

8 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0
32 0.1 0.0 0.0 0.0
64 0.3 0.4 0.3 0.0

128 2.4 1.1 0.5 0.0
256 17.1 9.4 3.8 0.2
512 31.6 67.0 6.9 1.3

1,024 1,828.9 96.6 31.5 2.7
2,048 11,441.7 941.7 553.6 39.0
4,096 > 2 days 5,246.7 out of 45.4
8,192 > 2 days memory 642.0
16,384 1,614.0
32,768 13,657.8
65,536 39,776.9

Figure 3.14: Run times (in seconds) for the SBH simulation using various data
structures, as a function of the string length n.

Chapter Notes

Optimizing hash table performance is surprisingly complicated for such a con-
ceptually simple data structure. The importance of short runs in open address-
ing has led to more sophisticated schemes than sequential probing for optimal
hash table performance. For more details, see Knuth [Knu98].

My thinking on hashing was profoundly influenced by a talk by Mihai Pătraşcu,
a brilliant theoretician who sadly died before he turned 30. More detailed treat-
ments on hashing and randomized algorithms include Motwani and Raghavan
[MR95] and Mitzenmacher and Upfal [MU17].

Our triangle strip optimizing program, stripe, is described in Evans et al.
[ESV96]. Hashing techniques for plagiarism detection are discussed in Schlieimer
et al. [SWA03].

Surveys of algorithmic issues in DNA sequencing by hybridization include
Chetverin and Kramer [CK94] and Pevzner and Lipshutz [PL94]. Our work on
interactive SBH reported in the war story is reported in Margaritis and Skiena
[MS95a].
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3.10 Exercises

Stacks, Queues, and Lists

3-1. [3] A common problem for compilers and text editors is determining whether
the parentheses in a string are balanced and properly nested. For example, the
string ((())())() contains properly nested pairs of parentheses, while the strings
)()( and ()) do not. Give an algorithm that returns true if a string contains
properly nested and balanced parentheses, and false if otherwise. For full credit,
identify the position of the first offending parenthesis if the string is not properly
nested and balanced.

3-2. [5] Give an algorithm that takes a string S consisting of opening and closing
parentheses, say )()(())()()))())))(, and finds the length of the longest balanced
parentheses in S, which is 12 in the example above. (Hint: The solution is not
necessarily a contiguous run of parenthesis from S.)

3-3. [3] Give an algorithm to reverse the direction of a given singly linked list. In
other words, after the reversal all pointers should now point backwards. Your
algorithm should take linear time.

3-4. [5] Design a stack S that supports S.push(x), S.pop(), and S.findmin(), which
returns the minimum element of S. All operations should run in constant time.

3-5. [5] We have seen how dynamic arrays enable arrays to grow while still achiev-
ing constant-time amortized performance. This problem concerns extending
dynamic arrays to let them both grow and shrink on demand.

(a) Consider an underflow strategy that cuts the array size in half whenever
the array falls below half full. Give an example sequence of insertions and
deletions where this strategy gives a bad amortized cost.

(b) Then, give a better underflow strategy than that suggested above, one that
achieves constant amortized cost per deletion.

3-6. [3] Suppose you seek to maintain the contents of a refrigerator so as to minimize
food spoilage. What data structure should you use, and how should you use
it?

3-7. [5] Work out the details of supporting constant-time deletion from a singly
linked list as per the footnote from page 79, ideally to an actual implementation.
Support the other operations as efficiently as possible.

Elementary Data Structures

3-8. [5] Tic-tac-toe is a game played on an n×n board (typically n = 3) where two
players take consecutive turns placing “O” and “X” marks onto the board cells.
The game is won if n consecutive “O” or ‘X” marks are placed in a row, column,
or diagonal. Create a data structure with O(n) space that accepts a sequence
of moves, and reports in constant time whether the last move won the game.

3-9. [3] Write a function which, given a sequence of digits 2–9 and a dictionary of n
words, reports all words described by this sequence when typed in on a standard
telephone keypad. For the sequence 269 you should return any, box, boy, and
cow, among other words.
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3-10. [3] Two strings X and Y are anagrams if the letters of X can be rearranged
to form Y . For example, silent/listen, and incest/insect are anagrams. Give an
efficient algorithm to determine whether strings X and Y are anagrams.

Trees and Other Dictionary Structures

3-11. [3] Design a dictionary data structure in which search, insertion, and deletion
can all be processed in O(1) time in the worst case. You may assume the set
elements are integers drawn from a finite set 1, 2, .., n, and initialization can take
O(n) time.

3-12. [3] The maximum depth of a binary tree is the number of nodes on the path
from the root down to the most distant leaf node. Give an O(n) algorithm to
find the maximum depth of a binary tree with n nodes.

3-13. [5] Two elements of a binary search tree have been swapped by mistake. Give
an O(n) algorithm to identify these two elements so they can be swapped back.

3-14. [5] Given two binary search trees, merge them into a doubly linked list in sorted
order.

3-15. [5] Describe an O(n)-time algorithm that takes an n-node binary search tree
and constructs an equivalent height-balanced binary search tree. In a height-
balanced binary search tree, the difference between the height of the left and
right subtrees of every node is never more than 1.

3-16. [3] Find the storage efficiency ratio (the ratio of data space over total space)
for each of the following binary tree implementations on n nodes:

(a) All nodes store data, two child pointers, and a parent pointer. The data
field requires 4 bytes and each pointer requires 4 bytes.

(b) Only leaf nodes store data; internal nodes store two child pointers. The
data field requires four bytes and each pointer requires two bytes.

3-17. [5] Give an O(n) algorithm that determines whether a given n-node binary tree
is height-balanced (see Problem 3-15).

3-18. [5] Describe how to modify any balanced tree data structure such that search,
insert, delete, minimum, and maximum still take O(log n) time each, but suc-
cessor and predecessor now take O(1) time each. Which operations have to be
modified to support this?

3-19. [5] Suppose you have access to a balanced dictionary data structure that sup-
ports each of the operations search, insert, delete, minimum, maximum, suc-
cessor, and predecessor in O(log n) time. Explain how to modify the insert
and delete operations so they still take O(log n) but now minimum and max-
imum take O(1) time. (Hint: think in terms of using the abstract dictionary
operations, instead of mucking about with pointers and the like.)

3-20. [5] Design a data structure to support the following operations:

• insert(x,T) – Insert item x into the set T .

• delete(k,T) – Delete the kth smallest element from T .

• member(x,T) – Return true iff x ∈ T .

All operations must take O(log n) time on an n-element set.
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3-21. [8] A concatenate operation takes two sets S1 and S2, where every key in S1 is
smaller than any key in S2, and merges them. Give an algorithm to concatenate
two binary search trees into one binary search tree. The worst-case running
time should be O(h), where h is the maximal height of the two trees.

Applications of Tree Structures

3-22. [5] Design a data structure that supports the following two operations:

• insert(x) – Insert item x from the data stream to the data structure.

• median() – Return the median of all elements so far.

All operations must take O(log n) time on an n-element set.

3-23. [5] Assume we are given a standard dictionary (balanced binary search tree)
defined on a set of n strings, each of length at most l. We seek to print out all
strings beginning with a particular prefix p. Show how to do this in O(ml log n)
time, where m is the number of strings.

3-24. [5] An array A is called k-unique if it does not contain a pair of duplicate
elements within k positions of each other, that is, there is no i and j such that
A[i] = A[j] and |j − i| ≤ k. Design a worst-case O(n log k) algorithm to test if
A is k-unique.

3-25. [5] In the bin-packing problem, we are given n objects, each weighing at most
1 kilogram. Our goal is to find the smallest number of bins that will hold the n
objects, with each bin holding 1 kilogram at most.

• The best-fit heuristic for bin packing is as follows. Consider the objects
in the order in which they are given. For each object, place it into the
partially filled bin with the smallest amount of extra room after the ob-
ject is inserted. If no such bin exists, start a new bin. Design an algo-
rithm that implements the best-fit heuristic (taking as input the n weights
w1, w2, ..., wn and outputting the number of bins used) in O(n log n) time.

• Repeat the above using the worst-fit heuristic, where we put the next
object into the partially filled bin with the largest amount of extra room
after the object is inserted.

3-26. [5] Suppose that we are given a sequence of n values x1, x2, ..., xn and seek to
quickly answer repeated queries of the form: given i and j, find the smallest
value in xi, . . . , xj .

(a) Design a data structure that uses O(n2) space and answers queries in O(1)
time.

(b) Design a data structure that uses O(n) space and answers queries in
O(log n) time. For partial credit, your data structure can use O(n log n)
space and have O(log n) query time.

3-27. [5] Suppose you are given an input set S of n integers, and a black box that if
given any sequence of integers and an integer k instantly and correctly answers
whether there is a subset of the input sequence whose sum is exactly k. Show
how to use the black box O(n) times to find a subset of S that adds up to k.

3-28. [5] Let A[1..n] be an array of real numbers. Design an algorithm to perform
any sequence of the following operations:
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• Add(i,y) – Add the value y to the ith number.

• Partial-sum(i) – Return the sum of the first i numbers, that is,
∑i

j=1 A[j].

There are no insertions or deletions; the only change is to the values of the num-
bers. Each operation should take O(log n) steps. You may use one additional
array of size n as a work space.

3-29. [8] Extend the data structure of the previous problem to support insertions and
deletions. Each element now has both a key and a value. An element is accessed
by its key, but the addition operation is applied to the values. The Partial sum
operation is different.

• Add(k,y) – Add the value y to the item with key k.

• Insert(k,y) – Insert a new item with key k and value y.

• Delete(k) – Delete the item with key k.

• Partial-sum(k) – Return the sum of all the elements currently in the set
whose key is less than k, that is,

∑
i<k xi.

The worst-case running time should still be O(n log n) for any sequence of O(n)
operations.

3-30. [8] You are consulting for a hotel that has n one-bed rooms. When a guest
checks in, they ask for a room whose number is in the range [l, h]. Propose a
data structure that supports the following data operations in the allotted time:

(a) Initialize(n): Initialize the data structure for empty rooms numbered
1, 2, . . . , n, in polynomial time.

(b) Count(l, h): Return the number of available rooms in [l, h], in O(log n)
time.

(c) Checkin(l, h): In O(log n) time, return the first empty room in [l, h] and
mark it occupied, or return NIL if all the rooms in [l, h] are occupied.

(d) Checkout(x): Mark room x as unoccupied, in O(log n) time.

3-31. [8] Design a data structure that allows one to search, insert, and delete an
integer X in O(1) time (i.e., constant time, independent of the total number of
integers stored). Assume that 1 ≤ X ≤ n and that there are m + n units of
space available, where m is the maximum number of integers that can be in the
table at any one time. (Hint: use two arrays A[1..n] and B[1..m].) You are not
allowed to initialize either A or B, as that would take O(m) or O(n) operations.
This means the arrays are full of random garbage to begin with, so you must be
very careful.

Implementation Projects

3-32. [5] Implement versions of several different dictionary data structures, such as
linked lists, binary trees, balanced binary search trees, and hash tables. Con-
duct experiments to assess the relative performance of these data structures in
a simple application that reads a large text file and reports exactly one instance
of each word that appears within it. This application can be efficiently imple-
mented by maintaining a dictionary of all distinct words that have appeared
thus far in the text and inserting/reporting each new word that appears in the
stream. Write a brief report with your conclusions.
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3-33. [5] A Caesar shift (see Section 21.6 (page 697)) is a very simple class of ciphers for
secret messages. Unfortunately, they can be broken using statistical properties
of English. Develop a program capable of decrypting Caesar shifts of sufficiently
long texts.

Interview Problems

3-34. [3] What method would you use to look up a word in a dictionary?

3-35. [3] Imagine you have a closet full of shirts. What can you do to organize your
shirts for easy retrieval?

3-36. [4] Write a function to find the middle node of a singly linked list.

3-37. [4] Write a function to determine whether two binary trees are identical. Iden-
tical trees have the same key value at each position and the same structure.

3-38. [4] Write a program to convert a binary search tree into a linked list.

3-39. [4] Implement an algorithm to reverse a linked list. Now do it without recur-
sion.

3-40. [5] What is the best data structure for maintaining URLs that have been visited
by a web crawler? Give an algorithm to test whether a given URL has already
been visited, optimizing both space and time.

3-41. [4] You are given a search string and a magazine. You seek to generate all the
characters in the search string by cutting them out from the magazine. Give an
algorithm to efficiently determine whether the magazine contains all the letters
in the search string.

3-42. [4] Reverse the words in a sentence—that is, “My name is Chris” becomes “Chris
is name My.” Optimize for time and space.

3-43. [5] Determine whether a linked list contains a loop as quickly as possible without
using any extra storage. Also, identify the location of the loop.

3-44. [5] You have an unordered array X of n integers. Find the array M containing
n elements where Mi is the product of all integers in X except for Xi. You may
not use division. You can use extra memory. (Hint: there are solutions faster
than O(n2).)

3-45. [6] Give an algorithm for finding an ordered word pair (e.g. “New York”) oc-
curring with the greatest frequency in a given webpage. Which data structures
would you use? Optimize both time and space.

LeetCode

3-1. https://leetcode.com/problems/validate-binary-search-tree/

3-2. https://leetcode.com/problems/count-of-smaller-numbers-after-self/

3-3. https://leetcode.com/problems/construct-binary-tree-from-preorder-and-

inorder-traversal/

HackerRank

3-1. https://www.hackerrank.com/challenges/is-binary-search-tree/

3-2. https://www.hackerrank.com/challenges/queue-using-two-stacks/

3-3. https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-

a-cycle/problem

https://leetcode.com/problems/validate-binary-search-tree/
https://leetcode.com/problems/count-of-smaller-numbers-after-self/
https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
https://www.hackerrank.com/challenges/is-binary-search-tree/
https://www.hackerrank.com/challenges/queue-using-two-stacks/
https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-a-cycle/problem
https://www.hackerrank.com/challenges/detect-whether-a-linked-list-contains-a-cycle/problem
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Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

3-1. “Jolly Jumpers”—Chapter 2, problem 10038.

3-2. “Crypt Kicker”—Chapter 2, problem 843.

3-3. “Where’s Waldorf?”—Chapter 3, problem 10010.

3-4. “Crypt Kicker II”—Chapter 3, problem 850.

https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 4

Sorting

Typical computer science students study the basic sorting algorithms at least
three times before they graduate: first in introductory programming, then in
data structures, and finally in their algorithms course. Why is sorting worth so
much attention? There are several reasons:

• Sorting is the basic building block that many other algorithms are built
around. By understanding sorting, we obtain an amazing amount of power
to solve other problems.

• Most of the interesting ideas used in the design of algorithms appear in
the context of sorting, such as divide-and-conquer, data structures, and
randomized algorithms.

• Sorting is the most thoroughly studied problem in computer science. Lit-
erally dozens of different algorithms are known, most of which possess
some particular advantage over all other algorithms in certain situations.

This chapter will discuss sorting, stressing how sorting can be applied to
solving other problems. In this sense, sorting behaves more like a data structure
than a problem in its own right. I then give detailed presentations of several
fundamental algorithms: heapsort, mergesort, quicksort, and distribution sort as
examples of important algorithm design paradigms. Sorting is also represented
by Section 17.1 (page 506) in the problem catalog.

4.1 Applications of Sorting

I will review several sorting algorithms and their complexities over the course of
this chapter. But the punch line is this: clever sorting algorithms exist that run
in O(n log n). This is a big improvement over naive O(n2) sorting algorithms,
for large values of n. Consider the number of steps done by two different sorting
algorithms for reasonable values of n:

109© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_4

Springer Nature Switzerland AG 2020
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n n2/4 n lg n
10 25 33

100 2,500 664
1,000 250,000 9,965

10,000 25,000,000 132,877
100,000 2,500,000,000 1,660,960

You might survive using a quadratic-time algorithm even if n = 10,000, but the
slow algorithm clearly gets ridiculous once n ≥ 100,000.

Many important problems can be reduced to sorting, so we can use our
clever O(n log n) algorithms to do work that might otherwise seem to require a
quadratic algorithm. An important algorithm design technique is to use sorting
as a basic building block, because many other problems become easy once a set
of items is sorted.

Consider the following applications:

• Searching – Binary search tests whether an item is in a dictionary in
O(log n) time, provided the keys are all sorted. Search preprocessing is
perhaps the single most important application of sorting.

• Closest pair – Given a set of n numbers, how do you find the pair of num-
bers that have the smallest difference between them? Once the numbers
are sorted, the closest pair of numbers must lie next to each other some-
where in sorted order. Thus, a linear-time scan through the sorted list
completes the job, for a total of O(n log n) time including the sorting.

• Element uniqueness – Are there any duplicates in a given set of n items?
This is a special case of the closest-pair problem, where now we ask if
there is a pair separated by a gap of zero. An efficient algorithm sorts the
numbers and then does a linear scan checking all adjacent pairs.

• Finding the mode – Given a set of n items, which element occurs the
largest number of times in the set? If the items are sorted, we can sweep
from left to right and count the number of occurrences of each element,
since all identical items will be lumped together after sorting.

To find out how often an arbitrary element k occurs, look up k using binary
search in a sorted array of keys. By walking to the left of this point until
the first element is not k and then doing the same to the right, we can
find this count in O(log n+ c) time, where c is the number of occurrences
of k. Even better, the number of instances of k can be found in O(log n)
time by using binary search to look for the positions of both k − ε and
k + ε (where ε is suitably small) and then taking the difference of these
positions.

• Selection – What is the kth largest item in an array? If the keys are
placed in sorted order, the kth largest item can be found in constant
time because it must sit in the kth position of the array. In particular,
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Figure 4.1: The convex hull of a set of points (left), constructed by left-to-right
insertion (right).

the median element (see Section 17.3 (page 514)) appears in the (n/2)nd
position in sorted order.

• Convex hulls – What is the polygon of smallest perimeter that contains a
given set of n points in two dimensions? The convex hull is like a rubber
band stretched around the points in the plane and then released. It shrinks
to just enclose the points, as shown in Figure 4.1(l). The convex hull gives
a nice representation of the shape of the point set and is an important
building block for more sophisticated geometric algorithms, as discussed
in the catalog in Section 20.2 (page 626).

But how can we use sorting to construct the convex hull? Once you have
the points sorted by x-coordinate, the points can be inserted from left to
right into the hull. Since the right-most point is always on the boundary,
we know that it must appear in the hull. Adding this new right-most
point may cause others to be deleted, but we can quickly identify these
points because they lie inside the polygon formed by adding the new point.
See the example in Figure 4.1(r). These points will be neighbors of the
previous point we inserted, so they will be easy to find and delete. The
total time is linear after the sorting has been done.

While a few of these problems (namely median and selection) can be solved
in linear time using more sophisticated algorithms, sorting provides quick and
easy solutions to all of these problems. It is a rare application where the running
time of sorting proves to be the bottleneck, especially a bottleneck that could
have otherwise been removed using more clever algorithmics. Never be afraid
to spend time sorting, provided you use an efficient sorting routine.

Take-Home Lesson: Sorting lies at the heart of many algorithms. Sorting the
data is one of the first things any algorithm designer should try in the quest
for efficiency.
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Stop and Think: Finding the Intersection

Problem: Give an efficient algorithm to determine whether two sets (of size m
and n, respectively) are disjoint. Analyze the worst-case complexity in terms of
m and n, considering the case where m � n.

Solution: At least three algorithms come to mind, all of which are variants of
sorting and searching:

• First sort the big set – The big set can be sorted in O(n log n) time. We can
now do a binary search with each of the m elements in the second, looking
to see if it exists in the big set. The total time will be O((n+m) log n).

• First sort the small set – The small set can be sorted in O(m logm) time.
We can now do a binary search with each of the n elements in the big
set, looking to see if it exists in the small one. The total time will be
O((n+m) logm).

• Sort both sets – Observe that once the two sets are sorted, we no longer
have to do binary search to detect a common element. We can compare
the smallest elements of the two sorted sets, and discard the smaller one
if they are not identical. By repeating this idea recursively on the now
smaller sets, we can test for duplication in linear time after sorting. The
total cost is O(n log n+m logm+ n+m).

So, which of these is the fastest method? Clearly small-set sorting trumps
big-set sorting, since logm < log n when m < n. Similarly, (n+m) logm must
be asymptotically smaller than n log n, since n +m < 2n when m < n. Thus,
sorting the small set is the best of these options. Note that this is linear when
m is constant in size.

Note that expected linear time can be achieved by hashing. Build a hash
table containing the elements of both sets, and then explicitly check whether
collisions in the same bucket are in fact identical elements. In practice, this may
be the best solution.

Stop and Think: Making a Hash of the Problem?

Problem: Fast sorting is a wonderful thing. But which of these tasks can be
done as fast or faster (in expected time) using hashing instead of sorting?

• Searching?

• Closest pair?

• Element uniqueness?

• Finding the mode?
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• Finding the median?

• Convex hull?

Solution: Hashing can solve some these problems efficiently, but is inappropri-
ate for others. Let’s consider them one by one:

• Searching – Hash tables are a great answer here, enabling you to search
for items in constant expected time, as opposed to O(log n) with binary
search.

• Closest pair – Hash tables as so far defined cannot help at all. Normal
hash functions scatter keys around the table, so a pair of similar numerical
values are unlikely to end up in the same bucket for comparison. Bucketing
values by numerical ranges will ensure that the closest pair lie within the
same bucket, or at worst neighboring buckets. But we cannot also force
only a small number of items to lie in this bucket, as will be discussed
with respect to bucketsort in Section 4.7.

• Element uniqueness – Hashing is even faster than sorting for this problem.
Build a hash table using chaining, and then compare each of the (expected
constant) pairs of items within a bucket. If no bucket contains a duplicate
pair, then all the elements must be unique. The table construction and
sweeping can be completed in linear expected time.

• Finding the mode – Hashing leads to a linear expected-time algorithm here.
Each bucket should contain a small number of distinct elements, but may
have many duplicates. We start from the first element in a bucket and
count/delete all copies of it, repeating this sweep the expected constant
number of passes until the bucket is empty.

• Finding the median – Hashing does not help us, I am afraid. The median
might be in any bucket of our table, and we have no way to judge how
many items lie before or after it in sorted order.

• Convex hull – Sure, we can build a hash table on points just as well as
any other data type. But it isn’t clear what good that does us for this
problem: certainly it can’t help us order the points by x-coordinate.

4.2 Pragmatics of Sorting

We have seen many algorithmic applications of sorting, and we will see several
efficient sorting algorithms. One issue stands between them: in what order do
we want our items sorted? The answer to this basic question is application
specific. Consider the following issues:
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• Increasing or decreasing order? – A set of keys S are sorted in ascending
order when Si ≤ Si+1 for all 1 ≤ i < n. They are in descending order
when Si ≥ Si+1 for all 1 ≤ i < n. Different applications call for different
orders.

• Sorting just the key or an entire record? – Sorting a data set requires
maintaining the integrity of complex data records. A mailing list of names,
addresses, and phone numbers may be sorted by names as the key field,
but it had better retain the linkage between names and addresses. Thus,
we need to specify which is the key field in any complex record, and
understand the full extent of each record.

• What should we do with equal keys? – Elements with equal key values all
bunch together in any total order, but sometimes the relative order among
these keys matters. Suppose an encyclopedia contains articles on both
Michael Jordan (the basketball player) and Michael Jordan (the actor).1

Which entry should appear first? You may need to resort to secondary
keys, such as article size, to resolve ties in a meaningful way.

Sometimes it is required to leave the items in the same relative order as in
the original permutation. Sorting algorithms that automatically enforce
this requirement are called stable. Few fast algorithms are naturally stable.
Stability can be achieved for any sorting algorithm by adding the initial
position as a secondary key.

Of course we could make no decision about equal key order and let the ties
fall where they may. But beware, certain efficient sort algorithms (such
as quicksort) can run into quadratic performance trouble unless explicitly
engineered to deal with large numbers of ties.

• What about non-numerical data? – Alphabetizing defines the sorting of
text strings. Libraries have very complete and complicated rules con-
cerning the relative collating sequence of characters and punctuation. Is
Skiena the same key as skiena? Is Brown-Williams before or after Brown
America, and before or after Brown, John?

The right way to specify such details to your sorting algorithm is with an
application-specific pairwise-element comparison function. Such a comparison
function takes pointers to record items a and b and returns “<” if a < b, “>” if
a > b, or “=” if a = b.

By abstracting the pairwise ordering decision to such a comparison function,
we can implement sorting algorithms independently of such criteria. We simply
pass the comparison function in as an argument to the sort procedure. Any
reasonable programming language has a built-in sort routine as a library func-
tion. You are usually better off using this than writing your own routine. For
example, the standard library for C contains the qsort function for sorting:

1Not to mention Michael Jordan (the statistician).
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#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,

int (*compare) (const void *, const void *));

The key to using qsort is realizing what its arguments do. It sorts the first
nel elements of an array (pointed to by base), where each element is width-
bytes long. We can thus sort arrays of 1-byte characters, 4-byte integers, or
100-byte records, all by changing the value of width.

The desired output order is determined by the compare function. It takes as
arguments pointers to two width-byte elements, and returns a negative number
if the first belongs before the second in sorted order, a positive number if the
second belongs before the first, or zero if they are the same. Here is a comparison
function to sort integers in increasing order:

int intcompare(int *i, int *j)

{

if (*i > *j) return (1);

if (*i < *j) return (-1);

return (0);

}

This comparison function can be used to sort an array a, of which the first
n elements are occupied, as follows:

qsort(a, n, sizeof(int), intcompare);

The name qsort suggests that quicksort is the algorithm implemented in
this library function, although this is usually irrelevant to the user.

4.3 Heapsort: Fast Sorting via Data Structures

Sorting is a natural laboratory for studying algorithm design paradigms, since
many useful techniques lead to interesting sorting algorithms. The next several
sections will introduce algorithmic design techniques motivated by particular
sorting algorithms.

The alert reader may ask why I review all the standard sorting algorithms
after saying that you are usually better off not implementing them, and using
library functions instead. The answer is that the underlying design techniques
are very important for other algorithmic problems you are likely to encounter.

We start with data structure design, because one of the most dramatic al-
gorithmic improvements via appropriate data structures occurs in sorting. Se-
lection sort is a simple-to-code algorithm that repeatedly extracts the smallest
remaining element from the unsorted part of the set:
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SelectionSort(A)
For i = 1 to n do

Sort[i] = Find-Minimum from A
Delete-Minimum from A

Return(Sort)

A C language implementation of selection sort appeared back in Section
2.5.1 (page 41). There we partitioned the input array into sorted and unsorted
regions. To find the smallest item, we performed a linear sweep through the
unsorted portion of the array. The smallest item is then swapped with the ith
item in the array before moving on to the next iteration. Selection sort performs
n iterations, where the average iteration takes n/2 steps, for a total of O(n2)
time.

But what if we improve the data structure? It takes O(1) time to remove
a particular item from an unsorted array after it has been located, but O(n)
time to find the smallest item. These are exactly the operations supported by
priority queues. So what happens if we replace the data structure with a better
priority queue implementation, either a heap or a balanced binary tree? The
operations within the loop now take O(log n) time each, instead of O(n). Using
such a priority queue implementation speeds up selection sort from O(n2) to
O(n log n).

The name typically given to this algorithm, heapsort, obscures the fact that
the algorithm is nothing but an implementation of selection sort using the right
data structure.

4.3.1 Heaps

Heaps are a simple and elegant data structure for efficiently supporting the
priority queue operations insert and extract-min. Heaps work by maintaining a
partial order on the set of elements that is weaker than the sorted order (so it
can be efficient to maintain) yet stronger than random order (so the minimum
element can be quickly identified).

Power in any hierarchically structured organization is reflected by a tree,
where each node in the tree represents a person, and edge (x, y) implies that x
directly supervises (or dominates) y. The person at the root sits at the “top of
the heap.”

In this spirit, a heap-labeled tree is defined to be a binary tree such that
the key of each node dominates the keys of its children. In a min-heap, a node
dominates its children by having a smaller key than they do, while in a max-
heap parent nodes dominate by being bigger. Figure 4.2(l) presents a min-heap
ordered tree of noteworthy years in American history.

The most natural implementation of this binary tree would store each key
in a node with pointers to its two children. But as with binary search trees, the
memory used by the pointers can easily outweigh the size of keys, which is the
data we are really interested in. The heap is a slick data structure that enables
us to represent binary trees without using any pointers. We store data as an
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Figure 4.2: A heap-labeled tree of important years from American history (left),
with the corresponding implicit heap representation (right).

array of keys, and use the position of the keys to implicitly play the role of the
pointers.

We store the root of the tree in the first position of the array, and its left
and right children in the second and third positions, respectively. In general, we
store the 2l−1 keys of the lth level of a complete binary tree from left to right
in positions 2l−1 to 2l − 1, as shown in Figure 4.2(right). We assume that the
array starts with index 1 to simplify matters.

typedef struct {

item_type q[PQ_SIZE+1]; /* body of queue */

int n; /* number of queue elements */

} priority_queue;

What is especially nice about this representation is that the positions of the
parent and children of the key at position k are readily determined. The left
child of k sits in position 2k and the right child in 2k+ 1, while the parent of k
holds court in position �k/2	. Thus, we can move around the tree without any
pointers.

int pq_parent(int n) {

if (n == 1) {

return(-1);

}

return((int) n/2); /* implicitly take floor(n/2) */

}

int pq_young_child(int n) {

return(2 * n);

}
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This approach means that we can store any binary tree in an array without
pointers. What is the catch? Suppose our height h tree was sparse, meaning
that the number of nodes n � 2h − 1. All missing internal nodes still take up
space in our structure, since we must represent a full binary tree to maintain
the positional mapping between parents and children.

Space efficiency thus demands that we not allow holes in our tree—meaning
that each level be packed as much as it can be. Then only the last level may be
incomplete. By packing the elements of the last level as far left as possible, we
can represent an n-key tree using the first n elements of the array. If we did not
enforce these structural constraints, we might need an array of size 2n − 1 to
store n elements: consider a right-going twig using positions 1, 3, 7, 15, 31. . . .
With heaps all but the last level are filled, so the height h of an n element heap
is logarithmic because:

h−1∑

i=0

2i = 2h − 1 ≥ n

implying that h = lg(n+ 1)�.
This implicit representation of binary trees saves memory, but is less flexible

than using pointers. We cannot store arbitrary tree topologies without wasting
large amounts of space. We cannot move subtrees around by just changing a
single pointer, only by explicitly moving all the elements in the subtree. This
loss of flexibility explains why we cannot use this idea to represent binary search
trees, but it works just fine for heaps.

Stop and Think: Who’s Where in the Heap?

Problem: How can we efficiently search for a particular key k in a heap?

Solution: We can’t. Binary search does not work because a heap is not a
binary search tree. We know almost nothing about the relative order of the n/2
leaf elements in a heap—certainly nothing that lets us avoid doing linear search
through them.

4.3.2 Constructing Heaps

Heaps can be constructed incrementally, by inserting each new element into the
left-most open spot in the array, namely the (n + 1)st position of a previously
n-element heap. This ensures the desired balanced shape of the heap-labeled
tree, but does not maintain the dominance ordering of the keys. The new key
might be less than its parent in a min-heap, or greater than its parent in a
max-heap.

The solution is to swap any such dissatisfied element with its parent. The old
parent is now happy, because it is properly dominated. The other child of the
old parent is still happy, because it is now dominated by an element even more
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extreme than before. The new element is now happier, but may still dominate
its new parent. So we recur at a higher level, bubbling up the new key to its
proper position in the hierarchy. Since we replace the root of a subtree by a
larger one at each step, we preserve the heap order elsewhere.

void pq_insert(priority_queue *q, item_type x) {

if (q->n >= PQ_SIZE) {

printf("Warning: priority queue overflow! \n");

} else {

q->n = (q->n) + 1;

q->q[q->n] = x;

bubble_up(q, q->n);

}

}

void bubble_up(priority_queue *q, int p) {

if (pq_parent(p) == -1) {

return; /* at root of heap, no parent */

}

if (q->q[pq_parent(p)] > q->q[p]) {

pq_swap(q, p, pq_parent(p));

bubble_up(q, pq_parent(p));

}

}

This swap process takes constant time at each level. Since the height of an
n-element heap is �lg n	, each insertion takes at most O(log n) time. A heap of
n elements can thus be constructed in O(n log n) time through n such insertions:

void pq_init(priority_queue *q) {

q->n = 0;

}

void make_heap(priority_queue *q, item_type s[], int n) {

int i; /* counter */

pq_init(q);

for (i = 0; i < n; i++) {

pq_insert(q, s[i]);

}

}
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4.3.3 Extracting the Minimum

The remaining priority queue operations are identifying and deleting the dom-
inant element. Identification is easy, since the top of the heap sits in the first
position of the array.

Removing the top element leaves a hole in the array. This can be filled by
moving the element from the right-most leaf (sitting in the nth position of the
array) into the first position.

The shape of the tree has been restored but (as after insertion) the labeling
of the root may no longer satisfy the heap property. Indeed, this new root may
be dominated by both of its children. The root of this min-heap should be
the smallest of three elements, namely the current root and its two children.
If the current root is dominant, the heap order has been restored. If not, the
dominant child should be swapped with the root and the problem pushed down
to the next level.

This dissatisfied element bubbles down the heap until it dominates all its chil-
dren, perhaps by becoming a leaf node and ceasing to have any. This percolate-
down operation is also called heapify, because it merges two heaps (the subtrees
below the original root) with a new key.

item_type extract_min(priority_queue *q) {

int min = -1; /* minimum value */

if (q->n <= 0) {

printf("Warning: empty priority queue.\n");

} else {

min = q->q[1];

q->q[1] = q->q[q->n];

q->n = q->n - 1;

bubble_down(q, 1);

}

return(min);

}

void bubble_down(priority_queue *q, int p) {

int c; /* child index */

int i; /* counter */

int min_index; /* index of lightest child */

c = pq_young_child(p);

min_index = p;

for (i = 0; i <= 1; i++) {
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if ((c + i) <= q->n) {

if (q->q[min_index] > q->q[c + i]) {

min_index = c + i;

}

}

}

if (min_index != p) {

pq_swap(q, p, min_index);

bubble_down(q, min_index);

}

}

We will reach a leaf after �lg n	 bubble down steps, each constant time.
Thus, root deletion is completed in O(log n) time.

Repeatedly exchanging the maximum element with the last element and
calling heapify yields an O(n log n) sorting algorithm, named heapsort.

void heapsort_(item_type s[], int n) {

int i; /* counters */

priority_queue q; /* heap for heapsort */

make_heap(&q, s, n);

for (i = 0; i < n; i++) {

s[i] = extract_min(&q);

}

}

Heapsort is a great sorting algorithm. It is simple to program; indeed,
the complete implementation has been presented above. It runs in worst-case
O(n log n) time, which is the best that can be expected from any sorting algo-
rithm. It is an in-place sort, meaning it uses no extra memory over the array
containing the elements to be sorted. Admittedly, as implemented here, my
heapsort is not in-place because it creates the priority queue in q, not s. But
each newly extracted element fits perfectly in the slot freed up by the shrinking
heap, leaving behind a sorted array. Although other algorithms prove slightly
faster in practice, you won’t go wrong using heapsort for sorting data that sits
in the computer’s main memory.

Priority queues are very useful data structures. Recall they were the hero
of the war story described in Section 3.6 (page 89). A complete set of priority
queue implementations is presented in the catalog, in Section 15.2 (page 445).
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4.3.4 Faster Heap Construction (*)

As we have seen, a heap can be constructed on n elements by incremental
insertion in O(n log n) time. Surprisingly, heaps can be constructed even faster,
by using our bubble down procedure and some clever analysis.

Suppose we pack the n keys destined for our heap into the first n elements of
our priority-queue array. The shape of our heap will be right, but the dominance
order will be all messed up. How can we restore it?

Consider the array in reverse order, starting from the last (nth) position.
It represents a leaf of the tree and so dominates its non-existent children. The
same is the case for the last n/2 positions in the array, because all are leaves. If
we continue to walk backwards through the array we will eventually encounter
an internal node with children. This element may not dominate its children,
but its children represent well-formed (if small) heaps.

This is exactly the situation the bubble down procedure was designed to
handle, restoring the heap order of an arbitrary root element sitting on top of
two sub-heaps. Thus, we can create a heap by performing n/2 non-trivial calls
to the bubble down procedure:

void make_heap_fast(priority_queue *q, item_type s[], int n) {

int i; /* counter */

q->n = n;

for (i = 0; i < n; i++) {

q->q[i + 1] = s[i];

}

for (i = q->n/2; i >= 1; i--) {

bubble_down(q, i);

}

}

Multiplying the number of calls to bubble down (n) times an upper bound
on the cost of each operation (O(log n)) gives us a running time analysis of
O(n log n). This would make it no faster than the incremental insertion algo-
rithm described above.

But note that it is indeed an upper bound, because only the last insertion
will actually take �lg n	 steps. Recall that bubble down takes time proportional
to the height of the heaps it is merging. Most of these heaps are extremely
small. In a full binary tree on n nodes, there are n/2 nodes that are leaves (i.e.
height 0), n/4 nodes that are height 1, n/8 nodes that are height 2, and so on.
In general, there are at most n/2h+1� nodes of height h, so the cost of building
a heap is:

�lgn�∑

h=0

n/2h+1�h ≤ n

�lgn�∑

h=0

h/2h ≤ 2n
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Since this sum is not quite a geometric series, we can’t apply the usual
identity to get the sum, but rest assured that the puny contribution of the
numerator (h) is crushed by the denominator (2h). The series quickly converges
to linear.

Does it matter that we can construct heaps in linear time instead of O(n log n)?
Not really. The construction time did not dominate the complexity of heapsort,
so improving the construction time does not improve its worst-case performance.
Still, it is an impressive display of the power of careful analysis, and the free
lunch that geometric series convergence can sometimes provide.

Stop and Think: Where in the Heap?

Problem: Given an array-based heap on n elements and a real number x,
efficiently determine whether the kth smallest element in the heap is greater than
or equal to x. Your algorithm should be O(k) in the worst case, independent of
the size of the heap. (Hint: you do not have to find the kth smallest element;
you need only to determine its relationship to x.)

Solution: There are at least two different ideas that lead to correct but inefficient
algorithms for this problem:

• Call extract-min k times, and test whether all of these are less than x.
This explicitly sorts the first k elements and so gives us more information
than the desired answer, but it takes O(k log n) time to do so.

• The kth smallest element cannot be deeper than the kth level of the heap,
since the path from it to the root must go through elements of decreasing
value. We can thus look at all the elements on the first k levels of the
heap, and count how many of them are less than x, stopping when we
either find k of them or run out of elements. This is correct, but takes
O(min(n, 2k)) time, since the top k elements have 2k − 1 elements.

An O(k) solution can look at only k elements smaller than x, plus at most
O(k) elements greater than x. Consider the following recursive procedure, called
at the root with i = 1 and count = k:
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int heap_compare(priority_queue *q, int i, int count, int x) {

if ((count <= 0) || (i > q->n)) {

return(count);

}

if (q->q[i] < x) {

count = heap_compare(q, pq_young_child(i), count-1, x);

count = heap_compare(q, pq_young_child(i)+1, count, x);

}

return(count);

}

If the root of the min-heap is ≥ x, then no elements in the heap can be less
than x, as by definition the root must be the smallest element. This procedure
searches the children of all nodes of weight smaller than x until either (a) we
have found k of them, when it returns 0, or (b) they are exhausted, when it
returns a value greater than zero. Thus, it will find enough small elements if
they exist.

But how long does it take? The only nodes whose children we look at are
those < x, and there are at most k of these in total. Each have visited at most
two children, so we visit at most 2k + 1 nodes, for a total time of O(k).

4.3.5 Sorting by Incremental Insertion

Now consider a different approach to sorting via efficient data structures. Select
the next element from the unsorted set, and put it into it’s proper position in
the sorted set:

for (i = 1; i < n; i++) {

j = i;

while ((j > 0) && (s[j] < s[j - 1])) {

swap(&s[j], &s[j - 1]);

j = j-1;

}

}

Although insertion sort takes O(n2) in the worst case, it performs consider-
ably better if the data is almost sorted, since few iterations of the inner loop
suffice to sift it into the proper position.

Insertion sort is perhaps the simplest example of the incremental insertion
technique, where we build up a complicated structure on n items by first building
it on n− 1 items and then making the necessary changes to add the last item.

Note that faster sorting algorithms based on incremental insertion follow
from more efficient data structures. Insertion into a balanced search tree takes
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O(log n) per operation, or a total of O(n log n) to construct the tree. An in-
order traversal reads through the elements in sorted order to complete the job
in linear time.

4.4 War Story: Give me a Ticket on an Airplane

I came into this particular job seeking justice. I’d been retained by an air travel
company to help design an algorithm to find the cheapest available airfare from
city x to city y. Like most of you, I suspect, I’d been baffled at the crazy
price fluctuations of ticket prices under modern “yield management.” The price
of flights seems to soar far more efficiently than the planes themselves. The
problem, it seemed to me, was that airlines never wanted to show the true
cheapest price. If I did my job right, I could make damned sure they would
show it to me next time.

“Look,” I said at the start of the first meeting. “This can’t be so hard.
Construct a graph with vertices corresponding to airports, and add an edge
between each airport pair (u, v) that shows a direct flight from u to v. Set the
weight of this edge equal to the cost of the cheapest available ticket from u to
v. Now the cheapest fair from x to y is given by the shortest x–y path in this
graph. This path/fare can be found using Dijkstra’s shortest path algorithm.
Problem solved!” I announced, waving my hand with a flourish.

The assembled cast of the meeting nodded thoughtfully, then burst out
laughing. It was I who needed to learn something about the overwhelming
complexity of air travel pricing. There are literally millions of different fares
available at any time, with prices changing several times daily. Restrictions on
the availability of a particular fare in a particular context are enforced by a vast
set of pricing rules. These rules are an industry-wide kludge—a complicated
structure with little in the way of consistent logical principles. My favorite rule
exceptions applied only to the country of Malawi. With a population of only 18
million and per-capita income of $1,234 (180th in the world), they prove to be
an unexpected powerhouse shaping world aviation price policy. Accurately pric-
ing any air itinerary requires at least implicit checks to ensure the trip doesn’t
take us through Malawi.

The real problem is that there can easily be 100 different fares for the first
flight leg, say from Los Angeles (LAX) to Chicago (ORD), and a similar number
for each subsequent leg, say from Chicago to New York (JFK). The cheapest
possible LAX–ORD fare (maybe an AARP children’s price) might not be com-
binable with the cheapest ORD–JFK fare (perhaps a pre-Ramadan special that
can only be used with subsequent connections to Mecca).

After being properly chastised for oversimplifying the problem, I got down
to work. I started by reducing the problem to the simplest interesting case.
“So, you need to find the cheapest two-hop fare that passes your rule tests. Is
there a way to decide in advance which pairs will pass without explicitly testing
them?”

“No, there is no way to tell,” they assured me. “We can only consult a
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Figure 4.3: Sorting the pairwise sums of lists X and Y .

black box routine to decide whether a particular price is available for the given
itinerary/travelers.”

“So our goal is to call this black box on the fewest number of combinations.
This means evaluating all possible fare combinations in order from cheapest to
most expensive, and stopping as soon as we encounter the first legal combina-
tion.”

“Right.”

“Why not construct the m×n possible price pairs, sort them in terms of cost,
and evaluate them in sorted order? Clearly this can be done in O(nm log(nm))
time.”2

“That is basically what we do now, but it is quite expensive to construct the
full set of m× n pairs, since the first one might be all we need.”

I caught a whiff of an interesting problem. “So what you really want is
an efficient data structure to repeatedly return the next most expensive pair
without constructing all the pairs in advance.”

This was indeed an interesting problem. Finding the largest element in a
set under insertion and deletion is exactly what priority queues are good for.
The catch here is that we could not seed the priority queue with all values in
advance. We had to insert new pairs into the queue after each evaluation.

I constructed some examples, like the one in Figure 4.3. We could represent
each fare by the list indexes of its two components. The cheapest single fare
will certainly be constructed by adding up the cheapest component from both
lists, described (1, 1). The second cheapest fare would be made from the head
of one list and the second element of another, and hence would be either (1, 2)
or (2, 1). Then it gets more complicated. The third cheapest could either be
the unused pair above or (1, 3) or (3, 1). Indeed it would have been (3, 1) in the
example above if the third fare of X had been $120.

“Tell me,” I asked. “Do we have time to sort the two respective lists of fares

2The question of whether all such sums can be sorted faster than nm arbitrary integers is
a notorious open problem in algorithm theory. See [Fre76, Lam92] for more on X+Y sorting,
as the problem is known.
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in increasing order?”
“Don’t have to,” the leader replied. “They come out in sorted order from

the database.”
That was good news! It meant there was a natural order to the pair values.

We never need to evaluate the pairs (i+ 1, j) or (i, j + 1) before (i, j), because
they clearly defined more expensive fares.

“Got it!,” I said. “We will keep track of index pairs in a priority queue,
with the sum of the fare costs as the key for the pair. Initially we put only
the pair (1, 1) in the queue. If it proves not to be feasible, we put in its two
successors—namely (1, 2) and (2, 1). In general, we enqueue pairs (i+1, j) and
(i, j + 1) after evaluating/rejecting pair (i, j). We will get through all the pairs
in the right order if we do so.”

The gang caught on quickly. “Sure. But what about duplicates? We will
construct pair (x, y) two different ways, both when expanding (x − 1, y) and
(x, y − 1).”

“You are right. We need an extra data structure to guard against duplicates.
The simplest might be a hash table to tell us whether a given pair exists in the
priority queue before we insert a duplicate. In fact, we will never have more
than n active pairs in our data structure, since there can only be one pair for
each distinct value of the first coordinate.”

And so it went. Our approach naturally generalizes to itineraries with more
than two legs, with complexity that grows with the number of legs. The best-
first evaluation inherent in our priority queue enabled the system to stop as
soon as it found the provably cheapest fare. This proved to be fast enough
to provide interactive response to the user. That said, I never noticed airline
tickets getting cheaper as a result.

4.5 Mergesort: Sorting by Divide and Conquer

Recursive algorithms reduce large problems into smaller ones. A recursive ap-
proach to sorting involves partitioning the elements into two groups, sorting each
of the smaller problems recursively, and then interleaving the two sorted lists to
totally order the elements. This algorithm is called mergesort, recognizing the
importance of the interleaving operation:

Mergesort(A[1, . . . , n])
Merge( MergeSort(A[1, . . . , �n/2	]), MergeSort(A[�n/2	+ 1, . . . , n]) )

The basis case of the recursion occurs when the subarray to be sorted con-
sists of at most one element, so no rearrangement is necessary. A trace of the
execution of mergesort is given in Figure 4.4. Picture the action as it happens
during an in-order traversal of the tree, with each merge occurring after the two
child calls return sorted subarrays.

The efficiency of mergesort depends upon how efficiently we can combine the
two sorted halves into a single sorted list. We could concatenate them into one
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Figure 4.4: The recursion tree for mergesort. The tree has height log2 n�, and
the cost of the merging operations on each level are Θ(n), yielding an Θ(n log n)
time algorithm.

list and call heapsort or some other sorting algorithm to do it, but that would
just destroy all the work spent sorting our component lists.

Instead we can merge the two lists together. Observe that the smallest
overall item in two lists sorted in increasing order (as above) must sit at the
top of one of the two lists. This smallest element can be removed, leaving two
sorted lists behind—one slightly shorter than before. The second smallest item
overall must now be atop one of these lists. Repeating this operation until both
lists are empty will merge two sorted lists (with a total of n elements between
them) into one, using at most n− 1 comparisons or O(n) total work.

What is the total running time of mergesort? It helps to think about how
much work is done at each level of the execution tree, as shown in Figure 4.4.
If we assume for simplicity that n is a power of two, the kth level consists of all
the 2k calls to mergesort processing subranges of n/2k elements.

The work done on the zeroth level (the top) involves merging one pair of
sorted lists, each of size n/2, for a total of at most n − 1 comparisons. The
work done on the first level (one down) involves merging two pairs of sorted
lists, each of size n/4, for a total of at most n− 2 comparisons. In general, the
work done on the kth level involves merging 2k pairs of sorted lists, each of size
n/2k+1, for a total of at most n− 2k comparisons. Linear work is done merging
all the elements on each level. Each of the n elements appears in exactly one
subproblem on each level. The most expensive case (in terms of comparisons)
is actually the top level.

The number of elements in a subproblem gets halved at each level. The
number of times we can halve n until we get to 1 is lg n�. Because the recursion
goes lg n levels deep, and a linear amount of work is done per level, mergesort
takes O(n log n) time in the worst case.

Mergesort is a great algorithm for sorting linked lists, because it does not
rely on random access to elements like heapsort and quicksort. Its primary
disadvantage is the need for an auxiliary buffer when sorting arrays. It is easy to
merge two sorted linked lists without using any extra space, just by rearranging
the pointers. However, to merge two sorted arrays (or portions of an array), we
need to use a third array to store the result of the merge to avoid stepping on the
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component arrays. Consider merging {4, 5, 6} with {1, 2, 3}, packed from left to
right in a single array. Without the buffer, we would overwrite the elements of
the left half during merging and lose them.

Mergesort is a classic divide-and-conquer algorithm. We are ahead of the
game whenever we can break one large problem into two smaller problems,
because the smaller problems are easier to solve. The trick is taking advantage
of the two partial solutions to construct a solution of the full problem, as we
did with the merge operation. Divide and conquer is an important algorithm
design paradigm, and will be the subject of Chapter 5.

Implementation

The divide-and-conquer mergesort routine follows naturally from the pseu-
docode:

void merge_sort(item_type s[], int low, int high) {

int middle; /* index of middle element */

if (low < high) {

middle = (low + high) / 2;

merge_sort(s, low, middle);

merge_sort(s, middle + 1, high);

merge(s, low, middle, high);

}

}

More challenging turns out to be the details of how the merging is done. The
problem is that we must put our merged array somewhere. To avoid losing an
element by overwriting it in the course of the merge, we first copy each subarray
to a separate queue and merge these elements back into the array. In particular:

void merge(item_type s[], int low, int middle, int high) {

int i; /* counter */

queue buffer1, buffer2; /* buffers to hold elements for merging */

init_queue(&buffer1);

init_queue(&buffer2);

for (i = low; i <= middle; i++) enqueue(&buffer1, s[i]);

for (i = middle + 1; i <= high; i++) enqueue(&buffer2, s[i]);

i = low;

while (!(empty_queue(&buffer1) || empty_queue(&buffer2))) {

if (headq(&buffer1) <= headq(&buffer2)) {

s[i++] = dequeue(&buffer1);
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} else {

s[i++] = dequeue(&buffer2);

}

}

while (!empty_queue(&buffer1)) {

s[i++] = dequeue(&buffer1);

}

while (!empty_queue(&buffer2)) {

s[i++] = dequeue(&buffer2);

}

}

4.6 Quicksort: Sorting by Randomization

Suppose we select an arbitrary item p from the n items we seek to sort. Quicksort
(shown in action in Figure 4.5) separates the n− 1 other items into two piles: a
low pile containing all the elements that are < p, and a high pile containing all
the elements that are ≥ p. Low and high denote the array positions into which
we place the respective piles, leaving a single slot between them for p.

Such partitioning buys us two things. First, the pivot element p ends up in
the exact array position it will occupy in the final sorted order. Second, after
partitioning no element flips to the other side in the final sorted order. Thus,
we can now sort the elements to the left and the right of the pivot independently!
This gives us a recursive sorting algorithm, since we can use the partitioning
approach to sort each subproblem. The algorithm must be correct, because each
element ultimately ends up in the proper position:

void quicksort(item_type s[], int l, int h) {

int p; /* index of partition */

if (l < h) {

p = partition(s, l, h);

quicksort(s, l, p - 1);

quicksort(s, p + 1, h);

}

}

We can partition the array in one linear scan for a particular pivot element
by maintaining three sections of the array: less than the pivot (to the left of
firsthigh), greater than or equal to the pivot (between firsthigh and i), and
unexplored (to the right of i), as implemented below:
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Figure 4.5: Animations of quicksort in action: first selecting the first element
in each subarray as pivot (on left), and then selecting the last element as pivot
(on right).

int partition(item_type s[], int l, int h) {

int i; /* counter */

int p; /* pivot element index */

int firsthigh; /* divider position for pivot element */

p = h; /* select last element as pivot */

firsthigh = l;

for (i = l; i < h; i++) {

if (s[i] < s[p]) {

swap(&s[i], &s[firsthigh]);

firsthigh++;

}

}

swap(&s[p], &s[firsthigh]);

return(firsthigh);

}

Since the partitioning step consists of at most n swaps, it takes time lin-
ear in the number of keys. But how long does the entire quicksort take? As
with mergesort, quicksort builds a recursion tree of nested subranges of the n-
element array. As with mergesort, quicksort spends linear time processing (now
partitioning instead of mergeing) the elements in each subarray on each level.
As with mergesort, quicksort runs in O(n · h) time, where h is the height of the
recursion tree.

The difficulty is that the height of the tree depends upon where the pivot
element ends up in each partition. If we get very lucky and happen to repeatedly
pick the median element as our pivot, the subproblems are always half the size
of those at the previous level. The height represents the number of times we
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Figure 4.6: The best-case (left) and worst-case (right) recursion trees for quick-
sort. The left partition is in blue and the right partition in red.

can halve n until we get down to 1, meaning h = lg n�. This happy situation
is shown in Figure 4.6(left), and corresponds to the best case of quicksort.

Now suppose we consistently get unlucky, and our pivot element always splits
the array as unequally as possible. This implies that the pivot element is always
the biggest or smallest element in the sub-array. After this pivot settles into its
position, we will be left with one subproblem of size n − 1. After doing linear
work we have reduced the size of our problem by just one measly element, as
shown in Figure 4.6(right). It takes a tree of height n − 1 to chop our array
down to one element per level, for a worst case time of Θ(n2).

Thus, the worst case for quicksort is worse than heapsort or mergesort. To
justify its name, quicksort had better be good in the average case. Understand-
ing why requires some intuition about random sampling.

4.6.1 Intuition: The Expected Case for Quicksort

The expected performance of quicksort depends upon the height of the partition
tree constructed by pivot elements at each step. Mergesort splits the keys into
two equal halves, sorts both of them recursively, and then merges the halves
in linear time—and hence runs in O(n log n) time. Thus, whenever our pivot
element is near the center of the sorted array (meaning the pivot is close to the
median element), we get the same good split realizing the same running time
as mergesort.

I will give an intuitive explanation of why quicksort runs in O(n log n) time
in the average case. How likely is it that a randomly selected pivot is a good
one? The best possible selection for the pivot would be the median key, because
exactly half of elements would end up left, and half the elements right, of the
pivot. However, we have only a probability of 1/n that a randomly selected
pivot is the median, which is quite small.

Suppose we say a key is a good enough pivot if it lies in the center half of the
sorted space of keys—those ranked from n/4 to 3n/4 in the space of all keys to
be sorted. Such good enough pivot elements are quite plentiful, since half the
elements lie closer to the middle than to one of the two ends (see Figure 4.7).
Thus, on each selection we will pick a good enough pivot with probability of 1/2.
We will make good progress towards sorting whenever we pick a good enough
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Figure 4.7: Half the time, a randomly chosen pivot is close to the median
element.

pivot.
The worst possible good enough pivot leaves the bigger of the two partitions

with 3n/4 items. This happens also to be the expected size of the larger partition
left after picking a random pivot p, at the median between the worst possible
pivot (p = 1 or p = n leaving a partition of size n − 1) and the best possible
pivot (p = n/2 leaving two partitions of size n/2. So what is the height hg

of a quicksort partition tree constructed repeatedly from the expected pivot
value? The deepest path through this tree passes through partitions of size
n, (3/4)n, (3/4)2n, . . ., down to 1. How many times can we multiply n by 3/4
until it gets down to 1?

(3/4)hgn = 1 =⇒ n = (4/3)hg

so hg = log4/3 n.
On average, random quicksort partition trees (and by analogy, binary search

trees under random insertion) are very good. More careful analysis shows the av-
erage height after n insertions is approximately 2 ln n. Since 2 lnn ≈ 1.386 lg n,
this is only 39% taller than a perfectly balanced binary tree. Since quicksort
does O(n) work partitioning on each level, the average time is O(n log n). If we
are extremely unlucky, and our randomly selected elements are always among
the largest or smallest element in the array, quicksort turns into selection sort
and runs in O(n2). But the odds against this are vanishingly small.

4.6.2 Randomized Algorithms

There is an important subtlety about the expected case O(n log n) running time
for quicksort. Our quicksort implementation above selected the last element in
each sub-array as the pivot. Suppose this program were given a sorted array
as input. Then at each step it would pick the worst possible pivot, and run in
quadratic time.

For any deterministic method of pivot selection, there exists a worst-case
input instance which will doom us to quadratic time. The analysis presented
above made no claim stronger than:

“Quicksort runs in Θ(n log n) time, with high probability, if you give
it randomly ordered data to sort.”

But now suppose we add an initial step to our algorithm where we ran-
domly permute the order of the n elements before we try to sort them. Such
a permutation can be constructed in O(n) time (see Section 16.7 for details).
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This might seem like wasted effort, but it provides the guarantee that we can
expect Θ(n log n) running time whatever the initial input was. The worst case
performance still can happen, but it now depends only upon how unlucky we
are. There is no longer a well-defined “worst-case” input. We now can claim
that:

“Randomized quicksort runs in Θ(n log n) time on any input, with
high probability.”

Alternately, we could get the same guarantee by selecting a random element to
be the pivot at each step.

Randomization is a powerful tool to improve algorithms with bad worst-
case but good average-case complexity. It can be used to make algorithms
more robust to boundary cases and more efficient on highly structured input
instances that confound heuristic decisions (such as sorted input to quicksort).
It often lends itself to simple algorithms that provide expected-time performance
guarantees, which are otherwise obtainable only using complicated deterministic
algorithms. Randomized algorithms will be the topic of Chapter 6.

Proper analysis of randomized algorithms requires some knowledge of prob-
ability theory, and will be deferred to Chapter 6. However, some of the basic
approaches to designing efficient randomized algorithms are readily explainable:

• Random sampling – Want to get an idea of the median value of n things,
but don’t have either the time or space to look at them all? Select a small
random sample of the input and find the median of those. The result
should be representative for the full set.

This is the idea behind opinion polling, where we sample a small number
of people as a proxy for the full population. Biases creep in unless you
take a truly random sample, as opposed to the first x people you happen
to see. To avoid bias, actual polling agencies typically dial random phone
numbers and hope someone answers.

• Randomized hashing – We have claimed that hashing can be used to im-
plement dictionary search in O(1) “expected time.” However, for any hash
function there is a given worst-case set of keys that all get hashed to the
same bucket. But now suppose we randomly select our hash function from
a large family of good ones as the first step of our algorithm. We get the
same type of improved guarantee that we did with randomized quicksort.

• Randomized search – Randomization can also be used to drive search tech-
niques such as simulated annealing, as will be discussed in detail in Section
12.6.3 (page 406).

Stop and Think: Nuts and Bolts

Problem: The nuts and bolts problem is defined as follows. You are given a
collection of n bolts of different widths, and n corresponding nuts. You can test
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whether a given nut and bolt fit together, from which you learn whether the
nut is too large, too small, or an exact match for the bolt. The differences in
size between pairs of nuts or bolts are too small to see by eye, so you cannot
compare the sizes of two nuts or two bolts directly. You are asked to match
each bolt to each nut as efficiently as possible.

Give an O(n2) algorithm to solve the nuts and bolts problem. Then give a
randomized O(n log n) expected-time algorithm for the same problem.

Solution: The brute force algorithm for matching nuts and bolts starts with
the first bolt and compares it to each nut until a match is found. In the worst
case, this will require n comparisons. Repeating this for each successive bolt on
all remaining nuts yields an algorithm with a quadratic number of comparisons.

But what if we pick a random bolt and try it? On average, we would expect
to get about halfway through the set of nuts before we found the match, so
this randomized algorithm would do half the work on average as the worst case.
That counts as some kind of improvement, although not an asymptotic one.

Randomized quicksort achieves the desired expected-case running time, so a
natural idea is to emulate it on the nuts and bolts problem. The fundamental
step in quicksort is partitioning elements around a pivot. Can we partition nuts
and bolts around a randomly selected bolt b?

Certainly we can partition the nuts into those of size less than b and greater
than b. But decomposing the problem into two halves requires partitioning the
bolts as well, and we cannot compare bolt against bolt. But once we find the
matching nut to b, we can use it to partition the bolts accordingly. In 2n − 2
comparisons, we partition the nuts and bolts, and the remaining analysis follows
directly from randomized quicksort.

What is interesting about this problem is that no simple deterministic algo-
rithm for nut and bolt sorting is known. It illustrates how randomization makes
the bad case go away, leaving behind a simple and beautiful algorithm.

4.6.3 Is Quicksort Really Quick?

There is a clear, asymptotic difference between a Θ(n log n) algorithm and one
that runs in Θ(n2). Only the most obstinate reader would doubt my claim that
mergesort, heapsort, and quicksort will all outperform insertion sort or selection
sort on large enough instances.

But how can we compare two Θ(n log n) algorithms to decide which is faster?
How can we prove that quicksort is really quick? Unfortunately, the RAMmodel
and Big Oh analysis provide too coarse a set of tools to make that type of dis-
tinction. When faced with algorithms of the same asymptotic complexity, im-
plementation details and system quirks such as cache performance and memory
size often prove to be the decisive factor.

What we can say is that experiments show that when quicksort is imple-
mented well, it is typically two to three times faster than mergesort or heapsort.
The primary reason is that the operations in the innermost loop are simpler.
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Figure 4.8: A small subset of Charlottesville Shiffletts.

But I can’t argue if you don’t believe me when I say quicksort is faster. It is a
question whose solution lies outside the analytical tools we are using. The best
way to tell is to implement both algorithms and experiment.

4.7 Distribution Sort: Sorting via Bucketing

To sort names for a class roster or the telephone book, we could first partition
them according to the first letter of the last name. This will create twenty-six
different piles, or buckets, of names. Observe that any name in the J pile must
occur after all names in the I pile, and before any name in the K pile. Therefore,
we can proceed to sort each pile individually and just concatenate the sorted
piles together at the end.

Assuming the names are distributed evenly among the buckets, the resulting
twenty-six sorting problems should each be substantially smaller than the orig-
inal problem. By now further partitioning each pile based on the second letter
of each name, we can generate smaller and smaller piles. The set of names will
be completely sorted as soon as every bucket contains only a single name. Such
an algorithm is commonly called bucketsort or distribution sort.

Bucketing is a very effective idea whenever we are confident that the distri-
bution of data will be roughly uniform. It is the idea that underlies hash tables,
kd-trees, and a variety of other practical data structures. The downside of such
techniques is that the performance can be terrible when the data distribution is
not what we expected. Although data structures such as balanced binary trees
offer guaranteed worst-case behavior for any input distribution, no such promise
exists for heuristic data structures on unexpected input distributions.

Non-uniform distributions do occur in real life. Consider Americans with the
uncommon last name of Shifflett. When last I looked, the Manhattan telephone
directory (with over one million names) contained exactly five Shiffletts. So how
many Shiffletts should there be in a small city of 50,000 people? Figure 4.8 shows
a small portion of the two and a half pages of Shiffletts in the Charlottesville,
Virginia telephone book. The Shifflett clan is a fixture of the region, but it
would play havoc with any distribution sort program, as refining buckets from
S to Sh to Shi to Shif to . . . to Shifflett results in no significant partitioning.
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a1 < a2

a1 < a3

a2 < a3
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Figure 4.9: Interpreting insertion sort of input array a as a decision tree. Each
leaf represents a given input permutation, while the root–to–leaf path describes
the sequence of comparisons the algorithm does to sort it.

Take-Home Lesson: Sorting can be used to illustrate many algorithm design
paradigms. Data structure techniques, divide and conquer, randomization, and
incremental construction all lead to efficient sorting algorithms.

4.7.1 Lower Bounds for Sorting

One last issue on the complexity of sorting. We have seen several sorting algo-
rithms that run in worst-case O(n log n) time, but none that is linear. To sort
n items certainly requires looking at all of them, so any sorting algorithm must
be Ω(n) in the worst case. Might sorting be possible in linear time?

The answer is no, presuming that your algorithm is based on comparing
pairs of elements. An Ω(n log n) lower bound can be shown by observing that
any sorting algorithm must behave differently during execution on each of the
n! possible permutations of n keys. If an algorithm did exactly the same thing
with two different input permutations, there is no way that both of them could
correctly come out sorted. The outcome of each pairwise comparison governs
the run-time behavior of any comparison-based sorting algorithm. We can think
of the set of all possible executions for such an algorithm as a tree with n! leaves,
each of which correspond to one input permutation, and each root–to–leaf path
describes the comparisons performed to sort the given input. The minimum
height tree corresponds to the fastest possible algorithm, and it happens that
lg(n!) = Θ(n log n).

Figure 4.9 presents the decision tree for insertion sort on three elements. To
interpret it, simulate what insertion sort does on the input a = (3, 1, 2). Because
a1 ≥ a2, these elements must be swapped to produce a sorted order. Insertion
sort then compares the end of the sorted array (the original input a1) against
a3. If a1 ≥ a3, the final test of a3 against the head of the sorted part (original
input a2) decides whether to put a2 first or second in sorted order.

This lower bound is important for several reasons. First, the idea can be
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extended to give lower bounds for many applications of sorting, including ele-
ment uniqueness, finding the mode, and constructing convex hulls. Sorting has
one of the few non-trivial lower bounds among algorithmic problems. We will
present a different approach to arguing that fast algorithms are unlikely to exist
in Chapter 11.

Note that hashing-based algorithms do not perform such element compar-
isons, putting them outside the scope of this lower bound. But hashing-based
algorithms can get unlucky, and with worst-case luck the running time of any
randomized algorithm for one of these problems will be Ω(n log n).

4.8 War Story: Skiena for the Defense

I lead a quiet, reasonably honest life. One reward for this is that I don’t often
find myself on the business end of surprise calls from lawyers. Thus, I was
astonished to get a call from a lawyer who not only wanted to talk with me, but
wanted to talk to me about sorting algorithms.

It turned out that her firm was working on a case involving high-performance
programs for sorting, and needed an expert witness who could explain technical
issues to the jury. They knew I knew something about algorithms, but before
taking me on they demanded to see my teaching evaluations to prove that I
could explain things to people.3 It promised to be an opportunity to learn
about how fast sorting programs really worked. I figured I would learn which
in-place sorting algorithm was fastest in practice. Was it heapsort or quicksort?
What subtle, secret algorithmics made the difference to minimize the number
of comparisons in practice?

The answer was quite humbling. Nobody cared about in-place sorting. The
name of the game was sorting huge files, much bigger than can fit in main
memory. All the important action was in getting the data on and off a disk.
Cute algorithms for doing internal (in-memory) sorting were not the bottleneck,
because the real problem lies in sorting gigabytes at a time.

Recall that disks have relatively long seek times, reflecting how long it takes
the desired part of the disk to rotate under the read/write head. Once the head
is in the right place, the data moves relatively quickly, and it costs about the
same to read a large data block as it does to read a single byte. Thus, the
goal is minimizing the number of blocks read/written, and coordinating these
operations so the sorting algorithm is never waiting to get the data it needs.

The disk-intensive nature of sorting is best revealed by the annual Minutesort
competition. The goal is to sort as much data in one minute as possible. As
of this writing, the current champion is Tencent Sort, which managed to sort
55 terabytes of data in under a minute on a little old 512-node cluster, each
with 20 cores and 512 GB RAM. You can check out the current records at
http://sortbenchmark.org/.

3One of my more cynical faculty colleagues said this was the first time anyone, anywhere,
had ever actually looked at university teaching evaluations.

http://sortbenchmark.org/
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That said, which algorithm is best for external sorting? It basically turns
out to be a multiway mergesort, employing a lot of engineering and special
tricks. You build a heap with members of the top block from each of k sorted
lists. By repeatedly plucking the top element off this heap, you build a sorted
list merging these k lists. Because this heap is sitting in main memory, these
operations are fast. When you have a large enough sorted run, you write it to
disk, and free up memory for more data. When you get close to emptying out
the elements from the top block of one of the k sorted lists you are merging,
load the next block.

It proves very hard to benchmark sorting programs/algorithms at this level
and decide which really is fastest. Is it fair to compare a commercial pro-
gram designed to handle general files with a stripped-down code optimized for
integers? The Minutesort competition employs randomly generated 100-byte
records. This is a different world than sorting names: Shiffletts are not ran-
domly distributed. For example, one widely employed trick is to strip off a
relatively short prefix of the key and initially sort only on that, just to avoid
lugging all those extra bytes around.

What lessons did I learn from this? The most important, by far, is to do
everything you can to avoid being involved in a lawsuit either as a plaintiff or
defendant.4 Courts are not instruments for resolving disputes quickly. Legal
battles have a lot in common with military battles: they escalate very quickly,
become very expensive in time, money, and soul, and usually end only when
both sides are exhausted and compromise. Wise are the parties who can work
out their problems without going to court. Properly absorbing this lesson now
could save you thousands of times the cost of this book.

On technical matters, it is important to worry about external memory per-
formance whenever you combine very large datasets with low-complexity algo-
rithms (say linear or Θ(n log n)). Constant factors of even 5 or 10 can make a
big difference here between what is feasible and what is hopeless. Of course,
quadratic-time algorithms are doomed to fail on large datasets, regardless of
data access times.

Chapter Notes

Several interesting sorting algorithms have not been discussed in this section
including shellsort, a substantially more efficient version of insertion sort, and
radix sort, an efficient algorithm for sorting strings. You can learn more about
these and every other sorting algorithm by browsing through Knuth [Knu98].
This includes external sorting, the subject of this chapter’s legal war story.

As implemented here, mergesort copies the merged elements into an auxiliary
buffer, to avoid overwriting the original elements to be sorted. Through clever
but complicated buffer manipulation, mergesort can be implemented in an array
without using too much extra storage. Kronrod’s algorithm for in-place merging
is presented in [Knu98].

4However, it is actually quite interesting serving as an expert witness.
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Randomized algorithms are discussed in greater detail in the books by Mot-
wani and Raghavan [MR95] and Mitzenmacher and Upfal [MU17]. The prob-
lem of nut and bolt sorting was introduced by Rawlins [Raw92]. A complicated
but deterministic Θ(n log n) algorithm is due to Komlos, Ma, and Szemeredi
[KMS98].

4.9 Exercises

Applications of Sorting: Numbers

4-1. [3] The Grinch is given the job of partitioning 2n players into two teams of n
players each. Each player has a numerical rating that measures how good he or
she is at the game. The Grinch seeks to divide the players as unfairly as possible,
so as to create the biggest possible talent imbalance between the teams. Show
how the Grinch can do the job in O(n log n) time.

4-2. [3] For each of the following problems, give an algorithm that finds the de-
sired numbers within the given amount of time. To keep your answers brief,
feel free to use algorithms from the book as subroutines. For the example,
S = {6, 13, 19, 3, 8}, 19− 3 maximizes the difference, while 8 − 6 minimizes the
difference.

(a) Let S be an unsorted array of n integers. Give an algorithm that finds the
pair x, y ∈ S that maximizes |x−y|. Your algorithm must run in O(n) worst-case
time.

(b) Let S be a sorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that maximizes |x − y|. Your algorithm must run in O(1) worst-case
time.

(c) Let S be an unsorted array of n integers. Give an algorithm that finds the
pair x, y ∈ S that minimizes |x − y|, for x �= y. Your algorithm must run in
O(n log n) worst-case time.

(d) Let S be a sorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that minimizes |x − y|, for x �= y. Your algorithm must run in O(n)
worst-case time.

4-3. [3] Take a list of 2n real numbers as input. Design an O(n log n) algorithm
that partitions the numbers into n pairs, with the property that the partition
minimizes the maximum sum of a pair. For example, say we are given the
numbers (1,3,5,9). The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and
((1,9),(3,5)). The pair sums for these partitions are (4,14), (6,12), and (10,8).
Thus, the third partition has 10 as its maximum sum, which is the minimum
over the three partitions.

4-4. [3] Assume that we are given n pairs of items as input, where the first item
is a number and the second item is one of three colors (red, blue, or yellow).
Further assume that the items are sorted by number. Give an O(n) algorithm
to sort the items by color (all reds before all blues before all yellows) such that
the numbers for identical colors stay sorted.

For example: (1,blue), (3,red), (4,blue), (6,yellow), (9,red) should become (3,red),
(9,red), (1,blue), (4,blue), (6,yellow).
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4-5. [3] The mode of a bag of numbers is the number that occurs most frequently in
the set. The set {4, 6, 2, 4, 3, 1} has a mode of 4. Give an efficient and correct
algorithm to compute the mode of a bag of n numbers.

4-6. [3] Given two sets S1 and S2 (each of size n), and a number x, describe an
O(n log n) algorithm for finding whether there exists a pair of elements, one
from S1 and one from S2, that add up to x. (For partial credit, give a Θ(n2)
algorithm for this problem.)

4-7. [5] Give an efficient algorithm to take the array of citation counts (each count
is a non-negative integer) of a researcher’s papers, and compute the researcher’s
h-index. By definition, a scientist has index h if h of his or her n papers have
been cited at least h times, while the other n−h papers each have no more than
h citations.

4-8. [3] Outline a reasonable method of solving each of the following problems. Give
the order of the worst-case complexity of your methods.

(a) You are given a pile of thousands of telephone bills and thousands of checks
sent in to pay the bills. Find out who did not pay.

(b) You are given a printed list containing the title, author, call number, and
publisher of all the books in a school library and another list of thirty
publishers. Find out how many of the books in the library were published
by each company.

(c) You are given all the book checkout cards used in the campus library during
the past year, each of which contains the name of the person who took out
the book. Determine how many distinct people checked out at least one
book.

4-9. [5] Given a set S of n integers and an integer T , give an O(nk−1 log n) algorithm
to test whether k of the integers in S add up to T .

4-10. [3] We are given a set of S containing n real numbers and a real number x, and
seek efficient algorithms to determine whether two elements of S exist whose
sum is exactly x.

(a) Assume that S is unsorted. Give an O(n log n) algorithm for the problem.

(b) Assume that S is sorted. Give an O(n) algorithm for the problem.

4-11. [8] Design an O(n) algorithm that, given a list of n elements, finds all the
elements that appear more than n/2 times in the list. Then, design an O(n)
algorithm that, given a list of n elements, finds all the elements that appear
more than n/4 times.

Applications of Sorting: Intervals and Sets

4-12. [3] Give an efficient algorithm to compute the union of sets A and B, where
n = max(|A|, |B|). The output should be an array of distinct elements that form
the union of the sets.

(a) Assume that A and B are unsorted arrays. Give an O(n log n) algorithm
for the problem.

(b) Assume that A and B are sorted arrays. Give an O(n) algorithm for the
problem.
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4-13. [5] A camera at the door tracks the entry time ai and exit time bi (assume
bi > ai) for each of n persons pi attending a party. Give an O(n log n) algo-
rithm that analyzes this data to determine the time when the most people were
simultaneously present at the party. You may assume that all entry and exit
times are distinct (no ties).

4-14. [5] Given a list I of n intervals, specified as (xi, yi) pairs, return a list where
the overlapping intervals are merged. For I = {(1, 3), (2, 6), (8, 10), (7, 18)} the
output should be {(1, 6), (7, 18)}. Your algorithm should run in worst-case
O(n log n) time complexity.

4-15. [5] You are given a set S of n intervals on a line, with the ith interval described
by its left and right endpoints (li, ri). Give an O(n log n) algorithm to identify
a point p on the line that is in the largest number of intervals.

As an example, for S = {(10, 40), (20, 60), (50, 90), (15, 70)} no point exists in
all four intervals, but p = 50 is an example of a point in three intervals. You
can assume an endpoint counts as being in its interval.

4-16. [5] You are given a set S of n segments on the line, where segment Si ranges
from li to ri. Give an efficient algorithm to select the fewest number of segments
whose union completely covers the interval from 0 to m.

Heaps

4-17. [3] Devise an algorithm for finding the k smallest elements of an unsorted set
of n integers in O(n+ k log n).

4-18. [5] Give an O(n log k)-time algorithm that merges k sorted lists with a total
of n elements into one sorted list. (Hint: use a heap to speed up the obvious
O(kn)-time algorithm).

4-19. [5] You wish to store a set of n numbers in either a max-heap or a sorted array.
For each application below, state which data structure is better, or if it does not
matter. Explain your answers.

(a) Find the maximum element quickly.

(b) Delete an element quickly.

(c) Form the structure quickly.

(d) Find the minimum element quickly.

4-20. [5] (a) Give an efficient algorithm to find the second-largest key among n keys.
You can do better than 2n− 3 comparisons.

(b) Then, give an efficient algorithm to find the third-largest key among n keys.
How many key comparisons does your algorithm do in the worst case? Must your
algorithm determine which key is largest and second-largest in the process?

Quicksort

4-21. [3] Use the partitioning idea of quicksort to give an algorithm that finds the
median element of an array of n integers in expected O(n) time. (Hint: must
you look at both sides of the partition?)

4-22. [3] The median of a set of n values is the �n/2�th smallest value.

(a) Suppose quicksort always pivoted on the median of the current sub-array.
How many comparisons would quicksort make then in the worst case?
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(b) Suppose quicksort always pivoted on the �n/3�th smallest value of the
current sub-array. How many comparisons would be made then in the
worst case?

4-23. [5] Suppose an array A consists of n elements, each of which is red, white, or
blue. We seek to sort the elements so that all the reds come before all the whites,
which come before all the blues. The only operations permitted on the keys are:

• Examine(A,i) – report the color of the ith element of A.

• Swap(A,i,j) – swap the ith element of A with the jth element.

Find a correct and efficient algorithm for red–white–blue sorting. There is a
linear-time solution.

4-24. [3] Give an efficient algorithm to rearrange an array of n keys so that all
the negative keys precede all the non-negative keys. Your algorithm must be
in-place, meaning you cannot allocate another array to temporarily hold the
items. How fast is your algorithm?

4-25. [5] Consider a given pair of different elements in an input array to be sorted,
say zi and zj . What is the most number of times zi and zj might be compared
with each other during an execution of quicksort?

4-26. [5] Define the recursion depth of quicksort as the maximum number of successive
recursive calls it makes before hitting the base case. What are the minimum
and maximum possible recursion depths for randomized quicksort?

4-27. [8] Suppose you are given a permutation p of the integers 1 to n, and seek
to sort them to be in increasing order [1, . . . , n]. The only operation at your
disposal is reverse(p,i,j), which reverses the elements of a subsequence pi, . . . , pj
in the permutation. For the permutation [1, 4, 3, 2, 5] one reversal (of the second
through fourth elements) suffices to sort.

• Show that it is possible to sort any permutation using O(n) reversals.

• Now suppose that the cost of reverse(p,i,j) is equal to its length, the num-
ber of elements in the range, |j − i|+ 1. Design an algorithm that sorts p
in O(n log2 n) cost. Analyze the running time and cost of your algorithm
and prove correctness.

Mergesort

4-28. [5] Consider the following modification to merge sort: divide the input array
into thirds (rather than halves), recursively sort each third, and finally combine
the results using a three-way merge subroutine. What is the worst-case running
time of this modified merge sort?

4-29. [5] Suppose you are given k sorted arrays, each with n elements, and you want
to combine them into a single sorted array of kn elements. One approach is to
use the merge subroutine repeatedly, merging the first two arrays, then merging
the result with the third array, then with the fourth array, and so on until you
merge in the kth and final input array. What is the running time?

4-30. [5] Consider again the problem of merging k sorted length-n arrays into a single
sorted length-kn array. Consider the algorithm that first divides the k arrays
into k/2 pairs of arrays, and uses the merge subroutine to combine each pair,
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resulting in k/2 sorted length-2n arrays. The algorithm repeats this step until
there is only one length-kn sorted array. What is the running time as a function
of n and k?

Other Sorting Algorithms

4-31. [5] Stable sorting algorithms leave equal-key items in the same relative order
as in the original permutation. Explain what must be done to ensure that
mergesort is a stable sorting algorithm.

4-32. [5] Wiggle sort: Given an unsorted array A, reorder it such that A[0] < A[1] >
A[2] < A[3] . . . . For example, one possible answer for input [3, 1, 4, 2, 6, 5] is
[1, 3, 2, 5, 4, 6]. Can you do it in O(n) time using only O(1) space?

4-33. [3] Show that n positive integers in the range 1 to k can be sorted in O(n log k)
time. The interesting case is when k � n.

4-34. [5] Consider a sequence S of n integers with many duplications, such that the
number of distinct integers in S is O(log n). Give an O(n log log n) worst-case
time algorithm to sort such sequences.

4-35. [5] Let A[1..n] be an array such that the first n−√
n elements are already sorted

(though we know nothing about the remaining elements). Give an algorithm
that sorts A in substantially better than n log n steps.

4-36. [5] Assume that the array A[1..n] only has numbers from {1, . . . , n2} but that
at most log log n of these numbers ever appear. Devise an algorithm that sorts
A in substantially less than O(n log n).

4-37. [5] Consider the problem of sorting a sequence of n 0’s and 1’s using compar-
isons. For each comparison of two values x and y, the algorithm learns which of
x < y, x = y, or x > y holds.

(a) Give an algorithm to sort in n − 1 comparisons in the worst case. Show
that your algorithm is optimal.

(b) Give an algorithm to sort in 2n/3 comparisons in the average case (assum-
ing each of the n inputs is 0 or 1 with equal probability). Show that your
algorithm is optimal.

4-38. [6] Let P be a simple, but not necessarily convex, n-sided polygon and q an
arbitrary point not necessarily in P . Design an efficient algorithm to find a line
segment originating from q that intersects the maximum number of edges of P .
In other words, if standing at point q, in what direction should you aim a gun
so the bullet will go through the largest number of walls. A bullet through a
vertex of P gets credit for only one wall. An O(n log n) algorithm is possible.

Lower Bounds

4-39. [5] In one of my research papers [Ski88], I discovered a comparison-based sorting
algorithm that runs in O(n log(

√
n)). Given the existence of an Ω(n log n) lower

bound for sorting, how can this be possible?

4-40. [5] Mr. B. C. Dull claims to have developed a new data structure for priority
queues that supports the operations Insert, Maximum, and Extract-Max—all in
O(1) worst-case time. Prove that he is mistaken. (Hint: the argument does not
involve a lot of gory details—just think about what this would imply about the
Ω(n log n) lower bound for sorting.)
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Searching

4-41. [3] A company database consists of 10,000 sorted names, 40% of whom are
known as good customers and who together account for 60% of the accesses to
the database. There are two data structure options to consider for representing
the database:

• Put all the names in a single array and use binary search.

• Put the good customers in one array and the rest of them in a second
array. Only if we do not find the query name on a binary search of the
first array do we do a binary search of the second array.

Demonstrate which option gives better expected performance. Does this change
if linear search on an unsorted array is used instead of binary search for both
options?

4-42. [5] A Ramanujan number can be written two different ways as the sum of two
cubes—meaning there exist distinct positive integers a, b, c, and d such that
a3 + b3 = c3 + d3. For example, 1729 is a Ramanujan number because 1729 =
13 + 123 = 93 + 103.

(a) Give an efficient algorithm to test whether a given single integer n is a
Ramanujan number, with an analysis of the algorithm’s complexity.

(b) Now give an efficient algorithm to generate all the Ramanujan numbers
between 1 and n, with an analysis of its complexity.

Implementation Challenges

4-43. [5] Consider an n×n array A containing integer elements (positive, negative, and
zero). Assume that the elements in each row of A are in strictly increasing order,
and the elements of each column of A are in strictly decreasing order. (Hence
there cannot be two zeros in the same row or the same column.) Describe an
efficient algorithm that counts the number of occurrences of the element 0 in A.
Analyze its running time.

4-44. [6] Implement versions of several different sorting algorithms, such as selection
sort, insertion sort, heapsort, mergesort, and quicksort. Conduct experiments
to assess the relative performance of these algorithms in a simple application
that reads a large text file and reports exactly one instance of each word that
appears within it. This application can be efficiently implemented by sorting all
the words that occur in the text and then passing through the sorted sequence
to identify one instance of each distinct word. Write a brief report with your
conclusions.

4-45. [5] Implement an external sort, which uses intermediate files to sort files bigger
than main memory. Mergesort is a good algorithm to base such an implemen-
tation on. Test your program both on files with small records and on files with
large records.

4-46. [8] Design and implement a parallel sorting algorithm that distributes data
across several processors. An appropriate variation of mergesort is a likely can-
didate. Measure the speedup of this algorithm as the number of processors
increases. Then compare the execution time to that of a purely sequential
mergesort implementation. What are your experiences?
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Interview Problems

4-47. [3] If you are given a million integers to sort, what algorithm would you use to
sort them? How much time and memory would that consume?

4-48. [3] Describe advantages and disadvantages of the most popular sorting algo-
rithms.

4-49. [3] Implement an algorithm that takes an input array and returns only the
unique elements in it.

4-50. [5] You have a computer with only 4GB of main memory. How do you use it to
sort a large file of 500 GB that is on disk?

4-51. [5] Design a stack that supports push, pop, and retrieving the minimum element
in constant time.

4-52. [5] Given a search string of three words, find the smallest snippet of the docu-
ment that contains all three of the search words—that is, the snippet with the
smallest number of words in it. You are given the index positions where these
words occur in the document, such as word1: (1, 4, 5), word2: (3, 9, 10), and
word3: (2, 6, 15). Each of the lists are in sorted order, as above.

4-53. [6] You are given twelve coins. One of them is heavier or lighter than the rest.
Identify this coin in just three weighings with a balance scale.

LeetCode

4-1. https://leetcode.com/problems/sort-list/

4-2. https://leetcode.com/problems/queue-reconstruction-by-height/

4-3. https://leetcode.com/problems/merge-k-sorted-lists/

4-4. https://leetcode.com/problems/find-k-pairs-with-smallest-sums/

HackerRank

4-1. https://www.hackerrank.com/challenges/quicksort3/

4-2. https://www.hackerrank.com/challenges/mark-and-toys/

4-3. https://www.hackerrank.com/challenges/organizing-containers-of-balls/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

4-1. “Vito’s Family”—Chapter 4, problem 10041.

4-2. “Stacks of Flapjacks”—Chapter 4, problem 120.

4-3. “Bridge”—Chapter 4, problem 10037.

4-4. “ShoeMaker’s Problem”—Chapter 4, problem 10026.

4-5. “ShellSort”—Chapter 4, problem 10152.

https://leetcode.com/problems/sort-list/
https://leetcode.com/problems/queue-reconstruction-by-height/
https://leetcode.com/problems/merge-k-sorted-lists/
https://leetcode.com/problems/find-k-pairs-with-smallest-sums/
https://www.hackerrank.com/challenges/quicksort3/
https://www.hackerrank.com/challenges/mark-and-toys/
https://www.hackerrank.com/challenges/organizing-containers-of-balls/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 5

Divide and Conquer

One of the most powerful techniques for solving problems is to break them down
into smaller, more easily solved pieces. Smaller problems are less overwhelming,
and they permit us to focus on details that are lost when we are studying
the whole thing. A recursive algorithm starts to become apparent whenever
we can break the problem into smaller instances of the same type of problem.
Multicore processors now sit in almost every computer, but effective parallel
processing requires decomposing jobs into at least as many tasks as the number
of processors.

Two important algorithm design paradigms are based on breaking problems
down into smaller problems. In Chapter 10, we will see dynamic programming,
which typically removes one element from the problem, solves the smaller prob-
lem, and then adds back the element to the solution of this smaller problem in
the proper way. Divide and conquer instead splits the problem into (say) halves,
solves each half, then stitches the pieces back together to form a full solution.

Thus, to use divide and conquer as an algorithm design technique, we must
divide the problem into two smaller subproblems, solve each of them recursively,
and then meld the two partial solutions into one solution to the full problem.
Whenever the merging takes less time than solving the two subproblems, we
get an efficient algorithm. Mergesort, discussed in Section 4.5 (page 127), is the
classic example of a divide-and-conquer algorithm. It takes only linear time to
merge two sorted lists of n/2 elements, each of which was obtained in O(n lg n)
time.

Divide and conquer is a design technique with many important algorithms to
its credit, including mergesort, the fast Fourier transform, and Strassen’s matrix
multiplication algorithm. Beyond binary search and its many variants, however,
I find it to be a difficult design technique to apply in practice. Our ability to
analyze divide and conquer algorithms rests on our proficiency in solving the
recurrence relations governing the cost of such recursive algorithms, so we will
introduce techniques for solving recurrences here.
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5.1 Binary Search and Related Algorithms

The mother of all divide-and-conquer algorithms is binary search, which is a
fast algorithm for searching in a sorted array of keys S. To search for key q, we
compare q to the middle key S[n/2]. If q appears before S[n/2], it must reside
in the left half of S; if not, it must reside in the right half of S. By repeating
this process recursively on the correct half, we locate the key in a total of lg n�
comparisons—a big win over the n/2 comparisons expected using sequential
search:

int binary_search(item_type s[], item_type key, int low, int high) {

int middle; /* index of middle element */

if (low > high) {

return (-1); /* key not found */

}

middle = (low + high) / 2;

if (s[middle] == key) {

return(middle);

}

if (s[middle] > key) {

return(binary_search(s, key, low, middle - 1));

} else {

return(binary_search(s, key, middle + 1, high));

}

}

This much you probably know. What is important is to understand is just
how fast binary search is. Twenty questions is a popular children’s game where
one player selects a word and the other repeatedly asks true/false questions
until they guess it. If the word remains unidentified after twenty questions, the
first party wins. But the second player has a winning strategy, based on binary
search. Take a printed dictionary, open it in the middle, select a word (say
“move”), and ask whether the unknown word is before “move” in alphabetical
order. Standard dictionaries contain between 50,000 to 200,000 words, so we
can be certain that the process will terminate within twenty questions.

5.1.1 Counting Occurrences

Several interesting algorithms are variants of binary search. Suppose that we
want to count the number of times a given key k (say “Skiena”) occurs in a
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given sorted array. Because sorting groups all the copies of k into a contiguous
block, the problem reduces to finding that block and then measuring its size.

The binary search routine presented above enables us to find the index of
an element x of the correct block in O(lg n) time. A natural way to identify
the boundaries of the block is to sequentially test elements to the left of x until
we find one that differs from the search key, and then repeat this search to the
right of x. The difference between the indices of these boundaries (plus one)
gives the number of occurrences of k.

This algorithm runs in O(lg n+ s), where s is the number of occurrences of
the key. But this can be as bad as Θ(n) if the entire array consists of identical
keys. A faster algorithm results by modifying binary search to find the boundary
of the block containing k, instead of k itself. Suppose we delete the equality test

if (s[middle] == key) return(middle);

from the implementation above and return the index high instead of −1 on
each unsuccessful search. All searches will now be unsuccessful, since there
is no equality test. The search will proceed to the right half whenever the
key is compared to an identical array element, eventually terminating at the
right boundary. Repeating the search after reversing the direction of the binary
comparison will lead us to the left boundary. Each search takes O(lg n) time,
so we can count the occurrences in logarithmic time regardless of the size of the
block.

By modifying our binary search routine to return (low+high)/2 instead of
-1 on an unsuccessful search, we obtain the location between two array elements
where the key k should have been. This variant suggests another way to solve
our length of run problem. We search for the positions of keys k − ε and k + ε,
where ε is a tiny enough constant that both searches are guaranteed to fail with
no intervening keys. Again, doing two binary searches takes O(log n) time.

5.1.2 One-Sided Binary Search

Now suppose we have an array A consisting of a run of 0’s, followed by an
unbounded run of 1’s, and would like to identify the exact point of transition
between them. Binary search on the array would find the transition point in
lg n� tests, if we had a bound n on the number of elements in the array.

But in the absence of such a bound, we can test repeatedly at larger in-
tervals (A[1], A[2], A[4], A[8], A[16], . . .) until we find a non-zero value. Now
we have a window containing the target and can proceed with binary search.
This one-sided binary search finds the transition point p using at most 2lg p�
comparisons, regardless of how large the array actually is. One-sided binary
search is useful whenever we are looking for a key that lies close to our current
position.
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5.1.3 Square and Other Roots

The square root of n is the positive number r such that r2 = n. Square root
computations are performed inside every pocket calculator, but it is instructive
to develop an efficient algorithm to compute them.

First, observe that the square root of n ≥ 1 must be at least 1 and at most
n. Let l = 1 and r = n. Consider the midpoint of this interval, m = (l + r)/2.
How does m2 compare to n? If n ≥ m2, then the square root must be greater
than m, so the algorithm repeats with l = m. If n < m2, then the square root
must be less than m, so the algorithm repeats with r = m. Either way, we have
halved the interval using only one comparison. Therefore, after lg n� rounds
we will have identified the square root to within ±1/2.

This bisection method, as it is called in numerical analysis, can also be applied
to the more general problem of finding the roots of an equation. We say that x
is a root of the function f if f(x) = 0. Suppose that we start with values l and r
such that f(l) > 0 and f(r) < 0. If f is a continuous function, there must exist
a root between l and r. Depending upon the sign of f(m), where m = (l+ r)/2,
we can cut the window containing the root in half with each test, and stop as
soon as our estimate becomes sufficiently accurate.

Root-finding algorithms converging faster than binary search are known for
both of these problems. Instead of always testing the midpoint of the interval,
these algorithms interpolate to find a test point closer to the actual root. Still,
binary search is simple, robust, and works as well as possible without additional
information on the nature of the function to be computed.

Take-Home Lesson: Binary search and its variants are the quintessential
divide-and-conquer algorithms.

5.2 War Story: Finding the Bug in the Bug

Yutong stood up to announce the results of weeks of hard work. “Dead,” he
announced defiantly. Everybody in the room groaned.

I was part of a team developing a new approach to create vaccines: Synthetic
Attenuated Virus Engineering or SAVE. Because of how the genetic code works,
there are typically about 3n different possible genes that code for any given
protein of length n. To a first approximation, all of these are the same, since
they describe exactly the same protein. But each of the 3n synonymous genes use
the biological machinery in somewhat different ways, translating at somewhat
different speeds.

By substituting a virus gene with a less dangerous replacement, we hoped to
create a vaccine: a weaker version of the disease-causing agent that otherwise
did the same thing. Your body could fight off the weak virus without you getting
sick, along the way training your immune system to fight off tougher villains.
But we needed weak viruses, not dead ones: you can’t learn anything fighting
off something that is already dead.
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Figure 5.1: Designs of four synthetic genes to locate a specific sequence signal.
The green regions are drawn from a viable sequence, while the red regions are
drawn from a lethally defective sequence. Genes II, III, and IV were viable while
gene I was defective, an outcome that can only be explained by a lethal signal
in the region located fifth from the right.

“Dead means that there must be one place in this 1,200-base region where the
virus evolved a signal, a second meaning of the sequence it needs for survival,”
said our senior virologist. By changing the sequence at this point, we killed the
virus. “We have to find this signal to bring it back to life.”

“But there are 1,200 places to look! How can we find it?” Yutong asked.
I thought about this a bit. We had to debug a bug. This sounded similar

to the problem of debugging a program. I recall many a lonesome night spent
trying to figure out exactly which line number was causing my program to crash.
I often stooped to commenting out chunks of the code, and then running it again
to test if it still crashed. It was usually easy to figure out the problem after I
got the commented-out region down to a small enough chunk. The best way to
search for this region was. . .

“Binary search!” I announced. Suppose we replace the first half of the
coding sequence of the viable gene (shown in green) with the coding sequence of
the dead, critical signal-deficient strain (shown in red), as in design II in Figure
5.1. If this hybrid gene is viable, it means the critical signal must occur in the
right half of the gene, whereas a dead virus implies the problem must occur in
the left half. Through a binary search process the signal can be located to one
of n regions in log2 n� sequential rounds of experiment.

“We can narrow the area containing the signal in a length-n gene to n/16
by doing only four experiments,” I informed them. The senior virologist got
excited. But Yutong turned pale.

“Four more rounds of experiments!” he complained. “It took me a full
month to synthesize, clone, and try to grow the virus the last time. Now you
want me to do it again, wait to learn which half the signal is in, and then repeat
three more times? Forget about it!”

Yutong realized that the power of binary search came from interaction: the
query that we make in round r depends upon the answers to the queries in
rounds 1 through r − 1. Binary search is an inherently sequential algorithm.
When each individual comparison is a slow and laborious process, suddenly lg n
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comparisons doesn’t look so good. But I had a very cute trick up my sleeve.
“Four successive rounds of this will be too much work for you, Yutong. But

might you be able to do four different designs at the same time if we could give
them to you all at once?” I asked.

“If I am doing the same things to four different sequences at the same time,
it is no big deal,” he said. “Not much harder than doing just one of them.”

That settled, I proposed that they simultaneously synthesize the four virus
designs labeled I, II, III, and IV in Figure 5.1. It turns out you can parallelize bi-
nary search, provided your queries can be arbitrary subsets instead of connected
halves. Observe that each of the columns defined by these four designs consists
of a distinct pattern of red and green. The pattern of living/dead among the
four synthetic designs thus uniquely defines the position of the critical signal in
one experimental round. In this example, virus I happened to be dead while
the other three lived, pinpointing the location of the lethal signal to the fifth
region from the right.

Yutong rose to the occasion, and after a month of toil (but not months)
discovered a new signal in poliovirus [SLW+12]. He found the bug in the bug
through the idea of divide and conquer, which works best when splitting the
problem in half at each point. Note that all four of our designs consist of half red
and half green, arranged so all sixteen regions have a distinct pattern of colors.
With interactive binary search, the last test selects between just two remaining
regions. By expanding each test to have half the sequence, we eliminated the
need for sequential tests, making the entire process much faster.

5.3 Recurrence Relations

Many divide-and-conquer algorithms have time complexities that are naturally
modeled by recurrence relations. The ability to solve such recurrences is impor-
tant to understanding when divide-and-conquer algorithms perform well, and
provides an important tool for analysis in general. The reader who balks at the
very idea of analysis is free to skip this section, but important insights come
from an understanding of the behavior of recurrence relations.

What is a recurrence relation? It is an equation in which a function is
defined in terms of itself. The Fibonacci numbers are described by the recurrence
relation

Fn = Fn−1 + Fn−2

together with the initial values F0 = 0 and F1 = 1, as will be discussed in Section
10.1.1. Many other familiar functions are easily expressed as recurrences. Any
polynomial can be represented by a recurrence, such as the linear function:

an = an−1 + 1, a1 = 1 −→ an = n

Any exponential can be represented by a recurrence:

an = 2an−1, a1 = 1 −→ an = 2n−1
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Finally, lots of weird functions that cannot be easily described using conventional
notation can be represented naturally by a recurrence, for example:

an = nan−1, a1 = 1 −→ an = n!

This shows that recurrence relations are a very versatile way to represent func-
tions.

The self-reference property of recurrence relations is shared with recursive
programs or algorithms, as the shared roots of both terms reflect. Essentially,
recurrence relations provide a way to analyze recursive structures, such as algo-
rithms.

5.3.1 Divide-and-Conquer Recurrences

A typical divide-and-conquer algorithm breaks a given problem into a smaller
pieces, each of which is of size n/b. It then spends f(n) time to combine these
subproblem solutions into a complete result. Let T (n) denote the worst-case
time this algorithm takes to solve a problem of size n. Then T (n) is given by
the following recurrence relation:

T (n) = a · T (n/b) + f(n)

Consider the following examples, based on algorithms we have previously seen:

• Mergesort – The running time of mergesort is governed by the recurrence
T (n) = 2T (n/2) + O(n), since the algorithm divides the data into equal-
sized halves and then spends linear time merging the halves after they are
sorted. In fact, this recurrence evaluates to T (n) = O(n lg n), just as we
got by our previous analysis.

• Binary search – The running time of binary search is governed by the
recurrence T (n) = T (n/2) + O(1), since at each step we spend constant
time to reduce the problem to an instance half its size. This recurrence
evaluates to T (n) = O(lg n), just as we got by our previous analysis.

• Fast heap construction – The bubble down method of heap construction
(described in Section 4.3.4) builds an n-element heap by constructing two
n/2 element heaps and then merging them with the root in logarithmic
time. The running time is thus governed by the recurrence relation T (n) =
2T (n/2) + O(lg n). This recurrence evaluates to T (n) = O(n), just as we
got by our previous analysis.

Solving a recurrence means finding a nice closed form describing or bounding
the result. We can use the master theorem, discussed in Section 5.4, to solve
the recurrence relations typically arising from divide-and-conquer algorithms.
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Figure 5.2: The recursion tree resulting from decomposing each problem of
size n into a problems of size n/b

5.4 Solving Divide-and-Conquer Recurrences

Divide-and-conquer recurrences of the form T (n) = aT (n/b)+f(n) are generally
easy to solve, because the solutions typically fall into one of three distinct cases:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for
some c < 1, then T (n) = Θ(f(n)).

Although this looks somewhat frightening, it really isn’t difficult to apply.
The issue is identifying which case of this so-called master theorem holds for
your given recurrence. Case 1 holds for heap construction and matrix multipli-
cation, while Case 2 holds for mergesort. Case 3 generally arises with clumsier
algorithms, where the cost of combining the subproblems dominates everything.

The master theorem can be thought of as a black-box piece of machinery,
invoked as needed and left with its mystery intact. However, after a little study
it becomes apparent why the master theorem works.

Figure 5.2 shows the recursion tree associated with a typical T (n) = aT (n/b)+
f(n) divide-and-conquer algorithm. Each problem of size n is decomposed into
a problems of size n/b. Each subproblem of size k takes O(f(k)) time to deal
with internally, between partitioning and merging. The total time for the algo-
rithm is the sum of these internal evaluation costs, plus the overhead of building
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the recursion tree. The height of this tree is h = logb n and the number of leaf
nodes is ah = alogb n, which happens to simplify to nlogb a with some algebraic
manipulation.

The three cases of the master theorem correspond to three different costs,
each of which might be dominant as a function of a, b, and f(n):

• Case 1: Too many leaves – If the number of leaf nodes outweighs the
overall internal evaluation cost, the total running time is O(nlogb a).

• Case 2: Equal work per level – As we move down the tree, each problem
gets smaller but there are more of them to solve. If the sums of the internal
evaluation costs at each level are equal, the total running time is the cost
per level (nlogb a) times the number of levels (logb n), for a total running
time of O(nlogb a lg n).

• Case 3: Too expensive a root – If the internal evaluation cost grows very
rapidly with n, then the cost of the root evaluation may dominate every-
thing. Then the total running time is O(f(n)).

Once you accept the master theorem, you can easily analyze any divide-and-
conquer algorithm, given only the recurrence associated with it. We use this
approach on several algorithms below.

5.5 Fast Multiplication

You know at least two ways to multiply integers A and B to get A×B. You first
learned that A× B meant adding up B copies of A, which gives an O(n · 10n)
time algorithm to multiply two n-digit base-10 numbers. Then you learned to
multiply long numbers on a digit-by-digit basis, like

9256× 5367 = 9256× 7 + 9256× 60 + 9256× 300 + 9256× 5000 = 13, 787, 823

Recall that those zeros we pad the digit-terms by are not really computed as
products. We implement their effect by shifting the product digits to the correct
place. Assuming we perform each real digit-by-digit product in constant time,
by looking it up in a times table, this algorithm multiplies two n-digit numbers
in O(n2) time.

In this section I will present an even faster algorithm for multiplying large
numbers. It is a classic divide-and-conquer algorithm. Suppose each number
has n = 2m digits. Observe that we can split each number into two pieces each
of m digits, such that the product of the full numbers can easily be constructed
from the products of the pieces, as follows. Let w = 10m+1, and represent
A = a0 + a1w and B = b0 + b1w, where ai and bi are the pieces of each
respective number. Then:

A×B = (a0 + a1w)× (b0 + b1w) = a0b0 + a0b1w + a1b0w + a1b1w
2
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This procedure reduces the problem of multiplying two n-digit numbers to
four products of (n/2)-digit numbers. Recall that multiplication by w doesn’t
count: it is simply padding the product with zeros. We also have to add together
these four products once computed, which is O(n) work.

Let T (n) denote the amount of time it takes to multiply two n-digit numbers.
Assuming we use the same algorithm recursively on each of the smaller products,
the running time of this algorithm is given by the recurrence:

T (n) = 4T (n/2) +O(n)

Using the master theorem (case 1), we see that this algorithm runs in O(n2)
time, exactly the same as the digit-by-digit method. We divided, but we did
not conquer.

Karatsuba’s algorithm is an alternative recurrence for multiplication, which
yields a better running time. Suppose we compute the following three products:

q0 = a0b0

q1 = (a0 + a1)(b0 + b1)

q2 = a1b1

Note that

A×B = (a0 + a1w)× (b0 + b1w) = a0b0 + a0b1w + a1b0w + a1b1w
2

= q0 + (q1 − q0 − q2)w + q2w
2

so now we have computed the full product with just three half-length multipli-
cations and a constant number of additions. Again, the w terms don’t count as
multiplications: recall that they are really just zero shifts. The time complexity
of this algorithm is therefore governed by the recurrence

T (n) = 3T (n/2) +O(n)

Since n = O(nlog2 3), this is solved by the first case of the master theo-
rem, and T (n) = Θ(nlog2 3) = Θ(n1.585). This is a substantial improvement
over the quadratic algorithm for large numbers, and indeed beats the standard
multiplication algorithm soundly for numbers of 500 digits or so.

This approach of defining a recurrence that uses fewer multiplications but
more additions also lurks behind fast algorithms for matrix multiplication. The
nested-loops algorithm for matrix multiplication discussed in Section 2.5.4 takes
O(n3) for two n× n matrices, because we compute the dot product of n terms
for each of the n2 elements in the product matrix. However, Strassen [Str69]
discovered a divide-and-conquer algorithm that manipulates the products of
seven n/2 × n/2 matrix products to yield the product of two n × n matrices.
This yields a time-complexity recurrence

T (n) = 7 · T (n/2) +O(n2)
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Figure 5.3: The largest subrange sum is either entirely to the left of center
or entirely to the right, or (like here) the sum of the largest center-bordering
ranges on left and right.

Because log2 7 ≈ 2.81, O(nlog2 7) dominates O(n2), so Case 1 of the master
theorem applies and T (n) = Θ(n2.81).

This algorithm has been repeatedly “improved” by increasingly complicated
recurrences, and the current best is O(n2.3727). See Section 16.3 (page 472) for
more detail.

5.6 Largest Subrange and Closest Pair

Suppose you are tasked with writing the advertising copy for a hedge fund whose
monthly performance this year was

[−17, 5, 3,−10, 6, 1, 4,−3, 8, 1,−13, 4]

You lost money for the year, but from May through October you had your
greatest gains over any period, a net total of 17 units of gains. This gives you
something to brag about.

The largest subrange problem takes an array A of n numbers, and asks for
the index pair i and j that maximizes S =

∑j
k=i A[k]. Summing the entire

array does not necessarily maximize S because of negative numbers. Explicitly
testing each possible interval start–end pair requires Ω(n2) time. Here I present
a divide-and-conquer algorithm that runs in O(n log n) time.

Suppose we divide the array A into left and right halves. Where can the
largest subrange be? It is either in the left half or the right half, or includes
the middle. A recursive program to find the largest subrange between A[l] and
A[r] can easily call itself to work on the left and right subproblems. How can
we find the largest subrange spanning the middle, that is, spanning positions m
and m+ 1?

The key is to observe that the largest subrange centered spanning the middle
will be the union of the largest subrange on the left ending on m, and the largest
subrange on the right starting from m+1, as illustrated in Figure 5.3. The value
Vl of the largest such subrange on the left can be found in linear time with a
sweep:
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L R

Figure 5.4: The closest pair of points in two dimensions either lie to the left of
center, to the right, or in a thin strip straddling the center.

LeftMidMaxRange(A, l,m)
S = M = 0
for i = m downto l

S = S +A[i]
if (S > M) then M = S

return S

The corresponding value on the right can be found analogously. Dividing n
into two halves, doing linear work, and recurring takes time T (n), where

T (n) = 2 · T (n/2) + Θ(n)

Case 2 of the master theorem yields T (n) = Θ(n log n).
This general approach of “find the best on each side, and then check what is

straddling the middle” can be applied to other problems as well. Consider the
problem of finding the smallest distance between pairs among a set of n points.

In one dimension, this problem is easy: we saw in Section 4.1 (page 109)
that after sorting the points, the closest pair must be neighbors. A linear-time
sweep from left to right after sorting thus yields an Θ(n log n) algorithm. But
we can replace this sweep by a cute divide-and-conquer algorithm. The closest
pair is defined by the left half of the points, the right half, or the pair in the
middle, so the following algorithm must find it:

ClosestPair(A, l, r)
mid = �(l + r)/2	
lmin = ClosestPair(A, l,mid)
rmin = ClosestPair(A,mid+ 1, r)
return min(lmin, rmin, A[m+ 1]−A[m])

Because this does constant work per call, its running time is given by the
recurrence:

T (n) = 2 · T (n/2) +O(1)
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Case 1 of the master theorem tells us that T (n) = Θ(n).

This is still linear time and so might not seem very impressive, but let’s
generalize the idea to points in two dimensions. After we sort the n (x, y)
points according to their x-coordinates, the same property must be true: the
closest pair is either two points on the left half or two points on the right, or
it straddles left and right. As shown in Figure 5.4, these straddling points had
better be close to the dividing line (distance d < min(lmin, rmin)) and also have
very similar y-coordinates. With clever bookkeeping, the closest straddling pair
can be found in linear time, yielding a running time of

T (n) = 2 · T (n/2) + Θ(n) = Θ(n log n)

as defined by Case 2 of the master theorem.

5.7 Parallel Algorithms

Two heads are better than one, and more generally, n heads better than n− 1.
Parallel processing has become increasingly prevalent, with the advent of multi-
core processors and cluster computing.

5.7.1 Data Parallelism

Divide and conquer is the algorithm paradigm most suited to parallel compu-
tation. Typically, we seek to partition our problem of size n into p equal-sized
parts, and simultaneously feed one to each processor. This reduces the time to
completion (or makespan) from T (n) to T (n/p), plus the cost of combining the
results together. If T (n) is linear, this gives us a maximum possible speedup of
p. If T (n) = Θ(n2) it may look like we can do even better, but this is generally
an illusion. Suppose we want to sweep through all pairs of n items. Sure we
can partition the items into p independent chunks, but n2 − p(n/p)2 of the n2

possible pairs will not ever have both elements on the same processor.

Multiple processors are typically best deployed to exploit data parallelism,
running a single algorithm on different and independent data sets. For example,
computer animation systems must render thirty frames per second for realistic
animation. Assigning each frame to a distinct processor, or dividing each image
into regions assigned to different processors, might be the best way to get the
job done in time. Such tasks are often called embarrassingly parallel.

Generally speaking, such data parallel approaches are not algorithmically
interesting, but they are simple and effective. There is a more advanced world
of parallel algorithms where different processors synchronize their efforts so they
can together solve a single problem quicker than one can. These algorithms are
out of the scope of what we will cover in this book, but be aware of the challenges
involved in the design and implementation of sophisticated parallel algorithms.
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5.7.2 Pitfalls of Parallelism

There are several potential pitfalls and complexities associated with parallel
algorithms:

• There is often a small upper bound on the potential win – Suppose that
you have access to a machine with 24 cores that can be devoted exclu-
sively to your job. These can potentially be used to speed up the fastest
sequential program by up to a factor of 24. Sweet! But even greater
performance gains can often result from developing more efficient sequen-
tial algorithms. Your time spent parallelizing a code might well be better
spent enhancing the sequential version. Performance-tuning tools such as
profilers are better developed for sequential machines/programs than for
parallel models.

• Speedup means nothing – Suppose my parallel program runs 24 times faster
on a 24-core machine than it does on a single processor. That’s great, isn’t
it? If you get linear speedup and can increase the number of processors
without bound, you will eventually beat any sequential algorithm. But
the one-processor parallel version of your code is likely to be a crummy
sequential algorithm, so measuring speedup typically provides an unfair
test of the benefits of parallelism. And it is hard to buy machines with an
unlimited number of cores.

The classic example of this phenomenon occurs in the minimax game-tree
search algorithm used in computer chess programs. A brute-force tree
search is embarrassingly easy to parallelize: just put each subtree on a
different processor. However, a lot of work gets wasted because the same
positions get considered on different machines. Moving from a brute-force
search to the more clever alpha–beta pruning algorithm can easily save
99.99% of the work, thus dwarfing any benefits of a parallel brute-force
search. Alpha–beta can be parallelized, but not easily, and the speedups
grow surprisingly slowly as a function of the number of processors you
have.

• Parallel algorithms are tough to debug – Unless your problem can be de-
composed into several independent jobs, the different processors must com-
municate with each other to end up with the correct final result. Unfortu-
nately, the non-deterministic nature of this communication makes parallel
programs notoriously difficult to debug, because you will get different re-
sults each time you run the code. Data parallel programs typically have no
communication except copying the results at the end, which makes things
much simpler.

I recommend considering parallel processing only after attempts at solving
a problem sequentially prove too slow. Even then, I would restrict attention
to data parallel algorithms where no communication is needed between the
processors, except to collect the final results. Such large-grain, naive parallelism
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can be simple enough to be both implementable and debuggable, because it
really reduces to producing a good sequential implementation. There can be
pitfalls even in this approach, however, as shown by the following war story.

5.8 War Story: Going Nowhere Fast

In Section 2.9 (page 54), I related our efforts to build a fast program to test
Waring’s conjecture for pyramidal numbers. At that point, my code was fast
enough that it could complete the job in a few weeks running in the background
of a desktop workstation. This option did not appeal to my supercomputing
colleague, however.

“Why don’t we do it in parallel?” he suggested. “After all, you have an
outer loop doing the same calculation on each integer from 1 to 1,000,000,000.
I can split this range of numbers into different intervals and run each range on
a different processor. Divide and conquer. Watch, it will be easy.”

He set to work trying to do our computations on an Intel IPSC-860 hyper-
cube using 32 nodes with 16 megabytes of memory per node—very big iron for
the time. However, instead of getting answers, over the next few weeks I was
treated to a regular stream of e-mail about system reliability:

• “Our code is running fine, except one processor died last night. I will
rerun.”

• “This time the machine was rebooted by accident, so our long-standing
job was killed.”

• “We have another problem. The policy on using our machine is that
nobody can command the entire machine for more than 13 hours, under
any condition.”

Still, eventually, he rose to the challenge. Waiting until the machine was
stable, he locked out 16 processors (half the computer), divided the integers
from 1 to 1,000,000,000 into 16 equal-sized intervals, and ran each interval on
its own processor. He spent the next day fending off angry users who couldn’t
get their work done because of our rogue job. The instant the first processor
completed analyzing the numbers from 1 to 62,500,000, he announced to all the
people yelling at him that the rest of the processors would soon follow.

But they didn’t. He failed to realize that the time to test each integer
increased as the numbers got larger. After all, it would take longer to test
whether 1,000,000,000 could be expressed as the sum of three pyramidal numbers
than it would for 100. Thus, at longer and longer intervals, each new processor
would announce its completion. Because of the architecture of the hypercube,
he couldn’t return any of the processors until our entire job was completed.
Eventually, half the machine and most of its users were held hostage by one,
final interval.

What conclusions can be drawn from this? If you are going to parallelize a
problem, be sure to balance the load carefully among the processors. Proper
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load balancing, using either back-of-the-envelope calculations or the partition
algorithm we will develop in Section 10.7 (page 333), would have significantly
reduced the length of time we needed the machine, and his exposure to the
wrath of his colleagues.

5.9 Convolution (*)

The convolution of two arrays (or vectors) A and B is a new vector C such that

C[k] =

m−1∑

j=0

A[j] ·B[k − j]

If we assume that A and B are of length m and n respectively, and indexed
starting from 0, the natural range on C is from C[0] to C[n+m−2]. The values
of all out-of-range elements of A and B are interpreted as zero, so they do not
contribute to any product.

An example of convolution that you are familiar with is polynomial multi-
plication. Recall the problem of multiplying two polynomials, for example:

(3x2 + 2x+ 6)× (4x2 + 3x+ 2) = (3 · 4)x4 + (3 · 3 + 2 · 4)x3

+ (3 · 2 + 2 · 3 + 6 · 4)x2 + (2 · 2 + 6 · 3)x1 + (6 · 2)x0

Let A[i] and B[i] denote the coefficients of xi in each of the polynomials. Then
multiplication is a convolution, because the coefficient of the xk term in the
product polynomial is given by the convolution C[k] above. This coefficient is
the sum of the products of all terms which have exponent pairs adding to k: for
example, x5 = x4 · x1 = x3 · x2.

The obvious way to implement convolution is by computing the m term dot
product C[k] for each 0 ≤ k ≤ n + m − 2. This is two nested loops, running
in Θ(nm) time. The inner loop does not always involve m iterations because of
boundary conditions. Simpler loop bounds could have been employed if A and
B were flanked by ranges of zeros.

for (i = 0; i < n+m-1; i++) {

for (j = max(0,i-(n-1)); j <= min(m-1,i); j++) {

c[i] = c[i] + a[j] * b[i-j];

}

}

Convolution multiplies every possible pair of elements from A and B, and
hence it seems like we should require quadratic time to get these n + m − 1
numbers. But in a miracle akin to sorting, there exists a clever divide-and-
conquer algorithm that runs in O(n log n) time, assuming that n ≥ m. And just
like sorting, there are a large number of applications that take advantage of this
enormous speedup for large sequences.
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B 0 1 2 3 4 B
R 4 3 2 1 0

A 0 1 2 3 4 5 6 7 8 9 A 0 1 2 3 4 5 6 7 8 9

Figure 5.5: Convolution of strings becomes equivalent to string matching when
the pattern is reversed.

5.9.1 Applications of Convolution

Going from O(n2) to O(n log n) is as big a win for convolution as it was for
sorting. Taking advantage of it requires recognizing when you are doing a con-
volution operation. Convolutions often arise when you are trying all possible
ways of doing things that add up to k, for a large range of values of k, or when
sliding a mask or pattern A over a sequence B and calculating at each position.

Important examples of convolution operations include:

• Integer multiplication: We can interpret integers as polynomials in any
base b. For example, 632 = 6 · b2+3 · b1+2 · b0, where b = 10. Polynomial
multiplication behaves like integer multiplication without carrying.

There are two different ways we can use fast polynomial multiplication to
deal with integers. First, we can explicitly perform the carrying operation
on the product polynomial, adding �C[i]/b	 to C[i+ 1], and then replac-
ing C[i] with C[i] (mod b). Alternatively, we could compute the product
polynomial and then evaluate it at b to get the integer product A×B.

With fast convolution, either way gives us an even faster multiplication
algorithm than Karatsuba, running in O(n log n) time on a RAM model
of computation.

• Cross-correlation: For two time series A and B, the cross-correlation
function measures the similarity as a function of the shift or displacement
of one relative to the other. Perhaps people buy a product on average
k days after seeing an advertisement for it. Then there should be high
correlation between sales and advertising expenditures lagged by k days.
This cross-correlation function C[k] can be computed:

C[k] =
∑

j

A[j]B[j + k]

Note that the dot product here is computed over backward shifts of B
instead of forward shifts, as in the original definition of a convolution.
But we can still use fast convolution to compute this: simply input the
reversed sequence BR instead of B.

• Moving average filters: Often we are tasked with smoothing time series
data by averaging over a window. Perhaps we want C[i−1] = 0.25B[i−1]+
0.5B[i]+0.25B[i+1] over all positions i. This is just another convolution,
where A is the vector of weights within the window around B[i].
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• String matching: Recall the problem of substring pattern matching, first
discussed in Section 2.5.3. We are given a text string S and a pattern
string P , and seek to identify all locations in P where P may be found.
For S = abaababa and P = aba, we can find P in S starting at positions
0, 3, and 5.

The O(mn) algorithm described in Section 2.5.3 works by sliding the
length-m pattern over each of the n possible starting points in the text.
This sliding window approach is suggestive of being a convolution with
the reversed pattern PR, as shown in Figure 5.5. Can we solve string
matching in O(n log n) by using fast convolution?

The answer is yes! Suppose our strings have an alphabet of size α. We
can represent each character by a binary vector of length α having exactly
one non-zero bit. Say a = 10 and b = 01 for the alphabet {a, b}. Then we
can encode the strings S and P above as

S = 1001101001100110

P = 100110

The dot product over a window will be m on an even-numbered position of
s iff p starts at that position in the text. So fast convolution can identify
all locations of p in s in O(n log n) time.

Take-Home Lesson: Learn to recognize possible convolutions. A magical
Θ(n log n) algorithm instead of O(n2) is your reward for seeing this.

5.9.2 Fast Polynomial Multiplication (**)

The applications above should whet our interest in efficient ways to compute
convolutions. The fast convolution algorithm uses divide and conquer, but a
detailed proof of correctness relies on fairly sophisticated properties of complex
numbers and linear algebra that are beyond the scope of what I want to do
here. Feel free to skip ahead! But I will provide enough of an overview for you
to understand the divide and conquer part.

We present convolution through a fast algorithm for multiplying polynomi-
als. It is based on a series of observations:

• Polynomials can be represented either as equations or sets of points: You
know that every pair of points defines a line. More generally, any degree-n
polynomial P (x) is completely defined by n+1 points on the polynomial.
For example, the points (−1,−2), (0,−1), and (1, 2) define (and are de-
fined by) the quadratic equation y = x2 + 2x− 1.

• We can find n+1 such points on P (x) by evaluation, but it looks expensive:
Generating a point on a given polynomial is easy—simply pick an arbitrary
value x and plug it into P (x). The time it takes for one such x will be linear
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in the degree of P (x), which means n for the problems we are interested
in. But doing this n+ 1 times for different values of x would take O(n2)
time, which is more than we can afford if we want fast multiplication.

• Multiplying polynomials A and B in a points representation is easy, if they
have both been evaluated on the same values of x: Suppose we want to
compute the product of (3x2 +2x+6)(4x2 +3x+2). The result will be a
degree-4 polynomial, so we need five points to define it. We can evaluate
both factors on the same x values:

A(x) = 3x2 + 2x+ 6 −→ (−2, 14), (−1, 7), (0, 6), (1, 11), (2, 22)

B(x) = 4x2 + 3x+ 2 −→ (−2, 12), (−1, 3), (0, 2), (1, 9), (2, 24)

Since C(x) = A(x)B(x), we can now construct points on C(x) by multi-
plying the corresponding y-values:

C(x) ←− (−2, 168), (−1, 21), (0, 12), (1, 99), (2, 528)

Thus, multiplying points in this representation takes only linear time.

• We can evaluate a degree-n polynomial A(x) as two degree-(n/2) polyno-
mials in x2: We can partition the terms of A into those of even and odd
degree, for example:

12x4 + 17x3 + 36x2 + 22x+ 12 = (12x4 + 36x2 + 12) + x(17x2 + 22)

By replacing x2 by x′, the right side gives us two smaller, lower degree
polynomials as promised.

• This suggests an efficient divide-and-conquer algorithm: We need to eval-
uate n points of a degree-d polynomial. We need n ≥ 2d+ 1 points, since
we will be using them to compute the product of two polynomials. We can
decompose the problem into doing this evaluation on two polynomials of
half the degree, plus a linear amount of work stitching the results together.
This defines the recurrence T (n) = 2T (n/2) + O(n), which evaluates to
O(n log n).

• Making this work correctly requires picking the right x values to evaluate
on: The trick with the squares makes it desirable for our sample points
to come in pairs of the form ±x, since their evaluation requires half as
much work because they are identical when squared.

However, this property does not hold recursively, unless the x values are
carefully chosen complex numbers. The nth roots of unity are the set of
solutions to the equation xn = 1. In reals, we only get x ∈ {−1, 1}, but
there are n solutions with complex numbers. The kth of these n roots is
given by

wk = cos(2kπ/n) + i sin(2kπ/n)
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To appreciate the magic properties of these numbers, look at what happens
when we raise them to powers:

w =

{
1,

1 + i√
2
, i,−1− i√

2
,−1,−1 + i√

2
,−i,

1− i√
2

}

w2 = {1, i,−1,−i, 1, i,−1,−i}
w4 = {1,−1, 1,−1, 1,−1, 1,−1}
w8 = {1, 1, 1, 1, 1, 1, 1, 1}

Observe that these terms come in positive/negative pairs, and the number
of distinct terms gets halved with each squaring. These are the properties
we need to make the divide and conquer work.

The best implementations of fast convolution generally compute the fast
Fourier transform (FFT), so usually we seek to reduce our problems to FFTs to
take advantage of existing libraries. FFTs are discussed in Section 16.11 (page
501).

Take-Home Lesson: Fast convolution solves many important problems in
O(n log n). The first step is to recognize your problem is a convolution.

Chapter Notes

Several other algorithms texts provide more substantive coverage of divide-
and-conquer algorithms, including Kleinberg and Tardos [KT06] and Manber
[Man89]. See Cormen et al. [CLRS09] for an excellent overview of the master
theorem.

See Skiena [Ski12] for an accessible introduction to algorithmic design of
vaccines. The bug searching sequences described in Section 5.2 is an example
of a pooling design, enabling the identification of (say) one sick patient out of n
using only lg n blood tests on pooled samples. The theory of these interesting
designs is surveyed by Du and Hwang [DH00]. The left–right order of the subsets
on these designs reflects a Gray code, in which neighboring subsets differ in
exactly one element. Gray codes are discussed in Section 17.5.

Our parallel computations on pyramidal numbers were reported in Deng and
Yang [DY94]. My treatment of convolutions and the FFT was based on Avrim
Blum’s 15-451/651 algorithm lecture notes.

5.10 Exercises

Binary Search

5-1. [3] Suppose you are given a sorted array A of size n that has been circularly
shifted k positions to the right. For example, [35, 42, 5, 15, 27, 29] is a sorted
array that has been circularly shifted k = 2 positions, while [27, 29, 35, 42, 5, 15]
has been shifted k = 4 positions.
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• Suppose you know what k is. Give an O(1) algorithm to find the largest
number in A.

• Suppose you do not know what k is. Give an O(lg n) algorithm to find the
largest number in A. For partial credit, you may give an O(n) algorithm.

5-2. [3] A sorted array of size n contains distinct integers between 1 and n+1, with
one element missing. Give an O(log n) algorithm to find the missing integer,
without using any extra space.

5-3. [3] Consider the numerical Twenty Questions game. In this game, the first
player thinks of a number in the range 1 to n. The second player has to figure
out this number by asking the fewest number of true/false questions. Assume
that nobody cheats.

(a) What is an optimal strategy if n in known?

(b) What is a good strategy if n is not known?

5-4. [5] You are given a unimodal array of n distinct elements, meaning that its
entries are in increasing order up until its maximum element, after which its
elements are in decreasing order. Give an algorithm to compute the maximum
element of a unimodal array that runs in O(log n) time.

5-5. [5] Suppose that you are given a sorted sequence of distinct integers [a1, a2, . . . , an].
Give an O(lg n) algorithm to determine whether there exists an index i such that
ai = i. For example, in [−10,−3, 3, 5, 7], a3 = 3. In [2, 3, 4, 5, 6, 7], there is no
such i.

5-6. [5] Suppose that you are given a sorted sequence of distinct integers a =
[a1, a2, . . . , an], drawn from 1 to m where n < m. Give an O(lg n) algorithm to
find an integer ≤ m that is not present in a. For full credit, find the smallest
such integer x such that 1 ≤ x ≤ m.

5-7. [5] Let M be an n × m integer matrix in which the entries of each row are
sorted in increasing order (from left to right) and the entries in each column are
in increasing order (from top to bottom). Give an efficient algorithm to find the
position of an integer x in M , or to determine that x is not there. How many
comparisons of x with matrix entries does your algorithm use in worst case?

Divide and Conquer Algorithms

5-8. [5] Given two sorted arrays A and B of size n and m respectively, find the
median of the n + m elements. The overall run time complexity should be
O(log(m+ n)).

5-9. [8] The largest subrange problem, discussed in Section 5.6, takes an array A of
n numbers, and asks for the index pair i and j that maximizes S =

∑j
k=i A[k].

Give an O(n) algorithm for largest subrange.

5-10. [8] We are given n wooden sticks, each of integer length, where the ith piece
has length L[i]. We seek to cut them so that we end up with k pieces of exactly
the same length, in addition to other fragments. Furthermore, we want these k
pieces to be as large as possible.

(a) Given four wood sticks, of lengths L = {10, 6, 5, 3}, what are the largest
sized pieces you can get for k = 4? (Hint: the answer is not 3).

(b) Give a correct and efficient algorithm that, for a given L and k, returns the
maximum possible length of the k equal pieces cut from the initial n sticks.
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5-11. [8] Extend the convolution-based string-matching algorithm described in the
text to the case of pattern matching with wildcard characters “*”, which match
any character. For example, “sh*t” should match both “shot” and “shut”.

Recurrence Relations

5-12. [5] In Section 5.3, it is asserted that any polynomial can be represented by a
recurrence. Find a recurrence relation that represents the polynomial an = n2.

5-13. [5] Suppose you are choosing between the following three algorithms:

• Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

• Algorithm B solves problems of size n by recursively solving two subprob-
lems of size n− 1 and then combining the solutions in constant time.

• Algorithm C solves problems of size n by dividing them into nine subprob-
lems of size n/3, recursively solving each subproblem, and then combining
the solutions in Θ(n2) time.

What are the running times of each of these algorithms (in big O notation), and
which would you choose?

5-14. [5] Solve the following recurrence relations and give a Θ bound for each of them:

(a) T (n) = 2T (n/3) + 1

(b) T (n) = 5T (n/4) + n

(c) T (n) = 7T (n/7) + n

(d) T (n) = 9T (n/3) + n2

5-15. [3] Use the master theorem to solve the following recurrence relations:

(a) T (n) = 64T (n/4) + n4

(b) T (n) = 64T (n/4) + n3

(c) T (n) = 64T (n/4) + 128

5-16. [3] Give asymptotically tight upper (Big Oh) bounds for T (n) in each of the
following recurrences. Justify your solutions by naming the particular case of
the master theorem, by iterating the recurrence, or by using the substitution
method:

(a) T (n) = T (n− 2) + 1.

(b) T (n) = 2T (n/2) + n lg2 n.

(c) T (n) = 9T (n/4) + n2.

LeetCode

5-1. https://leetcode.com/problems/median-of-two-sorted-arrays/

5-2. https://leetcode.com/problems/count-of-range-sum/

5-3. https://leetcode.com/problems/maximum-subarray/

https://leetcode.com/problems/median-of-two-sorted-arrays/
https://leetcode.com/problems/count-of-range-sum/
https://leetcode.com/problems/maximum-subarray/
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HackerRank

5-1. https://www.hackerrank.com/challenges/unique-divide-and-conquer

5-2. https://www.hackerrank.com/challenges/kingdom-division/

5-3. https://www.hackerrank.com/challenges/repeat-k-sums/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

5-1. “Polynomial Coefficients”—Chapter 5, problem 10105.

5-2. “Counting”—Chapter 6, problem 10198.

5-3. “Closest Pair Problem”—Chapter 14, problem 10245.

https://www.hackerrank.com/challenges/unique-divide-and-conquer
https://www.hackerrank.com/challenges/kingdom-division/
https://www.hackerrank.com/challenges/repeat-k-sums/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 6

Hashing and Randomized
Algorithms

Most of the algorithms discussed in previous chapters were designed to optimize
worst-case performance: they are guaranteed to return optimal solutions for
every problem instance within a specified running time.

This is great, when we can do it. But relaxing the demand for either always
correct or always efficient can lead to useful algorithms that still have perfor-
mance guarantees. Randomized algorithms are not merely heuristics: any bad
performance is due to getting unlucky on coin flips, rather than adversarial
input data.

We classify randomized algorithms into two types, depending upon whether
they guarantee correctness or efficiency:

• Las Vegas algorithms: These randomized algorithms guarantee correct-
ness, and are usually (but not always) efficient. Quicksort is an excellent
example of a Las Vegas algorithm.

• Monte Carlo algorithms: These randomized algorithms are provably ef-
ficient, and usually (but not always) produce the correct answer or some-
thing close to it. Representative of this class are random sampling methods
discussed in Section 12.6.1, where we return the best solution found in the
course of (say) 1,000,000 random samples.

We will see several examples of both types of algorithm in this chapter.
One blessing of randomized algorithms is that they tend to be very simple to

describe and implement. Eliminating the need to worry about rare or unlikely
situations makes it possible to avoid complicated data structures and other
contortions. These clean randomized algorithms are often intuitively appealing,
and relatively easy to design.

However, randomized algorithms are frequently quite difficult to analyze
rigorously. Probability theory is the mathematics we need for the analysis of
randomized algorithms, and is of necessity both formal and subtle. Probabilistic
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analysis often involves algebraic manipulation of long chains of inequalities that
looks frightening, and relies on tricks and experience.

This makes it difficult to provide satisfying analysis on the level of this book,
which maintains a strict no-theorem/proof policy. But I will try to provide
intuition where I can, so you can appreciate why these algorithms are usually
correct or efficient.

We have had initial peeks at randomized algorithms through our discussions
of hash tables (Section 3.7) and quicksort (Section 4.6). Review these now to
give yourself the best chance of understanding what is to come.

Stop and Think: Quicksort City

Problem: Why is randomized quicksort a Las Vegas algorithm, as opposed to a
Monte Carlo algorithm?

Solution: Recall that Monte Carlo algorithms are always fast and usually cor-
rect, while Las Vegas algorithms are always correct and usually fast.

Randomized quicksort always produces a sorted permutation, so we know it
is always correct. Picking a very bad series of pivots might cause the running
to exceed O(n log n), but we are always going to end up sorted. Thus, quicksort
is a nice example of a Las Vegas-style algorithm.

6.1 Probability Review

I will resist the temptation to give a thorough review of probability theory here,
as part of my objective to keep this book to a manageable size. My presumptions
are: (1) you have had some previous exposure to probability theory, and (2) you
know where to look if you feel you need more. I will therefore limit myself to a
few basic definitions and properties we will use.

6.1.1 Probability

Probability theory provides a formal framework for reasoning about the likeli-
hood of events. Because it is a formal discipline, there is a thicket of associated
definitions to instantiate exactly what we are reasoning about:

• An experiment is a procedure that yields one of a set of possible out-
comes. As our ongoing example, consider the experiment of tossing two
six-sided dice, one red and one blue, with each face bearing a distinct
integer {1, . . . , 6}.

• A sample space S is the set of possible outcomes of an experiment. In our
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dice example, there are thirty-six possible outcomes, namely

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

• An event E is a specified subset of the outcomes of an experiment. The
event that the sum of the dice equals 7 or 11 (the conditions to win at
craps on the first roll) is the subset

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6), (6, 5)}.

• The probability of an outcome s, denoted p(s), is a number with the two
properties:

– For each outcome s in sample space S, 0 ≤ p(s) ≤ 1.

– The sum of probabilities of all outcomes adds to one:
∑

s∈S p(s) = 1.

If we assume two distinct fair dice, the probability p(s) = (1/6)× (1/6) =
1/36 for all outcomes s ∈ S.

• The probability of an event E is the sum of the probabilities of the out-
comes of the event. Thus,

P (E) =
∑

s∈E

p(s)

An alternative formulation is in terms of the complement of the event Ē,
the case when E does not occur. Then

P (E) = 1− P (Ē)

This is useful, because often it is easier to analyze P (Ē) than P (E) di-
rectly.

• A random variable V is a numerical function on the outcomes of a proba-
bility space. The function “sum the values of two dice” (V ((a, b)) = a+ b)
produces an integer result between 2 and 12. This implies a probability
distribution of the possible values of the random variable. The probability
P (V (s) = 7) = 1/6, while P (V (s) = 12) = 1/36.

• The expected value of a random variable V defined on a sample space S,
E(V ), is defined

E(V ) =
∑

s∈S

p(s) · V (s)
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Figure 6.1: Venn diagrams illustrating set difference (left), intersection (middle),
and union (right).

6.1.2 Compound Events and Independence

We will be interested in complex events computed from simpler events A and B
on the same set of outcomes. Perhaps event A is that at least one of two dice
be an even number, while event B denotes rolling a total of either 7 or 11. Note
that there exist outcomes of A that are not outcomes of B, specifically

A−B = {(1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (2, 6), (3, 2), (3, 6), (4, 1),
(4, 2), (4, 4), (4, 5), (4, 6), (5, 4), (6, 2), (6, 3), (6, 4), (6, 6)}

This is the set difference operation. Observe that here B − A = {}, because
every pair adding to 7 or 11 must contain one odd and one even number.

The outcomes in common between both events A and B are called the in-
tersection, denoted A ∩B. This can be written as

A ∩B = A− (S −B)

Outcomes that appear in either A or B are called the union, denoted A ∪ B.
The probability of the union and intersection are related by the formula

P (A ∪B) = P (A) + P (B)− P (A ∩B)

With the complement operation Ā = S−A, we get a rich language for combining
events, shown in Figure 6.1. We can readily compute the probability of any of
these sets by summing the probabilities of the outcomes in the defined sets.

The events A and B are said to be independent if

P (A ∩B) = P (A)× P (B)

This means that there is no special structure of outcomes shared between events
A and B. Assuming that half of the students in my class are female, and half
the students in my class are above average, we would expect that a quarter of
my students are both female and above average if the events are independent.

Probability theorists love independent events, because it simplifies their cal-
culations. For example, if Ai denotes the event of getting an even number on
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the ith dice throw, then the probability of obtaining all evens in a throw of two
dice is P (A1 ∩ A2) = P (A1)P (A2) = (1/2)(1/2) = 1/4. Then, the probability
of A, that at least one of two dice is even, is

P (A) = P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) = 1/2 + 1/2− 1/4 = 3/4

That independence often doesn’t hold explains much of the subtlety and
difficulty of probabilistic analysis. The probability of getting n heads when
tossing n independent coins is 1/2n. But it would be 1/2 if the coins were
perfectly correlated, since the only possibilities would be all heads or all tails.
This computation would become very hard if there were complex dependencies
between the outcomes of the ith and jth coins.

Randomized algorithms are typically designed around samples drawn inde-
pendently at random, so that we can safely multiply probabilities to understand
compound events.

6.1.3 Conditional Probability

Presuming that P (B) > 0, the conditional probability of A given B, P (A|B) is
defined as follows

P (A|B) =
P (A ∩B)

P (B)

In particular, if events A and B are independent, then

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A)

and B has absolutely no impact on the likelihood of A. Conditional probability
becomes interesting only when the two events have dependence on each other.

Recall the dice-rolling events from Section 6.1.2, namely:

• Event A: at least one of two dice is an even number.

• Event B: the sum of the two dice is either 7 or 11.

Observe that P (A|B) = 1, because any roll summing to an odd value must
consist of one even and one odd number. Thus, A ∩B = B. For P (B|A), note
that P (A ∩B) = P (B) = 8/36 and P (A) = 27/36, so P (B|A) = 8/27.

Our primary tool to compute conditional probabilities will be Bayes’ theo-
rem, which reverses the direction of the dependencies:

P (B|A) =
P (A|B)P (B)

P (A)

Often it proves easier to compute probabilities in one direction than another,
as in this problem. By Bayes’ theorem P (B|A) = (1 · 8/36)/(27/36) = 8/27,
exactly what we got before.
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Figure 6.2: The probability density function (pdf) of the sum of two dice con-
tains exactly the same information as the cumulative density function (cdf), but
looks very different.

6.1.4 Probability Distributions

Random variables are numerical functions where the values are associated with
probabilities of occurrence. In our example where V (s) is the sum of two tossed
dice, the function produces an integer between 2 and 12. The probability of a
particular value V (s) = X is the sum of the probabilities of all the outcomes
whose components add up to X.

Such random variables can be represented by their probability density func-
tion, or pdf. This is a graph where the x-axis represents the values the random
variable can take on, and the y-axis denotes the probability of each given value.
Figure 6.2 (left) presents the pdf of the sum of two fair dice. Observe that the
peak at X = 7 corresponds to the most probable dice total, with a probability
of 1/6.

6.1.5 Mean and Variance

There are two main types of summary statistics, which together tell us an enor-
mous amount about a probability distribution or a data set:

• Central tendency measures, which capture the center around which the
random samples or data points are distributed.

• Variation or variability measures, which describe the spread, that is, how
far the random samples or data points can lie from the center.

The primary centrality measure is the mean. The mean of a random variable
V , denoted E(V ) and also known as the expected value, is given by

E(V ) =
∑

s∈S

V (s)p(s)

When the elementary events are all of equal probability, the mean or average,
computed as

X̄ =
1

n

n∑

i=1

xi
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Figure 6.3: The probability distribution of getting h heads in n =10,000 tosses
of a fair coin is tightly centered around the mean, n/2 =5,000.

The most common measure of variability is the standard deviation σ. The
standard deviation of a random variable V is given by σ =

√
E((V − E(V ))2.

For a data set, the standard deviation is computed from the sum of squared
differences between the individual elements and the mean:

σ =

√∑n
i=1(xi − X̄)2

n− 1

A related statistic, the variance V = σ2, is the square of the standard
deviation. Sometimes it is more convenient to talk about variance than standard
deviation, because the term is ten characters shorter. But they measure exactly
the same thing.

6.1.6 Tossing Coins

You probably have a fair degree of intuition about the distribution of the number
of heads and tails when you toss a fair coin 10,000 times. You know that the
expected number of heads in n tosses, each with probability p = 1/2 of heads, is
pn, or 5,000 for this example. You likely know that the distribution for h heads
out of n is a binomial distribution, where

P (X − h) =

(
n
h

)
∑n

x=0

(
n
x

) =

(
n
h

)

2n

and that it is a bell-shaped symmetrical distribution about the mean.
But you may not appreciate just how narrow this distribution is, as shown in

Figure 6.3. Sure, anywhere from 0 to n heads can result from n fair coin tosses.
But they won’t: the number of heads we get will almost always be within a
few standard deviations of the mean, where the standard deviation σ for the
binomial distribution is given by σ =

√
np(1− p) = Θ(

√
n).
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Figure 6.4: How long does a random walk take to visit all n nodes of a path
(left) or a complete graph (right)?

Indeed, for any probability distribution, at least 1 − (1/k2) of the mass of
the distribution lies within ±kσ of the mean μ. Typically σ is small relative
to μ for the distributions arising in the analysis of randomized algorithms and
processes.

Take-Home Lesson: Students often ask me “what happens” when randomized
quicksort runs in Θ(n2). The answer is that nothing happens, in exactly the
same way nothing happens when you buy a lottery ticket: you almost certainly
just lose. With a randomized quicksort you almost certainly just win: the
probability distribution is so tight that you nearly always run in time very
close to expectation.

Stop and Think: Random Walks on a Path

Problem: Random walks on graphs are important processes to understand. The
expected covering time (the number of moves until we have visited all vertices)
differs depending upon the topology of the graph (see Figure 6.4). What is it
for a path?

Suppose we start at the left end of an m-vertex path. We repeatedly flip
a fair coin, moving one step right on heads and one step left on tails (staying
where we are if we were to fall off the path). How many coin flips do we expect
it will take, as a function of m, until we get to the right end of the path?

Solution: To get to the right end of the path, we need m− 1 more heads than
tails after n coin flips, assuming we don’t bother to flip when on the left-most
vertex where we can only move right. We expect about half of the flips to be
heads, with a standard deviation of σ = Θ(

√
n). This σ describes the spread of

the difference in the number of the heads and tails we are likely to have. We
must flip enough times for σ to be on the order of m, so

m = Θ(
√
n) → n = Θ(m2)
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6.2 Understanding Balls and Bins

Ball and bin problems are classics of probability theory. We are given x identical
balls to toss at random into y labeled bins. We are interested in the resulting
distribution of balls. How many bins are expected to contain a given number of
balls?

Hashing can be thought of as a ball and bin process. Suppose we hash n
balls/keys into n bins/buckets. We expect an average of one ball per bin, but
note that this will be true regardless of how good or bad the hash function is.

A good hash function should behave like a random number generator, se-
lecting integers/bin IDs with equal probability from 1 to n. But what happens
when we draw n such integers from a uniform distribution? The ideal would
be for each of the n items (balls) to be assigned to a different bin, so that each
bucket contains exactly one item to search. But is this really what happens?

To help develop your own intuition, I encourage you to code a little simula-
tion and run your own experiment. I did, and got the following results, for hash
table sizes from one million to one hundred million items:

Number of Buckets with k Items
k n = 106 n = 107 n = 108

0 367,899 3,678,774 36,789,634
1 367,928 3,677,993 36,785,705
2 183,926 1,840,437 18,392,948
3 61,112 613,564 6,133,955
4 15,438 152,713 1,531,360
5 3130 30,517 306,819
6 499 5,133 51,238
7 56 754 7,269
8 12 107 972
9 8 89
10 10
11 1

We see that 36.78% of the buckets are empty in all three cases. That can’t
be a coincidence. The first bucket will be empty iff each of the n balls gets
assigned to one of the other n−1 buckets. The probability p of missing for each
particular ball is p = (n − 1)/n, which approaches 1 as n gets large. But we
must miss for all n balls, the probability of which is pn. What happens when
we multiply a large number of large probabilities? You actually saw the answer
back when you studied limits:

P (|B1| = 0) =

(
n− 1

n

)n

→ 1

e
= 0.367879

Thus, 36.78% of the buckets in a large hash table will be empty. And, as it turns
out, exactly the same fraction of buckets is expected to contain one element.

If so many buckets are empty, others must be unusually full. The fullest
bucket gets fuller in the table above as n increases, from 8 to 9 to 11. In fact,
the expected value of the longest list is O(log n/ log log n), which grows slowly
but is not a constant. Thus, I was a little too glib when I said in Section 3.7.1
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Figure 6.5: Illustrating the coupon collectors problem through an experiment
tossing balls at random into ten bins. It is not until the 33rd toss that all bins
are non-empty.

that the worst-case access time for hashing is O(1).1

Take-Home Lesson: Precise analysis of random process requires formal proba-
bility theory, algebraic skills, and careful asymptotics. We will gloss over such
issues in this chapter, but you should appreciate that they are out there.

6.2.1 The Coupon Collector’s Problem

As a final hashing warmup, let’s keep tossing balls into these n bins until none
of them are empty, that is, until we have at least one ball in each bin. How
many tosses do we expect this should take? As shown in Figure 6.5, it may
require considerably more than n tosses until every bin is occupied.

We can split such a sequence of balls into n runs, where run ri consists of the
balls we toss after we have filled i buckets until the next time we hit an empty
bucket. The expected number of balls to fill all n slots E(n) will be the sum of
the expected lengths of all runs. If you are flipping a coin with probability p
of coming up heads, the expected number of flips until you get your first head
is 1/p; this is a property of the geometric distribution. After filling i buckets,
the probability that our next toss will hit an empty bucket is p = (n − i)/n.
Putting this together, we get the following

E(n) =
n−1∑

i=0

|ri| =
n−1∑

i=0

n

n− i
= n

n−1∑

i=0

1

n− i
= nHn ≈ n lnn

The trick here is to remember that the harmonic number Hn =
∑n

i=1 1/i,
and that Hn ≈ lnn.

Stop and Think: Covering Time for Kn

Problem: Suppose we start on vertex 1 of a complete n-vertex graph (see Figure
6.4). We take a random walk on this graph, at each step going to a randomly

1To be precise, the expected search time for hashing is O(1) averaged over all n keys, but
we also expect there will a few keys unlucky enough to require Θ(log n/ log logn) time.
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selected neighbor of our current position. What is the expected number of steps
until we have visited all vertices of the graph?

Solution: This is exactly the same question as the previous stop and think,
but with a different graph and thus with a possibly different answer.

Indeed, the random process here of independently generating random inte-
gers from 1 to n looks essentially the same as the coupon collector’s problem.
This suggests that the expected length of the covering walk is Θ(n log n).

The only hitch in this argument is that the random walk model does not
permit us to stay at the same vertex for two successive steps, unless the graph
has edges from a vertex to itself (self-loops). A graph without such self-loops
should have a slightly faster covering time, since a repeat visit does not make
progress in any way, but not enough to change the asymptotics. The probability
of discovering one of n − i untouched vertices in the next step changes from
(n− i)/n to (n− i)/(n− 1), reducing the total covering time analysis from nHn

to (n − 1)Hn. But these are asymptotically the same. Covering the complete
graph takes Θ(n log n) steps, much faster than the covering time of the path.

6.3 Why is Hashing a Randomized Algorithm?

Recall that a hash function h(s) maps keys s to integers in a range from 0 to
m− 1, ideally uniformly over this interval. Because good hash functions scatter
keys around this integer range in a manner similar to that of a uniform random
number generator, we can analyze hashing by treating the values as drawn from
tosses of an m-sided die.

But just because we can analyze hashing in terms of probabilities doesn’t
make it a randomized algorithm. As discussed so far, hashing is completely
deterministic, involving no random numbers. Indeed, hashing must be deter-
ministic, because we need h(x) to produce exactly the same result whenever
called with a given x, or else we can never hope to find x in a hash table.

One reason we like randomized algorithms is that they make the worst case
input instance go away: bad performance should be a result of extremely bad
luck, rather than some joker giving us data that makes us do bad things. But it
is easy (in principle) to construct a worst case example for any hash function h.
Suppose we take an arbitrary set S of nm distinct keys, and hash each s ∈ S.
Because the range of this function has only m elements, there must be many
collisions. Since the average number of items per bucket is nm/m = n, it follows
from the pigeonhole principle that there must be a bucket with at least n items
in it. The n items in this bucket, taken by themselves, will prove a nightmare
for hash function h.

How can we make such a worst-case input go away? We are protected if we
pick our hash function at random from a large set of possibilities, because we
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can only construct such a bad example by knowing the exact hash function we
will be working with.

So how can we construct a family of random hash functions? Recall that
typically h(x) = f(x) (mod m), where f(x) turns the key into a huge value, and
taking the remainder mod m reduces it to the desired range. Our desired range
is typically determined by application and memory constraints, so we would not
want to select m at random. But what about first reducing with a larger integer
p? Observe that in general

f(x) (mod m) �= (f(x) mod p) (mod m)

For example:

21347895537127 (mod 17) = 8 �= (21347895537127 (mod 2342343)) (mod 17) = 12

Thus, we can select p at random to define the hash function

h(x) = ((f(x) mod p) mod m)

and things will work out just fine provided (a) f(x) is large relative to p, (b) p
is large relative to m, and (c) m is relatively prime to p.

This ability to select random hash functions means we can now use hashing to
provide legitimate randomized guarantees, thus making the worst-case input go
away. It also lets us build powerful algorithms involving multiple hash functions,
such as Bloom filters, discussed in Section 6.4.

6.4 Bloom Filters

Recall the problem of detecting duplicate documents faced by search engines like
Google. They seek to build an index of all the unique documents on the web.
Identical copies of the same document often exist on many different websites,
including (unfortunately) pirated copies of my book. Whenever Google crawls
a new link, they need to establish whether what they found is a not previously
encountered document worth adding to the index.

Perhaps the most natural solution here is to build a hash table of the docu-
ments. Should a freshly crawled document hash to an empty bucket, we know
it must be new. But when there is a collision, it does not necessarily mean we
have seen this document before. To be sure, we must explicitly compare the
new document against all other documents in the bucket, to detect spurious
collisions between a and b, where h(a) = s and h(b) = s, but a �= b. This is
what was discussed back in Section 3.7.2.

But in this application, spurious collisions are not really a tragedy: they
only mean that Google will fail to index a new document it has found. This can
be an acceptable risk, provided the probability of it happening is low enough.
Removing the need to explicitly resolve collisions has big benefits in making the
table smaller. By reducing each bucket from a pointer link to a single bit (is
this bucket occupied or not?), we reduce the space by a factor of 64 on typical
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Figure 6.6: Hashing the integers 0, 1, 2, 3, and 4 into an n = 8 bit Bloom filter,
using hash functions h1(x) = 2x+1 (blue) and h2(x) = 3x+2 (red). Searching
for x = 5 would yield a false positive, since the two corresponding bits have
been set by other elements.

machines. Some of this space can then be taken back to make the hash table
larger, thus reducing the probability of collisions in the first place.

Now suppose we build such a bit-vector hash table, with a capacity of n bits.
If we have distinct bits corresponding to m documents occupied, the probability
that a new document will spuriously hash to one of these bits is p = m/n. Thus,
even if the table is only 5% full, there is still a p = 0.05 probability that we will
falsely discard a new discovery, which is much higher than is acceptable.

Much better is to employ a Bloom filter, which is also just a bit-vector
hash table. But instead of each document corresponding to a single position
in the table, a Bloom filter hashes each key k times, using k different hash
functions. When we insert document s into our Bloom filter, we set all the
bits corresponding to h1(s), h2(s), . . . hk(s) to be 1, meaning occupied. To test
whether a query document s is present in the data structure, we must test that
all k of these bits equal 1. For a document to be falsely convicted of already
being in the filter, it must be unlucky enough that all k of these bits were set
in hashes of previous documents, as in the example of Figure 6.6.

What are the chances of this? Hashes of m documents in such a Bloom
filter will occupy at most km bits, so the probability of a single collision rises
to p1 = km/n, which is k times greater than the single hash case. But all k
bits must collide with those of our query document, which only happens with
probability pk = (p1)

k = (km/n)k. This is a peculiar expression, because a
probability raised to the kth power quickly becomes smaller with increasing k,
yet here the probability being raised simultaneously increases with k. To find
the k that minimizes pk, we could take the derivative and set it to zero.

Figure 6.7 graphs this error probability ((km/n)k) as a function of load
(m/n), with a separate line for each k from 1 to 5. It is clear that using a large
number of hash functions (increased k) reduces false positive error substantially
over a conventional hash table (the blue line, k = 1), at least for small loads.
But observe that the error rate associated with larger k increases rapidly with
load, so for any given load there is always a point where adding more hash
functions becomes counter-productive.

For a 5% load, the error rate for a simple hash table of k = 1 will be 51.2
times larger than a Bloom filter with k = 5 (9.77 × 10−4), even though they
use exactly the same amount of memory. A Bloom filter is an excellent data
structure for maintaining an index, provided you can live with occasionally
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Figure 6.7: Bloom filter error probability as a function of load (m/n) for k from
1 to 5. By selecting the right k for the given load, we can dramatically reduce
false positive error rate with no increase in table space.

saying yes when the answer is no.

6.5 The Birthday Paradox and Perfect Hashing

Hash tables are an excellent data structure in practice for the standard dic-
tionary operations of insert, delete, and search. However, the Θ(n) worst-case
search time for hashing is an annoyance, no matter how rare it is. Is there a
way we can guarantee worst-case constant time search?

Perfect hashing offers us this possibility for static dictionaries. Here we are
given all possible keys in one batch, and are not allowed to later insert or delete
items. We can thus build the data structure once and use it repeatedly for
search/membership testing. This is a fairly common use case, so why pay for
the flexibility of dynamic data structures when you don’t need them?

One idea for how this might work would be to try a given hash function
h(x) on our set of n keys S and hope it creates a hash table with no collisions,
that is, h(x) �= h(y) for all pairs of distinct x, y ∈ S. It should be clear that our
chances of getting lucky improve as we increase the size of our table relative to
n: the more empty slots there are available for the next key, the more likely we
find one.

How large a hash table m do we need before we can expect zero collisions
among n keys? Suppose we start from an empty table, and repeatedly insert
keys. For the (i + 1)th insertion, the probability that we hit one of the m − i
still-open slots in the table is (m− i)/m. For a perfect hash, all n inserts must
succeed, so

P (no collision) =
n−1∏

i=0

(
m− i

m

)
=

m!

mn((m− n)!)

What happens when you evaluate this is famously called the birthday para-
dox. How many people do you need in a room before it is likely that at least
two of them share the same birthday? Here the table size is m = 365. The
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Figure 6.8: The probability of no collisions in a hash table decreases rapidly
with n, the number of keys to hash. Here the hash table size is m = 365.

probability of no collisions drops below 1/2 for n = 23 and is less than 3% when
n ≥ 50, as shown in Figure 6.8. In other words, odds are we have a collision
when only 23 people are in the room. Solving this asymptotically, we begin to
expect collisions when n = Θ(

√
m) or equivalently when m = Θ(n2).

But quadratic space seems like an awful large penalty to pay for constant
time access to n elements. Instead, we will create a two-level hash table. First,
we hash the n keys of set S into a table with n slots. We expect collisions, but
unless we are very unlucky all the lists will be short enough.

Let li be the length of the ith list in this table. Because of collisions, many
lists will be of length longer than 1. Our definition of short enough is that n
items are distributed around the table such that the sum of squares of the list
lengths is linear, that is,

N =
n∑

i=1

li
2 = Θ(n)

Suppose that it happened that all elements were in lists of length l, meaning
that we have n/l non-empty lists. The sum of squares of the list lengths is
N = (n/l)l2 = nl, which is linear because l is a constant. We can even get away
with a fixed number of lists of length

√
n and still use linear space.

In fact, it can be shown that N ≤ 4n with high probability. So if this isn’t
true on S for the first hash function we try, we can just try another. Pretty
soon we will find one with short-enough list lengths that we can use.

We will use an array of length N for our second-level table, allocating li
2

space for the elements of the ith bucket. Note that this is big enough relative to
the number of elements to avoid the birthday paradox—odds are we will have
no collision in any given hash function. And if we do, simply try another hash
function until all elements end up in unique places.

The complete scheme is illustrated in Figure 6.9. The contents of the ith
entry in the first-level hash table include the starting and ending positions for
the li

2 entries in the second-level table corresponding to this list. It also contains
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77

55 53

63 58 10 33 17 71 47 42

0 1 2 3 4 5 6 7 8 9 10

63 58 10 55 77 33 17 71 47 42 53

0 1 2 3 4 5 6 7 8 0 1 2 3

Figure 6.9: Perfect hashing uses a two-level hash table to guarantee lookup in
constant time. The first-level table encodes an index range of li

2 elements in
the second-level table, allocated to store the li items in first-level bucket i.

a description (or identifier) of the hash function that we will use for this region
of the second-level table.

Lookup for an item s starts by calling hash function h1(s) to compute the
right spot in the first table, where we will find the appropriate start/stop
position and hash function parameters. From this we can compute start +
(h2(s) (mod (stop − start))), the location where item s will appear in the sec-
ond table. Thus, search can always be performed in Θ(1) time, using linear
storage space between the two tables.

Perfect hashing is a very useful data structure in practice, ideal for whenever
you will be making large numbers of queries to a static dictionary. There is a
lot of fiddling you can do with this basic scheme to minimize space demands
and construction/search cost, such as working harder to find second-level hash
functions with fewer holes in the table. Indeed, minimum perfect hashing guar-
antees constant time access with zero empty hash table slots, resulting in an
n-element second hash table for n keys.

6.6 Minwise Hashing

Hashing lets you quickly test whether a specific word w in document D1 also
occurs in document D2: build a hash table on the words of D2 and then hunt
for h(w) in this table T . For simplicity and efficiency we can remove duplicate
words from each document, so each contains only one entry for each vocabulary
term used. By so looking up all the vocabulary words wi ∈ D1 in T , we can
get a count of the intersection, and compute the Jaccard similarity J(D1, D2)
of the two documents, where

J(D1, D2) =
|D1 ∩D2|
|D1 ∪D2|

This similarity measure ranges from 0 to 1, sort of like a probability that the
two documents are similar.

But what if you want to test whether two documents are similar without
looking at all the words? If we are doing this repeatedly, on a web scale, effi-
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Figure 6.10: The words associated with the minimum hash code from each of
two documents are likely to be the same, if the documents are very similar.

ciency matters. Suppose we are allowed to look at only one word per document
to make a decision. Which word should we pick?

A first thought might be to pick the most frequent word in the original
document, but it is likely to be “the” and tell you very little about similarity.
Picking the most representative word, perhaps according to the TD–IDF statis-
tic, would be better. But it still makes assumptions about the distribution of
words, which may be unwarranted.

The key idea is to synchronize, so we pick the same word out of the two
documents while looking at the documents separately. Minwise hashing is a
clever but simple idea to do this. We compute the hash code h(wi) of every
word in D1, and select the code with smallest value among all the hash codes.
Then we do the same thing with the words in D2, using the same hash function.

What is cool about this is that it gives a way to pick the same random word
in both documents, as shown in Figure 6.10. Suppose the vocabularies of each
document were identical. Then the word with minimum hash code will be the
same in both D1 and D2, and we get a match. In contrast, suppose we had
picked completely random words from each document. Then the probability of
picking the same word would be only 1/v, where v is the vocabulary size.

Now suppose that D1 and D2 do not have identical vocabularies. The proba-
bility that the minhash word appears in both documents depends on the number
of words in common, that is, the intersection of the vocabularies, and also on
the total vocabulary size of the documents. In fact, this probability is exactly
the Jaccard similarity described above.

Sampling a larger number of words, say, the k smallest hash values in each
document, and reporting the size of intersection over k gives us a better estimate
of Jaccard similarity. But the alert reader may wonder why we bother. It takes
time linear in the size of D1 and D2 to compute all the hash values just to find
the minhash values, yet this is the same running time that it would take to
compute the exact size of intersection using hashing!

The value of minhash comes in building indexes for similarity search and
clustering over large corpora of documents. Suppose we have N documents,
each with an average of m vocabulary words in them. We want to build an index
to help us determine which of these is most similar to a new query document Q.
Hashing all words in all documents gives us a table of size O(Nm). Storing k �
m minwise hash values from each document will be much smaller at O(Nk), but
the documents at the intersection of the buckets associated with the k minwise
hashes of Q are likely to contain the most similar documents—particularly if
the Jaccard similarity is high.
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Stop and Think: Estimating Population Size

Problem: Suppose we will receive a stream S of n numbers one by one. This
stream will contain many duplicates, possibly even a single number repeated n
times. How can we estimate the number of distinct values in S using only a
constant amount of memory?

Solution: If space was not an issue, the natural solution would be to build a
dictionary data structure on the distinct elements from the stream, each with
an associated count of how often it has occurred. For the next element we see
in the stream, we add one to the count if it exists in the dictionary, or insert it
if it is not found. But we only have enough space to store a constant number
of elements. What can we do?

Minwise hashing comes to the rescue. Suppose we hash each new element s
of S as it comes in, and only save h(s) if it is smaller than the previous minhash.

Why is this interesting? Suppose the range of possible hash values is between
0 and M −1, and we select k values in this range uniformly at a random. What
is the expected minimum of these k values? If k = 1, the expected value will
(obviously) be M/2. For general k, we might hand wave and say that if our k
values were equally spaced in the interval, the minhash should be M/(k + 1).

In fact, this hand waving happens to produce the right answer. Define X as
the smallest of k samples. Then

P (X = i) = P (X ≥ i)− P (X ≥ i+ 1) =

(
M − i

M

)k

−
(
M − i− 1

M

)k

Taking the limit of the expected value as M gets large gives the result

E(X) =

M−1∑

i=0

i(

(
M − i

M

)k

−
(
M − i− 1

M

)k

) −→ M

k + 1

The punch line is that M divided by the minhash value gives an excellent
estimate of the number of distinct values we have seen. This method will not
be fooled by repeated values in the stream, since repeated occurrences will yield
precisely the same value every time we evaluate the hash function.

6.7 Efficient String Matching

Strings are sequences of characters where the order of the characters matters:
the string ALGORITHM is different than LOGARITHM. Text strings are fundamen-
tal to a host of computing applications, from programming language pars-
ing/compilation, to web search engines, to biological sequence analysis.

The primary data structure for representing strings is an array of characters.
This allows us constant-time access to the ith character of the string. Some
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0 1 2 5 3 6 5

0 1 1 2 2 2 2

A A A B A B B A B

H(s, j)
∑

Ci + j

Figure 6.11: The Rabin–Karp hash function H(s, j) gives distinctive codes to
different substrings (in blue), while a less powerful hash function that just adds
the character codes yields many collisions (shown in purple). Here the pattern
string (BBA) has length m = 3, and the character codes are A = 0 and B = 1.

auxiliary information must be maintained to mark the end of the string: either
a special end-of-string character or (perhaps more usefully) a count n of the
characters in the string.

The most fundamental operation on text strings is substring search, namely:

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

The simplest algorithm to search for the presence of pattern string p in
text t overlays the pattern string at every position in the text, and checks
whether every pattern character matches the corresponding text character. As
demonstrated in Section 2.5.3 (page 43), this runs in O(nm) time, where n = |t|
and m = |p|.

This quadratic bound is worst case. More complicated, worst-case linear-
time search algorithms do exist: see Section 21.3 (page 685) for a complete
discussion. But here I give a linear expected-time algorithm for string matching,
called the Rabin–Karp algorithm. It is based on hashing. Suppose we compute
a given hash function on both the pattern string p and them-character substring
starting from the ith position of t. If these two strings are identical, clearly the
resulting hash values must be the same. If the two strings are different, the hash
values will almost certainly be different. These false positives should be so rare
that we can easily spend the O(m) time it takes to explicitly check the identity
of two strings whenever the hash values agree.

This reduces string matching to n − m + 2 hash value computations (the
n −m + 1 windows of t, plus one hash of p), plus what should be a very small
number of O(m) time verification steps. The catch is that it takes O(m) time to
compute a hash function on an m-character string, and O(n) such computations
seems to leave us with an O(mn) algorithm again.

But let’s look more closely at our previously defined (in Section 3.7) hash
function, applied to the m characters starting from the jth position of string S:

H(S, j) =

m−1∑

i=0

αm−(i+1) × char(si+j)
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What changes if we now try to compute H(S, j + 1)—the hash of the next
window of m characters? Note that m − 1 characters are the same in both
windows, although this differs by one in the number of times they are multiplied
by α. A little algebra reveals that

H(S, j + 1) = α(H(S, j)− αm−1char(sj)) + char(sj+m)

This means that once we know the hash value from the jth position, we can
find the hash value from the (j+1)th position for the cost of two multiplications,
one addition, and one subtraction. This can be done in constant time (the value
of αm−1 can be computed once and used for all hash value computations). This
math works even if we compute H(S, j) mod M , where M is a reasonably large
prime number. This keeps the size of our hash values small (at most M) even
when the pattern string is long.

Rabin–Karp is a good example of a randomized algorithm (if we pick M in
some random way). We get no guarantee the algorithm runs in O(n+m) time,
because we may get unlucky and have the hash values frequently collide with
spurious matches. Still, the odds are heavily in our favor—if the hash function
returns values uniformly from 0 to M − 1, the probability of a false collision
should be 1/M . This is quite reasonable: if M ≈ n, there should only be one
false collision per string, and if M ≈ nk for k ≥ 2, the odds are great we will
never see any false collisions.

6.8 Primality Testing

One of the first programming assignments students get is to test whether an
integer n is a prime number, meaning that its only divisors are 1 and itself. The
sequence of prime numbers starts with 2, 3, 5, 7, 11, 13, 17, . . ., and never ends.

That program you presumably wrote employed trial division as the algo-
rithm: using a loop where i runs from 2 to n− 1, and check whether n/i is an
integer. If so, then i is a factor of n, and so n must be composite. Any integer
that survives this gauntlet of tests is prime. In fact, the loop only needs to run
up to √n �, since that is the largest possible value of the smallest non-trivial
factor of n.

Still, such trial division is not cheap. If we assume that each division takes
constant time this gives an O(

√
n) algorithm, but here n is the value of the

integer being factored. A 1024-bit number (the size of a small RSA encryption
key) encodes numbers up to 21024 − 1, with the security of RSA depending on

factoring being hard. Observe that
√
21024 = 2512, which is greater than the

number of atoms in the universe. So expect to spend some time waiting before
you get the answer.

Randomized algorithms for primality testing (not factoring) turn out to be
much faster. Fermat’s little theorem states that if n is a prime number then

an−1 = 1(mod n) for all a not divisible by n
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For example, when n = 17 and a = 3, observe that (317−1− 1)/17 = 2, 532, 160,
so 317−1 = 1(mod 17). But for n = 16, 316−1 = 11(mod 16), which proves that
16 cannot be prime.

What makes this interesting is that the mod of this big power always is 1 if
n is prime. This is a pretty good trick, because the odds of it being 1 by chance
should be very small—only 1/n if the residue was uniform in the range.

Let’s say we can argue that the probability of a composite giving a residue
of 1 is less than 1/2. This suggests the following algorithm: Pick 100 random
integers aj , each between 1 and n− 1. Verify that none of them divide n. Then
compute (aj)

n−1 (mod n). If all hundred of these come out to be 1, then the
probability that n is not prime must be less than (1/2)100, which is vanishingly
small. Because the number of tests (100) is fixed, the running time is always
fast, which makes this a Monte Carlo type of randomized algorithm.

There is a minor issue in our probability analysis, however. It turns out
that a very small fraction of integers (roughly 1 in 50 billion up to 1021) are
not prime, yet also satisfy the Fermat congruence for all a. Such Carmichael
numbers like 561 and 1105 are doomed to be always be misclassified as prime.
Still, this randomized algorithm proves very effective at distinguishing likely
primes from composite integers.

Take-Home Lesson: Monte Carlo algorithms are always fast, usually correct,
and most of them are wrong in only one direction.

One issue that might concern you is the time complexity of computing
an−1 (mod n). In fact, it can be done in O(log n) time. Recall that we can
compute a2m as (am)2 by divide and conquer, meaning we only need a number
of multiplications logarithmic in the size of the exponent. Further, we don’t
have to work with excessively large numbers to do it. Because of the properties
of modular arithmetic,

(x · y) mod n = ((x mod n) · (y mod n)) mod n

so we never need multiply numbers larger than n over the course of the compu-
tation.

6.9 War Story: Giving Knuth the Middle Initial

The great Donald Knuth is the seminal figure in creating computer science as
an intellectually distinct academic discipline. The first three volumes of his Art
of Computer Programming series (now four), published between 1968 and 1973,
revealed the mathematical beauty of algorithm design, and still make fun and
exciting reading. Indeed, I give you my blessing to put my book aside to pick
up one of his, at least for a little while.

Knuth is also a co-author of the textbook Concrete Mathematics, which
focuses on mathematical analysis techniques for algorithms and discrete math-
ematics. Like his other books it contains open research questions in addition
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to homework problems. One problem that caught my eye concerned middle
binomial coefficients, asking whether it is true that

(
2n

n

)
= (−1)n(mod (2n+ 1)) iff 2n+ 1 is prime.

This is suggestive of Fermat’s little theorem, discussed in Section 6.8 (page 190).
The congruence is readily shown to hold whenever 2n+1 is prime. By basic

modular arithmetic,

(2n)(2n− 1)...(n+ 1) = (−1)(−2)...(−n) = (−1)n · n! (mod (2n+ 1))

Since ad = bd(mod m) implies a = b(mod m) if d is relatively prime to m and
n! divides (2n)!/n!, n! can be divided from both sides, giving the result.

But does this formula hold only when 2n+1 is prime, as conjectured? That
didn’t sound right to me, for logic that is dual to the randomized primality
testing algorithm. If we treat the residue mod 2n+ 1 as a random integer, the
probability that it would happen to be (−1)n is very small, only 1/n. Thus,
not seeing a counterexample over a small number of tests is not very impressive
evidence, because chance counterexamples should be rare.

So I wrote a 16-line Mathematica program, and left it running for the week-
end. When I got back, the program has stopped at n = 2,953. It turns out that(
5906
2953

) ≈ 7.93285× 101775 is congruent to 5,906 when taken modulo 5,907. But
since 5,907 = 3 · 11 · 179, this shows that 2n+1 is not prime and the conjecture
is refuted.

It was a big thrill sending this result to Knuth himself, who said he would
put my name in the next edition of his book. A notorious stickler for detail,
he asked me to give him my middle initial. I proudly replied “S”, and asked
him when he would send me my check. Knuth famously offered $2.56 checks to
anyone who found mistakes in one of his books,2 and I wanted one as a souvenir.
But he nixed it, explaining that solving an open problem did not count as fixing
an error in his book. I have always regretted that I did not send him my middle
initial as “T”, because then I would have had an error for him to correct in a
future printing.

6.10 Where do Random Numbers Come From?

All the clever randomized algorithms discussed in this chapter raises a question:
Where do we get random numbers? What happens when you call the random
number generator associated with your favorite programming language?

We are used to employing physical processes to generate randomness, such as
flipping coins, tossing dice, or even monitoring radioactive decay using a Geiger
counter. We trust these events to be unpredictable, and hence indicative of true
randomness.

2I would go broke were I ever to make such an offer.
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But this is not what your random number generator does. Most likely it
employs what is essentially a hash function, called a linear congruential gener-
ator. The nth random number Rn is a simple function of the previous random
number Rn−1:

Rn = (aRn−1 + c) mod m

where a, c, m, and R0 are large and carefully selected constants. Essentially,
we hash the previous random number (Rn−1) to get the next one.

The alert reader may question exactly how random such numbers really
are. Indeed, they are completely predictable, because knowing Rn−1 provides
enough information to construct Rn. This predictability means that a suffi-
ciently determined adversary could in principle construct a worst-case input to
a randomized algorithm provided they know the current state of your random
number generator.

Linear congruential generators are more accurately called pseudo-random
number generators. The stream of numbers produced looks random, in that
they have the same statistical properties as would be expected from a truly
random source. This is generally good enough for randomized algorithms to
work well in practice. However, there is a philosophical sense of randomness
which has been lost that occasionally comes back to bite us, typically in cryp-
tographic applications whose security guarantees rest on an assumption of true
randomness.

Random number generation is a fascinating problem. Look ahead to section
16.7 in the Hitchhiker’s Guide for a more detailed discussion of how random
numbers should and should not be generated.

Chapter Notes

Readers interested in more formal and substantial treatments of randomized
algorithms are referred to the book of Mitzenmacher and Upfal [MU17] and the
older text by Motwani and Raghavan [MR95]. Minwise hashing was invented
by Broder [Bro97].

6.11 Exercises

Probability

6-1. [5] You are given n unbiased coins, and perform the following process to generate
all heads. Toss all n coins independently at random onto a table. Each round
consists of picking up all the tails-up coins and tossing them onto the table
again. You repeat until all coins are heads.

(a) What is the expected number of rounds performed by the process?

(b) What is the expected number of coin tosses performed by the process?

6-2. [5] Suppose we flip n coins each of known bias, such that pi is the probability of
the ith coin being a head. Present an efficient algorithm to determine the exact
probability of getting exactly k heads given p1, . . . , pn ∈ [0, 1].
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6-3. [5] An inversion of a permutation is a pair of elements that are out of order.

(a) Show that a permutation of n items has at most n(n − 1)/2 inversions.
Which permutation(s) have exactly n(n− 1)/2 inversions?

(b) Let P be a permutation and P r be the reversal of this permutation. Show
that P and P r have a total of exactly n(n− 1)/2 inversions.

(c) Use the previous result to argue that the expected number of inversions in
a random permutation is n(n− 1)/4.

6-4. [8] A derangement is a permutation p of {1, . . . , n} such that no item is in its
proper position, that is, pi �= i for all 1 ≤ i ≤ n. What is the probability that a
random permutation is a derangement?

Hashing

6-5. [easy] An all-Beatles radio station plays nothing but recordings by the Beatles,
selecting the next song at random (uniformly with replacement). They get
through about ten songs per hour. I listened for 90 minutes before hearing a
repeated song. Estimate how many songs the Beatles recorded.

6-6. [5] Given strings S and T of length n and m respectively, find the shortest
window in S that contains all the characters in T in expected O(n+m) time.

6-7. [8] Design and implement an efficient data structure to maintain a least recently
used (LRU) cache of n integer elements. A LRU cache will discard the least
recently accessed element once the cache has reached its capacity, supporting
the following operations:

• get(k)– Return the value associated with the key k if it currently exists in
the cache, otherwise return -1.

• put(k,v) – Set the value associated with key k to v, or insert if k is not
already present. If there are already n items in the queue, delete the least
recently used item before inserting (k, v).

Both operations should be done in O(1) expected time.

Randomized Algorithms

6-8. [5] A pair of English words (w1, w2) is called a rotodrome if one can be circularly
shifted (rotated) to create the other word. For example, the words (windup,
upwind) are a rotodrome pair, because we can rotate “windup” two positions
to the right to get “upwind.”

Give an efficient algorithm to find all rotodrome pairs among n words of length
k, with a worst-case analysis. Also give a faster expected-time algorithm based
on hashing.

6-9. [5] Given an array w of positive integers, where w[i] describes the weight of
index i, propose an algorithm that randomly picks an index in proportion to its
weight.

6-10. [5] You are given a function rand7, which generates a uniform random integer
in the range 1 to 7. Use it to produce a function rand10, which generates a
uniform random integer in the range 1 to 10.
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6-11. [5] Let 0 < α < 1/2 be some constant, independent of the input array length
n. What is the probability that, with a randomly chosen pivot element, the
partition subroutine from quicksort produces a split in which the size of both
the resulting subproblems is at least α times the size of the original array?

6-12. [8] Show that for any given load m/n, the error probability of a Bloom filter is
minimized when the number of hash functions is k = exp(−1)/(m/n).

LeetCode

6-1. https://leetcode.com/problems/random-pick-with-blacklist/

6-2. https://leetcode.com/problems/implement-strstr/

6-3. https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/

HackerRank

6-1. https://www.hackerrank.com/challenges/ctci-ransom-note/

6-2. https://www.hackerrank.com/challenges/matchstick-experiment/

6-3. https://www.hackerrank.com/challenges/palindromes/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

6-1. “Carmichael Numbers”—Chapter 10, problem 10006.

6-2. “Expressions”—Chapter 6, problem 10157.

6-3. “Complete Tree Labeling”—Chapter 6, problem 10247.

https://leetcode.com/problems/random-pick-with-blacklist/
https://leetcode.com/problems/implement-strstr/
https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/
https://www.hackerrank.com/challenges/ctci-ransom-note/
https://www.hackerrank.com/challenges/matchstick-experiment/
https://www.hackerrank.com/challenges/palindromes/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 7

Graph Traversal

Graphs are one of the unifying themes of computer science—an abstract rep-
resentation that describes the organization of transportation systems, human
interactions, and telecommunication networks. That so many different struc-
tures can be modeled using a single formalism is a source of great power to the
educated programmer.

More precisely, a graph G = (V,E) consists of a set of vertices V together
with a set E of vertex pairs or edges. Graphs are important because they
can be used to represent essentially any relationship. For example, graphs can
model a network of roads, with cities as vertices and roads between cities as
edges, as shown in Figure 7.1. Electrical circuits can also be modeled as graphs,
with junctions as vertices and components as edges (or alternately, electrical
components as vertices and direct circuit connections as edges).

The key to solving many algorithmic problems is to think of them in terms
of graphs. Graph theory provides a language for talking about the properties of
relationships, and it is amazing how often messy applied problems have a simple
description and solution in terms of classical graph properties.

Designing truly novel graph algorithms is a difficult task, but usually un-
necessary. The key to using graph algorithms effectively in applications lies in
correctly modeling your problem so you can take advantage of existing algo-
rithms. Becoming familiar with many different algorithmic graph problems is
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Figure 7.1: Modeling road networks and electrical circuits as graphs.
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Figure 7.2: Important properties / flavors of graphs.

more important than understanding the details of particular graph algorithms,
particularly since Part II of this book will point you to an implementation as
soon as you know the name of your problem.

Here I present the basic data structures and traversal operations for graphs,
which will enable you to cobble together solutions for elementary graph prob-
lems. Chapter 8 will present more advanced graph algorithms that find mini-
mum spanning trees, shortest paths, and network flows, but I stress the primary
importance of correctly modeling your problem. Time spent browsing through
the catalog now will leave you better informed of your options when a real job
arises.

7.1 Flavors of Graphs

A graphG = (V,E) is defined on a set of vertices V , and contains a set of edges E
of ordered or unordered pairs of vertices from V . In modeling a road network,
the vertices may represent the cities or junctions, certain pairs of which are
connected by roads/edges. In analyzing the source code of a computer program,
the vertices may represent lines of code, with an edge connecting lines x and y
if y is the next statement executed after x. In analyzing human interactions,
the vertices typically represent people, with edges connecting pairs of related
souls.

Several fundamental properties of graphs impact the choice of the data struc-
tures used to represent them and algorithms available to analyze them. The first
step in any graph problem is determining the flavors of the graphs that you will
be dealing with (see Figure 7.2):

• Undirected vs. directed – A graph G = (V,E) is undirected if the presence
of edge (x, y) in E implies that edge (y, x) is also in E. If not, we say
that the graph is directed. Road networks between cities are typically
undirected, since any large road has lanes going in both directions. Street
networks within cities are almost always directed, because there are at
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least a few one-way streets lurking somewhere. Program-flow graphs are
typically directed, because the execution flows from one line into the next
and changes direction only at branches. Most graphs of graph-theoretic
interest are undirected.

• Weighted vs. unweighted – Each edge (or vertex) in a weighted graph G is
assigned a numerical value, or weight. The edges of a road network graph
might be weighted with their length, drive time, or speed limit, depending
upon the application. In unweighted graphs, there is no cost distinction
between various edges and vertices.

The difference between weighted and unweighted graphs becomes partic-
ularly apparent in finding the shortest path between two vertices. For
unweighted graphs, a shortest path is one that has the fewest number of
edges, and can be found using a breadth-first search (BFS) as discussed
in this chapter. Shortest paths in weighted graphs requires more sophis-
ticated algorithms, as discussed in Chapter 8.

• Simple vs. non-simple – Certain types of edges complicate the task of
working with graphs. A self-loop is an edge (x, x) involving only one
vertex. An edge (x, y) is a multiedge if it occurs more than once in the
graph.

Both of these structures require special care in implementing graph al-
gorithms. Hence any graph that avoids them is called simple. I confess
that all implementations in this book are designed to work only on simple
graphs.

• Sparse vs. dense: Graphs are sparse when only a small fraction of the
possible vertex pairs actually have edges defined between them. Graphs
where a large fraction of the vertex pairs define edges are called dense. A
graph is complete if it contains all possible edges; for a simple undirected
graph on n vertices that is

(
n
2

)
= (n2 − n)/2 edges. There is no official

boundary between what is called sparse and what is called dense, but
dense graphs typically have Θ(n2) edges, while sparse graphs are linear in
size.

Sparse graphs are usually sparse for application-specific reasons. Road
networks must be sparse because of the complexity of road junctions. The
ghastliest intersection I have ever managed to identify is the endpoint of
just seven different roads. Junctions of electrical components are similarly
limited to the number of wires that can meet at a point, perhaps except
for power and ground.

• Cyclic vs. acyclic – A cycle is a closed path of 3 or more vertices that has
no repeating vertices except the start/end point. An acyclic graph does
not contain any cycles. Trees are undirected graphs that are connected
and acyclic. They are the simplest interesting graphs. Trees are inherently
recursive structures, because cutting any edge leaves two smaller trees.
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Directed acyclic graphs are called DAGs. They arise naturally in schedul-
ing problems, where a directed edge (x, y) indicates that activity x must
occur before y. An operation called topological sorting orders the vertices
of a DAG to respect these precedence constraints. Topological sorting is
typically the first step of any algorithm on a DAG, as will be discussed in
Section 7.10.1 (page 231).

• Embedded vs. topological – The edge–vertex representation G = (V,E)
describes the purely topological aspects of a graph. We say a graph is
embedded if the vertices and edges are assigned geometric positions. Thus,
any drawing of a graph is an embedding, which may or may not have
algorithmic significance.

Occasionally, the structure of a graph is completely defined by the geom-
etry of its embedding. For example, if we are given a collection of points
in the plane, and seek the minimum cost tour visiting all of them (i.e.,
the traveling salesman problem), the underlying topology is the complete
graph connecting each pair of vertices. The weights are typically defined
by the Euclidean distance between each pair of points.

Grids of points are another example of topology from geometry. Many
problems on an n×m rectangular grid involve walking between neighboring
points, so the edges are implicitly defined from the geometry.

• Implicit vs. explicit – Certain graphs are not explicitly constructed and
then traversed, but built as we use them. A good example is in backtrack
search. The vertices of this implicit search graph are the states of the
search vector, while edges link pairs of states that can be directly generated
from each other. Web-scale analysis is another example, where you should
try to dynamically crawl and analyze the small relevant portion of interest
instead of initially downloading the entire web. The cartoon in Figure 7.2
tries to capture this distinction between the part of the graph you explicitly
know from the fog that covers the rest, which dissipates as you explore
it. It is often easier to work with an implicit graph than to explicitly
construct and store the entire thing prior to analysis.

• Labeled vs. unlabeled – Each vertex is assigned a unique name or identifier
in a labeled graph to distinguish it from all other vertices. In unlabeled
graphs, no such distinctions have been made.

Graphs arising in applications are often naturally and meaningfully la-
beled, such as city names in a transportation network. A common prob-
lem is that of isomorphism testing—determining whether the topological
structures of two graphs are identical either respecting or ignoring any
labels, as discussed in Section 19.9.
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Figure 7.3: A portion of the friendship graph from Harry Potter.

7.1.1 The Friendship Graph

To demonstrate the importance of proper modeling, let us consider a graph
where the vertices are people, and edge between two people indicates that they
are friends. Such graphs are called social networks and are well defined on any
set of people—be they the people in your neighborhood, at your school/business,
or even spanning the entire world. An entire science analyzing social networks
has sprung up in recent years, because many interesting aspects of people and
their behavior are best understood as properties of this friendship graph.

We use this opportunity to demonstrate the graph theory terminology de-
scribed above. “Talking the talk” proves to be an important part of “walking
the walk”:

• If I am your friend, does that mean you are my friend? – This question
really asks whether the graph is directed. A graph is undirected if edge
(x, y) always implies (y, x). Otherwise, the graph is said to be directed.
The “heard-of” graph is directed, since I have heard of many famous peo-
ple who have never heard of me! The “had-sex-with” graph is presumably
undirected, since the critical operation always requires a partner. I’d like
to think that the “friendship” graph is also an undirected graph.

• How close a friend are you? – In weighted graphs, each edge has an asso-
ciated numerical attribute. We could model the strength of a friendship
by associating each edge with an appropriate value, perhaps from −100
(enemies) to 100 (blood brothers). The edges of a road network graph
might be weighted with their length, drive time, or speed limit, depending
upon the application. A graph is said to be unweighted if all edges are
assumed to be of equal weight.

• Am I my own friend? – This question addresses whether the graph is
simple, meaning it contains no loops and no multiple edges. An edge of
the form (x, x) is said to be a self-loop. Sometimes people are friends in
several different ways. Perhaps x and y were college classmates that now
work together at the same company. We can model such relationships
using multiedges—multiple edges (x, y) perhaps distinguished by different
labels.
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Simple graphs really are simpler to work with in practice. Therefore, we
are generally better off declaring that no one is their own friend.

• Who has the most friends? – The degree of a vertex is the number of edges
adjacent to it. The most popular person is identified by finding the vertex
of highest degree in the friendship graph. Remote hermits are associated
with degree-zero vertices.

Most of the graphs that one encounters in real life are sparse. The friend-
ship graph is a good example. Even the most gregarious person on earth
knows only an insignificant fraction of the world’s population.

In dense graphs, most vertices have high degrees, as opposed to sparse
graphs with relatively few edges. In a regular graph, each vertex has
exactly the same degree. A regular friendship graph is truly the ultimate
in social-ism.

• Do my friends live near me? – Social networks are strongly influenced
by geography. Many of your friends are your friends only because they
happen to live near you (neighbors) or used to live near you (old college
roommates).

Thus, a full understanding of social networks requires an embedded graph,
where each vertex is associated with the point on this world where they
live. This geographic information may not be explicitly encoded, but the
fact that the graph is inherently embedded on the surface of a sphere
shapes our interpretation of the network.

• Oh, you also know her? – Social networking services such as Instagram
and LinkedIn explicitly define friendship links between members. Such
graphs consist of directed edges from person/vertex x professing his or
her friendship with person/vertex y.

That said, the actual friendship graph of the world is represented implic-
itly. Each person knows who their friends are, but cannot find out about
other people’s friendships except by asking them. The “six degrees of sep-
aration” theory argues that there is a short path linking every two people
in the world (e.g. Skiena and the President) but offers us no help in ac-
tually finding this path. The shortest such path I know of contains three
hops:

Steven Skiena → Mark Fasciano → Michael Ashner → Donald Trump

but there could be a shorter one (say if Trump went to college with my
dentist).1 The friendship graph is stored implicitly, so I have no way of
easily checking.

1There is also a path Steven Skiena → Steve Israel → Joe Biden, so I am covered regardless
of the outcome of the 2020 election.
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Figure 7.4: The adjacency matrix and adjacency list representation of a given
graph. Colors encode specific edges.

• Are you truly an individual, or just one of the faceless crowd? – This ques-
tion boils down to whether the friendship graph is labeled or unlabeled.
Are the names or vertex IDs important for our analysis?

Much of the study of social networks is unconcerned with labels on graphs.
Often the ID number given to a vertex in the graph data structure serves
as its label, either for convenience or the need for anonymity. You may
assert that you are a name, not a number—but try protesting to the fellow
who implements the algorithm. Someone studying how rumors or infec-
tious diseases spread through a friendship graph might examine network
properties such as connectedness, the distribution of vertex degrees, or
the distribution of path lengths. These properties aren’t changed by a
scrambling of the vertex IDs.

Take-Home Lesson: Graphs can be used to model a wide variety of structures
and relationships. Graph-theoretic terminology gives us a language to talk
about them.

7.2 Data Structures for Graphs

Selecting the right graph data structure can have an enormous impact on per-
formance. Your two basic choices are adjacency matrices and adjacency lists,
illustrated in Figure 7.4. We assume the graph G = (V,E) contains n vertices
and m edges.

• Adjacency matrix – We can represent G using an n× n matrix M , where
element M [i, j] = 1 if (i, j) is an edge of G, and 0 if it isn’t. This allows
fast answers to the question “is (i, j) in G?”, and rapid updates for edge
insertion and deletion. It may use excessive space for graphs with many
vertices and relatively few edges, however.

Consider a graph that represents the street map of Manhattan in New
York City. Every junction of two streets will be a vertex of the graph.
Neighboring junctions are connected by edges. How big is this graph?
Manhattan is basically a grid of 15 avenues each crossing roughly 200
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Comparison Winner

Faster to test if (x, y) is in graph? adjacency matrices
Faster to find the degree of a vertex? adjacency lists
Less memory on sparse graphs? adjacency lists (m+ n) vs. (n2)
Less memory on dense graphs? adjacency matrices (a small win)
Edge insertion or deletion? adjacency matrices O(1) vs. O(d)
Faster to traverse the graph? adjacency lists Θ(m+ n) vs. Θ(n2)
Better for most problems? adjacency lists

Figure 7.5: Relative advantages of adjacency lists and matrices.

streets. This gives us about 3,000 vertices and 6,000 edges, since almost
all vertices neighbor four other vertices and each edge is shared between
two vertices. This is a modest amount of data to store, yet an adjacency
matrix would have 3,000 × 3,000 = 9,000,000 elements, almost all of them
empty!

There is some potential to save space by packing multiple bits per word
or using a symmetric-matrix data structure (e.g. triangular matrix) for
undirected graphs. But these methods lose the simplicity that makes
adjacency matrices so appealing and, more critically, remain inherently
quadratic even for sparse graphs.

• Adjacency lists – We can more efficiently represent sparse graphs by using
linked lists to store the neighbors of each vertex. Adjacency lists require
pointers, but are not frightening once you have experience with linked
structures.

Adjacency lists make it harder to verify whether a given edge (i, j) is in
G, since we must search through the appropriate list to find the edge.
However, it is surprisingly easy to design graph algorithms that avoid any
need for such queries. Typically, we sweep through all the edges of the
graph in one pass via a breadth-first or depth-first traversal, and update
the implications of the current edge as we visit it. Table 7.5 summarizes
the tradeoffs between adjacency lists and matrices.

Take-Home Lesson: Adjacency lists are the right data structure for most
applications of graphs.

We will use adjacency lists as our primary data structure to represent graphs.
We represent a graph using the following data type. For each graph, we keep a
count of the number of vertices, and assign each vertex a unique identification
number from 1 to nvertices. We represent the edges using an array of linked
lists:
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#define MAXV 100 /* maximum number of vertices */

typedef struct edgenode {

int y; /* adjacency info */

int weight; /* edge weight, if any */

struct edgenode *next; /* next edge in list */

} edgenode;

typedef struct {

edgenode *edges[MAXV+1]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of each vertex */

int nvertices; /* number of vertices in the graph */

int nedges; /* number of edges in the graph */

int directed; /* is the graph directed? */

} graph;

We represent directed edge (x, y) by an edgenode y in x’s adjacency list.
The degree field of the graph counts the number of meaningful entries for the
given vertex. An undirected edge (x, y) appears twice in any adjacency-based
graph structure, once as y in x’s list, and the other as x in y’s list. The Boolean
flag directed identifies whether the given graph is to be interpreted as directed
or undirected.

To demonstrate the use of this data structure, we show how to read a graph
from a file. A typical graph file format consists of an initial line giving the
number of vertices and edges in the graph, followed by a list of the edges, one
vertex pair per line. We start by initializing the structure:

void initialize_graph(graph *g, bool directed) {

int i; /* counter */

g->nvertices = 0;

g->nedges = 0;

g->directed = directed;

for (i = 1; i <= MAXV; i++) {

g->degree[i] = 0;

}

for (i = 1; i <= MAXV; i++) {

g->edges[i] = NULL;

}

}



206 CHAPTER 7. GRAPH TRAVERSAL

Then we actually read the graph file, inserting each edge into this structure:

void read_graph(graph *g, bool directed) {

int i; /* counter */

int m; /* number of edges */

int x, y; /* vertices in edge (x,y) */

initialize_graph(g, directed);

scanf("%d %d", &(g->nvertices), &m);

for (i = 1; i <= m; i++) {

scanf("%d %d", &x, &y);

insert_edge(g, x, y, directed);

}

}

The critical routine is insert edge. The new edgenode is inserted at the
beginning of the appropriate adjacency list, since order doesn’t matter. We
parameterize our insertion with the directed Boolean flag, to identify whether
we need to insert two copies of each edge or only one. Note the use of recursion
to insert the copy:

void insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */

p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

p->weight = 0;

p->y = y;

p->next = g->edges[x];

g->edges[x] = p; /* insert at head of list */

g->degree[x]++;

if (!directed) {

insert_edge(g, y, x, true);

} else {

g->nedges++;

}

}

Printing the associated graph is just a matter of two nested loops: one
through the vertices, and the second through adjacent edges:
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Figure 7.6: Representative Combinatorica graphs: edge-disjoint paths (left),
Hamiltonian cycle in a hypercube (center), animated depth-first search tree
traversal (right).

void print_graph(graph *g) {

int i; /* counter */

edgenode *p; /* temporary pointer */

for (i = 1; i <= g->nvertices; i++) {

printf("%d: ", i);

p = g->edges[i];

while (p != NULL) {

printf(" %d", p->y);

p = p->next;

}

printf("\n");

}

}

It is a good idea to use a well-designed graph data type as a model for
building your own, or even better as the foundation for your application. I
recommend LEDA (see Section 22.1.1 (page 713)) or Boost (see Section 22.1.3
(page 714)) as the best-designed general-purpose graph data structures currently
available. They may be more powerful (and hence somewhat slower/larger) than
you need, but they do so many things right that you are likely to lose most of
the potential do-it-yourself benefits through clumsiness.

7.3 War Story: I was a Victim of Moore’s Law

I am the author of a popular library of graph algorithms called Combinator-
ica (www.combinatorica.com), which runs under the computer algebra system
Mathematica. Efficiency is a great challenge in Mathematica, due to its applica-
tive model of computation (it does not support constant-time write operations

www.combinatorica.com
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command/machine Sun-3 Sun-4 Sun-5 Ultra 5 Blade
PlanarQ[GridGraph[4,4]] 234.10 69.65 27.50 3.60 0.40
Length[Partitions[30]] 289.85 73.20 24.40 3.44 1.58
VertexConnectivity[GridGraph[3,3]] 239.67 47.76 14.70 2.00 0.91
RandomPartition[1000] 831.68 267.5 22.05 3.12 0.87

Table 7.1: Old Combinatorica benchmarks on five generations of workstations
(running time in seconds).

to arrays) and the overhead of interpretation (as opposed to compilation). Math-
ematica code is typically 1,000 to 5,000 times slower than C code.

Such slowdowns can be a tremendous performance hit. Even worse, Mathe-
matica is a memory hog, needing a then-outrageous 4MB of main memory to run
effectively when I completed Combinatorica in 1990. Any computation on large
structures was doomed to thrash in virtual memory. In such an environment,
my graph package could only hope to work effectively on very small graphs.

One design decision I made as a result was to use adjacency matrices as
the basic Combinatorica graph data structure instead of lists. This may sound
peculiar. If pressed for memory, wouldn’t it pay to use adjacency lists and
conserve every last byte? Yes, but the answer is not so simple for very small
graphs. An adjacency list representation of a weighted n-vertex, m-edge directed
graph should use about n+ 2m words to represent; the 2m comes from storing
the endpoint and weight components of each edge. Thus, the space advantages
of adjacency lists only kick in when n+2m is substantially smaller than n2. The
adjacency matrix is still manageable in size for n ≤ 100 and, of course, about
half the size of adjacency lists on dense graphs.

My more immediate concern was dealing with the overhead of using a slow in-
terpreted language. Check out the benchmarks reported in Table 7.1. Two par-
ticularly complex but polynomial-time problems on 9 and 16 vertex graphs took
several minutes to complete on my desktop machine in 1990! The quadratic-
sized data structure certainly could not have had much impact on these running
times, since 9×9 equals only 81. From experience, I knew the Mathematica pro-
gramming language handled regular structures like adjacency matrices better
than irregular-sized adjacency lists.

Still, Combinatorica proved to be a very good thing despite these perfor-
mance problems. Thousands of people have used my package to do all kinds of
interesting things with graphs. Combinatorica was never intended to be a high-
performance algorithms library. Most users quickly realized that computations
on large graphs were out of the question, but were eager to take advantage of
Combinatorica as a mathematical research tool and prototyping environment.
Everyone was happy.

But over the years, my users started asking why it took so long to do a
modest-sized graph computation. The mystery wasn’t that my program was
slow, because it had always been slow. The question was why did it take them
so many years to figure this out?
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Figure 7.7: Performance comparison between old and new Combinatorica: ab-
solute running times (left), and the ratio of these times (right).

The reason is that computers keep doubling in speed every two years or
so. People’s expectation of how long something should take moves in concert
with these technology improvements. Partially because of Combinatorica’s de-
pendence on a quadratic-size graph data structure, it didn’t scale as well as it
should on sparse graphs.

As the years rolled on, user demands became more insistent. Combinatorica
needed to be updated. My collaborator, Sriram Pemmaraju, rose to the chal-
lenge. We (mostly he) completely rewrote Combinatorica to take advantage of
faster graph data structures ten years after the initial version.

The new Combinatorica uses a list of edges data structure for graphs, largely
motivated by increased efficiency. Edge lists are linear in the size of the graph
(edges plus vertices), just like adjacency lists. This makes a huge difference
on most graph-related functions—for large enough graphs. The improvement
is most dramatic in “fast” graph algorithms—those that run in linear or near-
linear time, such as graph traversal, topological sort, and finding connected or
biconnected components. The implications of this change are felt throughout
the package in running time improvements and memory savings. Combinatorica
can now work with graphs that are fifty to a hundred times larger than what
the old package could deal with.

Figure 7.7(left) plots the running time of the MinimumSpanningTree func-
tions for both Combinatorica versions. The test graphs were sparse (grid graphs),
designed to highlight the difference between the two data structures. Yes, the
new version is much faster, but note that the difference only becomes important
for graphs larger than the old Combinatorica was designed for. However, the
relative difference in run time keeps growing with increasing n. Figure 7.7(right)
plots the ratio of the running times as a function of graph size. The difference
between linear size and quadratic size is asymptotic, so the consequences become
ever more important as n gets larger.
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What is the weird bump in running times that occurs around n ≈ 250? This
likely reflects a transition between levels of the memory hierarchy. Such bumps
are not uncommon in today’s complex computer systems. Cache performance in
data structure design should be an important but not overriding consideration.
The asymptotic gains due to adjacency lists more than trumped any impact of
the cache.

Three main lessons can be taken away from our experience developing Com-
binatorica:

• To make a program run faster, just wait – Sophisticated hardware even-
tually trickles down to everybody. We observe a speedup of more than
200-fold for the original version of Combinatorica as a consequence of 15
years of hardware evolution. In this context, the further speedups we
obtained from upgrading the package become particularly dramatic.

• Asymptotics eventually do matter – It was my mistake not to anticipate
future developments in technology. While no one has a crystal ball, it is
fairly safe to say that future computers will have more memory and run
faster than today’s. This gives the edge to asymptotically more efficient
algorithms/data structures, even if their performance is close on today’s
instances. If the implementation complexity is not substantially greater,
play it safe and go with the better algorithm.

• Constant factors can matter – With the growing importance of the study
of networks, Wolfram Research has recently moved basic graph data struc-
tures into the core of Mathematica. This permits them to be written in a
compiled instead of interpreted language, speeding all operations by about
a factor of 10 over Combinatorica.

Speeding up a computation by a factor of 10 is often very important,
taking it from a week down to a day, or a year down to a month. This
book focuses largely on asymptotic complexity, because we seek to teach
fundamental principles. But constants can matter in practice.

7.4 War Story: Getting the Graph

“It takes five minutes just to read the data. We will never have time to make it
do something interesting.”

The young graduate student was bright and eager, but green to the power
of data structures. She would soon come to appreciate their power.

As described in a previous war story (see Section 3.6 (page 89)), we were
experimenting with algorithms to extract triangular strips for the fast rendering
of triangulated surfaces. The task of finding a small number of strips that cover
each triangle in a mesh can be modeled as a graph problem. The graph has
a vertex for every triangle of the mesh, with an edge between every pair of
vertices representing adjacent triangles. This dual graph representation (see
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Figure 7.8: The dual graph (dashed lines) of a triangulation

Figure 7.8) captures all information needed to partition the triangulation into
triangle strips.

The first step in crafting a program that constructs a good set of strips was
to build the dual graph of the triangulation. This I sent the student off to do.
A few days later, she came back and announced that it took her machine over
five minutes to construct the dual graph of a few thousand triangles.

“Nonsense!” I proclaimed. “You must be doing something very wasteful in
building the graph. What format is the data in?”

“Well, it starts out with a list of the three-dimensional coordinates of the
vertices used in the model and then follows with a list of triangles. Each triangle
is described by a list of three indices into the vertex coordinates. Here is a small
example,”

VERTICES 4

0.000000 240.000000 0.000000

204.000000 240.000000 0.000000

204.000000 0.000000 0.000000

0.000000 0.000000 0.000000

TRIANGLES 2

0 1 3

1 2 3

“I see. So the first triangle uses all but the third point, since all the indices
start from zero. The two triangles must share an edge formed by points 1 and
3.”

“Yeah, that’s right,” she confirmed.
“OK. Now tell me how you built your dual graph from this file.”
“Well, the geometric position of the points doesn’t affect the structure of

the graph, so I can ignore it. My dual graph is going to have as many vertices
as the number of triangles. I set up an adjacency list data structure with that
many vertices. As I read in each triangle, I compare it to each of the others to
check whether it has two end points in common. If it does, then I add an edge
from the new triangle to this one.”

I started to sputter. “But that’s your problem right there! You are com-
paring each triangle against every other triangle, so that constructing the dual
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graph will be quadratic in the number of triangles. Reading the input graph
should take linear time!”

“I’m not comparing every triangle against every other triangle. On average,
it only tests against half or a third of the triangles.”

“Swell. But that still leaves us with an O(n2) algorithm. That is much too
slow.”

She stood her ground. “Well, don’t just complain. Help me fix it!”

Fair enough. I started to think. We needed some quick method to screen
away most of the triangles that would not be adjacent to the new triangle
(i, j, k). What we really needed was a separate list of all the triangles that go
through each of the points i, j, and k. By Euler’s formula for planar graphs,
the average point is incident to fewer than six triangles. This would compare
each new triangle against fewer than twenty others, instead of most of them.

“We are going to need a data structure consisting of an array with one
element for every vertex in the original data set. This element is going to be a
list of all the triangles that pass through that vertex. When we read in a new
triangle, we will look up the three relevant lists in the array and compare each
of these against the new triangle. Actually, only two of the three lists need be
tested, since any adjacent triangles will share two points in common. We will
add an edge to our graph for every triangle pair sharing two vertices. Finally,
we will add our new triangle to each of the three affected lists, so they will be
updated for the next triangle read.”

She thought about this for a while and smiled. “Got it, Chief. I’ll let you
know what happens.”

The next day she reported that the graph could be built in seconds, even
for much larger models. From here, she went on to build a successful program
for extracting triangle strips, as reported in Section 3.6 (page 89).

Take-Home Lesson: Even elementary problems like initializing data structures
can prove to be bottlenecks in algorithm development. Programs working with
large amounts of data must run in linear or near-linear time. Such tight per-
formance demands leave no room to be sloppy. Once you focus on the need for
linear-time performance, an appropriate algorithm or heuristic can usually be
found to do the job.

7.5 Traversing a Graph

Perhaps the most fundamental graph problem is to visit every edge and vertex
in a graph in a systematic way. Indeed, all the basic bookkeeping operations on
graphs (such as printing or copying graphs, and converting between alternative
representations) are applications of graph traversal.

Mazes are naturally represented by graphs, where each graph vertex denotes
a junction of the maze, and each graph edge denotes a passageway in the maze.
Thus, any graph traversal algorithm must be powerful enough to get us out of
an arbitrary maze. For efficiency, we must make sure we don’t get trapped in
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the maze and visit the same place repeatedly. For correctness, we must do the
traversal in a systematic way to guarantee that we find a way out of the maze.
Our search must take us through every edge and vertex in the graph.

The key idea behind graph traversal is to mark each vertex when we first visit
it and keep track of what we have not yet completely explored. Bread crumbs
and unraveled threads have been used to mark visited places in fairy-tale mazes,
but we will rely on Boolean flags or enumerated types.

Each vertex will exist in one of three states:

• Undiscovered – the vertex is in its initial, virgin state.

• Discovered – the vertex has been found, but we have not yet checked out
all its incident edges.

• Processed – the vertex after we have visited all of its incident edges.

Obviously, a vertex cannot be processed until after we discover it, so the
state of each vertex progresses from undiscovered to discovered to processed over
the course of the traversal.

We must also maintain a structure containing the vertices that we have
discovered but not yet completely processed. Initially, only the single start
vertex is considered to be discovered. To completely explore a vertex v, we
must evaluate each edge leaving v. If an edge goes to an undiscovered vertex x,
we mark x discovered and add it to the list of work to do in the future. If an edge
goes to a processed vertex, we ignore that vertex, because further contemplation
will tell us nothing new about the graph. Similarly, we can ignore any edge going
to a discovered but not processed vertex, because that destination already resides
on the list of vertices to process.

Each undirected edge will be considered exactly twice, once when each of
its endpoints is explored. Directed edges will be considered only once, when
exploring the source vertex. Every edge and vertex in the connected component
must eventually be visited. Why? Suppose that there exists a vertex u that
remains unvisited, whose neighbor v was visited. This neighbor v will eventually
be explored, after which we will certainly visit u. Thus, we must find everything
that is there to be found.

I describe the mechanics of these traversal algorithms and the significance
of the traversal order below.

7.6 Breadth-First Search

The basic breadth-first search algorithm is given below. At some point during
the course of a traversal, every node in the graph changes state from undiscovered
to discovered. In a breadth-first search of an undirected graph, we assign a
direction to each edge, from the discoverer u to the discovered v. We thus denote
u to be the parent of v. Since each node has exactly one parent, except for the
root, this defines a tree on the vertices of the graph. This tree, illustrated in
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Figure 7.9: An undirected graph and its breadth-first search tree. Dashed
lines, which are not part of the tree, show graph edges that go to discovered or
processed vertices.

Figure 7.9, defines a shortest path from the root to every other node in the tree.
This property makes breadth-first search very useful in shortest path problems.

BFS(G, s)
Initialize each vertex u ∈ V [G] so

state[u] = “undiscovered”
p[u] = nil, i.e. no parent is in the BFS tree

state[s] = “discovered”
Q = {s}
while Q �= ∅ do

u = dequeue[Q]
process vertex u if desired
for each vertex v that is adjacent to u

process edge (u, v) if desired
if state[v] = “undiscovered” then

state[v] = “discovered”
p[v] = u
enqueue[Q, v]

state[u] = “processed”

The graph edges that do not appear in the breadth-first search tree also
have special properties. For undirected graphs, non-tree edges can point only
to vertices on the same level as the parent vertex, or to vertices on the level
directly below the parent. These properties follow easily from the fact that each
path in the tree must be a shortest path in the graph. For a directed graph,
a back-pointing edge (u, v) can exist whenever v lies closer to the root than u
does.

Implementation

Our breadth-first search implementation bfs uses two Boolean arrays to main-
tain our knowledge about each vertex in the graph. A vertex is discovered

the first time we visit it. A vertex is considered processed after we have tra-
versed all outgoing edges from it. Thus, each vertex passes from undiscovered
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to discovered to processed over the course of the search. This information
could have been maintained using one enumerated type variable, but we used
two Boolean variables instead.

bool processed[MAXV+1]; /* which vertices have been processed */

bool discovered[MAXV+1]; /* which vertices have been found */

int parent[MAXV+1]; /* discovery relation */

Each vertex is initialized as undiscovered:

void initialize_search(graph *g) {

int i; /* counter */

time = 0;

for (i = 0; i <= g->nvertices; i++) {

processed[i] = false;

discovered[i] = false;

parent[i] = -1;

}

}

Once a vertex is discovered, it is placed on a queue. Since we process these
vertices in first-in, first-out (FIFO) order, the oldest vertices are expanded first,
which are exactly those closest to the root:

void bfs(graph *g, int start) {

queue q; /* queue of vertices to visit */

int v; /* current vertex */

int y; /* successor vertex */

edgenode *p; /* temporary pointer */

init_queue(&q);

enqueue(&q, start);

discovered[start] = true;

while (!empty_queue(&q)) {

v = dequeue(&q);

process_vertex_early(v);

processed[v] = true;

p = g->edges[v];

while (p != NULL) {

y = p->y;

if ((!processed[y]) || g->directed) {

process_edge(v, y);
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}

if (!discovered[y]) {

enqueue(&q,y);

discovered[y] = true;

parent[y] = v;

}

p = p->next;

}

process_vertex_late(v);

}

}

7.6.1 Exploiting Traversal

The exact behavior of bfs depends upon the functions process vertex early(),
process vertex late(), and process edge(). Through these functions, we
can customize what the traversal does as it makes its one official visit to each
edge and each vertex. Initially, we will do all vertex processing on entry, so
process vertex late() returns without action:

void process_vertex_late(int v) {

}

By setting the active functions to

void process_vertex_early(int v) {

printf("processed vertex %d\n", v);

}

void process_edge(int x, int y) {

printf("processed edge (%d,%d)\n", x, y);

}

we print each vertex and edge exactly once. If we instead set process edge to

void process_edge(int x, int y) {

nedges = nedges + 1;

}

we get an accurate count of the number of edges. Different algorithms perform
different actions on vertices or edges as they are encountered. These functions
give us the freedom to easily customize these actions.
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7.6.2 Finding Paths

The parent array that is filled over the course of bfs() is very useful for finding
interesting paths through a graph. The vertex that first discovered vertex i is
defined as the parent[i]. Every vertex is discovered once during the course of
traversal, so every node has a parent, except for the start node. This parent
relation defines a tree of discovery, with the start node as the root of the tree.

Because vertices are discovered in order of increasing distance from the root,
this tree has a very important property. The unique tree path from the root to
each node x ∈ V uses the smallest number of edges (or equivalently, intermediate
nodes) possible on any root-to-x path in the graph.

We can reconstruct this path by following the chain of ancestors from x
to the root. Note that we have to work backward. We cannot find the path
from the root to x, because this does not agree with the direction of the parent
pointers. Instead, we must find the path from x to the root. Since this is the
reverse of how we normally want the path, we can either (1) store it and then
explicitly reverse it using a stack, or (2) let recursion reverse it for us, as follows:

void find_path(int start, int end, int parents[]) {

if ((start == end) || (end == -1)) {

printf("\n%d", start);

} else {

find_path(start, parents[end], parents);

printf(" %d", end);

}

}

On our breadth-first search graph example (Figure 7.9) our algorithm gen-
erated the following parent relation:

vertex 1 2 3 4 5 6 7 8
parent −1 1 2 3 2 5 1 1

For the shortest path from 1 to 6, this parent relation yields the path {1, 2, 5, 6}.
There are two points to remember when using breadth-first search to find a

shortest path from x to y: First, the shortest path tree is only useful if BFS was
performed with x as the root of the search. Second, BFS gives the shortest path
only if the graph is unweighted. We will present algorithms for finding shortest
paths in weighted graphs in Section 8.3.1 (page 258).

7.7 Applications of Breadth-First Search

Many elementary graph algorithms perform one or two traversals of the graph,
while doing something along the way. Properly implemented using adjacency
lists, any such algorithm is destined to be linear, since BFS runs in O(n +m)
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time for both directed and undirected graphs. This is optimal, since this is as
fast as one can ever hope to just read an n-vertex, m-edge graph.

The trick is seeing when such traversal approaches are destined to work. I
present several examples below.

7.7.1 Connected Components

We say that a graph is connected if there is a path between any two vertices. Ev-
ery person can reach every other person through a chain of links if the friendship
graph is connected.

A connected component of an undirected graph is a maximal set of vertices
such that there is a path between every pair of vertices. The components are
separate “pieces” of the graph such that there is no connection between the
pieces. If we envision tribes in remote parts of the world that have not yet been
encountered, each such tribe would form a separate connected component in
the friendship graph. A remote hermit, or extremely uncongenial fellow, would
represent a connected component of one vertex.

An amazing number of seemingly complicated problems reduce to finding or
counting connected components. For example, deciding whether a puzzle such
as Rubik’s cube or the 15-puzzle can be solved from any position is really asking
whether the graph of possible configurations is connected.

Connected components can be found using breadth-first search, since the
vertex order does not matter. We begin by performing a search starting from
an arbitrary vertex. Anything we discover during this search must be part of the
same connected component. We then repeat the search from any undiscovered
vertex (if one exists) to define the next component, and so on until all vertices
have been found:

void connected_components(graph *g) {

int c; /* component number */

int i; /* counter */

initialize_search(g);

c = 0;

for (i = 1; i <= g->nvertices; i++) {

if (!discovered[i]) {

c = c + 1;

printf("Component %d:", c);

bfs(g, i);

printf("\n");

}

}

}
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void process_vertex_early(int v) { /* vertex to process */

printf(" %d", v);

}

void process_edge(int x, int y) {

}

Observe how we increment a counter c denoting the current component num-
ber with each call to bfs. Alternatively, we could have explicitly bound each
vertex to its component number (instead of printing the vertices in each com-
ponent) by changing the action of process vertex.

There are two distinct notions of connectivity for directed graphs, leading
to algorithms for finding both weakly connected and strongly connected com-
ponents. Both of these can be found in O(n+m) time, as discussed in Section
18.1 (page 542).

7.7.2 Two-Coloring Graphs

The vertex-coloring problem seeks to assign a label (or color) to each vertex of
a graph such that no edge links any two vertices of the same color. We can
easily avoid all conflicts by assigning each vertex a unique color. However, the
goal is to use as few colors as possible. Vertex coloring problems often arise in
scheduling applications, such as register allocation in compilers. See Section 19.7
(page 604) for a full treatment of vertex-coloring algorithms and applications.

A graph is bipartite if it can be colored without conflicts while using only
two colors. Bipartite graphs are important because they arise naturally in many
applications. Consider the “mutually interested-in” graph in a heterosexual
world, where people consider only those of opposing gender. In this simple
model, gender would define a two-coloring of the graph.

But how can we find an appropriate two-coloring of such a graph, thus
separating men from women? Suppose we declare by fiat that the starting
vertex is “male.” All vertices adjacent to this man must be “female,” provided
the graph is indeed bipartite.

We can augment breadth-first search so that whenever we discover a new
vertex, we color it the opposite of its parent. We check whether any non-tree
edge links two vertices of the same color. Such a conflict means that the graph
cannot be two-colored. If the process terminates without conflicts, we have
constructed a proper two-coloring.
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void twocolor(graph *g) {

int i; /* counter */

for (i = 1; i <= (g->nvertices); i++) {

color[i] = UNCOLORED;

}

bipartite = true;

initialize_search(g);

for (i = 1; i <= (g->nvertices); i++) {

if (!discovered[i]) {

color[i] = WHITE;

bfs(g, i);

}

}

}

void process_edge(int x, int y) {

if (color[x] == color[y]) {

bipartite = false;

printf("Warning: not bipartite, due to (%d,%d)\n", x, y);

}

color[y] = complement(color[x]);

}

int complement(int color) {

if (color == WHITE) {

return(BLACK);

}

if (color == BLACK) {

return(WHITE);

}

return(UNCOLORED);

}

We can assign the first vertex in any connected component to be whatever
color/gender we wish. BFS can separate men from women, but we can’t tell
which gender corresponds to which color just by using the graph structure. Also,
bipartite graphs require distinct and binary categorical attributes, so they don’t
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model the real-world variation in sexual preferences and gender identity.

Take-Home Lesson: Breadth-first and depth-first search provide mechanisms
to visit each edge and vertex of the graph. They prove the basis of most simple,
efficient graph algorithms.

7.8 Depth-First Search

There are two primary graph traversal algorithms: breadth-first search (BFS)
and depth-first search (DFS). For certain problems, it makes absolutely no dif-
ference which you use, but in others the distinction is crucial.

The difference between BFS and DFS lies in the order in which they explore
vertices. This order depends completely upon the container data structure used
to store the discovered but not processed vertices.

• Queue – By storing the vertices in a first-in, first-out (FIFO) queue, we
explore the oldest unexplored vertices first. Our explorations thus radiate
out slowly from the starting vertex, defining a breadth-first search.

• Stack – By storing the vertices in a last-in, first-out (LIFO) stack, we
explore the vertices by forging steadily along along a path, visiting a new
neighbor if one is available, and backing up only when we are surrounded
by previously discovered vertices. Our explorations thus quickly wander
away from the starting point, defining a depth-first search.

Our implementation of dfs maintains a notion of traversal time for each
vertex. Our time clock ticks each time we enter or exit a vertex. We keep track
of the entry and exit times for each vertex.

Depth-first search has a neat recursive implementation, which eliminates the
need to explicitly use a stack:

DFS(G, u)
state[u] = “discovered”
process vertex u if desired
time = time+ 1
entry[u] = time
for each vertex v that is adjacent to u

process edge (u, v) if desired
if state[v] = “undiscovered” then

p[v] = u
DFS(G, v)

state[u] = “processed”
exit[u] = time
time = time+ 1

The time intervals have interesting and useful properties with respect to
depth-first search:
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Figure 7.10: An undirected graph and its depth-first search tree. Dashed lines,
which are not part of the tree, indicate back edges.

• Who is an ancestor? – Suppose that x is an ancestor of y in the DFS tree.
This implies that we must enter x before y, since there is no way we can
be born before our own parent or grandparent! We also must exit y before
we exit x, because the mechanics of DFS ensure we cannot exit x until
after we have backed up from the search of all its descendants. Thus, the
time interval of y must be properly nested within the interval of ancestor
x.

• How many descendants? – The difference between the exit and entry
times for v tells us how many descendants v has in the DFS tree. The
clock gets incremented on each vertex entry and vertex exit, so half the
time difference denotes the number of descendants of v.

We will use these entry and exit times in several applications of depth-
first search, particularly topological sorting and biconnected/strongly connected
components. We may need to take separate actions on each entry and exit, thus
motivating distinct process vertex early and process vertex late routines
called from dfs. For the DFS tree example presented in Figure 7.10, the parent
of each vertex with its entry and exit times are:

vertex 1 2 3 4 5 6 7 8
parent −1 1 2 3 4 5 2 1
entry 1 2 3 4 5 6 11 14
exit 16 13 10 9 8 7 12 15

The other important property of a depth-first search is that it partitions
the edges of an undirected graph into exactly two classes: tree edges and back
edges. The tree edges discover new vertices, and are those encoded in the parent
relation. Back edges are those whose other endpoint is an ancestor of the vertex
being expanded, so they point back into the tree.

An amazing property of depth-first search is that all edges fall into one of
these two classes. Why can’t an edge go to a sibling or cousin node, instead of
an ancestor? All nodes reachable from a given vertex v are expanded before we
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finish with the traversal from v, so such topologies are impossible for undirected
graphs. This edge classification proves fundamental to the correctness of DFS-
based algorithms.

Implementation

Depth-first search can be thought of as breadth-first search, but using a stack
instead of a queue to store unfinished vertices. The beauty of implementing dfs

recursively is that recursion eliminates the need to keep an explicit stack:

void dfs(graph *g, int v) {

edgenode *p; /* temporary pointer */

int y; /* successor vertex */

if (finished) {

return; /* allow for search termination */

}

discovered[v] = true;

time = time + 1;

entry_time[v] = time;

process_vertex_early(v);

p = g->edges[v];

while (p != NULL) {

y = p->y;

if (!discovered[y]) {

parent[y] = v;

process_edge(v, y);

dfs(g, y);

} else if (((!processed[y]) && (parent[v] != y)) || (g->directed)) {

process_edge(v, y);

}

if (finished) {

return;

}

p = p->next;

}

process_vertex_late(v);

time = time + 1;

exit_time[v] = time;

processed[v] = true;

}
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Depth-first search uses essentially the same idea as backtracking, which we
study in Section 9.1 (page 281). Both involve exhaustively searching all pos-
sibilities by advancing if it is possible, and backing up only when there is no
remaining unexplored possibility for further advance. Both are most easily un-
derstood as recursive algorithms.

Take-Home Lesson: DFS organizes vertices by entry/exit times, and edges
into tree and back edges. This organization is what gives DFS its real power.

7.9 Applications of Depth-First Search

As algorithm design paradigms go, depth-first search isn’t particularly intimi-
dating. It is surprisingly subtle, however, meaning that its correctness requires
getting details right.

The correctness of a DFS-based algorithm depends upon specifics of exactly
when we process the edges and vertices. We can process vertex v either before we
have traversed any outgoing edge from v (process vertex early()), or after
we have finished processing all of them (process vertex late()). Sometimes
we will take special actions at both times, say process vertex early() to ini-
tialize a vertex-specific data structure, which will be modified on edge-processing
operations and then analyzed afterwards using process vertex late().

In undirected graphs, each edge (x, y) sits in the adjacency lists of vertex x
and y. There are thus two potential times to process each edge (x, y), namely
when exploring x and when exploring y. The labeling of edges as tree edges or
back edges occurs the first time the edge is explored. This first time we see an
edge is usually a logical time to do edge-specific processing. Sometimes, we may
want to take different action the second time we see an edge.

But when we encounter edge (x, y) from x, how can we tell if we have pre-
viously traversed the edge from y? The issue is easy if vertex y is undiscovered:
(x, y) becomes a tree edge so this must be the first time. The issue is also easy
if y has been completely processed: we explored the edge when we explored y
so this must be the second time. But what if y is an ancestor of x, and thus in
a discovered state? Careful reflection will convince you that this must be our
first traversal unless y is the immediate ancestor of x—that is, (y, x) is a tree
edge. This can be established by testing if y == parent[x].

I find that the subtlety of depth-first search-based algorithms kicks me in
the head whenever I try to implement one.2 I encourage you to analyze these
implementations carefully to see where the problematic cases arise and why.

7.9.1 Finding Cycles

Back edges are the key to finding a cycle in an undirected graph. If there is no
back edge, all edges are tree edges, and no cycle exists in a tree. But any back

2Indeed, the most horrifying errors in the previous edition of this book came in this section.
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Figure 7.11: An articulation vertex is the weakest point in the graph.

edge going from x to an ancestor y creates a cycle with the tree path from y to
x. Such a cycle is easy to find using dfs:

void process_edge(int x, int y) {

if (parent[y] != x) { /* found back edge! */

printf("Cycle from %d to %d:", y, x);

find_path(y, x, parent);

finished = true;

}

}

The correctness of this cycle detection algorithm depends upon process-
ing each undirected edge exactly once. Otherwise, a spurious two-vertex cycle
(x, y, x) could be composed from the two traversals of any single undirected
edge. We use the finished flag to terminate after finding the first cycle. With-
out it we would waste time discovering a new cycle with every back edge before
stopping; a complete graph has Θ(n2) such cycles.

7.9.2 Articulation Vertices

Suppose you are a vandal seeking to disrupt the telephone trunk line network.
Which station in Figure 7.11 should you blow up to cause the maximum amount
of damage? Observe that there is a single point of failure—a single vertex whose
deletion disconnects a connected component of the graph. Such a vertex v is
called an articulation vertex or cut-node. Any graph that contains an articula-
tion vertex is inherently fragile, because deleting v causes a loss of connectivity
between other nodes.

I presented a breadth-first search-based connected components algorithm in
Section 7.7.1 (page 218). In general, the connectivity of a graph is the smallest
number of vertices whose deletion will disconnect the graph. The connectivity
is 1 if the graph has an articulation vertex. More robust graphs without such
a vertex are said to be biconnected. Connectivity will be further discussed in
Section 18.8 (page 568).

Testing for articulation vertices by brute force is easy. Temporarily delete
each candidate vertex v, and then do a BFS or DFS traversal of the remaining
graph to establish whether it is still connected. The total time for n such
traversals is O(n(m + n)). There is a clever linear-time algorithm, however,
that tests all the vertices of a connected graph using a single depth-first search.
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Figure 7.12: DFS tree of a graph containing three articulation vertices (namely
1, 2, and 5). Back edges keep vertices 3 and 4 from being cut-nodes, while green
vertices 6, 7, and 8 escape by being leaves of the DFS tree. Red edges (1, 8) and
(5, 6) are bridges whose deletion disconnect the graph.

What might the depth-first search tree tell us about articulation vertices?
This tree connects all the vertices of a connected component of the graph. If
the DFS tree represented the entirety of the graph, all internal (non-leaf) nodes
would be articulation vertices, since deleting any one of them would separate a
leaf from the root. But blowing up a leaf (shown in green in Figure 7.12) would
not disconnect the tree, because it connects no one but itself to the main trunk.

The root of the search tree is a special case. If it has only one child, it func-
tions as a leaf. But if the root has two or more children, its deletion disconnects
them, making the root an articulation vertex.

General graphs are more complex than trees. But a depth-first search of
a general graph partitions the edges into tree edges and back edges. Think of
these back edges as security cables linking a vertex back to one of its ancestors.
The security cable from x back to y ensures that none of the vertices on the tree
path between x and y can be articulation vertices. Delete any of these vertices,
and the security cable will still hold all of them to the rest of the tree.

Finding articulation vertices requires keeping track of the extent to which
back edges (i.e., security cables) link chunks of the DFS tree back to ancestor
nodes. Let reachable ancestor[v] denote the earliest reachable ancestor of
vertex v, meaning the oldest ancestor of v that we can reach from a descendant
of v by using a back edge. Initially, reachable ancestor[v] = v:

int reachable_ancestor[MAXV+1]; /* earliest reachable ancestor of v */

int tree_out_degree[MAXV+1]; /* DFS tree outdegree of v */
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Figure 7.13: The three cases of articulation vertices: root, bridge, and parent
cut-nodes.

void process_vertex_early(int v) {

reachable_ancestor[v] = v;

}

We update reachable ancestor[v] whenever we encounter a back edge
that takes us to an earlier ancestor than we have previously seen. The relative
age/rank of our ancestors can be determined from their entry time’s:

void process_edge(int x, int y) {

int class; /* edge class */

class = edge_classification(x, y);

if (class == TREE) {

tree_out_degree[x] = tree_out_degree[x] + 1;

}

if ((class == BACK) && (parent[x] != y)) {

if (entry_time[y] < entry_time[reachable_ancestor[x]]) {

reachable_ancestor[x] = y;

}

}

}

The key issue is determining how the reachability relation impacts whether
vertex v is an articulation vertex. There are three cases, illustrated in Figure
7.13 and discussed below. Note that these cases are not mutually exclusive. A
single vertex v might be an articulation vertex for multiple reasons:
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• Root cut-nodes – If the root of the DFS tree has two or more children, it
must be an articulation vertex. No edges from the subtree of the second
child can possibly connect to the subtree of the first child.

• Bridge cut-nodes – If the earliest reachable vertex from v is v, then deleting
the single edge (parent[v], v) disconnects the graph. Clearly parent[v]
must be an articulation vertex, since it cuts v from the graph. Vertex v
is also an articulation vertex unless it is a leaf of the DFS tree. For any
leaf, nothing falls off when you cut it.

• Parent cut-nodes – If the earliest reachable vertex from v is the parent of
v, then deleting the parent must sever v from the tree unless the parent is
the root. This is always the case for the deeper vertex of a bridge, unless
it is a leaf.

The routine below systematically evaluates each of these three conditions
as we back up from the vertex after traversing all outgoing edges. We use
entry time[v] to represent the age of vertex v. The reachability time time v

calculated below denotes the oldest vertex that can be reached using back edges.
Getting back to an ancestor above v rules out the possibility of v being a cut-
node:

void process_vertex_late(int v) {

bool root; /* is parent[v] the root of the DFS tree? */

int time_v; /* earliest reachable time for v */

int time_parent; /* earliest reachable time for parent[v] */

if (parent[v] == -1) { /* test if v is the root */

if (tree_out_degree[v] > 1) {

printf("root articulation vertex: %d \n",v);

}

return;

}

root = (parent[parent[v]] == -1); /* is parent[v] the root? */

if (!root) {

if (reachable_ancestor[v] == parent[v]) {

printf("parent articulation vertex: %d \n", parent[v]);

}

if (reachable_ancestor[v] == v) {

printf("bridge articulation vertex: %d \n",parent[v]);

if (tree_out_degree[v] > 0) { /* is v is not a leaf? */

printf("bridge articulation vertex: %d \n", v);
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Tree  Edges Back  EdgeForward  Edge Cross Edges

Figure 7.14: The possible edge cases for graph traversal. Forward edges and
cross edges can occur in DFS only on directed graphs.

}

}

}

time_v = entry_time[reachable_ancestor[v]];

time_parent = entry_time[reachable_ancestor[parent[v]]];

if (time_v < time_parent) {

reachable_ancestor[parent[v]] = reachable_ancestor[v];

}

}

The last lines of this routine govern when we back up from a node’s highest
reachable ancestor to its parent, namely whenever it is higher than the parent’s
earliest ancestor to date.

We can alternatively talk about vulnerability in terms of edge failures instead
of vertex failures. Perhaps our vandal would find it easier to cut a cable instead
of blowing up a switching station. A single edge whose deletion disconnects the
graph is called a bridge; any graph without such an edge is said to be edge-
biconnected.

Identifying whether a given edge (x, y) is a bridge is easily done in linear
time, by deleting the edge and testing whether the resulting graph is connected.
In fact all bridges can be identified in the same O(n+m) time using DFS. Edge
(x, y) is a bridge if (1) it is a tree edge, and (2) no back edge connects from y
or below to x or above. This can be computed with a appropriate modification
to the process late vertex function.
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7.10 Depth-First Search on Directed Graphs

Depth-first search on an undirected graph proves useful because it organizes the
edges of the graph in a very precise way. Over the course of a DFS from a given
source vertex, each edge will be assigned one of potentially four labels, as shown
in Figure 7.14.

When traversing undirected graphs, every edge is either in the depth-first
search tree or will be a back edge to an ancestor in the tree. It is important to
understand why. Might we encounter a “forward edge” (x, y), directed toward
a descendant vertex? No, because in this case, we would have first traversed
(x, y) while exploring y, making it a back edge. Might we encounter a “cross
edge” (x, y), linking two unrelated vertices? Again no, because we would have
first discovered this edge when we explored y, making it a tree edge.

But for directed graphs, depth-first search labelings can take on a wider range
of possibilities. Indeed, all four of the edge cases in Figure 7.14 can occur in
traversing directed graphs. This classification still proves useful in organizing
algorithms on directed graphs, because we typically take a different action on
edges from each different class.

The correct labeling of each edge can be readily determined from the state,
discovery time, and parent of each vertex, as encoded in the following function:

int edge_classification(int x, int y) {

if (parent[y] == x) {

return(TREE);

}

if (discovered[y] && !processed[y]) {

return(BACK);

}

if (processed[y] && (entry_time[y]>entry_time[x])) {

return(FORWARD);

}

if (processed[y] && (entry_time[y]<entry_time[x])) {

return(CROSS);

}

printf("Warning: self loop (%d,%d)\n", x, y);

return -1;

}

Just as with BFS, this implementation of the depth-first search algorithm
includes places to optionally process each vertex and edge—say to copy them,
print them, or count them. Both DFS and BFS will traverse all edges in the same
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Figure 7.15: A DAG with only one topological sort (G,A,B,C, F,E,D)

connected component as the starting point. Both must start with a vertex in
each component to traverse a disconnected graph. The only important difference
between them is the way they organize and label the edges.

I encourage the reader to convince themselves of the correctness of the four
conditions above. What I said earlier about the subtlety of depth-first search
goes double for directed graphs.

7.10.1 Topological Sorting

Topological sorting is the most important operation on directed acyclic graphs
(DAGs). It orders the vertices on a line such that all directed edges go from left
to right. Such an ordering cannot exist if the graph contains a directed cycle,
because there is no way you can keep moving right on a line and still return
back to where you started from!

Each DAG has at least one topological sort. The importance of topological
sorting is that it gives us an ordering so we can process each vertex before any of
its successors. Suppose the directed edges represented precedence constraints,
such that edge (x, y) means job x must be done before job y. Any topological
sort then defines a feasible schedule. Indeed, there can be many such orderings
for a given DAG.

But the applications go deeper. Suppose we seek the shortest (or longest)
path from x to y in a DAG. No vertex v appearing after y in the topological
order can possibly contribute to any such path, because there will be no way
to get from v back to y. We can appropriately process all the vertices from left
to right in topological order, considering the impact of their outgoing edges,
and know that we will have looked at everything we need before we need it.
Topological sorting proves very useful in essentially any algorithmic problem on
DAGs, as discussed in the catalog in Section 18.2 (page 546).

Topological sorting can be performed efficiently using depth-first search. A
directed graph is a DAG iff no back edges are encountered. Labeling the vertices
in the reverse order that they are marked processed defines a topological sort
of a DAG. Why? Consider what happens to each directed edge (x, y) as we
encounter it exploring vertex x:

• If y is currently undiscovered, then we start a DFS of y before we can
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continue with x. Thus, y must be marked processed before x is, so x
appears before y in the topological order, as it must.

• If y is discovered but not processed, then (x, y) is a back edge, which is
impossible in a DAG because it creates a cycle.

• If y is processed, then it will have been so labeled before x. Therefore, x
appears before y in the topological order, as it must.

Study the following implementation:

void process_vertex_late(int v) {

push(&sorted, v);

}

void process_edge(int x, int y) {

int class; /* edge class */

class = edge_classification(x, y);

if (class == BACK) {

printf("Warning: directed cycle found, not a DAG\n");

}

}

void topsort(graph *g) {

int i; /* counter */

init_stack(&sorted);

for (i = 1; i <= g->nvertices; i++) {

if (!discovered[i]) {

dfs(g, i);

}

}

print_stack(&sorted); /* report topological order */

}

We push each vertex onto a stack as soon as we have evaluated all outgoing
edges. The top vertex on the stack always has no incoming edges from any
vertex on the stack. Repeatedly popping them off yields a topological ordering.

7.10.2 Strongly Connected Components

A directed graph is strongly connected if there is a directed path between any two
vertices. Road networks had better be strongly connected: otherwise there will
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be places you can drive to but not drive home from without violating one-way
signs.

It is straightforward to use graph traversal to test whether a graph G =
(V,E) is strongly connected in linear time. The graph is strongly connected
iff from any vertex v in G (1) all vertices are reachable from v and (2) all
vertices can reach v. To test if condition (1) holds, we can do a BFS or DFS
traversal from v to establish whether all vertices get discovered. If so, all must
be reachable from v.

To test if there are paths from every vertex to v, we construct the transpose
graph GT = (V,E′), which has the same vertex and edge set as G but with all
edges reversed—that is, directed edge (x, y) ∈ E iff (y, x) ∈ E′.

graph *transpose(graph *g) {

graph *gt; /* transpose of graph g */

int x; /* counter */

edgenode *p; /* temporary pointer */

gt = (graph *) malloc(sizeof(graph));

initialize_graph(gt, true); /* initialize directed graph */

gt->nvertices = g->nvertices;

for (x = 1; x <= g->nvertices; x++) {

p = g->edges[x];

while (p != NULL) {

insert_edge(gt, p->y, x, true);

p = p->next;

}

}

return(gt);

}

Any path from v to z in GT corresponds to a path from z to v in G. By doing
a second DFS, this one from v in GT , we identify all vertices that have paths to
v in G.

All directed graphs can be partitioned into strongly connected components,
such that a directed path exists between every pair of vertices in the component,
as shown in Figure 7.16 (left). The set of such components can be determined
using a more subtle variation of this double DFS approach:

void strong_components(graph *g) {

graph *gt; /* transpose of graph g */

int i; /* counter */

int v; /* vertex in component */
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Figure 7.16: The strongly connected components of a graph G (left), with its
associated DFS tree (center). The reverse of its DFS finishing order from vertex
1 is [3, 5, 7, 6, 8, 4, 2, 1], which defines the vertex order for the second traversal
of the transpose GT (right).

init_stack(&dfs1order);

initialize_search(g);

for (i = 1; i <= (g->nvertices); i++) {

if (!discovered[i]) {

dfs(g, i);

}

}

gt = transpose(g);

initialize_search(gt);

components_found = 0;

while (!empty_stack(&dfs1order)) {

v = pop(&dfs1order);

if (!discovered[v]) {

components_found ++;

printf("Component %d:", components_found);

dfs2(gt, v);

printf("\n");

}

}

}

The first traversal pushes the vertices on a stack in the reverse order they
were processed, just as with topological sort in Section 7.10.1 (page 231). The
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connection makes sense: DAGs are directed graphs where each vertex forms its
own strongly connected component. On a DAG, the top vertex on the stack will
be one that cannot reach any other vertex. The bookkeeping here is identical
to topological sort:

void process_vertex_late(int v) {

push(&dfs1order,v);

}

The second traversal, on the transposed graph, behaves like the connected
component algorithm of Section 7.7.1 (page 218), except we consider starting
vertices in the order they appear on the stack. Each traversal from v will
discover all reachable vertices from the transpose GT , meaning the vertices that
have paths to v in G. These reachable vertices define the strongly connected
component of v, because they represent the least reachable vertices in G:

void process_vertex_early2(int v) {

printf(" %d", v);

}

The correctness of this is subtle. Observe that first DFS places vertices on
the stack in groups based on reachability from successive starting vertices in
the original directed graph G. Thus, the vertices in the top group have the
property that none were reachable from any earlier group vertex. The second
traversal in GT , starting from the last vertex v of G, finds all the reachable
vertices from v in GT that themselves reach v, meaning they define a strongly
connected component.

Chapter Notes

Our treatment of graph traversal represents an expanded version of material
from chapter 9 of Skiena and Revilla [SR03]. The Combinatorica graph library
discussed in the war story is best described in the old [Ski90] and new editions
[PS03] of the associated book. Accessible introductions to the science of social
networks include Barabasi [Bar03], Easley and Kleinberg [EK10], and Watts
[Wat04]. Interest in graph theory has surged with the emergence of the multi-
disciplinary field of network science, see the introductory textbooks by Barabasi
[B+16] and Newman [New18].

7.11 Exercises

Simulating Graph Algorithms

7-1. [3] For the following weighted graphs G1 (left) and G2 (right):
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(a) Report the order of the vertices encountered on a breadth-first search start-
ing from vertex A. Break all ties by picking the vertices in alphabetical
order (i.e. A before Z).

(b) Report the order of the vertices encountered on a depth-first search starting
from vertex A. Break all ties by picking the vertices in alphabetical order
(i.e. A before Z).

7-2. [3] Do a topological sort of the following graph G:
A B

C

D
E

F

G H

I

J

Traversal

7-3. [3] Prove that there is a unique path between any pair of vertices in a tree.

7-4. [3] Prove that in a breadth-first search on a undirected graph G, every edge is
either a tree edge or a cross edge, where x is neither an ancestor nor descendant
of y in cross edge (x, y).

7-5. [3] Give a linear algorithm to compute the chromatic number of graphs where
each vertex has degree at most 2. Any bipartite graph has a chromatic number
of 2. Must such graphs be bipartite?

7-6. [3] You are given a connected, undirected graph G with n vertices and m edges.
Give an O(n +m) algorithm to identify an edge you can remove from G while
still leaving G connected, if one exists. Can you reduce the running time to
O(n)?

7-7. [5] In breadth-first and depth-first search, an undiscovered node is marked dis-
covered when it is first encountered, and marked processed when it has been
completely searched. At any given moment, several nodes might be simultane-
ously in the discovered state.
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Figure 7.17: Expression 2+3*4+(3*4)/5 as a tree and a DAG

(a) Describe a graph on n vertices and a particular starting vertex v such that
Θ(n) nodes are simultaneously in the discovered state during a breadth-first
search starting from v.

(b) Describe a graph on n vertices and a particular starting vertex v such that
Θ(n) nodes are simultaneously in the discovered state during a depth-first search
starting from v.

(c) Describe a graph on n vertices and a particular starting vertex v such that
at some point Θ(n) nodes remain undiscovered, while Θ(n) nodes have been
processed during a depth-first search starting from v. (Hint: there may also be
discovered nodes.)

7-8. [4] Given pre-order and in-order traversals of a binary tree (discussed in Section
3.4.1), is it possible to reconstruct the tree? If so, sketch an algorithm to do it.
If not, give a counterexample. Repeat the problem if you are given the pre-order
and post-order traversals.

7-9. [3] Present correct and efficient algorithms to convert an undirected graph G
between the following graph data structures. Give the time complexity of each
algorithm, assuming n vertices and m edges.

(a) Convert from an adjacency matrix to adjacency lists.

(b) Convert from an adjacency list representation to an incidence matrix. An
incidence matrix M has a row for each vertex and a column for each edge,
such that M [i, j] = 1 if vertex i is part of edge j, otherwise M [i, j] = 0.

(c) Convert from an incidence matrix to adjacency lists.

7-10. [3] Suppose an arithmetic expression is given as a tree. Each leaf is an integer
and each internal node is one of the standard arithmetical operations (+,−, ∗, /).
For example, the expression 2+3*4+(3*4)/5 is represented by the tree in Figure
7.17(a). Give an O(n) algorithm for evaluating such an expression, where there
are n nodes in the tree.

7-11. [5] Suppose an arithmetic expression is given as a DAG (directed acyclic graph)
with common subexpressions removed. Each leaf is an integer and each internal
node is one of the standard arithmetical operations (+,−, ∗, /). For example, the
expression 2+3*4+(3*4)/5 is represented by the DAG in Figure 7.17(b). Give
an O(n+m) algorithm for evaluating such a DAG, where there are n nodes and
m edges in the DAG. (Hint: modify an algorithm for the tree case to achieve
the desired efficiency.)
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7-12. [8] The war story of Section 7.4 (page 210) describes an algorithm for construct-
ing the dual graph of the triangulation efficiently, although it does not guarantee
linear time. Give a worst-case linear algorithm for the problem.

Applications

7-13. [3] The Chutes and Ladders game has a board with n cells where you seek to
travel from cell 1 to cell n. To move, a player throws a six-sided dice to determine
how many cells forward they move. This board also contains chutes and ladders
that connect certain pairs of cells. A player who lands on the mouth of a chute
immediately falls back down to the cell at the other end. A player who lands on
the base of a ladder immediately travels up to the cell at the top of the ladder.
Suppose you have rigged the dice to give you full control of the number for each
roll. Give an efficient algorithm to find the minimum number of dice throws to
win.

7-14. [3] Plum blossom poles are a Kung Fu training technique, consisting of n large
posts partially sunk into the ground, with each pole pi at position (xi, yi). Stu-
dents practice martial arts techniques by stepping from the top of one pole to
the top of another pole. In order to keep balance, each step must be more than
d meters but less than 2d meters. Give an efficient algorithm to find a safe path
from pole ps to pt if it exists.

7-15. [5] You are planning the seating arrangement for a wedding given a list of guests,
V . For each guest g you have a list of all other guests who are on bad terms
with them. Feelings are reciprocal: if h is on bad terms with g, then g is on bad
terms with h. Your goal is to arrange the seating such that no pair of guests
sitting at the same table are on bad terms with each other. There will be only
two tables at the wedding. Give an efficient algorithm to find an acceptable
seating arrangement if one exists.

Algorithm Design

7-16. [5] The square of a directed graph G = (V,E) is the graph G2 = (V,E2) such
that (u,w) ∈ E2 iff there exists v ∈ V such that (u, v) ∈ E and (v, w) ∈ E; that
is, there is a path of exactly two edges from u to w.

Give efficient algorithms for both adjacency lists and matrices.

7-17. [5] A vertex cover of a graph G = (V,E) is a subset of vertices V ′ such that
each edge in E is incident to at least one vertex of V ′.

(a) Give an efficient algorithm to find a minimum-size vertex cover if G is a
tree.

(b) Let G = (V,E) be a tree such that the weight of each vertex is equal to the
degree of that vertex. Give an efficient algorithm to find a minimum-weight
vertex cover of G.

(c) Let G = (V,E) be a tree with arbitrary weights associated with the ver-
tices. Give an efficient algorithm to find a minimum-weight vertex cover
of G.

7-18. [3] A vertex cover of a graph G = (V,E) is a subset of vertices V ′ such that each
edge in E is incident to at least one vertex of V ′. Delete all the leaves from any
depth-first search tree of G. Must the remaining vertices form a vertex cover of
G? Give a proof or a counterexample.
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7-19. [5] An independent set of an undirected graph G = (V,E) is a set of vertices U
such that no edge in E is incident to two vertices of U .

(a) Give an efficient algorithm to find a maximum-size independent set if G is
a tree.

(b) Let G = (V,E) be a tree with weights associated with the vertices such
that the weight of each vertex is equal to the degree of that vertex. Give
an efficient algorithm to find a maximum-weight independent set of G.

(c) Let G = (V,E) be a tree with arbitrary weights associated with the ver-
tices. Give an efficient algorithm to find a maximum-weight independent
set of G.

7-20. [5] A vertex cover of a graph G = (V,E) is a subset of vertices V ′ such that
each edge in E is incident on at least one vertex of V ′. An independent set of
graph G = (V,E) is a subset of vertices V ′ ∈ V such that no edge in E contains
both vertices from V ′.
An independent vertex cover is a subset of vertices that is both an independent
set and a vertex cover of G. Give an efficient algorithm for testing whether G
contains an independent vertex cover. What classical graph problem does this
reduce to?

7-21. [5] Consider the problem of determining whether a given undirected graph G =
(V,E) contains a triangle, that is, a cycle of length 3.

(a) Give an O(|V |3) algorithm to find a triangle if one exists.

(b) Improve your algorithm to run in time O(|V | · |E|). You may assume
|V | ≤ |E|.

Observe that these bounds give you time to convert between the adjacency
matrix and adjacency list representations of G.

7-22. [5] Consider a set of movies M1,M2, . . . ,Mk. There is a set of customers,
each one of which indicates the two movies they would like to see this weekend.
Movies are shown on Saturday evening and Sunday evening. Multiple movies
may be screened at the same time.

You must decide which movies should be televised on Saturday and which on
Sunday, so that every customer gets to see the two movies they desire. Is there a
schedule where each movie is shown at most once? Design an efficient algorithm
to find such a schedule if one exists.

7-23. [5] The diameter of a tree T = (V,E) is given by

max
u,v∈V

δ(u, v)

(where δ(u, v) is the number of edges on the path from u to v). Describe an
efficient algorithm to compute the diameter of a tree, and show the correctness
and analyze the running time of your algorithm.

7-24. [5] Given an undirected graph G with n vertices and m edges, and an integer k,
give an O(m+ n) algorithm that finds the maximum induced subgraph F of G
such that each vertex in F has degree ≥ k, or prove that no such graph exists.
Graph F = (U,R) is an induced subgraph of graph G = (V,E) if its vertex set
U is a subset of the vertex set V of G, and R consists of all edges of G whose
endpoints are in U .
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7-25. [6] Let v and w be two vertices in an unweighted directed graph G = (V,E).
Design a linear-time algorithm to find the number of different shortest paths
(not necessarily vertex disjoint) between v and w.

7-26. [6] Design a linear-time algorithm to eliminate each vertex v of degree 2 from
a graph by replacing edges (u, v) and (v, w) by an edge (u,w). It should also
eliminate multiple copies of edges by replacing them with a single edge. Note
that removing multiple copies of an edge may create a new vertex of degree 2,
which has to be removed, and that removing a vertex of degree 2 may create
multiple edges, which also must be removed.

Directed Graphs

7-27. [3] The reverse of a directed graph G = (V,E) is another directed graph
GR = (V,ER) on the same vertex set, but with all edges reversed; that is,
ER = {(v, u) : (u, v) ∈ E}. Give an O(n + m) algorithm for computing the
reverse of an n-vertex m-edge graph in adjacency list format.

7-28. [5] Your job is to arrange n ill-behaved children in a straight line, facing front.
You are given a list of m statements of the form “i hates j.” If i hates j, then
you do not want to put i somewhere behind j, because then i is capable of
throwing something at j.

(a) Give an algorithm that orders the line (or says that it is not possible) in
O(m+ n) time.

(b) Suppose instead you want to arrange the children in rows such that if i
hates j, then i must be in a lower numbered row than j. Give an efficient
algorithm to find the minimum number of rows needed, if it is possible.

7-29. [3] A particular academic program has n required courses, certain pairs of which
have prerequisite relations so that (x, y) means you must take course x before
y. How would you analyze the prerequisite pairs to make sure it is possible for
people to complete the program?

7-30. [5] Gotcha-solitaire is a game on a deck with n distinct cards (all face up) and
m gotcha pairs (i, j) such that card i must be played sometime before card j.
You play by sequentially choosing cards, and win if you pick up the entire deck
without violating any gotcha pair constraints. Give an efficient algorithm to
find a winning pickup order if one exists.

7-31. [5] You are given a list of n words each of length k in a language you don’t know,
although you are told that words are sorted in lexicographic (alphabetical) order.
Reconstruct the order of the α alphabet letters (characters) in that language.

For example, if the strings are {QQZ,QZZ,XQZ,XQX,XXX}, the character
order must be Q before Z before X.

(a) Give an algorithm to efficiently reconstruct this character order. (Hint: use
a graph structure, where each node represents one letter.)

(b) What is its running time, as a function of n, k, and α?

7-32. [3] A weakly connected component in a directed graph is a connected compo-
nent ignoring the direction of the edges. Adding a single directed edge to a
directed graph can reduce the number of weakly connected components, but by
at most how many components? What about the number of strongly connected
components?
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7-33. [5] Design a linear-time algorithm that, given an undirected graph G and a
particular edge e in it, determines whether G has a cycle containing e.

7-34. [5] An arborescence of a directed graph G is a rooted tree such that there is a
directed path from the root to every other vertex in the graph. Give an efficient
and correct algorithm to test whether G contains an arborescence, and its time
complexity.

7-35. [5] A mother vertex in a directed graph G = (V,E) is a vertex v such that all
other vertices G can be reached by a directed path from v.

(a) Give an O(n+m) algorithm to test whether a given vertex v is a mother
of G, where n = |V | and m = |E|.

(b) Give an O(n + m) algorithm to test whether graph G contains a mother
vertex.

7-36. [8] Let G be a directed graph. We say that G is k-cyclic if every (not necessarily
simple) cycle in G contains at most k distinct nodes. Give a linear-time algo-
rithm to determine if a directed graph G is k-cyclic, where G and k are given
as inputs. Justify the correctness and running time of your algorithm.

7-37. [9] A tournament is a directed graph formed by taking the complete undirected
graph and assigning arbitrary directions on the edges—that is, a graph G =
(V,E) such that for all u,v ∈ V , exactly one of (u, v) or (v, u) is in E. Show
that every tournament has a Hamiltonian path—that is, a path that visits every
vertex exactly once. Give an algorithm to find this path.

Articulation Vertices

7-38. [5] An articulation vertex of a connected graph G is a vertex whose deletion
disconnects G. Let G be a graph with n vertices and m edges. Give a simple
O(n+m) algorithm for finding a vertex of G that is not an articulation vertex—
that is, whose deletion does not disconnect G.

7-39. [5] Following up on the previous problem, give an O(n+m) algorithm that finds
a deletion order for the n vertices such that no deletion disconnects the graph.
(Hint: think DFS/BFS.)

7-40. [3] Suppose G is a connected undirected graph. An edge e whose removal dis-
connects the graph is called a bridge. Must every bridge e be an edge in a
depth-first search tree of G? Give a proof or a counterexample.

7-41. [5] A city that only has two-way streets has decided to change them all into one-
way streets. They want to ensure that the new network is strongly connected
so everyone can legally drive anywhere in the city and back.

(a) Let G be the original undirected graph. Prove that there is a way to
properly orient/direct the edges of G provided G does not contain a bridge.

(b) Give an efficient algorithm to orient the edges of a bridgeless graph G so
the result is strongly connected.

Interview Problems

7-42. [3] Which data structures are used in depth-first and breath-first search?

7-43. [4] Write a function to traverse binary search tree and return the ith node in
sorted order.
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LeetCode

7-1. https://leetcode.com/problems/minimum-height-trees/

7-2. https://leetcode.com/problems/redundant-connection/

7-3. https://leetcode.com/problems/course-schedule/

HackerRank

7-1. https://www.hackerrank.com/challenges/bfsshortreach/

7-2. https://www.hackerrank.com/challenges/dfs-edges/

7-3. https://www.hackerrank.com/challenges/even-tree/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

7-1. “Bicoloring”—Chapter 9, problem 10004.

7-2. “Playing with Wheels”—Chapter 9, problem 10067.

7-3. “The Tourist Guide”—Chapter 9, problem 10099.

7-4. “Edit Step Ladders”—Chapter 9, problem 10029.

7-5. “Tower of Cubes”—Chapter 9, problem 10051.

https://leetcode.com/problems/minimum-height-trees/
https://leetcode.com/problems/redundant-connection/
https://leetcode.com/problems/course-schedule/
https://www.hackerrank.com/challenges/bfsshortreach/
https://www.hackerrank.com/challenges/dfs-edges/
https://www.hackerrank.com/challenges/even-tree/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 8

Weighted Graph
Algorithms

The data structures and traversal algorithms of Chapter 7 provide the basic
building blocks for any computation on graphs. However, all the algorithms
presented there dealt with unweighted graphs—in other words, graphs where
each edge has identical value or weight.

There is an alternate universe of problems for weighted graphs. The edges
of road networks are naturally bound to numerical values such as construction
cost, traversal time, length, or speed limit. Identifying the shortest path in such
graphs proves more complicated than breadth-first search in unweighted graphs,
but opens the door to a wide range of applications.

The graph data structure from Chapter 7 quietly supported edge-weighted
graphs, but here this is made explicit. Our adjacency list structure again consists
of an array of linked lists, such that the outgoing edges from vertex x appear in
the list edges[x]:

typedef struct {

edgenode *edges[MAXV+1]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of each vertex */

int nvertices; /* number of vertices in the graph */

int nedges; /* number of edges in the graph */

int directed; /* is the graph directed? */

} graph;

Each edgenode is a record containing three fields, the first describing the
second endpoint of the edge (y), the second enabling us to annotate the edge
with a weight (weight), and the third pointing to the next edge in the list
(next):
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(a) (b)
(c)

Figure 8.1: (a) The distances between points define a complete weighted graph,
(b) its minimum spanning tree, and (c) the shortest path from center tree.

typedef struct edgenode {

int y; /* adjacency info */

int weight; /* edge weight, if any */

struct edgenode *next; /* next edge in list */

} edgenode;

We now describe several sophisticated algorithms for weighted graphs that
use this data structure, including minimum spanning trees, shortest paths, and
maximum flows. That all of these optimization problems can be solved efficiently
is a feat quite worthy of our respect. Recall that no such algorithm exists for
the first weighted graph problem we encountered, namely the traveling salesman
problem.

8.1 Minimum Spanning Trees

A spanning tree of a connected graph G = (V,E) is a subset of edges from E
forming a tree connecting all vertices of V . For edge-weighted graphs, we are
particularly interested in the minimum spanning tree—the spanning tree whose
sum of edge weights is as small as possible.

Minimum spanning trees are the answer whenever we need to connect a set
of points (representing cities, homes, junctions, or other locations) cheaply using
the smallest amount of roadway, wire, or pipe. Any tree is the smallest possible
connected graph in terms of number of edges, but the minimum spanning tree
is the smallest connected graph in terms of edge weight. In geometric problems,
the point set p1, . . . , pn defines a complete graph, with edge (vi, vj) assigned a
weight equal to the distance from pi to pj . An example of a geometric minimum
spanning tree is illustrated in Figure 8.1. Additional applications of minimum
spanning trees are discussed in Section 18.3 (page 549).

A minimum spanning tree minimizes the total edge weight over all possi-



8.1. MINIMUM SPANNING TREES 245

ble spanning trees. However, there can be more than one minimum spanning
tree of a given graph. Indeed, all spanning trees of an unweighted (or equally
weighted) graph G are minimum spanning trees, since each contains exactly
n− 1 equal-weight edges. Such a spanning tree can be found using either DFS
or BFS. Finding a minimum spanning tree is more difficult for general weighted
graphs. But two different algorithms are presented below, both demonstrating
the optimality of specific greedy heuristics.

8.1.1 Prim’s Algorithm

Prim’s minimum spanning tree algorithm starts from one vertex and grows the
rest of the tree one edge at a time until all vertices are included.

Greedy algorithms make the decision of what to do next by selecting the best
local option from all available choices without regard to the global structure.
Since we seek the tree of minimum weight, the natural greedy algorithm for
minimum spanning tree (MST) repeatedly selects the smallest weight edge that
will enlarge the number of vertices in the tree.

Prim-MST(G)
Select an arbitrary vertex s to start the tree Tprim from.
While (there are still non-tree vertices)

Find the minimum-weight edge between a tree and non-tree vertex
Add the selected edge and vertex to the tree Tprim.

Prim’s algorithm clearly creates a spanning tree, because no cycle can be
introduced by adding edges between tree and non-tree vertices. But why should
it be of minimum weight over all spanning trees? We have seen ample evidence
of other natural greedy heuristics that do not yield a global optimum. Therefore,
we must be particularly careful to demonstrate any such claim.

We use proof by contradiction. Suppose that there existed a graph G for
which Prim’s algorithm did not return a minimum spanning tree. Since we are
building the tree incrementally, this means that there must have been some
particular instant where we went wrong. Before we inserted edge (x, y), Tprim

consisted of a set of edges that was a subtree of some minimum spanning tree
Tmin, but choosing edge (x, y) fatally took us away from any possible minimum
spanning tree (see Figure 8.2(a)).

But how could we have gone wrong? There must be a path p from x to y
in Tmin, as shown in Figure 8.2(b). This path must use an edge (v1, v2), where
v1 is already in Tprim, but v2 is not. This edge (v1, v2) must have weight at
least that of (x, y), or else Prim’s algorithm would have selected it before (x, y)
when it had the chance. Inserting (x, y) and deleting (v1, v2) from Tmin leaves
a spanning tree no larger than before, meaning that Prim’s algorithm could not
have made a fatal mistake in selecting edge (x, y). Therefore, by contradiction,
Prim’s algorithm must construct a minimum spanning tree.
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(a) (b)

Figure 8.2: Does Prim’s algorithm go bad? No, because picking edge (x, y)
before (v1, v2) implies that weight(v1, v2) ≥ weight(x, y).

Implementation

Prim’s algorithm grows the minimum spanning tree in stages, starting from
a given vertex. At each iteration, we add one new vertex into the spanning
tree. A greedy algorithm suffices for correctness: we always add the lowest-
weight edge linking a vertex in the tree to a vertex on the outside. The simplest
implementation of this idea would assign to each vertex a Boolean variable
denoting whether it is already in the tree (the array intree in the code below),
and then search all edges at each iteration to find the minimum-weight edge
with exactly one intree vertex.

Our implementation is somewhat smarter. It keeps track of the cheapest
edge linking every non-tree vertex in the tree. The cheapest such edge over all
remaining non-tree vertices gets added in the next iteration. We must update
the costs of getting to the non-tree vertices after each insertion. However, since
the most recently inserted vertex is the only change in the tree, all possible
edge-weight updates must come from its outgoing edges:

int prim(graph *g, int start) {

int i; /* counter */

edgenode *p; /* temporary pointer */

bool intree[MAXV+1]; /* is the vertex in the tree yet? */

int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertex to process */

int w; /* candidate next vertex */

int dist; /* cheapest cost to enlarge tree */

int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {

intree[i] = false;

distance[i] = MAXINT;

parent[i] = -1;
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}

distance[start] = 0;

v = start;

while (!intree[v]) {

intree[v] = true;

if (v != start) {

printf("edge (%d,%d) in tree \n",parent[v],v);

weight = weight + dist;

}

p = g->edges[v];

while (p != NULL) {

w = p->y;

if ((distance[w] > p->weight) && (!intree[w])) {

distance[w] = p->weight;

parent[w] = v;

}

p = p->next;

}

dist = MAXINT;

for (i = 1; i <= g->nvertices; i++) {

if ((!intree[i]) && (dist > distance[i])) {

dist = distance[i];

v = i;

}

}

}

return(weight);

}

Analysis

Prim’s algorithm is correct, but how efficient is it? This depends on which data
structures are used to implement it. In the pseudocode, Prim’s algorithm makes
n iterations sweeping through all m edges on each iteration—yielding an O(mn)
algorithm.

But our implementation avoids the need to test all m edges on each pass. It
only considers the ≤ n cheapest known edges represented in the parent array
and the ≤ n edges out of a new tree vertex v to update parent. By maintaining
a Boolean flag along with each vertex to denote whether it is in the tree, we test
whether the current edge joins a tree with a non-tree vertex in constant time.
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Figure 8.3: A graph G (left) with minimum spanning trees produced by Prim’s
(center) and Kruskal’s (right) algorithms. The numbers and edge colors on the
trees denote the order of insertion; ties are broken arbitrarily.

The result is an O(n2) implementation of Prim’s algorithm, and a good il-
lustration of the power of data structures to speed up algorithms. In fact, more
sophisticated priority-queue data structures lead to an O(m+n lg n) implemen-
tation, by making it faster to find the minimum-cost edge to expand the tree at
each iteration.

The minimum spanning tree itself can be reconstructed in two different ways.
The simplest method would be to augment this procedure with statements that
print the edges as they are found, and totals the weight of all selected edges to
get the cost. Alternatively, the tree topology is encoded by the parent array,
so it completely describes edges in the minimum spanning tree.

8.1.2 Kruskal’s Algorithm

Kruskal’s algorithm is an alternative approach to finding minimum spanning
trees that proves more efficient on sparse graphs. Like Prim’s, Kruskal’s al-
gorithm is greedy. Unlike Prim’s, it does not start with a particular vertex.
As shown in Figure 8.3, Kruskal might produce a different spanning tree than
Prim’s algorithm, although both will have the same weight.

Kruskal’s algorithm builds up connected components of vertices, culminating
in the complete minimum spanning tree. Initially, each vertex forms its own
separate component in the tree-to-be. The algorithm repeatedly considers the
lightest remaining edge and tests whether its two endpoints lie within the same
connected component. If so, this edge will be discarded, because adding it
would create a cycle. If the endpoints lie in different components, we insert the
edge and merge the two components into one. Since each connected component
always is a tree, we never need to explicitly test for cycles.

Kruskal-MST(G)
Put the edges into a priority queue ordered by increasing weight.
count = 0
while (count < n− 1) do

get next edge (v, w)
if (component (v) �= component(w))
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Figure 8.4: Could Kruskal’s algorithm go bad after selecting red edge (x, y) (on
left)? No, because edge (v1, v2), inserted later, must be heavier than (x, y) (on
right).

increment count
add (v, w) to Tkruskal

merge component(v) and component(w)

This algorithm adds n−1 edges without creating a cycle, so it must create a
spanning tree for any connected graph. But why does this have to be a minimum
spanning tree? Suppose it wasn’t. As with the correctness proof of Prim’s
algorithm, there must be a particular graph G on which it fails. In particular,
there must an edge (x, y) in G whose insertion first prevented Tkruskal from
being a minimum spanning tree Tmin. Inserting this edge (x, y) into Tmin will
create a cycle with the path from x to y, as shown in Figure 8.4. Since x and
y were in different components at the time of inserting (x, y), at least one edge
(say (v1, v2)) on this path must have been evaluated by Kruskal’s algorithm at
a later time than (x, y). But this means that weight(v1, v2) ≥ weight(x, y), so
exchanging the two edges yields a tree of weight at most Tmin. Thus, we could
not have made a fatal mistake in selecting (x, y), and the correctness follows.

What is the time complexity of Kruskal’s algorithm? Sorting the m edges
takes O(m lgm) time. The while loop makes at most m iterations, each testing
the connectivity of two trees plus an edge. In the most simple-minded imple-
mentation, this can be done by breadth-first or depth-first search in the sparse
partial tree graph with at most n edges and n vertices, thus yielding an O(mn)
algorithm.

However, a faster implementation results if we can implement the component
test in faster than O(n) time. In fact, a clever data structure called union–find,
can support such queries in O(lg n) time, and it is discussed in Section 8.1.3
(page 250). With this data structure, Kruskal’s algorithm runs in O(m lgm)
time, which is faster than Prim’s for sparse graphs. Observe again the impact
that the right data structure can have when implementing a straightforward
algorithm.



250 CHAPTER 8. WEIGHTED GRAPH ALGORITHMS

Implementation

The implementation of the main routine follows directly from the pseudocode:

int kruskal(graph *g) {

int i; /* counter */

union_find s; /* union-find data structure */

edge_pair e[MAXV+1]; /* array of edges data structure */

int weight=0; /* cost of the minimum spanning tree */

union_find_init(&s, g->nvertices);

to_edge_array(g, e);

qsort(&e,g->nedges, sizeof(edge_pair), &weight_compare);

for (i = 0; i < (g->nedges); i++) {

if (!same_component(&s, e[i].x, e[i].y)) {

printf("edge (%d,%d) in MST\n", e[i].x, e[i].y);

weight = weight + e[i].weight;

union_sets(&s, e[i].x, e[i].y);

}

}

return(weight);

}

8.1.3 The Union–Find Data Structure

A set partition parcels out the elements of some universal set (say the integers
1 to n) into a collection of disjoint subsets, where each element is in exactly one
subset. Set partitions naturally arise in graph problems such as connected com-
ponents (each vertex is in exactly one connected component) and vertex coloring
(a vertex may be white or black in a bipartite graph, but not both or neither).
Section 17.6 (page 524) presents algorithms for generating set partitions and
related objects.

The connected components in a graph can be represented as a set parti-
tion. For Kruskal’s algorithm to run efficiently, we need a data structure that
efficiently supports the following operations:

• Same component(v1, v2) – Do vertices v1 and v2 occur in the same con-
nected component of the current graph?

• Merge components(C1, C2) – Merge the given pair of connected compo-
nents into one component in response to the insertion of an edge between
them.
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Figure 8.5: Union–find example—the structure represented as a forest of trees
(left), and an array of parent pointers (right).

The two obvious data structures for this task each support only one of these
operations efficiently. Explicitly labeling each element with its component num-
ber enables the same component test to be performed in constant time, but
updating the component numbers after a merger would require linear time. Al-
ternatively, we can treat the merge components operation as inserting an edge
in a graph, but then we must run a full graph traversal to identify the connected
components on demand.

The union–find data structure represents each subset as a “backwards” tree,
with pointers from a node to its parent. Each node of this tree contains a set
element, and the name of the set is taken from the key at the root, as shown in
Figure 8.5. For reasons that will become clear, we also keep track of the number
of elements in the subtree rooted in each vertex v:

typedef struct {

int p[SET_SIZE+1]; /* parent element */

int size[SET_SIZE+1]; /* number of elements in subtree i */

int n; /* number of elements in set */

} union_find;

We implement our desired component operations in terms of two simpler
operations, union and find:

• Find(i) – Find the root of the tree containing element i, by walking up
the parent pointers until there is nowhere to go. Return the label of the
root.

• Union(i,j) – Link the root of one of the trees (say containing i) to the root
of the tree containing the other (say j) so find(i) now equals find(j).

We seek to minimize the time it takes to execute the worst possible sequence
of unions and finds. Tree structures can be very unbalanced, so we must limit
the height of our trees. Our most obvious means of control is the choice of which
of the two component roots becomes the root of the merged component on each
union.
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To minimize the tree height, it is better to make the smaller tree the subtree
of the bigger one. Why? The heights of all the nodes in the root subtree stay
the same, but the height of the nodes merged into this tree all increase by one.
Thus, merging in the smaller tree leaves the height unchanged on the larger set
of vertices.

Implementation

The implementation details are as follows:

void union_find_init(union_find *s, int n) {

int i; /* counter */

for (i = 1; i <= n; i++) {

s->p[i] = i;

s->size[i] = 1;

}

s->n = n;

}

int find(union_find *s, int x) {

if (s->p[x] == x) {

return(x);

}

return(find(s, s->p[x]));

}

void union_sets(union_find *s, int s1, int s2) {

int r1, r2; /* roots of sets */

r1 = find(s, s1);

r2 = find(s, s2);

if (r1 == r2) {

return; /* already in same set */

}

if (s->size[r1] >= s->size[r2]) {

s->size[r1] = s->size[r1] + s->size[r2];

s->p[r2] = r1;

} else {

s->size[r2] = s->size[r1] + s->size[r2];

s->p[r1] = r2;

}

}
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bool same_component(union_find *s, int s1, int s2) {

return (find(s, s1) == find(s, s2));

}

Analysis

On each union, the tree with fewer nodes becomes the child. But how tall can
such a tree get as a function of the number of nodes in it? Consider the smallest
possible tree of height h. Single-node trees have height 1. The smallest tree
of height 2 has two nodes: it is made from the union of two single-node trees.
Merging in more single-node trees won’t further increase the height, because
they just become children of the rooted tree of height 2. Only when we merge
two height 2 trees together can we get a tree of height 3, now with at least four
nodes.

See the pattern? We must double the number of nodes in the tree to get
an extra unit of height. How many doublings can we do before we use up all
n nodes? At most lg n doublings can be performed. Thus, we can do both
unions and finds in O(log n), fast enough to make Kruskal’s algorithm efficient
on sparse graphs. In fact, union–find can be done even faster, as discussed in
Section 15.5 (page 456).

8.1.4 Variations on Minimum Spanning Trees

The algorithms that construct minimum spanning trees can also be used to solve
several closely related problems:

• Maximum spanning trees – Suppose an evil telephone company is con-
tracted to connect a bunch of houses together, such that they will be paid
a price proportional to the amount of wire they install. Naturally, they
will seek to build the most expensive possible spanning tree! The max-
imum spanning tree of any graph can be found by simply negating the
weights of all edges and running Prim’s or Kruskal’s algorithm. The most
negative spanning tree in the negated graph is the maximum spanning
tree in the original.

Most graph algorithms do not adapt so easily to negative numbers. In-
deed, shortest path algorithms have trouble with negative weights, and
certainly do not generate the longest possible path using this weight nega-
tion technique.

• Minimum product spanning trees – Suppose we seek the spanning tree
that minimizes the product of edge weights, assuming all edge weights are
positive. Since lg(a · b) = lg(a) + lg(b), the minimum spanning tree on
a graph whose edge weights are replaced with their logarithms gives the
minimum product spanning tree on the original graph.
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• Minimum bottleneck spanning tree – Sometimes we seek a spanning tree
that minimizes the maximum edge weight over all possible trees. In fact,
every minimum spanning tree has this property. The proof follows directly
from the correctness of Kruskal’s algorithm.

Such bottleneck spanning trees have interesting applications when the edge
weights are interpreted as costs, capacities, or strengths. A less efficient
but conceptually simpler way to solve such problems might be to delete all
“heavy” edges from the graph and ask whether the result is still connected.
These kinds of tests can be done with BFS or DFS.

The minimum spanning tree of a graph is unique if all m edge weights in the
graph are distinct. Otherwise the order in which Prim’s/Kruskal’s algorithm
breaks ties determines which minimum spanning tree is returned.

There are two important variants of a minimum spanning tree that are not
solvable with the techniques presented in this section:

• Steiner tree – Suppose we want to wire a bunch of houses together, but
have the freedom to add extra intermediate vertices to serve as a shared
junction. This problem is known as a minimum Steiner tree, and is dis-
cussed in the catalog in Section 19.10.

• Low-degree spanning tree – Alternatively, what if we want to find the
minimum spanning tree where the highest degree of a node in the tree
is small? The lowest max-degree tree possible would be a simple path,
consisting of n− 2 nodes of degree 2 and two endpoints of degree 1. Such
a path that visits each vertex once is called a Hamiltonian path, and is
discussed in the catalog in Section 19.5.

8.2 War Story: Nothing but Nets

I’d been tipped off about a small printed circuit board testing company in need
of some algorithmic consulting. And so I found myself inside a nondescript
building in a nondescript industrial park, talking with the president of Integri-
Test and one of his lead technical people.

“We’re leaders in robotic printed circuit board testing devices. Our cus-
tomers have very high reliability requirements for their PC boards. They must
check that each and every board has no wire breaks before filling it with com-
ponents. This means testing that each and every pair of points on the board
that are supposed to be connected are connected.”

“How do you do the testing?” I asked.
“We have a robot with two arms, each with electric probes. The arms

simultaneously contact both of the points to test whether two points are properly
connected. If they are properly connected, then the probes will complete a
circuit. For each net, we hold one arm fixed at one point and move the other to
cover the rest of the points.”

“Wait!” I cried. “What is a net?”
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(a) (b) (c) (d)

Figure 8.6: An example net showing (a) the metal connection layer, (b) the
contact points, (c) their minimum spanning tree, and (d) the points partitioned
into clusters.

“Circuit boards have certain sets of points that are all connected together
with a metal layer. This is what we mean by a net. Often a net is just a direct
connection between two points. But sometimes a net can have 100 to 200 points,
such as all the connections to power or ground.”

“I see. So you have a list of all the connections between pairs of points on
the circuit board, and you want to trace out these wires.”

He shook his head. “Not quite. The input for our testing program consists
only of the net contact points, as shown in Figure 8.6(b). We don’t know where
the actual wires are, but we don’t have to. All we must do is verify that all the
points in a net are connected together. We do this by putting the left robot arm
on the left-most point in the net, and then have the right arm move around to
test its connectivity with all the other points in the net. If it is, they must all
be connected to each other.”

I thought for a moment. “OK. So your right arm has to visit all the other
points in the net. How do you choose the order to visit them?”

The technical guy spoke up. “Well, we sort the points from left to right and
then go in that order. Is that a good thing to do?”

“Have you ever heard of the traveling salesman problem?” I asked.

He was an electrical engineer, not a computer scientist. “No, what’s that?”

“Traveling salesman is the name of the problem that you are trying to solve.
Given a set of points to visit, how do you best order them to minimize travel
time? Algorithms for the traveling salesman problem have been extensively
studied. For small nets, you will be able to find the optimal tour by doing an
exhaustive search. For big nets, there are heuristics that will get you close to
the optimal tour.” I would have pointed them to Section 19.4 (page 594) if I’d
had this book handy.

The president scribbled down some notes and then frowned. “Fine. Maybe
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you can order the points in a net better for us. But that’s not our real problem.
When you watch our robot in action, the right arm sometimes has to run all
the way to the right side of the board on a given net, while the left arm just sits
there. It seems we would benefit by breaking nets into smaller pieces to balance
things out.”

I sat down and thought. The left and right arms each have interlocking
TSPs to solve. The left arm would move between the left-most points of each
net, while the right arm visits all the other points in each net. By breaking each
net into smaller nets we would avoid making the right arm cross all the way
across the board. Further, a lot of little nets meant there would be more points
in the left TSP, so each left-arm movement was likely to be short as well.

“You are right. We should win if we can break big nets into small nets.
We want the nets to be small, both in the number of points and in physical
area. But we must ensure that by validating the connectivity of each small net,
we will have confirmed that the big net is connected. One point in common
between two little nets is sufficient to show that the bigger net formed by their
union is connected, because current can flow between any pair of points.”

We thus had to break each net into overlapping pieces, where each piece was
small. This is a clustering problem. Minimum spanning trees are often used
for clustering, as discussed in Section 18.3 (page 549). In fact, that was the
answer! We could find the minimum spanning tree of the net points and break
it into small clusters whenever a spanning tree edge got too long. As shown
in Figure 8.6(d), each cluster would share exactly one point in common with
another cluster, with connectivity ensured because we are covering the edges of
a spanning tree. The shape of the clusters will reflect the points in the net. If
the points lay along a line across the board, the minimum spanning tree would
be a path, and the clusters would be pairs of points. If the points all fell in
a tight region, there would be one nice fat cluster for the right arm to scoot
around.

So I explained the idea of constructing the minimum spanning tree of a
graph. The boss listened, scribbled more notes, and frowned again.

“I like your clustering idea. But minimum spanning trees are defined on
graphs. All you’ve got are points. Where do the weights of the edges come
from?”

“Oh, we can think of it as a complete graph, where every pair of points is
connected. The weight of each edge will be the distance between the two points.
Or is it. . . ?”

I went back to thinking. The edge cost should reflect the travel time between
two points. While distance is related to travel time, it isn’t necessarily the same
thing.

“Hey. I have a question about your robot. Does it take the same amount of
time to move the arm left–right as it does up–down?”

They thought a minute. “Sure it does. We use the same type of motor to
control horizontal and vertical movements. Since these two motors are indepen-
dent, we can simultaneously move each arm both horizontally and vertically.”

“So the time to move both one foot left and one foot up is exactly the same
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as just moving one foot left? This means that the weight for each edge should
not be the Euclidean distance between the two points, but instead the biggest
difference between either the x- or y-coordinates. This is something we call the
L∞ metric, but we can capture it by changing the edge weights in the graph.
Anything else funny about your robots?” I asked.

“Well, it takes some time for the arm to come up to full speed. I guess we
should factor in its acceleration and deceleration time.”

“Darn right. The more accurately you can model the time your arm takes
to move between two points, the better our solution will be. But now we have
a very clean formulation. Let’s code it up and let’s see how well it works!”

They were somewhat skeptical about whether this approach would do any
good. But a few weeks later they called me back and reported that the new
algorithm reduced the distance traveled by about 30% over their previous ap-
proach, at a cost of a little extra computation. But their testing machine cost
$200,000 a pop compared to a lousy $2,000 for a computer, so this was an ex-
cellent tradeoff, particularly since the algorithm need only be run once when
testing repeated instances of a particular board design.

The key idea here was modeling the job in terms of classical algorithmic
graph problems. I smelled TSP the instant they started talking about minimiz-
ing robot motion. Once I realized that they were implicitly using a star-shaped
spanning tree to ensure connectivity, it was natural to ask whether the mini-
mum spanning tree would perform any better. This idea led to clustering, and
thus partitioning each net into smaller nets. Finally, by carefully designing our
distance metric to accurately model the costs of the robot, we could incorporate
complicated properties (such as acceleration) without changing our fundamental
graph model or algorithm design.

Take-Home Lesson: Most applications of graphs can be reduced to standard
graph properties where well-known algorithms can be used. These include
minimum spanning trees, shortest paths, and other problems presented in the
catalog.

8.3 Shortest Paths

A path is a sequence of edges connecting two vertices. There are typically an
enormous number of possible paths connecting two nodes in any given road or
social network. The path that minimizes the sum of edge weights, that is, the
shortest path, is likely to be the most interesting, reflecting the fastest travel
path or the closest kinship between the nodes.

A shortest path from s to t in an unweighted graph can be identified using a
breadth-first search from s. The minimum-link path is recorded in the breadth-
first search tree, and hence provides the shortest path when all edges have equal
weight.

But BFS does not suffice to find shortest paths in weighted graphs. The
shortest weighted path might require a large number of edges, just as the fastest
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route from home to office may involve complicated backroad shortcuts, as shown
in Figure 8.7.

This section will present two distinct algorithms for finding the shortest
paths in weighted graphs.

8.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is the method of choice for finding shortest paths in an
edge- and/or vertex-weighted graph. Starting from a particular vertex s, it
finds the shortest path from s to all other vertices in the graph, including your
desired destination t.

Suppose the shortest path from s to t in graph G passes through a particular
intermediate vertex x. Clearly, the best s-to-t path must contain the shortest
path from s to x as its prefix, because if it doesn’t we can improve the path
by starting with the shorter s-to-x prefix. Thus, we must compute the shortest
path from s to x before we find the path from s to t.

Dijkstra’s algorithm proceeds in a series of rounds, where each round estab-
lishes the shortest path from s to some new vertex. Specifically, x is the vertex
that minimizes dist(s, vi) +w(vi, x) over all unfinished vertices vi. Here w(a, b)
denotes the weight of the edge from vertex a to vertex b, and dist(a, b) is the
length of the shortest path between them.

This suggests a dynamic programming-like strategy. The shortest path from
s to itself is trivial, so dist(s, s) = 0.1 If (s, y) is the lightest edge incident to s,
then dist(s, y) = w(s, y). Once we determine the shortest path to a node x, we
check all the outgoing edges of x to see whether there is a shorter path from s
through x to some unknown vertex.

ShortestPath-Dijkstra(G, s, t)
known = {s}
for each vertex v in G, dist[v] = ∞
dist[s] = 0
for each edge (s, v), dist[v] = w(s, v)
last = s
while (last �= t)

select vnext, the unknown vertex minimizing dist[v]
for each edge (vnext, x), dist[x] = min[dist[x], dist[vnext] + w(vnext, x)]
last = vnext
known = known ∪ {vnext}

The basic idea is very similar to Prim’s algorithm. In each iteration, we add
exactly one vertex to the tree of vertices for which we know the shortest path
from s. As in Prim’s, we keep track of the best path seen to date for all vertices
outside the tree, and insert them in order of increasing cost.

1Actually, this is true only when the graph does not contain negative weight edges, which
is why we assume that all edges are of positive weight in the discussion that follows.



8.3. SHORTEST PATHS 259

s

t

Figure 8.7: The shortest path from s to t might pass through many intermediate
vertices rather than use the fewest possible edges.

In fact, the only difference between Dijkstra’s and Prim’s algorithms is how
they rate the desirability of each outside vertex. In the minimum spanning tree
algorithm, we sought to minimize the weight of the next potential tree edge. In
shortest path, we want to identify the closest outside vertex (in shortest-path
distance) to s. This desirability is a function of both the new edge weight and
the distance from s to the tree vertex it is adjacent to.

Implementation

The pseudocode above obscures just how similar the two algorithms are. Below,
we give an implementation of Dijkstra’s algorithm based on changing exactly
four lines from our Prim’s implementation—one of which is simply the name of
the function!

int dijkstra(graph *g, int start) {

int i; /* counter */

edgenode *p; /* temporary pointer */

bool intree[MAXV+1]; /* is the vertex in the tree yet? */

int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertex to process */

int w; /* candidate next vertex */

int dist; /* cheapest cost to enlarge tree */

int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {

intree[i] = false;

distance[i] = MAXINT;

parent[i] = -1;

}

distance[start] = 0;

v = start;
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while (!intree[v]) {

intree[v] = true;

if (v != start) {

printf("edge (%d,%d) in tree \n",parent[v],v);

weight = weight + dist;

}

p = g->edges[v];

while (p != NULL) {

w = p->y;

if (distance[w] > (distance[v]+p->weight)) { /* CHANGED */

distance[w] = distance[v]+p->weight; /* CHANGED */

parent[w] = v; /* CHANGED */

}

p = p->next;

}

dist = MAXINT;

for (i = 1; i <= g->nvertices; i++) {

if ((!intree[i]) && (dist > distance[i])) {

dist = distance[i];

v = i;

}

}

}

return(weight);

}

This algorithm defines a shortest-path spanning tree rooted in s. For un-
weighted graphs, this would be the breadth-first search tree, but in general it
provides the shortest path from s to all other vertices, not just t.

Analysis

What is the running time of Dijkstra’s algorithm? As implemented here, the
complexity is O(n2), exactly the same running time as a proper version of Prim’s
algorithm. This is because, except for the extension condition, it is exactly the
same algorithm as Prim’s.

The length of the shortest path from start to a given vertex t is exactly
the value of distance[t]. How do we use dijkstra to find the actual path?
We follow the backward parent pointers from t until we hit start (or -1 if no
such path exists), exactly as was done in the BFS/DFS find path() routine of
Section 7.6.2 (page 217).
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Dijkstra works correctly only on graphs without negative-cost edges. The
reason is that during the execution we may encounter an edge with weight so
negative that it changes the cheapest way to get from s to some other vertex
already in the tree. Indeed, the most cost-effective way to get from your house
to your next-door neighbor would be to repeatedly cycle through the lobby of
any bank offering you enough free money to make the detour worthwhile. Unless
that bank limits its reward to one per customer, you might so benefit by making
an unlimited number of trips through the lobby that you would never actually
reach your destination!

Fortunately, most applications don’t have negative weights, making this dis-
cussion largely academic. Floyd’s algorithm, discussed below, works correctly
with negative-cost edges provided there are no negative cost cycles, which grossly
distort the shortest-path structure.

Stop and Think: Shortest Path with Node Costs

Problem: Suppose we are given a directed graph whose weights are on the
vertices instead of the edges. Thus, the cost of a path from x to y is the sum of
the weights of all vertices on the path. Give an efficient algorithm for finding
shortest paths on vertex-weighted graphs.

Solution: A natural idea would be to adapt the algorithm we have for edge-
weighted graphs (Dijkstra’s) to the new vertex-weighted domain. It should be
clear that this will work. We replace any reference to the weight of any directed
edge (x, y) with the weight of the destination vertex y. This can be looked up
as needed from an array of vertex weights.

However, my preferred approach would leave Dijkstra’s algorithm intact and
instead concentrate on constructing an edge-weighted graph on which Dijkstra’s
algorithm will give the desired answer. Set the weight of each directed edge (i, j)
in the input graph to the cost of vertex j. Dijkstra’s algorithm now does the
job. Try to design graphs, not algorithms, as I will encourage in Section 8.7.

This technique can be extended to a variety of different domains, including
when there are costs on both vertices and edges.

8.3.2 All-Pairs Shortest Path

Suppose you want to find the “center” vertex in a graph—the one that min-
imizes the longest or average distance to all the other nodes. This might be
the best place to start a new business. Or perhaps you need to know a graph’s
diameter—the largest shortest-path distance over all pairs of vertices. This
might correspond to the longest possible time it can take to deliver a letter or
network packet. These and other applications require computing the shortest
path between all pairs of vertices in a given graph.
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We could solve all-pairs shortest path by calling Dijkstra’s algorithm from
each of the n possible starting vertices. But Floyd’s all-pairs shortest-path
algorithm is a slick way to construct this n×n distance matrix from the original
weight matrix of the graph.

Floyd’s algorithm is best employed on an adjacency matrix data structure,
which is no extravagance since we must store all n2 pairwise distances anyway.
Our adjacency matrix type allocates space for the largest possible matrix, and
keeps track of how many vertices are in the graph:

typedef struct {

int weight[MAXV+1][MAXV+1]; /* adjacency/weight info */

int nvertices; /* number of vertices in graph */

} adjacency_matrix;

The critical issue in an adjacency matrix implementation is how we denote
the edges absent from the graph. A common convention for unweighted graphs
denotes graph edges by 1 and non-edges by 0. This gives exactly the wrong
interpretation if the numbers denote edge weights, because the non-edges get
interpreted as a free ride between vertices. Instead, we should initialize each
non-edge to MAXINT. This way we can both test whether it is present and auto-
matically ignore it in shortest-path computations.

There are several ways to characterize the shortest path between two nodes
in a graph. The Floyd–Warshall algorithm starts by numbering the vertices of
the graph from 1 to n. We use these numbers not to label the vertices, but to
order them. Define W [i, j]k to be the length of the shortest path from i to j
using only vertices numbered from 1, 2, ..., k as possible intermediate vertices.

What does this mean? When k = 0, we are allowed no intermediate vertices,
so the only allowed paths are the original edges in the graph. The initial all-
pairs shortest-path matrix thus consists of the initial adjacency matrix. We will
perform n iterations, where the kth iteration allows only the first k vertices as
possible intermediate steps on the path between each pair of vertices x and y.

With each iteration, we allow a richer set of possible shortest paths by adding
a new vertex as a possible intermediary. The kth vertex helps only if there is a
shortest path that goes through k, so

W [i, j]k = min(W [i, j]k−1,W [i, k]k−1 +W [k, j]k−1)

The correctness of this is somewhat subtle, and I encourage you to convince
yourself of it. Indeed, it is a great example of dynamic programming, the
algorithmic paradigm that is the focus of Chapter 10. But there is nothing
subtle about how simple the implementation is:
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void floyd(adjacency_matrix *g) {

int i, j; /* dimension counters */

int k; /* intermediate vertex counter */

int through_k; /* distance through vertex k */

for (k = 1; k <= g->nvertices; k++) {

for (i = 1; i <= g->nvertices; i++) {

for (j = 1; j <= g->nvertices; j++) {

through_k = g->weight[i][k]+g->weight[k][j];

if (through_k < g->weight[i][j]) {

g->weight[i][j] = through_k;

}

}

}

}

}

The Floyd–Warshall all-pairs shortest-path algorithm runs in O(n3) time,
which is asymptotically no better than n calls to Dijkstra’s algorithm. However,
the loops are so tight and the program so short that it runs better in practice.
It is notable as one of the rare graph algorithms that work better on adjacency
matrices than adjacency lists.

The output of Floyd’s algorithm, as it is written, does not enable one to
reconstruct the actual shortest path between any given pair of vertices. These
paths can be recovered if we retain a parent matrix P containing our choice of
the last intermediate vertex used for each vertex pair (x, y). Say this value is k.
The shortest path from x to y is the concatenation of the shortest path from x
to k with the shortest path from k to y, which can be reconstructed recursively
given the matrix P . Note, however, that most all-pairs applications only need
the resulting distance matrix. These are the jobs that Floyd’s algorithm was
designed for.

8.3.3 Transitive Closure

Floyd’s algorithm has another important application, that of computing tran-
sitive closure. We are often interested in which vertices in a directed graph
are reachable from a given node. As an example, consider the blackmail graph,
where there is a directed edge (i, j) if person i has sensitive-enough private in-
formation on person j so that i can get j to do whatever they want. You wish
to hire one of these n people to be your personal representative. Who has the
most power in terms of blackmail potential?

A simplistic answer would be the vertex of highest out-degree, but an even
better representative would be the person who has blackmail chains leading to
the most other parties. Steve might only be able to blackmail Miguel directly,
but if Miguel can blackmail everyone else then Steve is the person you want to
hire.
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The vertices reachable from any single node can be computed using breadth-
first or depth-first search. But the complete set of relationships can be found
using an all-pairs shortest path. If the shortest path from i to j remains MAXINT
after running Floyd’s algorithm, you can be sure that no directed path exists
from i to j. Any vertex pair of weight less than MAXINT must be reachable, both
in the graph-theoretic and blackmail senses of the word.

Transitive closure is discussed in more detail in the catalog in Section 18.5.

8.4 War Story: Dialing for Documents

I was part of a group visiting Periphonics, then an industry leader in building
telephone voice-response systems. These are more advanced versions of the
Press 1 for more options, Press 2 if you didn’t press 1 telephone systems that
blight everyone’s lives. The tour guide was so enthusiastic about the joy of using
their product it set off the crustiest member of our delegation.

“Like typing, my pupik!” came a voice from the rear of our group. “I hate
typing on a telephone. Whenever I call my brokerage house to get stock quotes
some machine tells me to type in the three letter code. To make things worse,
I have to hit two buttons to type in one letter, in order to distinguish between
the three letters printed on each key of the telephone. I hit the 2 key and it
says Press 1 for A, Press 2 for B, Press 3 for C. Pain in the neck if you ask me.”

“Maybe you don’t have to hit two keys for each letter!” I chimed in. “Maybe
the system could figure out the correct letter from context!”

“There isn’t a whole lot of context when you type in three letters of stock
market code.”

“Sure, but there would be plenty of context if we typed in English sentences.
I’ll bet that we could reconstruct English text correctly if it was typed in a
telephone at one keystroke per letter.”

The guy from Periphonics gave me a disinterested look, then continued the
tour. But when I got back to the office, I decided to give it a try.

Not all letters are equally likely to be typed on a telephone. In fact, not
all letters can be typed, since Q and Z are not labeled on a standard American
telephone. Therefore, we adopted the convention that Q, Z, and “space” all
sat on the * key. We could take advantage of the uneven distribution of letter
frequencies to help us decode the text. For example, if you hit the 3 key while
typing English, you more likely meant to type an E than either a D or F. Our
first attempt to predict the typed text used the frequencies of three characters
(trigrams) in a window of the text. But the results were not good. The trigram
statistics did a decent job of translating it into gibberish, but a terrible job of
transcribing English.

One reason was clear. This algorithm knew nothing about English words.
If we coupled it with a dictionary, we might be onto something. But two words
in the dictionary are often represented by the exact same string of phone codes.
For an extreme example, the code string “22737” collides with eleven distinct
English words, including cases, cares, cards, capes, caper, and bases. For our
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Figure 8.8: The phases of the telephone code reconstruction process.

next attempt, we reported the unambiguous characters of any words that col-
lided in the dictionary, and used trigrams to fill in the rest of the characters.

This also did a terrible job. Most words appearing in the text came from
ambiguous codes mapping to more than one vocabulary word. Somehow, we
had to distinguish between the different dictionary words that got hashed to
the same code. We could factor in the relative popularity of each word, but this
still made too many mistakes.

At this point, I started working with Harald Rau on the project, who proved
to be a great collaborator. First, he was a bright and persistent graduate stu-
dent. Second, as a native German speaker, he believed every lie I told him
about English grammar. Harald built up a phone code reconstruction program
along the lines of Figure 8.8. It worked on the input one sentence at a time,
identifying dictionary words that matched each code string. The key problem
was how to incorporate grammatical constraints.

“We can get good word-use frequencies and grammatical information from
a big text database called the Brown Corpus. It contains thousands of typical
English sentences, each parsed according to parts of speech. But how do we
factor it all in?” Harald asked.

“Let’s think about it as a graph problem,” I suggested.
“Graph problem? What graph problem? Where is there even a graph?”
“Think of a sentence as a series of tokens, each representing a word in the

sentence. Each token has a list of words from the dictionary that match it.
How can we choose which one is right? Each possible sentence interpretation
can be thought of as a path in a graph. Each vertex of this graph is one word
from the complete set of possible word choices. There will be an edge from
each possible choice for the ith word to each possible choice for the (i + 1)st
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Figure 8.9: The minimum-cost path defines the best interpretation for a sen-
tence.

word. The cheapest path across this graph defines the best interpretation of the
sentence.”

“But all the paths look the same. They have the same number of edges.
Now I see! We have to add weight to the edges to make the paths different.”

“Exactly! The cost of an edge will reflect how likely it is that we will travel
through the given pair of words. Perhaps we can count how often that pair of
words occurred together in previous texts. Or we can weigh them by the part
of speech of each word. Maybe nouns don’t like to be next to nouns as much as
they like being next to verbs.”

“It will be hard to keep track of word-pair statistics, since there are so many
possible pairs. But we certainly know the frequency of each word. How can we
factor that into things?”

“We can pay a cost for walking through a particular vertex that depends
upon the frequency of the word. Our best sentence will be given by the shortest
path across the graph.”

“But how do we figure out the relative weights of these factors?”
“Try what seems natural to you and then we can experiment with it.”
Harald implemented this shortest-path algorithm. With proper grammatical

and statistical constraints, the system performed great. Look at the Gettysburg
Address, with all the reconstruction errors highlighted:

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH
ON THIS CONTINENT A NEW NATION CONCEIVED IN LIBERTY AND DED-
ICATED TO THE PROPOSITION THAT ALL MEN ARE CREATED EQUAL.
NOW WE ARE ENGAGED IN A GREAT CIVIL WAR TESTING WHETHER
THAT NATION OR ANY NATION SO CONCEIVED AND SO DEDICATED CAN
LONG ENDURE. WE ARE MET ON A GREAT BATTLEFIELD OF THAT WAS.
WE HAVE COME TO DEDICATE A PORTION OF THAT FIELD AS A FINAL
SERVING PLACE FOR THOSE WHO HERE HAVE THEIR LIVES THAT THE
NATION MIGHT LIVE. IT IS ALTOGETHER FITTING AND PROPER THAT
WE SHOULD DO THIS. BUT IN A LARGER SENSE WE CAN NOT DEDICATE
WE CAN NOT CONSECRATE WE CAN NOT HALLOW THIS GROUND. THE
BRAVE MEN LIVING AND DEAD WHO STRUGGLED HERE HAVE CONSE-
CRATED IT FAR ABOVE OUR POOR POWER TO ADD OR DETRACT. THE
WORLD WILL LITTLE NOTE NOR LONG REMEMBER WHAT WE SAY HERE
BUT IT CAN NEVER FORGET WHAT THEY DID HERE. IT IS FOR US THE
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LIVING RATHER TO BE DEDICATED HERE TO THE UNFINISHED WORK
WHICH THEY WHO FOUGHT HERE HAVE THUS FAR SO NOBLY ADVANCED.
IT IS RATHER FOR US TO BE HERE DEDICATED TO THE GREAT TASK
REMAINING BEFORE US THAT FROM THESE HONORED DEAD WE TAKE
INCREASED DEVOTION TO THAT CAUSE FOR WHICH THEY HERE HAVE
THE LAST FULL MEASURE OF DEVOTION THAT WE HERE HIGHLY RE-
SOLVE THAT THESE DEAD SHALL NOT HAVE DIED IN VAIN THAT THIS
NATION UNDER GOD SHALL HAVE A NEW BIRTH OF FREEDOM AND THAT
GOVERNMENT OF THE PEOPLE BY THE PEOPLE FOR THE PEOPLE SHALL
NOT PERISH FROM THE EARTH.

While we still made a few mistakes, we typically guessed about 99% of all
characters correctly. The results were clearly good enough for many applica-
tions. Periphonics certainly thought so, for they licensed our program to incor-
porate into their products. The reconstruction time was faster than anyone can
type text in on a phone keypad.

The constraints for many pattern recognition problems can be naturally for-
mulated as shortest-path problems in graphs. There is a particularly convenient
dynamic programming solution for these problems (the Viterbi algorithm) that
is widely used in speech and handwriting recognition systems. Despite the fancy
name, the Viterbi algorithm is basically solving a shortest-path problem on a
DAG. Hunting for a graph formulation to solve your problem is often the right
idea.

8.5 Network Flows and Bipartite Matching

An edge-weighted graph can be interpreted as a network of pipes, where the
weight of an edge determines the capacity of the pipe. Capacities can be thought
of as a function of the cross-sectional area of the pipe. A wide pipe might be
able to carry 10 units of flow, that is, the amount of material in a given time,
whereas a narrower pipe can only carry 5 units. The network flow problem asks
for the maximum amount of flow that can be sent from vertices s to t in a given
weighted graph G while respecting the maximum capacities of each pipe.

8.5.1 Bipartite Matching

While the network flow problem is of independent interest, its primary impor-
tance lies in solving other important graph problems. A classic example is
bipartite matching. A matching in a graph G = (V,E) is a subset of edges
E′ ⊂ E such that no two edges of E′ share a vertex. A matching pairs off
certain vertices such that every vertex is in at most one such pair, as shown in
Figure 8.10.

Graph G is bipartite or two-colorable if the vertices can be divided into two
sets, L and R, such that all edges in G have one vertex in L and one vertex
in R. Many naturally defined graphs are bipartite. For example, one class of
vertices may represent jobs to be done and the remaining vertices represent
people who can potentially do them. The existence of edge (j, p) means that
job j can be done by person p. Or let certain vertices represent boys and certain
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s t

Figure 8.10: Bipartite graph with a maximum matching (left). The correspond-
ing network flow instance highlighting the maximum s–t flow (right).

vertices represent girls, with edges representing compatible pairs. Matchings in
these graphs have natural interpretations as job assignments or as traditional
marriages, and are the focus of Section 18.6 (page 562).

The maximum cardinality bipartite matching can be readily found using
network flow. Create a source node s that is connected to every vertex in L by
an edge of weight 1. Create a sink node t and connect it to every vertex in R by
an edge of weight 1. Finally, assign each edge in the central bipartite graph G
a weight of 1. Now, the maximum possible flow from s to t defines the largest
matching in G. Certainly we can find a flow as large as the matching, by using
the matching edges and their source-to-sink connections. Further, there can be
no other solution that achieves greater flow, because we can’t possibly get more
than one flow unit through any given vertex.

8.5.2 Computing Network Flows

Traditional network flow algorithms are based on the idea of augmenting paths:
finding a path of positive capacity from s to t and adding it to the flow. It can be
shown that the flow through a network is optimal iff it contains no augmenting
path. Since each augmentation increases the flow, by repeating the process until
no such path remains we must eventually find the global maximum.

The key structure is the residual flow graph, denoted as R(G, f), where G is
the input graph whose weights are the capacities, and f is array of flows through
G. The directed, edge-weighted graph R(G, f) contains the same vertices as G.
For each edge (i, j) in G with capacity c(i, j) and flow f(i, j), R(G, f) may
contain two edges:

(i) an edge (i, j) with weight c(i, j)− f(i, j), if c(i, j)− f(i, j) > 0 and

(ii) an edge (j, i) with weight f(i, j), if f(i, j) > 0.

The weight of the edge (i, j) in the residual graph gives the exact amount of
extra flow that can be pushed from i to j. A path in the residual flow graph
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Figure 8.11: Maximum s–t flow in a graph G (on left) showing the associated
residual graph R(G, f) and minimum s–t cut (dotted line near t) on right. The
undirected edges in R(G, f) have zero flow, so they have residual capacity in
both directions.

from s to t implies that more flow can be pushed from s to t. The smallest edge
weight on this path defines the amount of extra flow that can be pushed along
it.

Figure 8.11 illustrates this idea. The maximum s–t flow in graph G is 7.
Such a flow is revealed by the two directed t to s paths in the residual graph
R(G), of flows 2 and 5 respectively. These flows completely saturate the capacity
of the two edges incident to vertex t, so no augmenting path remains. Thus,
the flow is optimal. A set of edges whose deletion separates s from t (like the
two edges incident to t) is called an s–t cut. Clearly, no s to t flow can exceed
the weight of the minimum such cut. In fact, a flow equal to the minimum cut
is always possible.

Take-Home Lesson: The maximum flow from s to t always equals the weight
of the minimum s–t cut. Thus, flow algorithms can be used to solve general
edge and vertex connectivity problems in graphs.

Implementation

We cannot do full justice to the theory of network flows here. However, it is
instructive to see how augmenting paths can be identified and the optimal flow
computed.

For each edge in the residual flow graph, we must keep track of both the
amount of flow currently going through the edge, as well as its remaining residual
capacity. Thus, we must modify our edge structure to accommodate the extra
fields:
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typedef struct {

int v; /* neighboring vertex */

int capacity; /* capacity of edge */

int flow; /* flow through edge */

int residual; /* residual capacity of edge */

struct edgenode *next; /* next edge in list */

} edgenode;

We use a breadth-first search to look for any path from source to sink that
increases the total flow, and use it to augment the total. We terminate with the
optimal flow when no such augmenting path exists.

void netflow(flow_graph *g, int source, int sink) {

int volume; /* weight of the augmenting path */

add_residual_edges(g);

initialize_search(g);

bfs(g, source);

volume = path_volume(g, source, sink);

while (volume > 0) {

augment_path(g, source, sink, volume);

initialize_search(g);

bfs(g, source);

volume = path_volume(g, source, sink);

}

}

Any augmenting path from source to sink increases the flow, so we can use
bfs to find such a path. We only consider network edges that have remaining
capacity or, in other words, positive residual flow. The predicate below helps
bfs distinguish between saturated and unsaturated edges:

bool valid_edge(edgenode *e) {

return (e->residual > 0);

}

Augmenting a path transfers the maximum possible volume from the residual
capacity into positive flow. This amount is limited by the path edge with the
smallest amount of residual capacity, just as the rate at which traffic can flow
is limited by the most congested point.
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int path_volume(flow_graph *g, int start, int end) {

edgenode *e; /* edge in question */

if (parent[end] == -1) {

return(0);

}

e = find_edge(g, parent[end], end);

if (start == parent[end]) {

return(e->residual);

} else {

return(min(path_volume(g, start, parent[end]), e->residual));

}

}

Recall that bfs uses the parent array to record the discoverer of each ver-
tex on the traversal, enabling us to reconstruct the shortest path back to the
root from any vertex. The edges of this tree are vertex pairs, not the actual
edges in the graph data structure on which the search was performed. The
call find edge(g,x,y) returns a pointer to the record encoding edge (x, y) in
graph g, necessary to obtain its residual capacity. The find edge routine can
find this pointer by scanning the adjacency list of x (g->edges[x]), or (even
better) from an appropriate table lookup data structure.

Sending an additional unit of flow along directed edge (i, j) reduces the
residual capacity of edge (i, j) but increases the residual capacity of edge (j, i).
Thus, the act of augmenting a path requires modifying both forward and reverse
edges for each link on the path.

void augment_path(flow_graph *g, int start, int end, int volume) {

edgenode *e; /* edge in question */

if (start == end) {

return;

}

e = find_edge(g, parent[end], end);

e->flow += volume;

e->residual -= volume;

e = find_edge(g, end, parent[end]);

e->residual += volume;

augment_path(g, start, parent[end], volume);

}
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Initializing the flow graph requires creating directed flow edges (i, j) and
(j, i) for each network edge e = (i, j). Initial flows are all set to 0. The initial
residual flow of (i, j) is set to the capacity of e, while the initial residual flow of
(j, i) is set to 0.

Analysis

The augmenting path algorithm above eventually converges to the optimal so-
lution. However, each augmenting path may add only a little to the total flow,
so, in principle, the algorithm might take an arbitrarily long time to converge.

However, Edmonds and Karp [EK72] proved that always selecting a shortest
unweighted augmenting path guarantees that O(n3) augmentations suffice for
optimization. In fact, the Edmonds–Karp algorithm is what is implemented
above, since a breadth-first search from the source is used to find the next
augmenting path.

8.6 Randomized Min-Cut

Clever randomized algorithms have been developed for many different types of
problems. We have so far seen randomized algorithms for sorting (quicksort),
searching (hashing), string matching (Rabin–Karp), and number-theoretic (pri-
mality testing) problems. Here we expand this list to graph algorithms.

The minimum-cut problem in graphs seeks to partition the vertices of graph
G into sets V1 and V2 so that the smallest possible number of edges (x, y) span
across these two sets, meaning x ∈ V1 and y ∈ V2. Identifying the minimum cut
often arises in network reliability analysis: what is the smallest failure set whose
deletion will disconnect the graph? The minimum-cut problem is discussed in
greater detail in Section 18.8. The graph shown there has a minimum-cut set
size of 2, while the graph in Figure 8.12 (left) can be disconnected with just one
edge deletion.

Suppose the minimum cut C in G is of size k, meaning that k edge deletions
are necessary to disconnect G. Each vertex v must therefore be connected to
at least k other vertices, because if not there would be a smaller cut-set discon-
necting v from the rest of the graph. This implies that G must contain at least
kn/2 edges, where n is the number of vertices, because each edge contributes
one to the degree of exactly two vertices.

A contraction operation for edge (x, y) collapses vertices x and y into a single
merged vertex called (say) xy. Any edge of the form (x, z) or (y, z) gets replaced
by (xy, z). The upshot is that the number of vertices shrinks by one on an edge
contraction. The number of edges stays the same, although a self-loop (xy, xy)
replaces (x, y), and two copies of edge (xy, z) are created if both (x, z) and (y, z)
were in G before the contraction.

What happens to the size of the minimum cut after contracting (x, y) in
G? Each contraction reduces the space of possible V1, V2 partitions, since the
new vertex xy cannot ever be subdivided. The critical observation is that the
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Figure 8.12: If we get lucky, a sequence of random edge contractions does not
increase the size of the smallest cut set.

minimum-cut size is unchanged unless we contract one of the k edges of the
optimal cut. If we did contract one of these cut edges, the minimum-cut size of
the resulting graph might grow, because the best partition is no longer available.

This suggests the following randomized algorithm. Pick a random edge of G
and contract it. Repeat a total of n−2 times, until we are left with a two-vertex
graph with multiple parallel edges between them. These edges describe a cut in
the graph, although it might not be the smallest possible cut of G. We could
repeat this entire procedure r times, and report the smallest cut we ever see as
our proposed minimum cut. Properly implemented, this contraction series for
one given graph can be implemented in O(nm) time, resulting in a Monte Carlo
algorithm with O(rmn) running time, but no guarantee of an optimal solution.

What are the chances of success on any given iteration? Consider the initial
graph. A contraction of a random edge e preserves the minimum cut C provided
e is not one of the k cut edges. Since G has at least kn/2 edges, the probability
pi of a successful ith edge contraction is:

pi ≥ 1− k

k(n− i+ 1)/2
= 1− 2

n− i+ 1
=

n− i− 1

n− i+ 1

The odds on success for all but the last few contractions in a large graph are
strongly in our favor.

To end up with a minimum cut C for a particular run, we must succeed on
every one of our n− 2 contractions, which occurs with probability
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The product cancels magically, and leaves a success probability of Θ(1/n2).
That isn’t very large, but if we run r = n2 log n times it becomes very likely we
will stumble upon the minimum cut at least once.

Take-Home Lesson: The key to success in any randomized algorithm is setting
up a situation where we can bound our probability of success. The analysis
can be tricky, but the resulting algorithms are often quite simple, as they are
here. After all, complicated randomized algorithms likely become too difficult
to analyze.
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8.7 Design Graphs, Not Algorithms

Proper modeling is the key to making effective use of graph algorithms. Several
properties of graphs have been defined, and efficient algorithms for computing
them developed. All told, about two dozen different algorithmic graph problems
are presented in the catalog, mostly in Sections 18 and 19. These classical graph
problems provide a framework for modeling most applications.

The secret is learning to design graphs, not algorithms. We have already
seen a few instances of this idea:

• The maximum spanning tree can be found by negating the edge weights
of the input graph G and using a minimum spanning tree algorithm on
the result. The spanning tree of −G that has the most negative weight
will define the maximum-weight tree in G.

• To solve bipartite matching, we constructed a special network flow graph
such that the maximum flow corresponds to a matching having the largest
number of edges.

The applications below demonstrate the power of proper modeling. Each
arose in a real-world application, and each can be modeled as a graph problem.
Some of the modelings are quite clever, but they illustrate the versatility of
graphs in representing relationships. As you read a problem, try to devise an
appropriate graph representation before peeking to see how it was done.

Stop and Think: The Pink Panther’s Passport to Peril

Problem: I’m looking for an algorithm to design natural routes for video-game
characters to follow through an obstacle-filled room. How should I do it?

Solution: Presumably the desired route should look like a path that an intel-
ligent being would choose. Since intelligent beings are either lazy or efficient,
this should be modeled as a shortest-path problem.

But what is the graph? One approach might be to lay a grid of points in the
room. Create a vertex for each grid point that is a valid place for the character
to stand, one that does not lie within an obstacle. Construct an edge between
any pair of nearby vertices, weighted proportionally to the distance between
them. Although direct geometric methods are known for shortest paths (see
Section 18.4 (page 554)), it is easier to model this discretely as a graph.

Stop and Think: Ordering the Sequence

Problem: A DNA sequencing project generates experimental data consisting of
small fragments. For each given fragment f , we know certain other fragments
are forced to lie to the left of f , and certain other fragments are forced to be on
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f ’s right. How can we find a consistent ordering of the fragments from left to
right that satisfies all the constraints?

Solution: Create a directed graph, where each fragment is assigned a unique
vertex. Insert a directed edge (l, f) from any fragment l that is forced to be to
the left of f , and a directed edge (f, r) to any fragment r forced to be to the
right of f . We seek an ordering of the vertices such that all the edges go from left
to right. This is a topological sort of the resulting directed acyclic graph. The
graph must be acyclic, because cycles would make finding a consistent ordering
impossible.

Stop and Think: Bucketing Rectangles

Problem: In my graphics work I must solve the following problem. Given an
arbitrary set of rectangles in the plane, how can I distribute them into a min-
imum number of buckets such that no rectangles in any given bucket intersect
one another? In other words, there cannot be any overlapping area between two
rectangles in the same bucket.

Solution: We formulate a graph where each vertex represents a rectangle,
and there is an edge if two rectangles intersect. Each bucket corresponds to an
independent set (see Section 19.2 (page 589)) of rectangles, so there is no overlap
between any two. A vertex coloring (see Section 19.7 (page 604)) of a graph is
a partition of the vertices into independent sets, so minimizing the number of
colors is exactly what the problem is asking for.

Stop and Think: Names in Collision

Problem: In porting code from Unix to DOS, I have to shorten several hundred
file names down to at most eight characters each. I can’t just use the first
eight characters from each name, because “filename1” and “filename2” would
be assigned the exact same name. How can I meaningfully shorten the names
while ensuring that they do not collide?

Solution: Construct a bipartite graph with vertices corresponding to each orig-
inal file name fi for 1 ≤ i ≤ n, as well as a collection of acceptable shortenings
for each name fi1, . . . , fik. Add an edge between each original and shortened
name. We now seek a set of n edges that have no vertices in common, so each
file name is mapped to a distinct acceptable substitute. Bipartite matching is
exactly this problem of finding an independent set of edges in a graph.
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Stop and Think: Separate the Text

Problem: We need a way to separate the lines of text in the optical character-
recognition system that we are building. Although there is some white space
between the lines, problems like noise and the tilt of the page make it hard to
find. How can we do line segmentation?

Solution: Consider the following graph formulation. Treat each pixel in the
image as a vertex in the graph, with an edge between two neighboring pixels.
The weight of this edge should be proportional to how dark the pixels are. A
segmentation between two lines is a path in this graph from the left to right side
of the page. We seek a relatively straight path that avoids as much blackness
as possible. This suggests that the shortest path in the pixel graph will likely
find a good line segmentation.

Take-Home Lesson: Designing novel graph algorithms is very hard, so don’t do
it. Instead, try to design graphs that enable you to use classical algorithms to
model your problem.

Chapter Notes

Network flows are an advanced algorithmic technique, and recognizing whether
a particular problem can be solved by network flow requires experience. I point
the reader to books by Williamson [Wil19] and Cook and Cunningham [CC97]
for more detailed treatments of the subject.

The augmenting path method for network flows is due to Ford and Fulker-
son [FF62]. Edmonds and Karp [EK72] proved that always selecting a shortest
geodesic augmenting path guarantees that O(n3) augmentations suffice for op-
timization.

The phone code reconstruction system that was the subject of the war story
is described in more technical detail in Rau and Skiena [RS96].

8.8 Exercises

Simulating Graph Algorithms

8-1. [3] For the graphs in Problem 7-1:

(a) Draw the spanning forest after every iteration of the main loop in Kruskal’s
algorithm.

(b) Draw the spanning forest after every iteration of the main loop in Prim’s
algorithm.

(c) Find the shortest-path spanning tree rooted in A.

(d) Compute the maximum flow from A to H.
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Minimum Spanning Trees

8-2. [3] Is the path between two vertices in a minimum spanning tree necessarily
a shortest path between the two vertices in the full graph? Give a proof or a
counterexample.

8-3. [3] Assume that all edges in the graph have distinct edge weights (i.e., no pair
of edges have the same weight). Is the path between a pair of vertices in a
minimum spanning tree necessarily a shortest path between the two vertices in
the full graph? Give a proof or a counterexample.

8-4. [3] Can Prim’s and Kruskal’s algorithms yield different minimum spanning trees?
Explain why or why not.

8-5. [3] Does either Prim’s or Kruskal’s algorithm work if there are negative edge
weights? Explain why or why not.

8-6. [3] (a) Assume that all edges in the graph have distinct edge weights (i.e., no
pair of edges have the same weight). Is the minimum spanning tree of this graph
unique? Give a proof or a counterexample.

(b) Again, assume that all edges in the graph have distinct edge weights (i.e. no
pair of edges have the same weight). Is the shortest-path spanning tree of this
graph unique? Give a proof or a counterexample.

8-7. [5] Suppose we are given the minimum spanning tree T of a given graph G (with
n vertices and m edges) and a new edge e = (u, v) of weight w that we will add
to G. Give an efficient algorithm to find the minimum spanning tree of the
graph G+ e. Your algorithm should run in O(n) time to receive full credit.

8-8. [5] (a) Let T be a minimum spanning tree of a weighted graph G. Construct a
new graph G′ by adding a weight of k to every edge of G. Do the edges of T form
a minimum spanning tree of G′? Prove the statement or give a counterexample.

(b) Let P = {s, . . . , t} describe a shortest path between vertices s and t of a
weighted graph G. Construct a new graph G′ by adding a weight of k to every
edge of G. Does P describe a shortest path from s to t in G′? Prove the
statement or give a counterexample.

8-9. [5] Devise and analyze an algorithm that takes a weighted graph G and finds
the smallest change in the cost to a non-minimum spanning tree edge that would
cause a change in the minimum spanning tree of G. Your algorithm must be
correct and run in polynomial time.

8-10. [4] Consider the problem of finding a minimum-weight connected subset T of
edges from a weighted connected graph G. The weight of T is the sum of all the
edge weights in T .

(a) Why is this problem not just the minimum spanning tree problem? (Hint:
think negative weight edges.)

(b) Give an efficient algorithm to compute the minimum-weight connected
subset T .

8-11. [5] Let T = (V,E′) be a minimum spanning tree of a given graph G = (V,E)
with positive edge weights. Now suppose the weight of a particular edge e ∈ E
is modified from w(e) to a new value ŵ(e). We seek to update the minimum
spanning tree T to reflect this change without recomputing the entire tree from
scratch. For each of the following four cases, give a linear-time algorithm to
update the tree:
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(a) e /∈ E′ and ŵ(e) > w(e)

(b) e /∈ E′ and ŵ(e) < w(e)

(c) e ∈ E′ and ŵ(e) < w(e)

(d) e ∈ E′ and ŵ(e) > w(e)

8-12. [4] Let G = (V,E) be an undirected graph. A set F ⊆ E of edges is called a
feedback-edge set if every cycle of G has at least one edge in F .

(a) Suppose that G is unweighted. Design an efficient algorithm to find a
minimum-size feedback-edge set.

(b) Suppose that G is a weighted undirected graph with positive edge weights.
Design an efficient algorithm to find a minimum-weight feedback-edge set.

Union–Find

8-13. [5] Devise an efficient data structure to handle the following operations on a
weighted directed graph:

(a) Merge two given components.

(b) Locate which component contains a given vertex v.

(c) Retrieve a minimum edge from a given component.

8-14. [5] Design a data structure that enables a sequence of m union and find op-
erations on a universal set of n elements, consisting of a sequence of all unions
followed by a sequence of all finds, to be performed in time O(m+ n).

Shortest Paths

8-15. [3] The single-destination shortest-path problem for a directed graph seeks the
shortest path from every vertex to a specified vertex v. Give an efficient algo-
rithm to solve the single-destination shortest-path problem.

8-16. [3] Let G = (V,E) be an undirected weighted graph, and let T be the shortest-
path spanning tree rooted at a vertex v. Suppose now that all the edge weights
in G are increased by a constant number k. Is T still the shortest-path spanning
tree from v?

8-17. [3] (a) Give an example of a weighted connected graph G = (V,E) and a vertex
v, such that the minimum spanning tree of G is the same as the shortest-path
spanning tree rooted at v.

(b) Give an example of a weighted connected directed graph G = (V,E) and a
vertex v, such that the minimum spanning tree of G is very different from the
shortest-path spanning tree rooted at v.

(c) Can the two trees be completely disjoint?

8-18. [3] Either prove the following or give a counterexample:

(a) Is the path between a pair of vertices in a minimum spanning tree of an
undirected graph necessarily the shortest (minimum-weight) path?

(b) Suppose that the minimum spanning tree of the graph is unique. Is the
path between a pair of vertices in a minimum spanning tree of an undi-
rected graph necessarily the shortest (minimum-weight) path?
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8-19. [3] Give an efficient algorithm to find the shortest path from x to y in an undi-
rected weighted graph G = (V,E) with positive edge weights, subject to the
constraint that this path must pass through a particular vertex z.

8-20. [5] In certain graph problems, vertices can have weights instead of or in addition
to the weights of edges. Let Cv be the cost of vertex v, and C(x,y) the cost of the
edge (x, y). This problem is concerned with finding the cheapest path between
vertices a and b in a graph G. The cost of a path is the sum of the costs of the
edges and vertices encountered on the path.

(a) Suppose that each edge in the graph has a weight of zero (while non-edges
have a cost of ∞). Assume that Cv = 1 for all vertices 1 ≤ v ≤ n (i.e.,
all vertices have the same cost). Give an efficient algorithm to find the
cheapest path from a to b and its time complexity.

(b) Now suppose that the vertex costs are not constant (but are all positive)
and the edge costs remain as above. Give an efficient algorithm to find
the cheapest path from a to b and its time complexity.

(c) Now suppose that both the edge and vertex costs are not constant (but are
all positive). Give an efficient algorithm to find the cheapest path from a
to b and its time complexity.

8-21. [5] Give an O(n3) algorithm that takes an n-vertex directed graph G with posi-
tive edge lengths, and returns the length of the shortest cycle in the graph. This
length is ∞ in the case of an acyclic graph.

8-22. [5] A highway network is represented by a weighted graph G, with edges corre-
sponding to roads and vertices corresponding to road intersections. Each road
is labeled with the maximum possible height of vehicles that can pass through
the road. Give an efficient algorithm to compute the maximum possible height
of vehicles that can successfully travel from s to t. What is the runtime of your
algorithm?

8-23. [5] You are given a directed graph G with possibly negative weighted edges, in
which the shortest path between any two vertices is guaranteed to have at most
k edges. Give an algorithm that finds the shortest path between two vertices u
and v in O(k · (n+m)) time.

8-24. [5] Can we solve the single-source longest-path problem by changing minimum
to maximum in Dijkstra’s algorithm? If so, then prove your algorithm correct.
If not, then provide a counterexample.

8-25. [5] Let G = (V,E) be a weighted acyclic directed graph with possibly negative
edge weights. Design a linear-time algorithm to solve the single-source shortest-
path problem from a given source v.

8-26. [5] Let G = (V,E) be a directed weighted graph such that all the weights are
positive. Let v and w be two vertices in G and k ≤ |V | be an integer. Design an
algorithm to find the shortest path from v to w that contains exactly k edges.
Note that the path need not be simple.

8-27. [5] Arbitrage is the use of discrepancies in currency-exchange rates to make a
profit. For example, there may be a small window of time during which 1 U.S.
dollar buys 0.75 British pounds, 1 British pound buys 2 Australian dollars, and
1 Australian dollar buys 0.70 U.S. dollars. At such a time, a smart trader can
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trade one U.S. dollar and end up with 0.75×2×0.7 = 1.05 U.S. dollars—a profit
of 5%. Suppose that there are n currencies c1, ..., cn and an n × n table R of
exchange rates, such that one unit of currency ci buys R[i, j] units of currency
cj . Devise and analyze an algorithm to determine the maximum value of

R[c1, ci1 ] ·R[ci1 , ci2 ] · · ·R[cik−1 , cik ] ·R[cik , c1]

(Hint: think all-pairs shortest path.)

Network Flow and Matching

8-28. [3] A matching in a graph is a set of disjoint edges—that is, edges that do
not have common vertices. Give a linear-time algorithm to find a maximum
matching in a tree.

8-29. [5] An edge cover of an undirected graph G = (V,E) is a set of edges such that
each vertex in the graph is incident to at least one edge from the set. Give an
efficient algorithm, based on matching, to find the minimum-size edge cover for
G.

LeetCode

8-1. https://leetcode.com/problems/cheapest-flights-within-k-stops/

8-2. https://leetcode.com/problems/network-delay-time/

8-3. https://leetcode.com/problems/find-the-city-with-the-smallest-number-

of-neighbors-at-a-threshold-distance/

HackerRank

8-1. https://www.hackerrank.com/challenges/kruskalmstrsub/

8-2. https://www.hackerrank.com/challenges/jack-goes-to-rapture/

8-3. https://www.hackerrank.com/challenges/tree-pruning/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

8-1. “Freckles”—Chapter 10, problem 10034.

8-2. “Necklace”—Chapter 10, problem 10054.

8-3. “Railroads”—Chapter 10, problem 10039.

8-4. “Tourist Guide”—Chapter 10, problem 10199.

8-5. “The Grand Dinner”—Chapter 10, problem 10249.

https://leetcode.com/problems/cheapest-flights-within-k-stops/
https://leetcode.com/problems/network-delay-time/
https://leetcode.com/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/
https://leetcode.com/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/
https://www.hackerrank.com/challenges/kruskalmstrsub/
https://www.hackerrank.com/challenges/jack-goes-to-rapture/
https://www.hackerrank.com/challenges/tree-pruning/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 9

Combinatorial Search

Surprisingly large problems can be solved using exhaustive search techniques,
albeit at great computational cost. But for certain applications, it may be worth
it. A good example occurs in testing a circuit or a program. You can prove the
correctness of the device by trying all possible inputs and verifying that they
give the correct answer. Verified correctness is a property to be proud of: just
claiming that it works correctly on all the inputs you tried is worth much less.

Modern computers have clock rates of a few gigahertz, meaning billions of
operations per second. Since doing something interesting takes a few hundred
instructions, you can hope to search millions of items per second on contempo-
rary machines.

It is important to realize how big (or how small) one million is. One mil-
lion permutations means all arrangements of roughly 10 objects, but not more.
One million subsets means all combinations of roughly 20 items, but not more.
Solving significantly larger problems requires carefully pruning the search space
to ensure we look at only the elements that really matter.

This section introduces backtracking as a technique for listing all possible
solutions for a combinatorial algorithm problem. I illustrate the power of clever
pruning techniques to speed up real search applications. For problems that
are too large to contemplate using combinatorial search, heuristic methods like
simulated annealing are presented in Chapter 12. Such heuristics are important
weapons in any practical algorist’s arsenal.

9.1 Backtracking

Backtracking is a systematic way to run through all the possible configurations
of a search space. These configurations may represent all possible arrangements
of objects (permutations) or all possible ways of building a collection of them
(subsets). Other common situations demand enumerating all spanning trees of
a graph, all paths between two vertices, or all possible ways to partition vertices
into color classes.
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What these problems have in common is that we must generate each possi-
ble configuration exactly once. Avoiding repetitions and missed configurations
means that we must define a systematic generation order. We will model our
combinatorial search solution as a vector a = (a1, a2, ..., an), where each element
ai is selected from a finite ordered set Si. Such a vector might represent an ar-
rangement where ai contains the ith element of the permutation. Or perhaps
a is a Boolean vector representing a given subset S, where ai is true iff the ith
element of the universal set is in S. The solution vector can even represent a
sequence of moves in a game or a path in a graph, where ai contains the ith
game move or graph edge in the sequence.

At each step in the backtracking algorithm, we try to extend a given partial
solution a = (a1, a2, ..., ak) by adding another element at the end. After this
extension, we must test whether what we now have is a complete solution: if
so, we should print it or count it. If not, we must check whether the partial
solution is still potentially extendable to some complete solution.

Backtracking constructs a tree of partial solutions, where each node repre-
sents a partial solution. There is an edge from x to y if node y was created by
extending x. This tree of partial solutions provides an alternative way to think
about backtracking, for the process of constructing the solutions corresponds
exactly to doing a depth-first traversal of the backtrack tree. Viewing back-
tracking as a depth-first search on an implicit graph yields a natural recursive
implementation of the basic algorithm.

Backtrack-DFS(a, k)
if a = (a1, a2, ..., ak) is a solution, report it.
else

k = k + 1
construct Sk, the set of candidates for position k of a
while Sk �= ∅ do

ak = an element in Sk

Sk = Sk − {ak}
Backtrack-DFS(a, k)

Although a breadth-first search could also be used to enumerate solutions,
a depth-first search is greatly preferred because it uses much less space. The
current state of a search is completely represented by the path from the root
to the current depth-first search node. This requires space proportional to the
height of the tree. In breadth-first search, the queue stores all the nodes at the
current level, which is proportional to the width of the search tree. For most
interesting problems, the width of the tree grows exponentially with its height.

Implementation

Backtracking ensures correctness by enumerating all possibilities. It ensures
efficiency by never visiting a state more than once. To help you understand
how this works, my generic backtrack code is given below:
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void backtrack(int a[], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for next position */

int nc; /* next position candidate count */

int i; /* counter */

if (is_a_solution(a, k, input)) {

process_solution(a, k,input);

} else {

k = k + 1;

construct_candidates(a, k, input, c, &nc);

for (i = 0; i < nc; i++) {

a[k] = c[i];

make_move(a, k, input);

backtrack(a, k, input);

unmake_move(a, k, input);

if (finished) {

return; /* terminate early */

}

}

}

}

Study how recursion yields an elegant and easy implementation of the back-
tracking algorithm. Because a new candidates array c is allocated with each
recursive procedure call, the subsets of not-yet-considered extension candidates
at each position will not interfere with each other.

The application-specific parts of this algorithm consist of five subroutines:

• is a solution(a,k,input) – This Boolean function tests whether the
first k elements of vector a form a complete solution for the given problem.
The last argument, input, allows us to pass general information into the
routine. We can use it to specify n—the size of a target solution. This
makes sense when constructing permutations or subsets of n elements, but
other data may be relevant when constructing variable-sized objects such
as sequences of moves in a game.

• construct candidates(a,k,input,c,&nc) – This routine fills an array
c with the complete set of possible candidates for the kth position of a,
given the contents of the first k − 1 positions. The number of candidates
returned in this array is denoted by nc. Again, input may be used to pass
auxiliary information.

• process solution(a,k,input) – This routine prints, counts, stores, or
processes a complete solution once it is constructed.

• make move(a,k,input) and unmake move(a,k,input) – These routines
enable us to modify a data structure in response to the latest move, as well
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as clean up this data structure if we decide to take back the move. Such a
data structure can always be rebuilt from scratch using the solution vector
a, but this can be inefficient when each move involves small incremental
changes that can easily be undone.

These calls will function as null stubs in all of this section’s examples, but
will be employed in the Sudoku program of Section 9.4 (page 290).

A global finished flag is included to allow for premature termination, which
could be set in any application-specific routine.

9.2 Examples of Backtracking

To really understand how backtracking works, you must see how such objects as
permutations and subsets can be constructed by defining the right state spaces.
Examples of several state spaces are described in the following subsections.

9.2.1 Constructing All Subsets

Designing an appropriate state space to represent combinatorial objects starts
by counting how many objects need representing. How many subsets are there
of an n-element set, say the integers {1, . . . , n}? There are exactly two subsets
for n = 1, namely {} and {1}. There are four subsets for n = 2, and eight
subsets for n = 3. Each new element doubles the number of possibilities, so
there are 2n subsets of n elements.

Each subset is described by the elements that are contained in it. To con-
struct all 2n subsets, we set up a Boolean array/vector of n cells, where the value
of ai (true or false) signifies whether the ith item is in the given subset. In the
scheme of our general backtrack algorithm, Sk = (true, false) and a is a solution
whenever k = n. We can now construct all subsets with simple implementations
of is a solution(), construct candidates(), and process solution().

int is_a_solution(int a[], int k, int n) {

return (k == n);

}

void construct_candidates(int a[], int k, int n, int c[], int *nc) {

c[0] = true;

c[1] = false;

*nc = 2;

}
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Figure 9.1: Search tree enumerating all subsets (left) and permutations (right)
of {1, 2, 3}. The color of the search tree edges reflects the element being inserted
into the partial solution.

void process_solution(int a[], int k, int input) {

int i; /* counter */

printf("{");

for (i = 1; i <= k; i++) {

if (a[i] == true) {

printf(" %d", i);

}

}

printf(" }\n");

}

Ironically, printing out each subset after constructing it proves to be the
most complex of these three routines!

Finally, we must instantiate the call to backtrack with the right arguments.
Specifically, this means giving a pointer to the empty solution vector, setting
k = 0 to denote that it is in fact empty, and specifying the number of elements
in the universal set:

void generate_subsets(int n) {

int a[NMAX]; /* solution vector */

backtrack(a, 0, n);

}

In what order will the subsets of {1, 2, 3} be generated? It depends on the
order of moves as returned from construct candidates. Since true always
appears before false, the subset of all trues is generated first, and the all-false
empty set is generated last: {123}, {12}, {13}, {1}, {23}, {2}, {3}, and {}.
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Trace through this example (shown in Figure 9.1 (left)) carefully to make
sure you understand the backtracking procedure. The problem of generating
subsets is more thoroughly discussed in Section 17.5 (page 521).

9.2.2 Constructing All Permutations

Counting permutations of {1, . . . , n} is a necessary prerequisite to generating
them. There are n distinct choices for the value of the first element of a per-
mutation. Once we have fixed a1, there are n− 1 candidates remaining for the
second position, since we can have any value except a1 in this slot (because
repetitions are forbidden in permutations). Repeating this argument yields a
total of n! =

∏n
i=1 i distinct permutations.

This counting argument suggests a suitable representation. Set up an ar-
ray/vector a of n cells. The set of candidates for the ith position will be all
elements that have not appeared in the (i− 1) elements of the partial solution,
corresponding to the first i− 1 elements of the permutation.

In the scheme of the general backtrack algorithm, Sk = {1, . . . , n}−{a1, . . . , ak},
and a is a solution whenever k = n:

void construct_candidates(int a[], int k, int n, int c[], int *nc) {

int i; /* counter */

bool in_perm[NMAX]; /* what is now in the permutation? */

for (i = 1; i < NMAX; i++) {

in_perm[i] = false;

}

for (i = 1; i < k; i++) {

in_perm[a[i]] = true;

}

*nc = 0;

for (i = 1; i <= n; i++) {

if (!in_perm[i]) {

c[ *nc ] = i;

*nc = *nc + 1;

}

}

}

Testing whether i is a candidate for the kth slot in the permutation could be
done by iterating through all k−1 elements of a and verifying that none of them
matched. However, we prefer to set up a bit-vector data structure (see Section
15.5 (page 456)) to keep track of which elements are in the partial solution.
This gives a constant-time legality check.
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Completing the job requires specifying process solution and is a solution,
as well as setting the appropriate arguments to backtrack. All are essentially
the same as for subsets:

void process_solution(int a[], int k, int input) {

int i; /* counter */

for (i = 1; i <= k; i++) {

printf(" %d", a[i]);

}

printf("\n");

}

int is_a_solution(int a[], int k, int n) {

return (k == n);

}

void generate_permutations(int n) {

int a[NMAX]; /* solution vector */

backtrack(a, 0, n);

}

As a consequence of the candidate order, these routines generate permuta-
tions in lexicographic, or sorted order—that is, 123, 132, 213, 231, 312, and
321, as shown in Figure 9.1 (right). The problem of generating permutations is
more thoroughly discussed in Section 17.4 (page 517).

9.2.3 Constructing All Paths in a Graph

In a simple path no vertex appears more than once. Enumerating all the simple
s to t paths in a given graph is a more complicated problem than just listing
permutations or subsets. There is no explicit formula that counts solutions as
a function of the number of edges or vertices, because the number of paths
depends upon the structure of the graph.

The input data we must pass to backtrack to construct the paths consists
of the input graph g, the source vertex s, and target vertex t:

typedef struct {

int s; /* source vertex */

int t; /* destination vertex */

graph g; /* graph to find paths in */

} paths_data;
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The starting point of any path from s to t is always s. Thus, s is the only
candidate for the first position and S1 = {s}. The possible candidates for the
second position are the vertices v such that (s, v) is an edge of the graph, for
the path wanders from vertex to vertex using edges to define the legal steps. In
general, Sk+1 consists of the set of vertices adjacent to ak that have not been
used elsewhere in the partial solution a.

void construct_candidates(int a[], int k, paths_data *g, int c[],

int *nc) {

int i; /* counters */

bool in_sol[NMAX+1]; /* what's already in the solution? */

edgenode *p; /* temporary pointer */

int last; /* last vertex on current path */

for (i = 1; i <= g->g.nvertices; i++) {

in_sol[i] = false;

}

for (i = 0; i < k; i++) {

in_sol[a[i]] = true;

}

if (k == 1) {

c[0] = g->s; /* always start from vertex s */

*nc = 1;

} else {

*nc = 0;

last = a[k-1];

p = g->g.edges[last];

while (p != NULL) {

if (!in_sol[ p->y ]) {

c[*nc] = p->y;

*nc= *nc + 1;

}

p = p->next;

}

}

}

We report a successful path whenever ak = t.

int is_a_solution(int a[], int k, paths_data *g) {

return (a[k] == g->t);

}
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Figure 9.2: Search tree (right) enumerating all simple s–t paths in the given
graph (left). The color of a search tree edge reflects the color of the correspond-
ing graph edge.

The number of paths discovered can be counted in process solution by
incrementing a global variable solution count. The sequence of vertices for
each path is stored in the solution vector a, ready to be printed:

void process_solution(int a[], int k, paths_data *input) {

int i; /* counter */

solution_count ++;

printf("{");

for (i = 1; i <= k; i++) {

printf(" %d",a[i]);

}

printf(" }\n");

}

This solution vector must have room for all n vertices, although most paths
should be shorter than this. Figure 9.2 shows the search tree giving all paths
from the source vertex in a particular graph.

9.3 Search Pruning

Backtracking ensures correctness by enumerating all possibilities. A correct
algorithm to find the optimal traveling salesman tour constructs all n! permu-
tations of the n vertices of graph G. For each permutation, we check whether
all edges implied by the tour really exist in G and if so add the weights of these
edges together. The tour with minimum weight is the solution.

However, it is wasteful to construct all the permutations first and then an-
alyze them later. Suppose our search started from vertex v1, and it happened
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that vertex-pair (v1, v2) was not an edge in G. The (n− 2)! permutations enu-
merated starting with (v1, v2) as its prefix would be a complete waste of effort.
Much better would be to stop the search after [v1, v2] and then continue from
[v1, v3]. By restricting the set of next elements to reflect only legal moves with
respect to the current partial configuration, we significantly reduce the total
search complexity.

Pruning is the technique of abandoning a search direction the instant we can
establish that a given partial solution cannot be extended into a full solution.
For traveling salesman, we seek the cheapest tour that visits all vertices. Sup-
pose that in the course of our search we find a tour t whose cost is Ct. Later,
we may have a partial solution a whose edge sum Ca ≥ Ct. Is there any reason
to continue exploring this node? No, because any tour with a as its prefix will
have cost greater than tour t, and hence is doomed to be non-optimal. Cutting
away such failed partial tours from the search tree as soon as possible can have
an enormous impact on running time.

Exploiting symmetry is another avenue for reducing combinatorial search.
Pruning away partial solutions equivalent to those previously considered requires
recognizing underlying symmetries in the search space. For example, consider
the state of our TSP search after we have tried all partial positions beginning
with v1. Does it pay to continue the search with partial solutions beginning
with v2? No. Any tour starting and ending at v2 can be viewed as a rotation of
one starting and ending at v1, for TSP tours are closed cycles. There are thus
only (n−1)! distinct tours on n vertices, not n!. By restricting the first element
of the tour to v1, we save a factor of n in time without missing any interesting
solutions. Detecting such symmetries can be subtle, but once identified they
can usually be easily exploited.

Take-Home Lesson: Combinatorial search, when augmented with tree-pruning
techniques, can be used to find the optimal solution for small optimization
problems. How small depends upon the specific problem, but typical size limits
are somewhere between twenty and a hundred items.

9.4 Sudoku

A Sudoku craze has swept the world. Many newspapers publish daily Sudoku
puzzles, and millions of books about Sudoku have been sold. British Airways
sent a formal memo forbidding its cabin crews from doing Sudoku during takeoffs
and landings. Indeed, I have noticed plenty of Sudoku going on in the back of
my algorithms classes during lecture.

What is Sudoku? In its most common form, it consists of a 9× 9 grid filled
with blanks and the digits 1 to 9. The puzzle is completed when every row,
column, and sector (3 × 3 subproblems corresponding to the nine sectors of a
tic-tac-toe puzzle) contain the digits 1 through 9 with no omissions or repetition.
Figure 9.3 presents a challenging Sudoku puzzle and its solution.

Backtracking lends itself nicely to the task of solving Sudoku puzzles. We will
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Figure 9.3: A challenging Sudoku puzzle (left) with its completed solution
(right).

use Sudoku here to illustrate pruning techniques for combinatorial search. Our
state space will be the collection of open squares, each of which must ultimately
be filled in with a digit. The candidates for open squares (i, j) are exactly the
integers from 1 to 9 that have not yet appeared in row i, column j, or the 3× 3
sector containing (i, j). We backtrack as soon as we are out of candidates for a
square.

The solution vector a supported by backtrack only accepts a single integer
per position. This is enough to store the contents of a square (1–9) but not the
coordinates of the square. Thus, we keep a separate array of move positions as
part of our boardtype data type provided below. The basic data structures we
need to support our solution are:

#define DIMENSION 9 /* 9*9 board */

#define NCELLS DIMENSION*DIMENSION /* 81 cells in 9-by-9-board */

#define MAXCANDIDATES DIMENSION+1 /* max digit choices per cell */

bool finished = false;

typedef struct {

int x, y; /* row and column coordinates of square */

} point;

typedef struct {

int m[DIMENSION+1][DIMENSION+1]; /* board contents */

int freecount; /* open square count */

point move[NCELLS+1]; /* which cells have we filled? */

} boardtype;
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Constructing the move candidates for the next position requires first picking
which open square we want to fill next (next square), and then identifying
which digits are candidates to fill that square (possible values). These rou-
tines are basically bookkeeping, although the details of how they work can have
a substantial impact on performance.

void construct_candidates(int a[], int k, boardtype *board, int c[],

int i; /* counter */

bool possible[DIMENSION+1]; /* which digits fit in this square */

next_square(&(board->move[k]), board); /* pick square to fill next */

*nc = 0;

if ((board->move[k].x < 0) && (board->move[k].y < 0)) {

return; /* error condition, no moves possible */

}

possible_values(board->move[k], board, possible);

for (i = 1; i <= DIMENSION; i++) {

if (possible[i]) {

c[*nc] = i;

*nc = *nc + 1;

}

}

}

We must update our board data structure to reflect the effect of putting
a candidate value into a square, as well as remove these changes should we
backtrack from this position. These updates are handled by make move and
unmake move, both of which are called directly from backtrack:

void make_move(int a[], int k, boardtype *board) {

fill_square(board->move[k], a[k], board);

}

void unmake_move(int a[], int k, boardtype *board) {

free_square(board->move[k], board);

}

One important job for these board update routines is maintaining how many
free squares remain on the board. A solution is found when there are no more
free squares remaining to be filled. Here, steps is a global variable recording
the complexity of our search for Table 9.4:

int *nc) {
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bool is_a_solution(int a[], int k, boardtype *board) {

steps = steps + 1; /* count steps for results table */

return (board->freecount == 0);

}

We print the configuration and then turn off the backtrack search after
finding a solution by setting the global finished flag. This can be done without
consequence because “official” Sudoku puzzles are allowed to have only one
solution. But there can be non-official Sudoku puzzles with enormous numbers
of solutions. The empty puzzle, where initially no digits are specified anywhere,
can be filled in exactly 6,670,903,752,021,072,936,960 ways. We ensure we don’t
see all of them by turning off the search:

void process_solution(int a[], int k, boardtype *board) {

finished = true;

printf("process solution\n");

print_board(board);

}

This completes the program modulo details of identifying the next open
square to fill (next square) and identifying the candidates that might fill it
(possible values). Two natural heuristics to select the next square are:

• Arbitrary square selection – Pick the first open square we encounter, be
it the first, the last, or a random open square. All are equivalent in that
there seems to be no reason to believe that one variant will perform better
than the others.

• Most constrained square selection – Here, we check each open square (i, j)
to see how many digits remain possible candidates to fill it—that is, digits
that have not already been used in row i, column j, or the sector containing
(i, j). We pick the square with the smallest number of candidates.

Although both possibilities work correctly, the second option is much, much
better. If there are open squares with only one remaining candidate, the choice
is forced. We might as well fill them first, especially since pinning these squares
down will help trim the possibilities for other open squares. Of course, we
will spend more time selecting each candidate square, but if the puzzle is easy
enough we may never have to backtrack at all.

If the most constrained square has two possibilities, we have a 50% chance of
guessing right the first time, as opposed to a probability of 1/9 for a completely
unconstrained square. Reducing our average number of choices from (say) three
per square to two per square is an enormous win, because it multiplies with
each position. If we have (say) twenty positions to fill, we must enumerate only
220 = 1,048,576 solutions. A branching factor of 3 at each of twenty positions
requires over 3,000 times as much work!
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Pruning condition Puzzle complexity
next square possible values Easy Medium Hard
arbitrary local count 1,904,832 863,305 never finished
arbitrary look ahead 127 142 12,507,212

most constrained local count 48 84 1,243,838
most constrained look ahead 48 65 10,374

Figure 9.4: Sudoku run times (in number of steps) for different pruning strate-
gies.

Our final decision concerns the possible values we allow for each square.
We have two possibilities:

• Local count – Our backtrack search works correctly if the routine that
generates candidates for board position (i, j) (possible values) does the
obvious thing and allows all digits 1 to 9 that have not appeared in the
given row, column, or sector.

• Look ahead – But what if our current partial solution has some other open
square where there are no candidates remaining under the local count
criteria? There is no possible way to complete this partial solution into
a full Sudoku grid. Thus, there really are zero possible moves to consider
for (i, j) because of what is happening elsewhere on the board!

We will discover this obstruction eventually, when we pick this square for
expansion, discover it has no moves, and then have to backtrack. But why
wait, since all our efforts until then will be wasted? We are much better
off backtracking immediately and moving on.1

Successful pruning requires looking ahead to see when a partial solution is
doomed to go nowhere, and backing off as soon as possible.

Figure 9.4 presents the number of calls to is a solution for all four back-
tracking variants on three Sudoku instances of varying complexity:

• The Easy board was intended to be easy for a human player. Indeed,
my program solved it without any backtracking steps when the most con-
strained square was selected as the next position.

• The Medium board stumped all the contestants at the finals of the World
Sudoku Championship in March 2006. But the decent search variants here
required only a few backtrack steps to dispatch this problem.

1This look-ahead condition might have naturally followed from the most-constrained square
selection, had it been permitted to select squares with no moves. However, my implementation
credited squares that already contained digits as having no moves, thus limiting the next
square choices to squares with at least one move.
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Figure 9.5: Configurations covering 63 but not 64 squares.

• The Hard problem is the board displayed in Figure 9.3, which initially
contains only 17 filled squares. This is the fewest specified number of
positions of any problem instance known to have a unique solution.

What is considered to be a “hard” problem instance depends upon the given
heuristic. Some people find math/theory harder than programming, but others
think differently. Heuristic A may well think instance I1 is easier than I2, while
heuristic B ranks them in the other order.

What can we learn from these experiments? Looking ahead to eliminate
dead positions as soon as possible is the best way to prune a search. Without
this operation, we could not finish the hardest puzzle and took thousands of
times longer on the easier ones than we should have.

Smart square selection had a similar impact, even though it nominally just
rearranges the order in which we do the work. But doing more constrained
positions first is tantamount to reducing the out-degree of each node in the
tree, and each additional position we fix adds constraints that help lower the
degree of subsequent selections.

It took the better part of an hour (48:44) to solve the puzzle in Figure 9.3
when I selected an arbitrary square for my next move. Sure, my program was
faster in most instances, but Sudoku puzzles are designed to be solved by people
using pencils in much less time than this. Making the next move in the most
constrained square reduced search time by a factor of over 1,200. Each puzzle
we tried can now be solved in seconds—the time it takes to reach for the pencil
if you prefer to do it by hand.

This is the power of search pruning. Even simple pruning strategies can
suffice to reduce running times from impossible to instantaneous.

9.5 War Story: Covering Chessboards

Every researcher dreams of solving a classical problem—one that has remained
open and unsolved for over a century. There is something romantic about com-
municating across the generations, being part of the evolution of science, and
helping to climb another rung up the ladder of human progress. There is also a
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Figure 9.6: The ten unique positions for the queen, with respect to rotational
and reflective symmetry.

pleasant sense of smugness that comes from figuring out how to do something
that nobody could do before you.

There are several possible reasons why a problem might stay open for such
a long period of time. Perhaps it is so difficult and profound as to require
a uniquely powerful intellect to solve. A second reason is technological—the
ideas or techniques required to solve the problem may not have existed when it
was first posed. The final possibility is that no one may have cared about the
problem enough in the interim to seriously bother with it. Once, I helped solve
a problem that had been open for over a hundred years. Decide for yourself
which reason best explains why.

Chess is a game that has fascinated people for thousands of years. In ad-
dition, it has inspired many combinatorial problems of independent interest.
The combinatorial explosion was first recognized with the legend that the in-
ventor of chess demanded payment of one grain of rice for the first square of
the board, and twice as much for the (i + 1)st square than the ith square.

The king was astonished to learn he had to cough up
∑64

i=1 2
i−1 = 264 − 1 =

18,446,744,073,709,551,615 grains of rice. In beheading the inventor, the wise
king first established pruning as a technique for dealing with the combinatorial
explosion.

In 1849, Kling posed the question of whether all 64 squares on the board
could be simultaneously threatened by an arrangement of the eight main pieces
on the chess board—the king, queen, two knights, two rooks, and two bishops
on oppositely colored squares. Pieces do not threaten the square they sit on.
Configurations that simultaneously threaten 63 squares, such as those in Figure
9.5, have been long known, but whether this was the best possible remained an
open problem. This problem seemed ripe for solution by exhaustive combinato-
rial searching, although whether it was solvable depended upon the size of the
search space.

How many ways can the eight main chess pieces be positioned on a chess-
board? The trivial bound is 64!/(64 − 8)! = 178,462,987,637,760 ≈ 2 × 1014

positions. That’s far too many: anything larger than about 109 positions would
be unreasonable to search on a modest computer in a modest amount of time.
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Getting the job done would require significant pruning. Our first idea was
to remove symmetries. Accounting for orthogonal and diagonal symmetries left
only ten distinct positions for the queen, as shown in Figure 9.6.

Once the queen is placed, there remain 32 · 31 distinct positions for the
bishops, then 61 · 60/2 for the rooks, 59 · 58/2 for the knights, and 57 remaining
for the king. Such an exhaustive search would test 1,770466,147,200 ≈ 1.8 ·1012
distinct positions—still much too large to try.

We could use backtracking to construct all possible chess boards, but we had
to find a way to prune the search space significantly. To prune the search we
needed a quick way to detect when there was no way to complete a partially
filled-in position to cover all 64 squares. Suppose we had already placed seven
pieces on the board, and together they covered all but 10 squares of the board.
Say the remaining piece was the king. Can there possibly be a way to place the
king so that all squares are threatened? The answer must be no, because the
king can threaten at most 8 squares according to the rules of chess. There can
be no reason to test any king position. We might win big pruning away such
partial configurations.

This pruning strategy required carefully ordering the evaluation of the pieces.
Each piece can threaten a certain maximum number of squares: the queen 27,
the king/knight 8, the rook 14, and the bishop 13. We would want to insert
the pieces in decreasing order of mobility: Q, R1, R2, B1, B2, K, N1, N2. We
can prune whenever the number of unthreatened squares exceeds the sum of the
maximum coverage of the unplaced pieces. This sum is minimized by using the
decreasing order of mobility.

When we implemented a backtrack search using this pruning strategy, it
eliminated over 95% of the search space. After optimizing our move generation,
our program could search over 1,000 positions per second on a machine of its
day. But this was still too slow, for 1011/103 = 108 seconds meant 1,000 days!
Although we might further tweak the program to speed it up by an order of
magnitude or so, what we really needed was to find a way to prune more nodes.

Effective pruning means eliminating large numbers of positions at a single
stroke. Our previous attempt was too weak. What if instead of placing up
to eight pieces on the board simultaneously, we placed more than eight pieces.
Obviously, the more pieces we placed simultaneously, the more likely they would
threaten all 64 squares. But if they didn’t cover, no subset of eight distinct
pieces from the set could possibly threaten all squares. The potential existed to
eliminate a vast number of positions by pruning a single node.

So in our final version, the nodes of our search tree corresponded to chess-
boards that could have any number of pieces, and more than one piece on
a square. For a given board, we distinguished strong and weak attacks on a
square. A strong attack corresponds to the usual notion of a threat in chess. A
weak attack ignores any possible blocking effects of intervening pieces. All 64
squares can be weakly attacked with eight pieces, as shown in Figure 9.7.

Our algorithm consisted of two passes. The first pass listed boards where
every square was weakly attacked. The second pass filtered the list by consid-
ering blocking pieces. A weak attack is much faster to compute (no blocking
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Figure 9.7: Weakly covering 64 squares.

Figure 9.8: Seven pieces suffice when superimposing queen and knight (shown
as a white queen).

to worry about), and any strong attack set is always a subset of a weak attack
set. The position could be pruned whenever there was a non-weakly threatened
square.

This program was efficient enough to complete the search in under a day.
It did not find a single position covering all 64 squares with the bishops on
opposite colored squares. However, our program showed that it is possible to
cover the board with seven pieces provided a queen and a knight can occupy
the same square, as shown in Figure 9.8.

Take-Home Lesson: Clever pruning can make short work of surprisingly hard
combinatorial search problems. Proper pruning will have a greater impact on
search time than other factors like data structures or programming language.

9.6 Best-First Search

An important idea to speed up search is to explore your best options before
the less promising choices. In the backtrack implementation presented above,
the search order was determined by the sequence of elements generated by the
construct candidates routine. Items near the front of the candidates array
were tried before those further back. A good candidate ordering can have a very
powerful effect on the time to solve the problem.
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The examples so far in this chapter have focused on existential search prob-
lems, where we look for a single solution (or all solutions) satisfying a given
set of constraints. Optimization problems seek the solution with the lowest or
highest value of some objective function. A simple strategy to deal with opti-
mization problems is to construct all possible solutions, and then report the one
that scores best by the optimization criterion. But this can be expensive. Much
better would be to generate solutions in order from best to worst, and report
the best as soon as we can prove it is the best.

Best-first search, also called branch and bound, assigns a cost to every par-
tial solution we have generated. We use a priority queue (named q below)
to keep track of these partial solutions by cost, so the most promising par-
tial solution can be easily identified and expanded. As in backtracking, we
explore the next partial solution by testing if it is a solution and calling
process solution if it is. We identify all ways to expand this partial solution
by calling construct candidates, each of which gets inserted into the priority
queue with its associated cost. A generic best-first search, which we apply to
the traveling salesman problem (TSP), is implemented as follows:

void branch_and_bound (tsp_solution *s, tsp_instance *t) {

int c[MAXCANDIDATES]; /* candidates for next position */

int nc; /* next position candidate count */

int i; /* counter */

first_solution(&best_solution,t);

best_cost = solution_cost(&best_solution, t);

initialize_solution(s,t);

extend_solution(s,t,1);

pq_init(&q);

pq_insert(&q,s);

while (top_pq(&q).cost < best_cost) {

*s = extract_min(&q);

if (is_a_solution(s, s->n, t)) {

process_solution(s, s->n, t);

}

else {

construct_candidates(s, (s->n)+1, t, c, &nc);

for (i=0; i<nc; i++) {

extend_solution(s,t,c[i]);

pq_insert(&q,s);

contract_solution(s,t);

}

}

}

}
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The extend solution and contract solution routines handle the book-
keeping of creating and pricing the partial solutions associated with each new
candidate:

void extend_solution(tsp_solution *s, tsp_instance *t, int v) {

s->n++;

s->p[s->n] = v;

s->cost = partial_solution_lb(s,t);

}

void contract_solution(tsp_solution *s, tsp_instance *t) {

s->n--;

s->cost = partial_solution_lb(s,t);

}

What should be the cost of a partial solution? There are (n − 1)! circular
permutations on n points, so we can represent each tour as an n-element per-
mutation starting with 1 so there are no repetitions. Partial solutions construct
a prefix of the tour starting with vertex v1, so a natural cost function might
be the sum of the edge weights on this prefix source. An interesting property
of such a cost function is that it serves as a lower bound on the cost of any
expanded tour, assuming that all edge weights are positive.

But does the first full solution from a best-first search have to be an optimal
solution? No, not necessarily. There was certainly no cheaper partial solution
available when we pulled it off the priority queue. But extending this partial
solution came with a cost, that of the next edge we added to this tour. It is
certainly possible that a slightly more costly partial tour might be finishable
using a less-expensive next edge, thus producing a better solution.

Thus, to get the global optimal, we must continue to explore the partial
solutions coming off the priority queue until they are more expensive than the
best solution we already know about. Note that this requires that the cost
function for partial solutions be a lower bound on the cost of an optimal solution.
Otherwise, there might be something deeper in the queue that would expand to
a better solution. That would leave us with no choice but to expand everything
on the priority queue completely to be sure we found the right solution.

9.7 The A* Heuristic

Best-first search can take a while, even if our partial cost function is a lower
bound on the optimal tour, so we can stop as soon as we have a solution cheaper
than the best unexplored partial solution. Consider the partial solutions we will
encounter on a search for the optimal traveling salesman tour. Costs increase
with the number of edges in the partial solution, so partial solutions with few
nodes will always look more promising than longer ones nearer to completion.
Even the most awful prefix path on n/2 nodes will likely be cheaper than the
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Backtracking Branch and Bound
n all cost < best lb < best cost < best lb < best
5 24 22 17 11 7
6 120 86 62 28 20
7 720 217 153 51 42
8 5,040 669 443 111 85
9 40,320 2,509 1,619 354 264
10 362,880 5,042 3,025 655 475
11 3,628,800 12,695 6,391 848 705

Figure 9.9: Number of complete TSP solutions evaluated by different search
variants. The A* heuristic employed with branch and bound did best, substan-
tially better than backtracking.

optimal solution on all n nodes, meaning that we must expand all partial solu-
tions until their prefix cost is greater than the cost of the best full tour. This
will be horribly expensive to work through.

The A* heuristic (pronounced “A-star”) is an elaboration on the branch-
and-bound search presented above, where at each iteration we expanded the
best (cheapest) partial solution that we have found so far. The idea is to use a
lower bound on the cost of all possible partial solution extensions that is stronger
than just the cost of the current partial tour. This will make promising partial
solutions look more interesting than those that have the fewest vertices.

How can we lower bound the cost of the full tour, which contains n edges,
from a partial solution with k vertices (and thus k − 1 edges)? We know it
will eventually get n− k+1 additional edges. If minlb is a lower bound on the
cost of any edge, specifically the distance between the two closest points, adding
(n− k+1)× minlb gives a cost lower bound that is much more realistic for the
partial solution:

double partial_solution_cost(tsp_solution *s, tsp_instance *t) {

int i; /* counter */

double cost = 0.0; /* cost of solution */

for (i = 1; i < (s->n); i++) {

cost = cost + distance(s, i, i + 1, t);

}

return(cost);

}

double partial_solution_lb(tsp_solution *s, tsp_instance *t) {

return(partial_solution_cost(s,t) + (t->n - s->n + 1) * minlb);

}
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Figure 9.9 presents the number of full solution cost evaluations in finding the
optimal TSP tour for several search variants. Brute-force backtracking without
pruning requires (n− 1)! such calls, but we do much better when we prune on
partial costs—and even better when we prune using the full lower bound. But
branch and bound and A* do even better here.

Note that the number of full solutions encountered is a gross underestimate
of the total work done on the search, which includes even partial solutions that
got pruned just one move before the end of the tour. But Figure 9.9 does capture
the fact that best-first search might have to look at a substantially smaller part
of the search tree than backtracking, even with the same pruning criteria.

Best-first search is sort of like breadth-first search. A disadvantage of BFS
over DFS is the space required. A backtracking/DFS tree uses memory propor-
tional to the height of the tree, but a best-first/BFS tree requires maintaining
all partial solutions, more akin to the width of the tree.

The resulting size of the priority queue for best-first search is a real problem.
Consider the TSP experiments above. For n = 11, the queue size got to 202,063
compared to a stack size of just 11 for backtracking. Space will kill you quicker
than time. To get an answer from a slow program you just have to be patient
enough, but a program that crashes because of lack of memory will not give an
answer no matter how long you wait.

Take-Home Lesson: The promise of a given partial solution is not just its
cost, but also includes the potential cost of the remainder of the solution. A
tight solution cost estimate which is still a lower bound makes best-first search
much more efficient.

The A* heuristic proves useful in a variety of different problems, most no-
tably finding shortest paths from s to t in a graph. Recall that Dijkstra’s
algorithm for shortest path starts from s and with each iteration adds a new
vertex to which it knows the shortest path. When the graph describes a road
network on the surface of the earth, this known region should expand like a
growing disk around s.

But that means that half the growth is in a direction away from t, thus
moving farther from the goal. A best-first search, with the as-the-crow-flies
straight line distance from each in-tree vertex v to t added to the in-tree distance
from s to v, gives a lower bound on the driving distance from s to t, favoring
growth in the right direction. The existence of such heuristics for shortest path
computations explains how online mapping services can supply you with the
route home so quickly.

Chapter Notes

My treatment of backtracking here is partially based on my book Programming
Challenges [SR03]. In particular, the backtrack routine presented here is a
generalization of the version in chapter 8 of [SR03]. Look there for my solution
to the famous eight queens problem, which seeks all chessboard configurations
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of eight mutually non-attacking queens on an 8 × 8 board.
More details on our combinatorial search for optimal chessboard-covering

positions appear in Robison et al. [RHS89].

9.8 Exercises

Permutations

9-1. [3] A derangement is a permutation p of {1, . . . , n} such that no item is in its
proper position, that is, pi �= i for all 1 ≤ i ≤ n. Write an efficient backtracking
program with pruning that constructs all the derangements of n items.

9-2. [4] Multisets are allowed to have repeated elements. A multiset of n items may
thus have fewer than n! distinct permutations. For example, {1, 1, 2, 2} has only
six distinct permutations: [1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 2, 1], [2, 1, 1, 2], [2, 1, 2, 1],
and [2, 2, 1, 1]. Design and implement an efficient algorithm for constructing all
permutations of a multiset.

9-3. [5] For a given a positive integer n, find all permutations of the 2n elements
of the multiset S = {1, 1, 2, 2, 3, 3, . . . , n, n} such that for each integer from 1 to
n the number of intervening elements between its two appearances is equal to
value of the element. For example, when n = 3 the two possible solutions are
[3, 1, 2, 1, 3, 2] and [2, 3, 1, 2, 1, 3].

9-4. [5] Design and implement an algorithm for testing whether two graphs are iso-
morphic. The graph isomorphism problem is discussed in Section 19.9 (page
610). With proper pruning, graphs on hundreds of vertices can be tested in a
reasonable time.

9-5. [5] The set {1, 2, 3, ..., n} contains a total of n! distinct permutations. By listing
and labeling all of the permutations in ascending lexicographic order, we get the
following sequence for n = 3:

[123, 132, 213, 231, 312, 321]

Give an efficient algorithm that returns the kth of n! permutations in this se-
quence, for inputs n and k. For efficiency it should not construct the first k− 1
permutations in the process.

Backtracking

9-6. [5] Generate all structurally distinct binary search trees that store values 1 . . . n,
for a given value of n.

9-7. [5] Implement an algorithm to print all valid (meaning properly opened and
closed) sequences of n pairs of parentheses.

9-8. [5] Generate all possible topological orderings of a given DAG.

9-9. [5] Given a specified total t and a multiset S of n integers, find all distinct
subsets from S whose elements add up to t. For example, if t = 4 and S =
{4, 3, 2, 2, 1, 1}, then there are four different sums that equal t: 4, 3 + 1, 2 + 2,
and 2 + 1 + 1. A number can be used within a sum up to the number of times
it appears in S, and a single number counts as a sum.
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9-10. [8] Design and implement an algorithm for solving the subgraph isomorphism
problem—given graphs G and H, does there exist a subgraph H ′ of H such
that G is isomorphic to H ′? Report how your program performs on such special
cases of subgraph isomorphism as Hamiltonian cycle, clique, independent set,
and graph isomorphism.

9-11. [5] A team assignment of n = 2k players is a partitioning of them into two
teams with exactly k people per team. For example, if the players are named
{A,B,C,D}, there are three distinct ways to partition them into two equal
teams: {{A,B}, {C,D}}, {{A,C}, {B,D}}, and {{A,D}, {B,C}}. (a) List the
10 possible team assignments for n = 6 players. (b) Give an efficient back-
tracking algorithm to construct all possible team assignments. Be sure to avoid
repeating any solution.

9-12. [5] Given an alphabet Σ, a set of forbidden strings S, and a target length n,
give an algorithm to construct a string of length n on Σ without any element
of S as a substring. For Σ = {0, 1}, S = {01, 10}, and n = 4, the two possible
solutions are 0000 and 1111. For S = {0, 11} and n = 4, no such string exists.

9-13. [5] In the k-partition problem, we need to partition a multiset of positive integers
into k disjoint subsets that have equal sum. Design and implement an algorithm
for solving the k-partition problem.

9-14. [5] You are given a weighted directed graph G with n vertices and m edges. The
mean weight of a cycle is the sum of its edge weights divided by the number of
its edges. Find a cycle in G of minimum mean weight.

9-15. [8] In the turnpike reconstruction problem, you are given a multiset D of n(n−
1)/2 distances. The problem is to place n points on the line such that their
pairwise distances are D. For example, the distances D = {1, 2, 3, 4, 5, 6} can be
obtained by placing the second point 1 unit from the first, the third point 3 from
the second, and the fourth point 2 from the third. Design and implement an
efficient algorithm to find all solutions to the turnpike reconstruction problem.
Exploit additive constraints when possible to accelerate the search. With proper
pruning, problems with hundreds of points can be solved in reasonable time.

Games and Puzzles

9-16. [5] Anagrams are rearrangements of the letters of a word or phrase into a dif-
ferent word or phrase. Sometimes the results are quite striking. For example,
“MANY VOTED BUSH RETIRED” is an anagram of “TUESDAY NOVEM-
BER THIRD,” which correctly predicted the result of the 1992 US presidential
election. Design and implement an algorithm for finding anagrams using com-
binatorial search and a dictionary.

9-17. [5] Construct all sequences of moves that a knight on an n× n chessboard can
make where the knight visits every square only once.

9-18. [5] A Boggle board is an n×m grid of characters. For a given board, we seek to
find all possible words that can be formed by a sequence of adjacent characters
on the board, without repetition. For example, the board:

e t h t
n d t i
a i h n
r h u b
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contains words like tide, dent, raid, and hide. Design an algorithm to construct
the most words for a given board B consistent with a dictionary D.

9-19. [5] A Babbage square is a grid of words that reads the same across as it does
down. Given a k-letter word w and a dictionary of n words, find all Babbage
squares starting with that word. For example, two squares for the word hair
are:

h a i r h a i r
a i d e a l t o
i d l e i t e m
r e e f r o m b

9-20. [5] Show that you can solve any given Sudoku puzzle by finding the minimum
vertex coloring of a specific, appropriately constructed 9×9+9 vertex graph.

Combinatorial Optimization

For problems 9-21 to 9-27, implement a combinatorial search program to solve
it for small instances. How well does your program perform in practice?

9-21. [5] Design and implement an algorithm for solving the bandwidth minimization
problem discussed in Section 16.2 (page 470).

9-22. [5] Design and implement an algorithm for solving the maximum satisfiability
problem discussed in Section 17.10 (page 537).

9-23. [5] Design and implement an algorithm for solving the maximum clique problem
discussed in Section 19.1 (page 586).

9-24. [5] Design and implement an algorithm for solving the minimum vertex coloring
problem discussed in Section 19.7 (page 604).

9-25. [5] Design and implement an algorithm for solving the minimum edge coloring
problem discussed in Section 19.8 (page 608).

9-26. [5] Design and implement an algorithm for solving the minimum feedback vertex
set problem discussed in Section 19.11 (page 618).

9-27. [5] Design and implement an algorithm for solving the set cover problem dis-
cussed in Section 21.1 (page 678).

Interview Problems

9-28. [4] Write a function to find all permutations of the letters in a given string.

9-29. [4] Implement an efficient algorithm for listing all k-element subsets of n items.

9-30. [5] An anagram is a rearrangement of the letters in a given string into a sequence
of dictionary words, like Steven Skiena into Vainest Knees. Propose an algorithm
to construct all the anagrams of a given string.

9-31. [5] Telephone keypads have letters on each numerical key. Write a program that
generates all possible words resulting from translating a given digit sequence
(e.g. 145345) into letters.

9-32. [7] You start with an empty room and a group of n people waiting outside. At
each step, you may either admit one person into the room, or let one out. Can
you arrange a sequence of 2n steps, so that every possible combination of people
is achieved exactly once?
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9-33. [4]Use a random number generator (rng04) that generates numbers from {0, 1, 2, 3, 4}
with equal probability to write a random number generator that generates num-
bers from 0 to 7 (rng07) with equal probability. What is the expected number
of calls to rng04 per call of rng07?

LeetCode

9-1. https://leetcode.com/problems/subsets/

9-2. https://leetcode.com/problems/remove-invalid-parentheses/

9-3. https://leetcode.com/problems/word-search/

HackerRank

9-1. https://www.hackerrank.com/challenges/sudoku/

9-2. https://www.hackerrank.com/challenges/crossword-puzzle/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

9-1. “Little Bishops”—Chapter 8, problem 861.

9-2. “15-Puzzle Problem”—Chapter 8, problem 10181.

9-3. “Tug of War”—Chapter 8, problem 10032.

9-4. “Color Hash”—Chapter 8, problem 704.

https://leetcode.com/problems/subsets/
https://leetcode.com/problems/remove-invalid-parentheses/
https://leetcode.com/problems/word-search/
https://www.hackerrank.com/challenges/sudoku/
https://www.hackerrank.com/challenges/crossword-puzzle/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 10

Dynamic Programming

The most challenging algorithmic problems involve optimization, where we seek
to find a solution that maximizes or minimizes an objective function. Traveling
salesman is a classic optimization problem, where we seek the tour visiting all
vertices of a graph at minimum total cost. But as shown in Chapter 1, it is easy
to propose TSP “algorithms” that generate reasonable-looking solutions but do
not always produce the minimum cost tour.

Algorithms for optimization problems require proof that they always return
the best possible solution. Greedy algorithms that make the best local decision
at each step are typically efficient, but usually do not guarantee global optimal-
ity. Exhaustive search algorithms that try all possibilities and select the best
always produce the optimum result, but usually at a prohibitive cost in terms
of time complexity.

Dynamic programming combines the best of both worlds. It gives us a way to
design custom algorithms that systematically search all possibilities (thus guar-
anteeing correctness) while storing intermediate results to avoid recomputing
(thus providing efficiency). By storing the consequences of all possible decisions
and using this information in a systematic way, the total amount of work is
minimized.

After you understand it, dynamic programming is probably the easiest al-
gorithm design technique to apply in practice. In fact, I find that dynamic
programming algorithms are often easier to reinvent than to try to look up.
That said, until you understand dynamic programming, it seems like magic.
You have to figure out the trick before you can use it.

Dynamic programming is a technique for efficiently implementing a recursive
algorithm by storing partial results. It requires seeing that a naive recursive
algorithm computes the same subproblems over and over and over again. In
such a situation, storing the answer for each subproblem in a table to look up
instead of recompute can lead to an efficient algorithm. Dynamic programming
starts with a recursive algorithm or definition. Only after we have a correct
recursive algorithm can we worry about speeding it up by using a results matrix.

Dynamic programming is generally the right method for optimization prob-
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lems on combinatorial objects that have an inherent left-to-right order among
components. Left-to-right objects include character strings, rooted trees, poly-
gons, and integer sequences. Dynamic programming is best learned by carefully
studying examples until things start to click. I present several war stories where
dynamic programming played the decisive role to demonstrate its utility in prac-
tice.

10.1 Caching vs. Computation

Dynamic programming is essentially a tradeoff of space for time. Repeatedly
computing a given quantity can become a drag on performance. If so, we are
better off storing the results of the initial computation and looking them up
instead of recomputing them.

The tradeoff between space and time exploited in dynamic programming
is best illustrated when evaluating recurrence relations such as the Fibonacci
numbers. We look at three different programs for computing them below.

10.1.1 Fibonacci Numbers by Recursion

The Fibonacci numbers were defined by the Italian mathematician Fibonacci
in the thirteenth century to model the growth of rabbit populations. Rabbits
breed, well, like rabbits. Fibonacci surmised that the number of pairs of rabbits
born in a given month is equal to the number of pairs of rabbits born in each of
the two previous months, starting from one pair of rabbits at the start. Thus, the
number of rabbits born in the nth month is defined by the recurrence relation:

Fn = Fn−1 + Fn−2

with basis cases F0 = 0 and F1 = 1. Thus, F2 = 1, F3 = 2, and the series
continues 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .. As it turns out, Fibonacci’s formula
didn’t do a great job of counting rabbits, but it does have a host of interesting
properties and applications.

That they are defined by a recursive formula makes it easy to write a re-
cursive program to compute the nth Fibonacci number. A recursive function
written in C looks like this:

long fib_r(int n) {

if (n == 0) {

return(0);

}

if (n == 1) {

return(1);

}

return(fib_r(n-1) + fib_r(n-2));

}
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Figure 10.1: The recursion tree for computing Fibonacci numbers.

The course of execution for this recursive algorithm is illustrated by its
recursion tree, as illustrated in Figure 10.1. This tree is evaluated in a depth-
first fashion, as are all recursive algorithms. I encourage you to trace this
example by hand to refresh your knowledge of recursion.

Note that F (4) is computed on both sides of the recursion tree, and F (2) is
computed no less than five times in this small example. The weight of all this
redundancy becomes clear when you run the program. It took 4 minutes and
40 seconds for this program to compute F (50) on my laptop. You might well
do it faster by hand using the algorithm below.

How much time does the recursive algorithm take to compute F (n)? Since
Fn+1/Fn ≈ φ = (1+

√
5)/2 ≈ 1.61803, this means that Fn > 1.6n for sufficiently

large n. Since our recursion tree has only 0 and 1 as leaves, summing them up
to get such a large number means we must have at least 1.6n leaves or procedure
calls. This humble little program takes exponential time to run!

10.1.2 Fibonacci Numbers by Caching

In fact, we can do much better. We can explicitly store (or cache) the results
of each Fibonacci computation F (k) in a table data structure indexed by the
parameter k—a technique also known as memoization. The key to implement
the recursive algorithm efficiently is to explicitly check whether we already know
a particular value before trying to compute it:

#define MAXN 92 /* largest n for which F(n) fits in a long */

#define UNKNOWN -1 /* contents denote an empty cell */

long f[MAXN+1]; /* array for caching fib values */
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Figure 10.2: The recursion tree for computing Fibonacci numbers with caching.

long fib_c(int n) {

if (f[n] == UNKNOWN) {

f[n] = fib_c(n-1) + fib_c(n-2);

}

return(f[n]);

}

long fib_c_driver(int n) {

int i; /* counter */

f[0] = 0;

f[1] = 1;

for (i = 2; i <= n; i++) {

f[i] = UNKNOWN;

}

return(fib_c(n));

}

To compute F (n), we call fib c driver(n). This initializes our cache to
the two values we initially know (F (0) and F (1)) as well as the UNKNOWN flag for
all the rest that we don’t. It then calls a look-before-crossing-the-street version
of the recursive algorithm.

This cached version runs instantly up to the largest value that can fit in
a long integer. The new recursion tree (Figure 10.2) explains why. There is
no meaningful branching, because only the left-side calls do computation. The
right-side calls find what they are looking for in the cache and immediately
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return.
What is the running time of this algorithm? The recursion tree provides

more of a clue than looking at the code. In fact, it computes F (n) in linear time
(in other words, O(n) time) because the recursive function fib c(k) is called
at most twice for each value 0 ≤ k ≤ n− 1.

This general method of explicitly caching (or tabling) results from recursive
calls to avoid recomputation provides a simple way to get most of the benefits
of full dynamic programming. It is thus worth a careful look. In principle, such
caching can be employed on any recursive algorithm. However, storing partial
results would have done absolutely no good for such recursive algorithms as
quicksort, backtracking, and depth-first search because all the recursive calls
made in these algorithms have distinct parameter values. It doesn’t pay to store
something you will use once and never refer to again.

Caching makes sense only when the space of distinct parameter values is
modest enough that we can afford the cost of storage. Since the argument to
the recursive function fib c(k) is an integer between 0 and n, there are only
O(n) values to cache. A linear amount of space for an exponential amount of
time is an excellent tradeoff. But as we shall see, we can do even better by
eliminating the recursion completely.

Take-Home Lesson: Explicit caching of the results of recursive calls provides
most of the benefits of dynamic programming, usually including the same run-
ning time as the more elegant full solution. If you prefer doing extra program-
ming to more subtle thinking, I guess you can stop here.

10.1.3 Fibonacci Numbers by Dynamic Programming

We can calculate Fn in linear time more easily by explicitly specifying the order
of evaluation of the recurrence relation:

long fib_dp(int n) {

int i; /* counter */

long f[MAXN+1]; /* array for caching values */

f[0] = 0;

f[1] = 1;

for (i = 2; i <= n; i++) {

f[i] = f[i-1] + f[i-2];

}

return(f[n]);

}

Observe that we have removed all recursive calls! We evaluate the Fibonacci
numbers from smallest to biggest and store all the results, so we know that we
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have Fi−1 and Fi−2 ready whenever we need to compute Fi. The linearity of
this algorithm is now obvious. Each of the n values is simply computed as the
sum of two integers, in O(n) total time and space.

More careful study shows that we do not need to store all the intermediate
values for the entire period of execution. Because the recurrence depends on
two arguments, we only need to retain the last two values we have seen:

long fib_ultimate(int n)

{

int i; /* counter */

long back2=0, back1=1; /* last two values of f[n] */

long next; /* placeholder for sum */

if (n == 0) return (0);

for (i=2; i<n; i++) {

next = back1+back2;

back2 = back1;

back1 = next;

}

return(back1+back2);

}

This analysis reduces the storage demands to constant space with no asymp-
totic degradation in running time.

10.1.4 Binomial Coefficients

We now show how to compute binomial coefficients as another example of how
to eliminate recursion by specifying the order of evaluation. The binomial co-
efficients are the most important class of counting numbers, where

(
n
k

)
counts

the number of ways to choose k things out of n possibilities.

How do you compute binomial coefficients? First,
(
n
k

)
= n!

k! (n−k)! , so in

principle you can compute them straight from factorials. However, this method
has a serious drawback. Intermediate calculations can easily cause arithmetic
overflow, even when the final coefficient fits comfortably within an integer.

A more stable way to compute binomial coefficients is using the recurrence
relation implicit in the construction of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
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n / k 0 1 2 3 4 5
0 A
1 B G
2 C 1 H
3 D 2 3 I
4 E 4 5 6 J
5 F 7 8 9 10 K

n / k 0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

Figure 10.3: Evaluation order for binomial coefficient at M [5, 4] (left). The
initialization conditions are labeled A–K and recurrence evaluations labeled 1–
10. The matrix contents after evaluation are shown on the right.

Each number is the sum of the two numbers directly above it. The recurrence
relation implicit in this is

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)

Why does this work? Consider whether the nth element appears in one of
the

(
n
k

)
subsets having k elements. If it does, we can complete the subset by

picking k− 1 other items from the remaining n− 1. If it does not, we must pick
all k items from the remaining n− 1. There is no overlap between these cases,
and all possibilities are included, so the sum counts all k-element subsets.

No recurrence is complete without basis cases. What binomial coefficient
values do we know without computing them? The left term of the sum eventu-
ally drives us down to

(
m
0

)
. How many ways are there to choose zero things from

a set? Exactly one, the empty set. If this is not convincing, then it is equally
good to accept

(
m
1

)
= m as the basis case. The right term of the sum runs us

up to
(
m
m

)
. How many ways are there to choose m things from a m-element set?

Exactly one—the complete set. Together, these basis cases and the recurrence
define the binomial coefficients on all interesting values.

Figure 10.3 demonstrates a proper evaluation order for the recurrence. The
initialized cells are marked A–K, denoting the order in which they were assigned
values. Each remaining cell is assigned the sum of the cell directly above it and
the cell immediately above and to the left. The triangle of cells marked 1–10
denote the evaluation order in computing

(
5
4

)
= 5 using the following code:

long binomial_coefficient(int n, int k) {

int i, j; /* counters */

long bc[MAXN+1][MAXN+1]; /* binomial coefficient table */

for (i = 0; i <= n; i++) {

bc[i][0] = 1;

}
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for (j = 0; j <= n; j++) {

bc[j][j] = 1;

}

for (i = 2; i <= n; i++) {

for (j = 1; j < i; j++) {

bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

}

}

return(bc[n][k]);

}

Study this function carefully to make sure you see how we did it. The rest
of this chapter will focus more on formulating and analyzing the appropriate
recurrence than the mechanics of table manipulation demonstrated here.

10.2 Approximate String Matching

Searching for patterns in text strings is a problem of unquestionable importance.
Back in Section 6.7 (page 188) I presented algorithms for exact string matching—
finding where the pattern string P occurs as a substring of the text string T .
But life is often not that simple. Words in either the text or pattern can be
mispelled (sic), robbing us of exact similarity. Evolutionary changes in genomic
sequences or language usage mean that we often search with archaic patterns in
mind: “Thou shalt not kill” morphs over time into “You should not murder.”

How can we search for the substring closest to a given pattern, to compensate
for spelling errors? To deal with inexact string matching, we must first define
a cost function telling us how far apart two strings are. A reasonable distance
measure reflects the number of changes that must be made to convert one string
to another. There are three natural types of changes:

• Substitution – Replace a single character in pattern P with a different
character, such as changing shot to spot.

• Insertion – Insert a single character into pattern P to help it match text
T , such as changing ago to agog.

• Deletion – Delete a single character from pattern P to help it match text
T , such as changing hour to our.

Properly posing the question of string similarity requires us to set the cost
of each such transform operation. Assigning each operation an equal cost of
1 defines the edit distance between two strings. Approximate string matching
arises in many applications, as detailed in Section 21.4 (page 688).
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P S T A R S T A R S T A R

T S C A B S C A B R S C A B

Substitution Insertion Deletion

Figure 10.4: In a single string edit operation, the last character must be either
matched/substituted, inserted, or deleted.

Approximate string matching seems like a difficult problem, because we must
decide exactly where to best perform a complicated sequence of insert/delete
operations in pattern and text. To solve it, let’s think about the problem in
reverse. What information would we need to select the final operation correctly?
What can happen to the last character in the matching for each string?

10.2.1 Edit Distance by Recursion

We can define a recursive algorithm using the observation that the last character
in the string must either be matched, substituted, inserted, or deleted. There is
no other possible choice, as shown in Figure 10.4. Chopping off the characters
involved in this last edit operation leaves a pair of smaller strings. Let i and j be
the indices of the last character of the relevant prefix of P and T , respectively.
There are three pairs of shorter strings after the last operation, corresponding
to the strings after a match/substitution, insertion, or deletion. If we knew the
cost of editing these three pairs of smaller strings, we could decide which option
leads to the best solution and choose that option accordingly. We can learn this
cost through the magic of recursion.

More precisely, let D[i, j] be the minimum number of differences between
the substrings P1P2 . . . Pi and T1T2 . . . Tj . D[i, j] is the minimum of the three
possible ways to extend smaller strings:

• If (Pi = Tj), then D[i − 1, j − 1], else D[i − 1, j − 1] + 1. This means
we either match or substitute the ith and jth characters, depending upon
whether these tail characters are the same. More generally, the cost of a
single character substitution can be returned by a function match(Pi,Tj).

• D[i, j − 1] + 1. This means that there is an extra character in the text to
account for, so we do not advance the pattern pointer and we pay the cost
of an insertion. More generally, the cost of a single character insertion can
be returned by a function indel(Tj).

• D[i− 1, j] + 1. This means that there is an extra character in the pattern
to remove, so we do not advance the text pointer and we pay the cost of
a deletion. More generally, the cost of a single character deletion can be
returned by a function indel(Pi).
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#define MATCH 0 /* enumerated type symbol for match */

#define INSERT 1 /* enumerated type symbol for insert */

#define DELETE 2 /* enumerated type symbol for delete */

int string_compare_r(char *s, char *t, int i, int j) {

int k; /* counter */

int opt[3]; /* cost of the three options */

int lowest_cost; /* lowest cost */

if (i == 0) { /* indel is the cost of an insertion or deletion */

return(j * indel(' '));

}

if (j == 0) {

return(i * indel(' '));

}

/* match is the cost of a match/substitution */

opt[MATCH] = string_compare_r(s,t,i-1,j-1) + match(s[i],t[j]);

opt[INSERT] = string_compare_r(s,t,i,j-1) + indel(t[j]);

opt[DELETE] = string_compare_r(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];

for (k = INSERT; k <= DELETE; k++) {

if (opt[k] < lowest_cost) {

lowest_cost = opt[k];

}

}

return(lowest_cost);

}

This program is absolutely correct—convince yourself. It also turns out to
be impossibly slow. Running on my computer, the computation takes several
seconds to compare two 11-character strings, and disappears into Never-Never
Land on anything longer.

Why is the algorithm so slow? It takes exponential time because it re-
computes values again and again and again. At every position in the string, the
recursion branches three ways, meaning it grows at a rate of at least 3n—indeed,
even faster since most of the calls reduce only one of the two indices, not both
of them.
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10.2.2 Edit Distance by Dynamic Programming

So, how can we make this algorithm practical? The important observation is
that most of these recursive calls compute things that have been previously com-
puted. How do we know? There can only be |P | · |T | possible unique recursive
calls, since there are only that many distinct (i, j) pairs to serve as the argument
parameters of the recursive calls. By storing the values for each of these (i, j)
pairs in a table, we can look them up as needed and avoid recomputing them.

A table-based, dynamic programming implementation of this algorithm is
given below. The table is a two-dimensional matrix m where each of the |P | · |T |
cells contains the cost of the optimal solution to a subproblem, as well as a parent
field explaining how we got to this location:

typedef struct {

int cost; /* cost of reaching this cell */

int parent; /* parent cell */

} cell;

cell m[MAXLEN+1][MAXLEN+1]; /* dynamic programming table */

Our dynamic programming implementation has three differences from the
recursive version. First, it gets its intermediate values using table lookup
instead of recursive calls. Second, it updates the parent field of each cell,
which will enable us to reconstruct the edit sequence later. Third, it is imple-
mented using a more general goal cell() function instead of just returning
m[|P|][|T|].cost. This will enable us to apply this routine to a wider class
of problems.

Be aware that we adhere to special string and index conventions in the
routine below. In particular, we assume that each string has been padded with
an initial blank character, so the first real character of string s sits in s[1].
Why did we do this? It enables us to keep the matrix indices in sync with those
of the strings for clarity. Recall that we must dedicate the zeroth row and column
of m to store the boundary values matching the empty prefix. Alternatively, we
could have left the input strings intact and adjusted the indices accordingly.

int string_compare(char *s, char *t, cell m[MAXLEN+1][MAXLEN+1]) {

int i, j, k; /* counters */

int opt[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {

row_init(i, m);

column_init(i, m);

}
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for (i = 1; i < strlen(s); i++) {

for (j = 1; j < strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i], t[j]);

opt[INSERT] = m[i][j-1].cost + indel(t[j]);

opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[MATCH];

m[i][j].parent = MATCH;

for (k = INSERT; k <= DELETE; k++) {

if (opt[k] < m[i][j].cost) {

m[i][j].cost = opt[k];

m[i][j].parent = k;

}

}

}

}

goal_cell(s, t, &i, &j);

return(m[i][j].cost);

}

To determine the value of cell (i, j), we need to have three values sitting and
waiting for us in matrix m—namely, the cells m(i − 1, j − 1), m(i, j − 1), and
m(i− 1, j). Any evaluation order with this property will do, including the row-
major order used in this program.1 The two nested loops do in fact evaluate m

for every pair of string prefixes, one row at a time. Recall that the strings are
padded such that s[1] and t[1] hold the first character of each input string, so
the lengths (strlen) of the padded strings are one character greater than those
of the input strings.

As an example, we show the cost matrix for turning P = “thou shalt” into
T = “you should” in five moves in Figure 10.5. I encourage you to evaluate
this example matrix by hand, to nail down exactly how dynamic programming
works.

10.2.3 Reconstructing the Path

The string comparison function returns the cost of the optimal alignment, but
not the alignment itself. Knowing you can convert “thou shalt” to “you should”
in only five moves is dandy, but what is the sequence of editing operations that
does it?

The possible solutions to a given dynamic programming problem are de-
scribed by paths through the dynamic programming matrix, starting from the

1Suppose we create a graph with a vertex for every matrix cell, and a directed edge (x, y),
when the value of cell x is needed to compute the value of cell y. Any topological sort on the
resulting DAG (why must it be a DAG?) defines an acceptable evaluation order.



10.2. APPROXIMATE STRING MATCHING 319

T y o u - s h o u l d
P pos 0 1 2 3 4 5 6 7 8 9 10
: 0 1 2 3 4 5 6 7 8 9 10
t: 1 1 1 2 3 4 5 6 7 8 9 10
h: 2 2 2 2 3 4 5 5 6 7 8 9
o: 3 3 3 2 3 4 5 6 5 6 7 8
u: 4 4 4 3 2 3 4 5 6 5 6 7
-: 5 5 5 4 3 2 3 4 5 6 6 7
s: 6 6 6 5 4 3 2 3 4 5 6 7
h: 7 7 7 6 5 4 3 2 3 4 5 6
a: 8 8 8 7 6 5 4 3 3 4 5 6
l: 9 9 9 8 7 6 5 4 4 4 4 5
t: 10 10 10 9 8 7 6 5 5 5 5 5

Figure 10.5: Example of a dynamic programming matrix for editing distance
computation, with the underlined entries appearing on the optimal alignment
path. Blue values denote insertions, green values deletions, and red values
match/substitution.

initial configuration (the pair of empty strings (0, 0)) down to the final goal
state (the pair of full strings (|P |, |T |)). The key to building the solution is
reconstructing the decisions made at every step along the optimal path that
leads to the goal state. These decisions have been recorded in the parent field
of each array cell.

Reconstructing these decisions is done by walking backward from the goal
state, following the parent pointer back to an earlier cell. We repeat this process
until we arrive back at the initial cell, analogous to how we reconstructed the
path found by BFS or Dijkstra’s algorithm. The parent field for m[i][j] tells
us whether the operation at (i, j) was MATCH, INSERT, or DELETE. Tracing back
through the parent matrix in Figure 10.6 yields the edit sequence DSMMMMMISMS
from “thou shalt” to “you should”—meaning delete the first “t”; replace the
“h” with “y”; match the next five characters before inserting an “o”; replace
“a” with “u”; and finally replace the “t” with a “d”.

Walking backward reconstructs the solution in reverse order. However, clever
use of recursion can do the reversing for us:

void reconstruct_path(char *s, char *t, int i, int j,

cell m[MAXLEN+1][MAXLEN+1]) {

if (m[i][j].parent == -1) {

return;

}

if (m[i][j].parent == MATCH) {

reconstruct_path(s, t, i-1, j-1, m);
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T y o u - s h o u l d
P pos 0 1 2 3 4 5 6 7 8 9 10

0 -1 1 1 1 1 1 1 1 1 1 1
t: 1 2 0 0 0 0 0 0 0 0 0 0
h: 2 2 0 0 0 0 0 0 1 1 1 1
o: 3 2 0 0 0 0 0 0 0 1 1 1
u: 4 2 0 2 0 1 1 1 1 0 1 1
-: 5 2 0 2 2 0 1 1 1 1 0 0
s: 6 2 0 2 2 2 0 1 1 1 1 0
h: 7 2 0 2 2 2 2 0 1 1 1 1
a: 8 2 0 2 2 2 2 2 0 0 0 0
l: 9 2 0 2 2 2 2 2 0 0 0 1
t: 10 2 0 2 2 2 2 2 0 0 0 0

Figure 10.6: Parent matrix for edit distance computation, with the optimal
alignment path underlined to highlight. Again, blue values denote insertions,
green values deletions, and red values match/substitution.

match_out(s, t, i, j);

return;

}

if (m[i][j].parent == INSERT) {

reconstruct_path(s, t, i, j-1, m);

insert_out(t, j);

return;

}

if (m[i][j].parent == DELETE) {

reconstruct_path(s, t, i-1, j, m);

delete_out(s, i);

return;

}

}

For many problems, including edit distance, the solution can be recon-
structed from the cost matrix without explicitly retaining the last-move array.
In edit distance, the trick is working backward from the costs of the three pos-
sible ancestor cells and corresponding string characters to reconstruct the move
that took you to the current cell at the given cost. But it is cleaner and easier
to explicitly store the moves.
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10.2.4 Varieties of Edit Distance

The string compare and path reconstruction routines reference several func-
tions that we have not yet defined. These fall into four categories:

• Table initialization – The functions row init and column init initialize
the zeroth row and column of the dynamic programming table, respec-
tively. For the string edit distance problem, cells (i, 0) and (0, i) corre-
spond to matching length-i strings against the empty string. This requires
exactly i insertions/deletions, so the definition of these functions is clear:

row_init(int i)

{

m[0][i].cost = i;

if (i>0)

m[0][i].parent = INSERT;

else

m[0][i].parent = -1;

}

column_init(int i)

{

m[i][0].cost = i;

if (i>0)

m[i][0].parent = DELETE;

else

m[i][0].parent = -1;

}

• Penalty costs – The functions match(c,d) and indel(c) present the costs
for transforming character c to d and inserting/deleting character c. For
standard edit distance, match should cost 0 if the characters are identical,
and 1 otherwise; while indel returns 1 regardless of what the argument
is. But application-specific cost functions can be employed, perhaps with
substitution more forgiving for characters located near each other on stan-
dard keyboard layouts or those that sound or look similar.

int match(char c, char d)

{

if (c == d) return(0);

else return(1);

}

int indel(char c)

{

return(1);

}

• Goal cell identification – The function goal cell returns the indices of
the cell marking the endpoint of the solution. For edit distance, this is
always defined by the length of the two input strings. However, other
applications we will soon encounter do not have fixed goal locations.

void goal_cell(char *s, char *t, int *i, int *j) {

*i = strlen(s) - 1;

*j = strlen(t) - 1;

}

• Traceback actions – The functions match out, insert out, and delete out

perform the appropriate actions for each edit operation during traceback.
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For edit distance, this might mean printing out the name of the operation
or character involved, as determined by the needs of the application.

insert_out(char *t, int j)

{

printf("I");

}

delete_out(char *s, int i)

{

printf("D");

}

match_out(char *s, char *t,

int i, int j)

{

if (s[i]==t[j]) printf("M");

else printf("S");

}

All of these functions are quite simple for edit distance computation. How-
ever, we must confess it is difficult to get the boundary conditions and index
manipulations correct. Although dynamic programming algorithms are easy
to design once you understand the technique, getting the details right requires
clear thinking and thorough testing.

This may seem like a lot of infrastructure to develop for such a simple algo-
rithm. However, several important problems can be solved as special cases of
edit distance using only minor changes to some of these stub functions:

• Substring matching – Suppose we want to find where a short pattern P
best occurs within a long text T—say searching for “Skiena” in all its
misspellings (Skienna, Skena, Skina, . . . ) within a long file. Plugging this
search into our original edit distance function will achieve little sensitivity,
since the vast majority of any edit cost will consist of deleting all that is
not “Skiena” from the body of the text. Indeed, matching any scattered
. . . S . . . k . . . i . . . e . . . n . . . a . . . and deleting the rest will yield an optimal
solution.

We want an edit distance search where the cost of starting the match
is independent of the position in the text, so that we are not prejudiced
against a match that starts in the middle of the text. Now the goal state is
not necessarily at the end of both strings, but the cheapest place to match
the entire pattern somewhere in the text. Modifying these two functions
gives us the correct solution:

void row_init(int i, cell m[MAXLEN+1][MAXLEN+1]) {

m[0][i].cost = 0; /* NOTE CHANGE */

m[0][i].parent = -1; /* NOTE CHANGE */

}
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void goal_cell(char *s, char *t, int *i, int *j) {

int k; /* counter */

*i = strlen(s) - 1;

*j = 0;

for (k = 1; k < strlen(t); k++) {

if (m[*i][k].cost < m[*i][*j].cost) {

*j = k;

}

}

}

• Longest common subsequence – Perhaps we are interested in finding the
longest scattered string of characters included within both strings, without
changing their relative order. Indeed, this problem will be discussed in
Section 21.8. Do Democrats and Republicans have anything in common?
Certainly! The longest common subsequence (LCS) between “democrats”
and “republicans” is ecas.

A common subsequence is defined by all the identical-character matches in
an edit trace. To maximize the number of such matches, we must prevent
substitution of non-identical characters. With substitution forbidden, the
only way to get rid of the non-common subsequence will be through in-
sertion and deletion. The minimum cost alignment has the fewest such
“in-dels,” so it must preserve the longest common substring. We get the
alignment we want by changing the match-cost function to make substi-
tutions expensive:

int match(char c, char d) {

if (c == d) {

return(0);

}

return(MAXLEN);

}

Actually, it suffices to make the substitution penalty greater than that of
an insertion plus a deletion for substitution to lose any allure as a possible
edit operation.

• Maximum monotone subsequence – A numerical sequence is monotonically
increasing if the ith element is at least as big as the (i−1)st element. The
maximum monotone subsequence problem seeks to delete the fewest num-
ber of elements from an input string S to leave a monotonically increasing
subsequence. A maximum monotone subsequence of 243517698 is 23568.
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In fact, this is just a longest common subsequence problem, where the
second string is the elements of S sorted in increasing order: 123456789.
Any common sequence of these two must (a) represent characters in proper
order in S, and (b) use only characters with increasing position in the col-
lating sequence—so the longest one does the job. Of course, this approach
can be modified to give the longest decreasing sequence simply by revers-
ing the sorted order.

As you can see, our edit distance routine can be made to do many amazing
things easily. The trick is observing that your problem is just a special case of
approximate string matching.

The alert reader may notice that it is unnecessary to keep all O(mn) cells
to compute the cost of an alignment. If we evaluate the recurrence by filling
in the columns of the matrix from left to right, we will never need more than
two columns of cells to store what is necessary to complete the computation.
Thus, O(m) space is sufficient to evaluate the recurrence without changing the
time complexity. This is good, but unfortunately we cannot reconstruct the
alignment without the full matrix.

Saving space in dynamic programming is very important. Since memory on
any computer is limited, using O(nm) space proves more of a bottleneck than
O(nm) time. Fortunately, there is a clever divide-and-conquer algorithm that
computes the actual alignment in the same O(nm) time but only O(m) space.
It is discussed in Section 21.4 (page 688).

10.3 Longest Increasing Subsequence

There are three steps involved in solving a problem by dynamic programming:

1. Formulate the answer you want as a recurrence relation or recursive algo-
rithm.

2. Show that the number of different parameter values taken on by your
recurrence is bounded by a (hopefully small) polynomial.

3. Specify an evaluation order for the recurrence so the partial results you
need are always available when you need them.

To see how this is done, let’s see how we would develop an algorithm to
find the longest monotonically increasing subsequence within a sequence of n
numbers. Truth be told, this was described as a special case of edit distance in
Section 10.2.4 (page 323), where it was called maximum monotone subsequence.
Still, it is instructive to work it out from scratch. Indeed, dynamic programming
algorithms are often easier to reinvent than look up.

We distinguish an increasing sequence from a run, where the elements must
be physical neighbors of each other. The selected elements of both must be
sorted in increasing order from left to right. For example, consider the sequence

S = (2, 4, 3, 5, 1, 7, 6, 9, 8)
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The longest increasing subsequence of S is of length 5: for example, (2,3,5,6,8).
In fact, there are eight of this length (can you enumerate them?). There are
four increasing runs of length 2: (2, 4), (3, 5), (1, 7), and (6, 9).

Finding the longest increasing run in a numerical sequence is straightforward.
Indeed, you should be able to easily devise a linear-time algorithm. But finding
the longest increasing subsequence is considerably trickier. How can we identify
which scattered elements to skip?

To apply dynamic programming, we need to design a recurrence relation
for the length of the longest sequence. To find the right recurrence, ask what
information about the first n− 1 elements of S = (s1, . . . , sn) would enable you
to find the answer for the entire sequence:

• The length L of the longest increasing sequence in (s1, s2, . . . , sn−1) seems
a useful thing to know. In fact, this will be the length of the longest
increasing sequence in S, unless sn extends some increasing sequence of
the same length.

Unfortunately, this length L is not enough information to complete the
full solution. Suppose I told you that the longest increasing sequence in
(s1, s2, . . . , sn−1) was of length 5 and that sn = 8. Will the length of the
longest increasing subsequence of S be 5 or 6? It depends on whether the
length-5 sequence ended with a value < 8.

• We need to know the length of the longest sequence that sn will extend. To
be certain we know this, we really need the length of the longest sequence
ending at every possible value si.

This provides the idea around which to build a recurrence. Define Li to
be the length of the longest sequence ending with si. The longest increasing
sequence containing sn will be formed by appending it to the longest increasing
sequence to the left of n that ends on a number smaller than sn. The following
recurrence computes Li:

Li = 1 + max
0≤j<i
sj<si

Lj ,

L0 = 0

These values define the length of the longest increasing sequence ending at each
sequence element. The length of the longest increasing subsequence of S is given
by L = max1≤i≤n Li, since the winning sequence must end somewhere. Here is
the table associated with our previous example:

Index i 1 2 3 4 5 6 7 8 9
Sequence si 2 4 3 5 1 7 6 9 8
Length Li 1 2 2 3 1 4 4 5 5

Predecessor pi – 1 1 2 – 4 4 6 6
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What auxiliary information will we need to store to reconstruct the actual se-
quence instead of its length? For each element si, we will store its predecessor—
the index pi of the element that appears immediately before si in a longest
increasing sequence ending at si. Since all of these pointers go towards the left,
it is a simple matter to start from the last value of the longest sequence and
follow the pointers back so as to reconstruct the other items in the sequence.

What is the time complexity of this algorithm? Each one of the n values of
Li is computed by comparing si against the i − 1 ≤ n values to the left of it,
so this analysis gives a total of O(n2) time. In fact, by using dictionary data
structures in a clever way, we can evaluate this recurrence in O(n lg n) time.
However, the simple recurrence would be easy to program and therefore is a
good place to start.

Take-Home Lesson: Once you understand dynamic programming, it can be
easier to work out such algorithms from scratch than to try to look them up.

10.4 War Story: Text Compression for Bar Codes

Ynjiun waved his laser wand over the torn and crumpled fragments of a bar code
label. The system hesitated for a few seconds, then responded with a pleasant
blip sound. He smiled at me in triumph. “Virtually indestructible.”

I was visiting the research laboratories of Symbol Technologies (now Zebra),
the world’s leading manufacturer of bar code scanning equipment. Although we
take bar codes for granted, there is a surprising amount of technology behind
them. Bar codes exist because conventional optical character recognition (OCR)
systems are not sufficiently reliable for inventory operations. The bar code
symbology familiar to us on each box of cereal, pack of gum, or can of soup
encodes a ten-digit number with enough error correction that it is virtually
impossible to scan the wrong number, even if the can is upside-down or dented.
Occasionally, the cashier won’t be able to get a label to scan at all, but once
you hear that blip you know it was read correctly.

The ten-digit capacity of conventional bar code labels provides room enough
to only store a single ID number in a label. Thus, any application of supermarket
bar codes must have a database mapping (say) 11141-47011 to a particular
brand and size of soy sauce. The holy grail of the bar code world had long been
the development of higher-capacity bar code symbologies that can store entire
documents, yet still be read reliably.

“PDF-417 is our new, two-dimensional bar code symbology,” Ynjiun ex-
plained. A sample label is shown in Figure 10.7. Although you may be more
familiar with QR codes, PDF-417 is now a well accepted standard. Indeed, the
back of every New York State drivers license contains the criminal record of its
owner, elegantly rendered in PDF-417.

“How much data can you fit in a typical 1-inch label?” I asked him.

“It depends upon the level of error correction we use, but about 1,000 bytes.
That’s enough for a small text file or image,” he said.
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Figure 10.7: A two-dimensional barcode label of the Gettysburg Address using
PDF-417.

“Interesting. You should use some data compression technique to maximize
the amount of text you can store in a label.” See Section 21.5 (page 693) for a
discussion of standard data compression algorithms.

“We do incorporate a data compaction method,” he explained. “We under-
stand the different types of files our customers will want to make labels for.
Some files will be all in uppercase letters, while others will use mixed-case let-
ters and numbers. We provide four different text modes in our code, each with
a different subset of alphanumeric characters available. We can describe each
character using only 5 bits as long as we stay within a mode. To switch modes,
we issue a mode switch command first (taking an extra 5 bits) and then code
for the new character.”

“I see. So you designed the mode character sets to minimize the number
of mode switch operations on typical text files.” The modes are illustrated in
Figure 10.8.

“Right. We put all the digits in one mode and all the punctuation characters
in another. We also included both mode shift and mode latch commands. We
can shift into a new mode just for the next character, perhaps to produce a
punctuation mark. Or we can latch permanently into a different mode, if we are
at the start of a run of several characters from there, like a phone number.”

“Wow!” I said. “With all of this mode switching going on, there must be
many different ways to encode any given text as a label. How do you find the
smallest such encoding?”

“We use a greedy algorithm. We look a few characters ahead and then decide
which mode we would be best off in. It works fairly well.”

I pressed him on this. “How do you know it works fairly well? There might
be significantly better encodings that you are simply not finding.”

“I guess I don’t know. But it’s probably NP-complete to find the optimal
coding.” Ynjiun’s voice trailed off. “Isn’t it?”

I started to think. Every encoding starts in a given mode and consists of a
sequence of intermixed character codes and mode shift/latch operations. From
any given position in the text, we can either output the next character code (as-
suming it is available in our current mode) or decide to shift. As we moved from
left to right through the text, our current state would be completely reflected
by our current character position and current mode. For a given position/mode
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Figure 10.8: Mode switching in PDF-417.

pair, we would have been interested in the cheapest way of getting there, over
all possible encodings. . . .

My eyes lit up so bright they cast shadows on the walls.

“The optimal encoding for any given text in PDF-417 can be found using
dynamic programming. For each possible mode 1 ≤ m ≤ 4, and each character
position 1 ≤ i ≤ n, we fill a matrix M [i,m] with the cost of the cheapest
encoding of the first i characters ending in mode m. Our next move from each
mode/position is either match, shift, or latch, so there are only a few possible
operations to consider at each position.”

Basically,

M [i, j] = min
1≤m≤4

(M [i− 1,m] + c(Si,m, j))

where c(Si,m, j) is the cost of encoding character Si and switching from mode
m to mode j. The cheapest possible encoding results from tracing back from
M [n,m], where m is the value of k that minimizes M [n, k]. Each of the 4n cells
can be filled in constant time, so it takes time linear in the length of the string
to find the optimal encoding.

Ynjiun was skeptical, but he encouraged us to implement an optimal encoder.
A few complications arose due to weirdnesses of PDF-417 mode switching, but
my student Yaw-Ling Lin rose to the challenge. Symbol compared our encoder
to theirs on 13,000 labels and concluded that dynamic programming gave an 8%
tighter encoding on average. This was significant, because no one wants to waste
8% of their potential storage capacity, particularly in an environment where the
capacity is only a few hundred bytes. Of course, an 8% average improvement
meant that it did much better than that on certain labels, and it never did
worse than the original encoder. While our encoder took slightly longer to run
than the greedy encoder, this was not significant, because the bottleneck would
be the time needed to print the label.

Our observed impact of replacing a heuristic solution with the global opti-
mum is probably typical of most applications. Unless you really botch up your
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heuristic, you should get a decent solution. Replacing it with an optimal result,
however, usually gives a modest but noticeable improvement, which can have
pleasing consequences for your application.

10.5 Unordered Partition or Subset Sum

The knapsack or subset sum problem asks whether there exists a subset S′ of
an input multiset of n positive integers S = {s1, . . . , sn} whose elements add up
a given target k. Think of a backpacker trying to completely fill a knapsack of
capacity k with possible selections from set S. Applications of this important
problem are discussed in greater detail in Section 16.10.

Dynamic programming works best on linearly ordered items, so we can con-
sider them from left to right. The ordering of items in S from s1 to sn provides
such an arrangement. To formulate a recurrence relation, we need to determine
what information we need on items s1 to sn−1 in order to decide what to do
about sn.

Here is the idea. Either the nth integer sn is part of a subset adding up to
k, or it is not. If it is, then there must be a way to make a subset of the first
n− 1 elements of S adding up to k − sn, so the last element can finish the job.
If not, there may well be a solution that does not use sn. Together this defines
the recurrence:

Tn,k = Tn−1,k ∨ Tn−1,k−sn

This gives an O(nk) algorithm to decide whether target k is realizable:

bool sum[MAXN+1][MAXSUM+1]; /* table of realizable sums */

int parent[MAXN+1][MAXSUM+1]; /* table of parent pointers */

bool subset_sum(int s[], int n, int k) {

int i, j; /* counters */

sum[0][0] = true;

parent[0][0] = NIL;

for (i = 1; i <= k; i++) {

sum[0][i] = false;

parent[0][i] = NIL;

}

for (i = 1; i <= n; i++) { /* build table */

for (j = 0; j <= k; j++) {

sum[i][j] = sum[i-1][j];

parent[i][j] = NIL;

if ((j >= s[i-1]) && (sum[i-1][j-s[i-1]]==true)) {
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sum[i][j] = true;

parent[i][j] = j-s[i-1];

}

}

}

return(sum[n][k]);

}

The parent table encodes the actual subset of numbers totaling to k. An
appropriate subset exists whenever sum[n][k]==true, but it does not use sn as
an element when parent[n][k]==NIL. Instead, we walk up the matrix until we
find an interesting parent, and follow the corresponding pointer:

void report_subset(int n, int k) {

if (k == 0) {

return;

}

if (parent[n][k] == NIL) {

report_subset(n-1,k);

}

else {

report_subset(n-1,parent[n][k]);

printf(" %d ",k-parent[n][k]);

}

}

Below is an example showing the sum table for input set S = {1, 2, 4, 8}
and target k = 11. The true in the lower right corner signals that the sum is
realizable. Because S here represents all the powers of twos, and every target
integer can be written in binary, the entire bottom row consists of trues:

i si 0 1 2 3 4 5 6 7 8 9 10 11
0 0 T F F F F F F F F F F F
1 1 T T F F F F F F F F F F
2 2 T T T T F F F F F F F F
3 4 T T T T T T T T F F F F
4 8 T T T T T T T T T T T T

Below is the corresponding parents array, encoding the solution 1+2+8 =
11. The 3 in the lower right corner reflects that 11 − 8 = 3. The red bolded
cells represent those encountered on the walk back to recover the solution.
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i si 0 1 2 3 4 5 6 7 8 9 10 11
0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 2 -1 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1
3 4 -1 -1 -1 -1 0 1 2 3 -1 -1 -1 -1
4 8 -1 -1 -1 -1 -1 -1 -1 -1 0 1 2 3

The alert reader might wonder how we can have an O(nk) algorithm for
subset sum when subset sum in an NP-complete problem? Isn’t this polynomial
in n and k? Did we just prove that P = NP?

Unfortunately, no. Note that the target number k can be specified using
O(log k) bits, meaning that this algorithm runs in time exponential in the size
of the input, which is O(n log k). This is the same reason why factoring integer
N by explicitly testing all

√
N candidates for smallest factor is not polynomial,

because the running time is exponential in the O(logN) bits of the input.
Another way to see the problem is to consider what happens to the algo-

rithm when we take a specific problem instance and multiply each integer by
1,000,000. Such a transform would not have affected the running time of sorting
or minimum spanning tree, or any other algorithm we have seen so far in this
book. But it would slow down our dynamic programming algorithm by a factor
of 1,000,000, and require a million times as much space for storing the table.
The range of the numbers matters in the subset sum problem, which becomes
hard for large integers.

10.6 War Story: The Balance of Power

One of the many (presumably too many) uncharitable suspicions I hold is that
most electrical engineering (EE) students today would not know how to build
a radio. The reason for this is that the EE students I encounter study electri-
cal and computer engineering, focusing on computer architecture and embedded
systems that involve as much software as hardware. When a natural disas-
ter comes, these guys are not going to be very concerned about restoring the
operation of my favorite AM radio station.

Thus, it was a relief when an EE professor and his students came to me with
an honest EE problem, about optimizing the performance of the power grid.

“Alternating current (AC) power systems transmit electricity on each of
three different phases. Call them A, B, and C. The system works best when
the loads on each phase are roughly equal.” he explained.

“I guess loads are the machines needing power, right?” I asked insightfully.
“Yeah, think of every house on the street as being a load. Each house will

get assigned one of the three phases as its source of power.”
“Presumably they connect every third house A, B, C, A, B, C as they wire

up the street to balance the load.”
“Something like that,” the EE professor confirmed. “But not all houses

use the same amount of power, and it is even worse in industrial areas. One
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company might just turn on the lights when another runs an arc furnace. After
we measure the loads people are actually using, we would like to move some to
different phases to balance the loads.”

Now I saw the algorithmic problem. “So given a set of numbers representing
the various loads, you want to assign them phases A, B, and C so the load is
balanced as well as possible, right?”

“Yeah. Can you give me a fast algorithm to do this?,” he asked.
This seemed clear enough to me. It smelled like an integer partition problem,

namely the subset sum problem of the previous section where the target k =
(
∑n

i=1 sn)/2. The most balanced possible partition occurs when the sum of
elements in the selected subset (here k) equals the sum of the elements left
behind (here

∑n
i=1 sn − k).

The generalization of the problem to partition into three subsets instead of
two was straightforward, but it wasn’t going to get any easier to solve. Adding
a single new item sn+1 = k and asking for a partitioning of S into three equal
weight subsets requires solving an integer partition on the original elements.

I broke the bad news gently. “Integer partition is an NP-complete problem,
and three-phase balancing is just as hard as it is. There is no polynomial-time
algorithm for your problem.”

They got up and started to leave. But then I remembered the dynamic
programming algorithm for subset sum described in Section 10.5 (page 329).
Why couldn’t this be extended to three phases? Indeed, define the function
C[n,A,B] for a given set of loads S, where C[n,wA, wB ] is true if there is a way
to partition the first n loads of S such that the weight on phase A is wA and
the weight on phase B is wB . Note that there is no need to explicitly keep track
of the weight on phase C, because wC =

∑n
i=1 si − wA − wB . Then we get the

following recurrence, defined by which subset we put the nth load on:

C[n,wA, wB ] = C[n−1, wA−sn, wB ] ∨ C[n−1, wA, wB−sn] ∨ C[n−1, wA, wB ]

This took constant time per cell to update, but there were nk2 cells to
update, where k is the maximum amount of power we are willing to consider on
any single phase. Thus, we could optimally balance the phases in O(nk2) time.

This pleased them immensely, and they set to work to implement the algo-
rithm. But I had one question before they went off, which I purposely directed
to one of the computer engineering students. “Why is it that AC power has
three phases?”

“Uh, maybe impedance matching and, uh, complex numbers?” he fumphered.
His advisor shot him a dirty look, as I felt the warm glow of reassurance.

But that computer engineering student could code, and that was what mat-
tered here. He quickly implemented the dynamic programming algorithm and
performed experiments on representative problems, reported in [WSR13].

Our dynamic programming algorithm always produced at least as good a
solution as several heuristics, and usually better. This is no surprise, since we
always produced an optimal solution and they didn’t. Our dynamic program
had a running time that grew quadratically in the range of the loads, which
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could be a problem, but binning the loads by (say) �si/10	 would reduce the
running time by a factor of 100 and produce solutions that were still pretty
good for the original problem.

Dynamic programming really proved its worth when our electrical engineers
got interested in more ambitious objective functions. It is not a cost-free opera-
tion to change which phase a load is on, and so they wanted to find a relatively
balanced load assignment which minimized the number of changes required to
achieve it. This is essentially the same recurrence, storing the cheapest cost to
realize each state instead of just a flag indicating that you could reach it:

C[n,wA, wB ] = min(C[n− 1, wA − sn, wB ] + 1,

C[n− 1, wA, wB − sn] + 1,

C[n− 1, wA, wB ])

They then got greedy, and wanted the lowest cost solution that never got
seriously unbalanced at any point on the line. A globally balanced solution
might choose to fill the total load on A before any loads on B or C, and that
this would be bad. But the same recurrence above still does the job, provided
we set C[n,wA, wB ] = ∞ whenever the loads at this state are deemed too
unbalanced to be desirable.

That is the power of dynamic programming. Once you can reduce your state
space to a small enough size, you can optimize just about anything. Just walk
through each possible state and score it appropriately.

10.7 The Ordered Partition Problem

Suppose that three workers are given the task of scanning through a shelf of
books in search of a given piece of information. To get the job done fairly and
efficiently, the books are to be partitioned among the three workers. To avoid
the need to rearrange the books or separate them into piles, it is simplest to
divide the shelf into three regions and assign each region to one worker.

But what is the fairest way to divide up the shelf? If all books are the same
length, the job is pretty easy. Just partition the books into equal-sized regions,

100 100 100 | 100 100 100 | 100 100 100

so that everyone has 300 pages to deal with.
But what if the books are not the same length? Suppose we used the same

partition when the book sizes looked like this:

100 200 300 | 400 500 600 | 700 800 900

I would volunteer to take the first section, with only 600 pages to scan, instead
of the last one, with 2,400 pages. The fairest possible partition for this shelf
would be

100 200 300 400 500 | 600 700 | 800 900
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where the largest job is only 1,700 pages.
In general, we have the following problem:

Problem: Integer Partition without Rearrangement
Input: An arrangement S of non-negative numbers s1, . . . , sn and an integer k.
Output: Partition S into k or fewer ranges, to minimize the maximum sum over
all the ranges, without reordering any of the numbers.

This so-called ordered partition problem arises often in parallel processing.
We seek to balance the work done across processors to minimize the total elapsed
running time. The bottleneck in this computation will be the processor assigned
the most work. Indeed, the war story of Section 5.8 (page 161) revolves around
a botched solution to the very problem discussed here.

Stop for a few minutes and try to find an algorithm to solve the linear
partition problem.

A novice algorist might suggest a heuristic as the most natural approach to
solving the partition problem, perhaps by computing the average weight of a
partition,

∑n
i=1 si/k, and then trying to insert the dividers to come close to this

average. However, such heuristic methods are doomed to fail on certain inputs
because they do not systematically evaluate all possibilities.

Instead, consider a recursive, exhaustive search approach to solving this
problem. Notice that the kth partition starts right after the (k − 1)st divider.
Where can we place this last divider? Between the ith and (i + 1)st elements
for some i, where 1 ≤ i ≤ n. What is the cost after this insertion? The total
cost will be the larger of two quantities:

• the cost of the last partition
∑n

j=i+1 sj , and

• the cost of the largest partition formed to the left of the last divider.

What is the size of this left partition? To minimize our total, we must use
the k − 2 remaining dividers to partition the elements s1, . . . , si as equally as
possible. This is a smaller instance of the same problem, and hence can be
solved recursively!

Therefore, define M [n, k] to be the minimum possible cost over all partition-
ings of s1, . . . , sn into k ranges, where the cost of a partition is the largest sum
of elements in one of its parts. This function can be evaluated:

M [n, k] =
n

min
i=1

⎛
⎝max(M [i, k − 1],

n∑

j=i+1

sj)

⎞
⎠

We also need to specify the boundary conditions of the recurrence relation.
These boundary conditions resolve the smallest possible values for each of the
arguments of the recurrence. For this problem, the smallest reasonable value of
the first argument is n = 1, meaning that the first partition consists of a single
element. We can’t create a first partition smaller than s1 regardless of how
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M k D k
s 1 2 3 s 1 2 3
1 1 1 1 1 – – –
1 2 1 1 1 – 1 1
1 3 2 1 1 – 1 2
1 4 2 2 1 – 2 2
1 5 3 2 1 – 2 3
1 6 3 2 1 – 3 4
1 7 4 3 1 – 3 4
1 8 4 3 1 – 4 5
1 9 5 3 1 – 4 6

M k D k
s 1 2 3 s 1 2 3
1 1 1 1 1 – – –
2 3 2 2 2 – 1 1
3 6 3 3 3 – 2 2
4 10 6 4 4 – 3 3
5 15 9 6 5 – 3 4
6 21 11 9 6 – 4 5
7 28 15 11 7 – 5 6
8 36 21 15 8 – 5 6
9 45 24 17 9 – 6 7

Figure 10.9: Dynamic programming matrices M and D for two instances
of the ordered partition problem. Partitioning (1, 1, 1, 1, 1, 1, 1, 1, 1)
into ((1, 1, 1), (1, 1, 1), (1, 1, 1)) (left) and (1, 2, 3, 4, 5, 6, 7, 8, 9) into
((1, 2, 3, 4, 5), (6, 7), (8, 9)) (right). Prefix sum entries appear in red and
the optimal solution divider positions in blue.

many dividers are used. The smallest reasonable value of the second argument
is k = 1, implying that we do not partition S at all. In summary:

M [1, k] = s1, for all k > 0

M [n, 1] =
n∑

i=1

si

How long does it take to compute this when we store the partial results?
There are a total of k · n cells in the table. How much time does it take to
compute the values of M [n′, k′] for 1 ≤ n′ ≤ n, 1 ≤ k′ ≤ k ? Calculating
this quantity using the general recurrence involves finding the minimum of n′

quantities, each of which is the larger of two numbers: a table lookup and the
sum of at most n′ elements (taking O(n′) time). If filling each of kn boxes takes
at most n2 time per box, the total recurrence can be computed in O(kn3) time.

The evaluation order computes the smaller values before the bigger values,
so that each evaluation has what it needs waiting for it. Full details are provided
in the following implementation:

void partition(int s[], int n, int k) {

int p[MAXN+1]; /* prefix sums array */

int m[MAXN+1][MAXK+1]; /* DP table for values */

int d[MAXN+1][MAXK+1]; /* DP table for dividers */

int cost; /* test split cost */

int i,j,x; /* counters */

p[0] = 0; /* construct prefix sums */

for (i = 1; i <= n; i++) {

p[i] = p[i-1] + s[i];

}
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for (i = 1; i <= n; i++) {

m[i][1] = p[i]; /* initialize boundaries */

}

for (j = 1; j <= k; j++) {

m[1][j] = s[1];

}

for (i = 2; i <= n; i++) { /* evaluate main recurrence */

for (j = 2; j <= k; j++) {

m[i][j] = MAXINT;

for (x = 1; x <= (i-1); x++) {

cost = max(m[x][j-1], p[i]-p[x]);

if (m[i][j] > cost) {

m[i][j] = cost;

d[i][j] = x;

}

}

}

}

reconstruct_partition(s, d, n, k); /* print book partition */

}

This implementation above, in fact, runs faster than advertised. Our original
analysis assumed that it took O(n2) time to update each cell of the matrix. This
is because we selected the best of up to n possible points to place the divider,
each of which requires the sum of up to n possible terms. In fact, it is easy to
avoid the need to compute these sums by storing the n prefix sums pi =

∑i
k=1 sk,

since
∑j

k=i sk = pj − pi−1. This enables us to evaluate the recurrence in linear
time per cell, yielding an O(kn2) algorithm. These prefix sums also appear as
the initialization values for k = 1, and are shown in the dynamic programming
matrices of Figure 10.9.

By studying the recurrence relation and the dynamic programming matrices
of these two examples, you should be able to convince yourself that the final
value ofM [n, k] will be the cost of the largest range in the optimal partition. But
for most applications, we need the actual partition that does the job. Without
it, all we are left with is a coupon with a great price on an out-of-stock item.

The second matrix, D, is used to reconstruct the optimal partition. When-
ever we update the value of M [i, j], we record which divider position was used
to achieve this value. We reconstruct the path used to get the optimal solution
by working backwards from D[n, k], and add a divider at each specified position.
This backwards walking is best achieved by a recursive subroutine:



10.8. PARSING CONTEXT-FREE GRAMMARS 337

void reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k) {

if (k == 1) {

print_books(s, 1, n);

} else {

reconstruct_partition(s, d, d[n][k], k-1);

print_books(s, d[n][k]+1, n);

}

}

void print_books(int s[], int start, int end) {

int i; /* counter */

printf("\{");

for (i = start; i <= end; i++) {

printf(" %d ", s[i]);

}

printf("}\n");

}

10.8 Parsing Context-Free Grammars

Compilers identify whether a particular program is a legal expression in a par-
ticular programming language, and reward you with syntax errors if it is not.
This requires a precise description of the language syntax, typically given by a
context-free grammar, as shown in Figure 10.10(l). Each rule or production of
the grammar defines an interpretation for the named symbol on the left side of
the rule as a sequence of symbols on the right side of the rule. The right side
can be a combination of nonterminals (themselves defined by rules) or terminal
symbols defined simply as strings, such as the, a, cat, milk, and drank.

Parsing a given text sequence S as per a given context-free grammar G is the
algorithmic problem of constructing a parse tree of rule substitutions defining
S as a single nonterminal symbol of G. Figure 10.10(right) presents the parse
tree of a simple sentence using our sample grammar.

Parsing seemed like a horribly complicated subject when I took a compilers
course as a graduate student. But, more recently a friend easily explained it to
me over lunch. The difference is that I understand dynamic programming much
better now than when I was a student.

We assume that the sequence S has length n while the grammar G itself
is of constant size. This is fair, because the grammar defining a particular
programming language (say C or Java) is of fixed length regardless of the size
of the program we seek to compile.

Further, we assume that the definitions of each rule are in Chomsky normal
form, like the example of Figure 10.10. This means that the right sides of every
rule consists of either (a) exactly two nonterminals, for example, X → Y Z, or
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sentence ::= noun−phrase

                   verb−phrase

noun−phrase ::= article noun

verb−phrase ::= verb noun−phrase

article ::= the, a

cat, milk

drankverb ::= 

noun ::=

sentence

cat milkthe thedrank

article

article

noun

noun verb noun−phrase

verb−phrasenoun−phrase 

Figure 10.10: A context-free grammar (on left) with an associated parse tree
(right)

(b) exactly one terminal symbol, X → α. Any context-free grammar can be
easily and mechanically transformed into Chomsky normal form by repeatedly
shortening long right-hand sides at the cost of adding extra nonterminals and
productions. Thus, there is no loss of generality with this assumption.

So how can we efficiently parse S using a context-free grammar where each
interesting rule produces two nonterminals? The key observation is that the rule
applied at the root of the parse tree (say X → Y Z) splits S at some position i
such that the left part, S1 · · ·Si, must be generated by nonterminal Y , and the
right part (Si+1 · · ·Sn) generated by Z.

This suggests a dynamic programming algorithm, where we keep track of all
nonterminals generated by each contiguous subsequence of S. Define M [i, j,X]
to be a Boolean function that is true iff subsequence Si · · ·Sj is generated by
nonterminal X. This is true if there exists a production X → Y Z and breaking
point k between i and j such that the left part generates Y and the right part
Z. In other words, for i < j we have

M [i, j,X] =
∨

(X→Y Z)∈G

(
j−1∨

k=i

M [i, k, Y ] ∧M [k + 1, j, Z]

)

where ∨ denotes the logical or over all productions and split positions, and ∧
denotes the logical and of two Boolean values.

The terminal symbols define the boundary conditions of the recurrence. In
particular, M [i, i,X] is true iff there exists a production X → α such that
Si = α.

What is the complexity of this algorithm? The size of our state-space is
O(n2), as there are n(n + 1)/2 subsequences defined by (i, j) pairs with i ≥ j.
Multiplying this by the number of nonterminals, which is finite because the
grammar was defined to be of constant size, has no impact on the Big Oh.
Evaluating M [i, j,X] requires testing all intermediate values k where i ≤ k < j,
so it takes O(n) in the worst case to evaluate each of the O(n2) cells. This yields
an O(n3) or cubic-time algorithm for parsing.
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Stop and Think: Parsimonious Parserization

Problem: Programs often contain trivial syntax errors that prevent them from
compiling. Given a context-free grammar G and input sequence S, find the
smallest number of character substitutions you must make to S so that the
resulting sequence is accepted by G.

Solution: This problem seemed extremely difficult when I first encountered it.
But on reflection, it is just a very general version of edit distance, addressed
naturally by dynamic programming. Parsing first sounded difficult, too, but
fell to the same technique. Indeed, we can solve the combined problem by
generalizing the recurrence relation we used for simple parsing.

DefineM ′[i, j,X] to be an integer function that reports the minimum number
of changes to subsequence Si · · ·Sj so it can be generated by nonterminal X.
This symbol will be generated by some production X → Y Z. Some of the
changes to S may be to the left of the breaking point and some to the right,
but all we care about is minimizing the sum. In other words, for i < j we have

M ′[i, j,X] = min
(X→Y Z)∈G

(
j−1

min
k=i

M ′[i, k, Y ] +M ′[k + 1, j, Z]

)

The boundary conditions also change mildly. If there exists a production
X → α, the cost of matching at position i depends on the contents of Si. If
Si = α, M ′[i, i,X] = 0. Otherwise, we can pay one substitution to change Si

to α, so M ′[i, i,X] = 1 if Si �= α. If the grammar does not have a production
of the form X → α, there is no way to substitute a single character string into
something generating X, so M ′[i, i,X] = ∞ for all i.

Take-Home Lesson: For optimization problems on left-to-right objects, such
as characters in a string, elements of a permutation, points around a polygon,
or leaves in a search tree, dynamic programming likely leads to an efficient
algorithm to find the optimal solution.

10.9 Limitations of Dynamic Programming: TSP

Dynamic programming doesn’t always work. It is important to see why it can
fail, to help avoid traps leading to incorrect or inefficient algorithms.

Our algorithmic poster child will once again be the traveling salesman prob-
lem, where we seek the shortest tour visiting all the cities in a graph. We will
limit attention here to an interesting special case:

Problem: Longest Simple Path
Input: A weighted graph G = (V,E), with specified start and end vertices s and
t.
Output: What is the most expensive path from s to t that does not visit any
vertex more than once?
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This problem differs from TSP in two quite unimportant ways. First, it
asks for a path instead of a closed tour. This difference isn’t substantial: we
get a closed tour simply by including the edge (t, s). Second, it asks for the
most expensive path instead of the least expensive tour. Again this difference
isn’t very significant: it encourages us to visit as many vertices as possible
(ideally all), just as in TSP. The critical word in the problem statement is
simple, meaning we are not allowed to visit any vertex more than once.

For unweighted graphs (where each edge has cost 1), the longest possible
simple path from s to t is of weight n − 1. Finding such Hamiltonian paths (if
they exist) is an important graph problem, discussed in Section 19.5 (page 598).

10.9.1 When is Dynamic Programming Correct?

Dynamic programming algorithms are only as correct as the recurrence relations
they are based on. Suppose we define LP [i, j] to be the length of the longest
simple path from i to j. Note that the longest simple path from i to j has to
visit some vertex x right before reaching j. Thus, the last edge visited must be
of the form (x, j). This suggests the following recurrence relation to compute
the length of the longest path, where c(x, j) is the cost/weight of edge (x, j):

LP [i, j] = max
x∈V

(x,j)∈E

LP [i, x] + c(x, j)

This idea seems reasonable, but can you see the problem? I see at least two of
them.

First, this recurrence does nothing to enforce simplicity. How do we know
that vertex j has not appeared previously on the longest simple path from i to
x? If it did, then adding the edge (x, j) will create a cycle. To prevent this,
we must define a recursive function that explicitly remembers where we have
been. Perhaps we could define LP ′[i, j, k] to denote the length of the longest
path from i to j avoiding vertex k? This would be a step in the right direction,
but still won’t lead to a viable recurrence.

The second problem concerns evaluation order. What can you evaluate first?
Because there is no left-to-right or smaller-to-bigger ordering of the vertices on
the graph, it is not clear what the smaller subprograms are. Without such an
ordering, we get stuck in an infinite loop as soon as we try to do anything.

Dynamic programming can be applied to any problem that obeys the prin-
ciple of optimality. Roughly stated, this means that partial solutions can be
optimally extended given the state after the partial solution, instead of the
specifics of the partial solution itself. For example, in deciding whether to ex-
tend an approximate string matching by a substitution, insertion, or deletion,
we did not need to know the sequence of operations that had been performed
to date. In fact, there may be several different edit sequences that achieve a
cost of C on the first p characters of pattern P and t characters of string T .
Future decisions are made based on the consequences of previous decisions, not
the actual decisions themselves.
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Problems do not satisfy the principle of optimality when the specifics of the
operations matter, as opposed to just their cost. Such would be the case with
a special form of edit distance where we are not allowed to use combinations
of operations in certain particular orders. Properly formulated, however, many
combinatorial problems respect the principle of optimality.

10.9.2 When is Dynamic Programming Efficient?

The running time of any dynamic programming algorithm is a function of two
things: (1) the number of partial solutions we must keep track of, and (2) how
long it takes to evaluate each partial solution. The first issue—namely the size
of the state space—is usually the more pressing concern.

In all of the examples we have seen, the partial solutions are completely de-
scribed by specifying the possible stopping places in the input. This is because
the combinatorial objects being worked on (typically strings and numerical se-
quences) have an implicit order defined upon their elements. This order cannot
be scrambled without completely changing the problem. Once the order is fixed,
there are relatively few possible stopping places or states, so we get efficient al-
gorithms.

When the objects are not firmly ordered, however, we likely have an expo-
nential number of possible partial solutions. Suppose the state of our partial
longest simple path solution is the entire path P taken from the start to end
vertex. Thus, LP [i, j, Pij ] denotes the cost of longest simple path from i to j,
where Pij is the sequence of intermediate vertices between i and j on this path.
The following recurrence relation works correctly to compute this, where P + x
denotes appending x to the end of P :

LP [i, j, Pij ] = max
j 
∈Pix

(x,j)∈E
Pij=Pix+j

LP [i, x, Pix] + c(x, j)

This formulation is correct, but how efficient is it? The path Pij consists
of an ordered sequence of up to n − 3 vertices, so there can be up to (n − 3)!
such paths! Indeed, this algorithm is really using combinatorial search (like
backtracking) to construct all the possible intermediate paths. In fact, the max
here is somewhat misleading, as there can only be one value of Pij to construct
the state LP [i, j, Pij ].

We can do something better with this idea, however. Let LP ′[i, j, Sij ] denote
the longest simple path from i to j, where where Sij is the set of the intermediate
vertices on this path. Thus, if Sij = {a, b, c, i, j}, there are exactly six paths
consistent with Sij : iabcj, iacbj, ibacj, ibcaj, icabj, and icbaj. This state space
has at most 2n elements, and is thus smaller than the enumeration of all the
paths. Further, this function can be evaluated using the following recurrence
relation:

LP ′[i, j, Sij ] = max
j 
∈Six

(x,j)∈E
Sij=Six∪{j}

LP ′[i, x, Six] + c(x, j)
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where S ∪ {x} denotes unioning S with x.
The longest simple path from i to j can then be found by maximizing over

all possible intermediate vertex subsets:

LP [i, j] = max
S

LP ′[i, j, S]

There are only 2n subsets of n vertices, so this is a big improvement over
enumerating all n! tours. Indeed, this method can be used to solve TSPs for up
to thirty vertices or more, where n = 20 would be impossible using the O(n!)
algorithm. Still, dynamic programming proves most effective on well-ordered
objects.

Take-Home Lesson: Without an inherent left-to-right ordering on the ob-
jects, dynamic programming is usually doomed to require exponential space
and time.

10.10 War Story: What’s Past is Prolog

“But our heuristic works very, very well in practice.” My colleague was simul-
taneously boasting and crying for help.

Unification is the basic computational mechanism in logic programming lan-
guages like Prolog. A Prolog program consists of a set of rules, where each rule
has a head and an associated action whenever the rule head matches or unifies
with the current computation.

An execution of a Prolog program starts by specifying a goal, say p(a,X, Y ),
where a is a constant andX and Y are variables. The system then systematically
matches the head of the goal with the head of each of the rules that can be unified
with the goal. Unification means binding the variables with the constants, if it
is possible to match them. For the nonsense program below, p(X,Y, a) unifies
with either of the first two rules, since X and Y can be bound to match the
extra characters. The goal p(X,X, a) would only match the first rule, since the
variable bound to the first and second positions must be the same.

p(a, a, a) := h(a);
p(b, a, a) := h(a) ∗ h(b);
p(c, b, b) := h(b) + h(c);
p(d, b, b) := h(d) + h(b);

“In order to speed up unification, we want to preprocess the set of rule
heads so that we can quickly determine which rules match a given goal. We
must organize the rules in a trie data structure for fast unification.”

Tries are extremely useful data structures in working with strings, as dis-
cussed in Section 15.3 (page 448). Every leaf of the trie represents one string.
Each node on the path from root to leaf is labeled with exactly one character
of the string, with the ith node of the path corresponding to the string’s ith
character.
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Figure 10.11: Two different tries for the same set of Prolog rule heads, where
the trie on the right has four less edges.

“I agree. A trie is a natural way to represent your rule heads. Building a
trie on a set of strings of characters is straightforward: just insert the strings
starting from the root. So what is your problem?” I asked.

“The efficiency of our unification algorithm depends very much on minimiz-
ing the number of edges in the trie. Since we know all the rules in advance,
we have the freedom to reorder the character positions in the rules. Instead of
the root node always representing the first argument in the rule, we can choose
to have it represent the third argument. We would like to use this freedom to
build a minimum-size trie for a set of rules.”

He showed me the example in Figure 10.11. A trie constructed according to
the original string position order (1, 2, 3) uses a total of 12 edges. However, by
permuting the character order to (2, 3, 1) on both sides, we could obtain a trie
with only 8 edges.

“Interesting. . . ” I started to reply before he cut me off again.
“There’s one other constraint. We must keep the leaves of the trie ordered,

so that the leaves of the underlying tree go left to right in the same order as the
rules appear on the page. The order of rules in Prolog programs is very, very
important. If you change the order of the rules, the program returns different
results.”

Then came my mission.
“We have a greedy heuristic for building good, but not optimal, tries that

picks as the root the character position that minimizes the degree of the root.
In other words, it picks the character position that has the smallest number of
distinct characters in it. This heuristic works very, very well in practice. But
we need you to prove that finding the best trie is NP-complete so our paper is,
well, complete.”

I agreed to try to prove the hardness of the problem, and chased him from my
office. The problem did seem to involve some nontrivial combinatorial optimiza-
tion to build the minimal tree, but I couldn’t see how to factor the left-to-right
order of the rules into a hardness proof. In fact, I couldn’t think of any NP-
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complete problem that had such a left-to-right ordering constraint. After all, if
a given set of n rules contained a character position in common to all the rules,
this character position must be probed first in any minimum-size tree. Since the
rules were ordered, each node in the subtree must represent the root of a run of
consecutive rules. Thus, there were only

(
n
2

)
possible nodes to choose from for

this tree. . . .

Bingo! That settled it.

The next day I went back to my colleague and told him. “I can’t prove
that your problem is NP-complete. But how would you feel about an efficient
dynamic programming algorithm to find the best possible trie!” It was a pleasure
watching his frown change to a smile as the realization took hold. An efficient
algorithm to compute what you need is infinitely better than a proof saying you
can’t do it!

My recurrence looked something like this. Suppose that we are given n
ordered rule heads s1, . . . , sn, each with m arguments. Probing at the pth
position, 1 ≤ p ≤ m, partitions the rule heads into runs R1, . . . , Rr, where each
rule in a given run Rx = si, . . . , sj has the same character value as si[p]. The
rules in each run must be consecutive, so there are only

(
n
2

)
possible runs to

worry about. The cost of probing at position p is the cost of finishing the trees
formed by each created run, plus one edge per tree to link it to probe p:

C[i, j] =
m
min
p=1

(
r∑

k=1

(C[ik, jk] + 1)

)

A graduate student immediately set to work implementing this algorithm to
compare with their heuristic. On many inputs, the optimal and greedy algo-
rithms constructed the exact same trie. However, for some examples, dynamic
programming gave a 20% performance improvement over greedy—that is, 20%
better than very, very well in practice. The run time spent in doing the dynamic
programming was a bit larger than with greedy, but in compiler optimization
you are always happy to trade off a little extra compilation time for better exe-
cution time in the performance of your program. Is a 20% improvement worth
this effort? That depends upon the situation. How useful would you find a 20%
increase in your salary?

The fact that the rules had to remain ordered was the crucial property that
we exploited in the dynamic programming solution. Indeed, without it I was
able to prove that the problem was NP-complete with arbitrary rule orderings,
something we put in the paper to make it complete.

Take-Home Lesson: The global optimum (found perhaps using dynamic pro-
gramming) is often noticeably better than the solution found by typical heuris-
tics. How important this improvement is depends on your application, but it
can never hurt.
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Chapter Notes

Bellman [Bel58] is credited with inventing the technique of dynamic program-
ming. The edit distance algorithm is originally due to Wagner and Fischer
[WF74]. A faster algorithm for the book partition problem appears in Khanna
et al. [KMS97].

Techniques such as dynamic programming and backtracking can be used
to generate worst-case efficient (although still non-polynomial) algorithms for
many NP-complete problems. See Downey and Fellows [DF12] and Woeginger
[Woe03] for nice surveys of such techniques.

More details about the war stories in this chapter are available in published
papers. See Dawson et al. [DRR+95] for more on the Prolog trie minimization
problem. Our algorithm for phase-balancing power loads from Section 10.6
(page 331) is reported in Wang et al. [WSR13]. Two-dimensional bar codes,
presented in Section 10.4 (page 326), were developed largely through the efforts
of Theo Pavlidis and Ynjiun Wang at Stony Brook [PSW92].

The dynamic programming algorithm presented for parsing is known as
the CKY algorithm after its three independent inventors (Cocke, Kasami, and
Younger). See [You67]. The generalization of parsing to edit distance is due to
Aho and Peterson [AP72].

10.11 Exercises

Elementary Recurrences

10-1. [3] Up to k steps in a single bound! A child is running up a staircase with n
steps and can hop between 1 and k steps at a time. Design an algorithm to
count how many possible ways the child can run up the stairs, as a function of
n and k. What is the running time of your algorithm?

10-2. [3] Imagine you are a professional thief who plans to rob houses along a street
of n homes. You know the loot at house i is worth mi, for 1 ≤ i ≤ n, but you
cannot rob neighboring houses because their connected security systems will
automatically contact the police if two adjacent houses are broken into. Give an
efficient algorithm to determine the maximum amount of money you can steal
without alerting the police.

10-3. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-
point free throws. Give an algorithm that computes how many possible mixes
(1s,2s,3s) of scoring add up to a given n. For n = 5 there are four possible
solutions: (5, 0, 0), (2, 0, 1), (1, 2, 0), and (0, 1, 1).

10-4. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-point
free throws. Give an algorithm that computes how many possible scoring se-
quences add up to a given n. For n = 5 there are thirteen possible sequences,
including 1-2-1-1, 3-2, and 1-1-1-1-1.

10-5. [5] Given an s × t grid filled with non-negative numbers, find a path from top
left to bottom right that minimizes the sum of all numbers along its path. You
can only move either down or right at any point in time.
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(a) Give a solution based on Dijkstra’s algorithm. What is its time complexity
as a function of s and t?

(b) Give a solution based on dynamic programming. What is its time complexity
as a function of s and t?

Edit Distance

10-6. [3] Typists often make transposition errors exchanging neighboring characters,
such as typing “setve” for “steve.” This requires two substitutions to fix under
the conventional definition of edit distance.

Incorporate a swap operation into our edit distance function, so that such neigh-
boring transposition errors can be fixed at the cost of one operation.

10-7. [4] Suppose you are given three strings of characters: X, Y , and Z, where
|X| = n, |Y | = m, and |Z| = n + m. Z is said to be a shuffle of X and Y iff
Z can be formed by interleaving the characters from X and Y in a way that
maintains the left-to-right ordering of the characters from each string.

(a) Show that cchocohilaptes is a shuffle of chocolate and chips, but chocochi-
latspe is not.

(b) Give an efficient dynamic programming algorithm that determines whether
Z is a shuffle of X and Y . (Hint: the values of the dynamic programming
matrix you construct should be Boolean, not numeric.)

10-8. [4] The longest common substring (not subsequence) of two strings X and Y is
the longest string that appears as a run of consecutive letters in both strings.
For example, the longest common substring of photograph and tomography is
ograph.

(a) Let n = |X| and m = |Y |. Give a Θ(nm) dynamic programming algo-
rithm for longest common substring based on the longest common subse-
quence/edit distance algorithm.

(b) Give a simpler Θ(nm) algorithm that does not rely on dynamic program-
ming.

10-9. [6] The longest common subsequence (LCS) of two sequences T and P is the
longest sequence L such that L is a subsequence of both T and P . The shortest
common supersequence (SCS) of T and P is the smallest sequence L such that
both T and P are a subsequence of L.

(a) Give efficient algorithms to find the LCS and SCS of two given sequences.

(b) Let d(T, P ) be the minimum edit distance between T and P when no
substitutions are allowed (i.e., the only changes are character insertion
and deletion). Prove that d(T, P ) = |SCS(T, P )| − |LCS(T, P )| where
|SCS(T, P )| (|LCS(T, P )|) is the size of the shortest SCS (longest LCS)
of T and P .

10-10. [5] Suppose you are given n poker chips stacked in two stacks, where the edges
of all chips can be seen. Each chip is one of three colors. A turn consists of
choosing a color and removing all chips of that color from the tops of the stacks.
The goal is to minimize the number of turns until the chips are gone.

For example, consider the stacks (RRGG,GBBB). Playing red, green, and
then blue suffices to clear the stacks in three moves. Give an O(n2) dynamic
programming algorithm to find the best strategy for a given pair of chip piles.
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Greedy Algorithms

10-11. [4] Let P1, P2, . . . , Pn be n programs to be stored on a disk with capacity D
megabytes. Program Pi requires si megabytes of storage. We cannot store them
all because D <

∑n
i=1 si

(a) Does a greedy algorithm that selects programs in order of non-decreasing
si maximize the number of programs held on the disk? Prove or give a
counter-example.

(b) Does a greedy algorithm that selects programs in order of non-increasing
si use as much of the capacity of the disk as possible? Prove or give a
counter-example.

10-12. [5] Coins in the United States are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1, . . . , dk} units. We seek an algorithm to make change of n units using the
minimum number of this country’s coins.

(a) The greedy algorithm repeatedly selects the biggest coin no bigger than
the amount to be changed and repeats until it is zero. Show that the greedy
algorithm does not always use the minimum number of coins in a country whose
denominations are {1, 6, 10}.
(b) Give an efficient algorithm that correctly determines the minimum number
of coins needed to make change of n units using denominations {d1, . . . , dk}.
Analyze its running time.

10-13. [5] In the United States, coins are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1, . . . , dk} units. We want to count how many distinct ways C(n) there are
to make change of n units. For example, in a country whose denominations are
{1, 6, 10}, C(5) = 1, C(6) to C(9) = 2, C(10) = 3, and C(12) = 4.

(a) How many ways are there to make change of 20 units from {1, 6, 10}?

(b) Give an efficient algorithm to compute C(n), and analyze its complex-
ity. (Hint: think in terms of computing C(n, d), the number of ways to
make change of n units with highest denomination d. Be careful to avoid
overcounting.)

10-14. [6] In the single-processor scheduling problem, we are given a set of n jobs J .
Each job i has a processing time ti, and a deadline di. A feasible schedule
is a permutation of the jobs such that when the jobs are performed in that
order, every job is finished before its deadline. The greedy algorithm for single-
processor scheduling selects the job with the earliest deadline first.

Show that if a feasible schedule exists, then the schedule produced by this greedy
algorithm is feasible.
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Number Problems

10-15. [3] You are given a rod of length n inches and a table of prices obtainable for
rod-pieces of size n or smaller. Give an efficient algorithm to find the maximum
value obtainable by cutting up the rod and selling the pieces. For example, if
n = 8 and the values of different pieces are:

length 1 2 3 4 5 6 7 8

price 1 5 8 9 10 17 17 20

then the maximum obtainable value is 22, by cutting into pieces of lengths 2
and 6.

10-16. [5] Your boss has written an arithmetic expression of n terms to compute your
annual bonus, but permits you to parenthesize it however you wish. Give an
efficient algorithm to design the parenthesization to maximize the value. For
the expression:

6 + 2× 0− 4

there exist parenthesizations with values ranging from −32 to 2.

10-17. [5] Given a positive integer n, find an efficient algorithm to compute the smallest
number of perfect squares (e.g. 1, 4, 9, 16, . . .) that sum to n. What is the running
time of your algorithm?

10-18. [5] Given an array A of n integers, find an efficient algorithm to compute the
largest sum of a continuous run. For A = [−3, 2, 7,−3, 4,−2, 0, 1], the largest
such sum is 10, from the second through fifth positions.

10-19. [5] Two drivers have to divide up m suitcases between them, where the weight
of the ith suitcase is wi. Give an efficient algorithm to divide up the loads so
the two drivers carry equal weight, if possible.

10-20. [6] The knapsack problem is as follows: given a set of integers S = {s1, s2, . . . , sn},
and a given target number T , find a subset of S that adds up exactly to T . For
example, within S = {1, 2, 5, 9, 10} there is a subset that adds up to T = 22 but
not T = 23.

Give a dynamic programming algorithm for knapsack that runs in O(nT ) time.

10-21. [6] The integer partition takes a set of positive integers S = {s1, . . . , sn} and
seeks a subset I ⊂ S such that

∑

i∈I

si =
∑

i/∈I

si

Let
∑

i∈S si = M . Give an O(nM) dynamic programming algorithm to solve
the integer partition problem.

10-22. [5] Assume that there are n numbers (some possibly negative) on a circle, and
we wish to find the maximum contiguous sum along an arc of the circle. Give
an efficient algorithm for solving this problem.

10-23. [5] A certain string processing language allows the programmer to break a string
into two pieces. It costs n units of time to break a string of n characters into
two pieces, since this involves copying the old string. A programmer wants to
break a string into many pieces, and the order in which the breaks are made can
affect the total amount of time used. For example, suppose we wish to break
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a 20-character string after characters 3, 8, and 10. If the breaks are made in
left-to-right order, then the first break costs 20 units of time, the second break
costs 17 units of time, and the third break costs 12 units of time, for a total of
49 units. If the breaks are made in right-to-left order, the first break costs 20
units of time, the second break costs 10 units of time, and the third break costs
8 units of time, for a total of only 38 units.

Give a dynamic programming algorithm that takes a list of character positions
after which to break and determines the cheapest break cost in O(n3) time.

10-24. [5] Consider the following data compression technique. We have a table of m
text strings, each at most k in length. We want to encode a data string D of
length n using as few text strings as possible. For example, if our table contains
(a,ba,abab,b) and the data string is bababbaababa, the best way to encode it is
(b,abab,ba,abab,a)—a total of five code words. Give an O(nmk) algorithm to
find the length of the best encoding. You may assume that every string has at
least one encoding in terms of the table.

10-25. [5] The traditional world chess championship is a match of 24 games. The
current champion retains the title in case the match is a tie. Each game ends
in a win, loss, or draw (tie) where wins count as 1, losses as 0, and draws as
1/2. The players take turns playing white and black. White plays first and so
has an advantage. The champion plays white in the first game. The champ has
probabilities ww, wd, and wl of winning, drawing, and losing playing white, and
has probabilities bw, bd, and bl of winning, drawing, and losing playing black.

(a) Write a recurrence for the probability that the champion retains the title.
Assume that there are g games left to play in the match and that the
champion needs to get i points (which may be a multiple of 1/2).

(b) Based on your recurrence, give a dynamic programming algorithm to cal-
culate the champion’s probability of retaining the title.

(c) Analyze its running time for an n game match.

10-26. [8] Eggs break when dropped from great enough height. Specifically, there must
be a floor f in any sufficiently tall building such that an egg dropped from the
fth floor breaks, but one dropped from the (f − 1)st floor will not. If the egg
always breaks, then f = 1. If the egg never breaks, then f = n+ 1.

You seek to find the critical floor f using an n-floor building. The only operation
you can perform is to drop an egg off some floor and see what happens. You
start out with k eggs, and seek to make as few drops as possible. Broken eggs
cannot be reused. Let E(k, n) be the minimum number of egg drops that will
always suffice.

(a) Show that E(1, n) = n.

(b) Show that E(k, n) = Θ(n
1
k ).

(c) Find a recurrence for E(k, n). What is the running time of the dynamic
program to find E(k, n)?
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Graph Problems

10-27. [4] Consider a city whose streets are defined by an X×Y grid. We are interested
in walking from the upper left-hand corner of the grid to the lower right-hand
corner.

Unfortunately, the city has bad neighborhoods, whose intersections we do not
want to walk in. We are given an X × Y matrix bad, where bad[i,j] = “yes” iff
the intersection between streets i and j is in a neighborhood to avoid.

(a) Give an example of the contents of bad such that there is no path across the
grid avoiding bad neighborhoods.

(b) Give an O(XY ) algorithm to find a path across the grid that avoids bad
neighborhoods.

(c) Give an O(XY ) algorithm to find the shortest path across the grid that
avoids bad neighborhoods. You may assume that all blocks are of equal length.
For partial credit, give an O(X2Y 2) algorithm.

10-28. [5] Consider the same situation as the previous problem. We have a city whose
streets are defined by an X × Y grid. We are interested in walking from the
upper left-hand corner of the grid to the lower right-hand corner. We are given
an X ×Y matrix bad, where bad[i,j] = “yes” iff the intersection between streets
i and j is somewhere we want to avoid.

If there were no bad neighborhoods to contend with, the shortest path across
the grid would have length (X − 1) + (Y − 1) blocks, and indeed there would
be many such paths across the grid. Each path would consist of only rightward
and downward moves.

Give an algorithm that takes the array bad and returns the number of safe paths
of length X + Y − 2. For full credit, your algorithm must run in O(XY ).

10-29. [5] You seek to create a stack out of n boxes, where box i has width wi, height
hi, and depth di. The boxes cannot be rotated, and can only be stacked on
top of one another when each box in the stack is strictly larger than the box
above it in width, height, and depth. Give an efficient algorithm to construct
the tallest possible stack, where the height is the sum of the heights of each box
in the stack.

Design Problems

10-30. [4] Consider the problem of storing n books on shelves in a library. The order
of the books is fixed by the cataloging system and so cannot be rearranged.
Therefore, we can speak of a book bi, where 1 ≤ i ≤ n, that has a thickness ti
and height hi. The length of each bookshelf at this library is L.

Suppose all the books have the same height h (i.e., h = hi for all i) and the
shelves are all separated by a distance greater than h, so any book fits on any
shelf. The greedy algorithm would fill the first shelf with as many books as
we can until we get the smallest i such that bi does not fit, and then repeat
with subsequent shelves. Show that the greedy algorithm always finds the book
placement that uses the minimum number of shelves, and analyze its time com-
plexity.

10-31. [6] This is a generalization of the previous problem. Now consider the case where
the height of the books is not constant, but we have the freedom to adjust the
height of each shelf to that of the tallest book on the shelf. Here the cost of a
particular layout is the sum of the heights of the largest book on each shelf.
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• Give an example to show that the greedy algorithm of stuffing each shelf
as full as possible does not always give the minimum overall height.

• Give an algorithm for this problem, and analyze its time complexity. (Hint:
use dynamic programming.)

10-32. [5] Consider a linear keyboard of lowercase letters and numbers, where the left-
most 26 keys are the letters A–Z in order, followed by the digits 0–9 in order,
followed by the 30 punctuation characters in a prescribed order, and ended on a
blank. Assume you start with your left index finger on the “A” and your right
index finger on the blank.

Give a dynamic programming algorithm that finds the most efficient way to type
a given text of length n, in terms of minimizing total movement of the fingers
involved. For the text ABABABAB . . . ABAB, this would involve shifting both
fingers all the way to the left side of the keyboard. Analyze the complexity of
your algorithm as a function of n and k, the number of keys on the keyboard.

10-33. [5] You have come back from the future with an array G, where G[i] tells you
the price of Google stock i days from now, for 1 ≤ i ≤ n. You seek to use
this information to maximize your profit, but are only permitted to complete at
most one transaction (i.e. either buy one or sell one share of the stock) per day.
Design an efficient algorithm to construct the buy–sell sequence to maximize
your profit. Note that you cannot sell a share unless you currently own one.

10-34. [8] You are given a string of n characters S = s1 . . . sn, which you believe to
be a compressed text document in which all spaces have been removed, like
itwasthebestoftimes.

(a) You seek to reconstruct the document using a dictionary, which is available
in the form of a Boolean function dict(w), where dict(w) is true iff string w is
a valid word in the language. Give an O(n2) algorithm to determine whether
string S can be reconstituted as a sequence of valid words, assuming calls to
dict(w) take unit time.

(b) Now assume you are given the dictionary as a set of m words each of length
at most l. Give an efficient algorithm to determine whether string S can be
reconstituted as a sequence of valid words, and its running time.

10-35. [8] Consider the following two-player game, where you seek to get the biggest
score. You start with an n-digit integer N . With each move, you get to take
either the first digit or the last digit from what is left of N , and add that to
your score, with your opponent then doing the same thing to the now smaller
number. You continue taking turns removing digits until none are left. Give an
efficient algorithm that finds the best possible score that the first player can get
for a given digit string N , assuming the second player is as smart as can be.

10-36. [6] Given an array of n real numbers, consider the problem of finding the max-
imum sum in any contiguous subarray of the input. For example, in the array

[31,−41, 59, 26,−53, 58, 97,−93,−23, 84]

the maximum is achieved by summing the third through seventh elements, where
59+26+(−53)+58+97 = 187. When all numbers are positive, the entire array
is the answer, while when all numbers are negative, the empty array maximizes
the total at 0.
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• Give a simple and clear Θ(n2)-time algorithm to find the maximum con-
tiguous subarray.

• Now give a Θ(n)-time dynamic programming algorithm for this problem.
To get partial credit, you may instead give a correct O(n log n) divide-and-
conquer algorithm.

10-37. [7] Consider the problem of examining a string x = x1x2 . . . xn from an alphabet
of k symbols, and a multiplication table over this alphabet. Decide whether or
not it is possible to parenthesize x in such a way that the value of the resulting
expression is a, where a belongs to the alphabet. The multiplication table is
neither commutative or associative, so the order of multiplication matters.

a b c

a a c c
b a a b
c c c c

For example, consider the above multiplication table and the string bbbba. Paren-
thesizing it (b(bb))(ba) gives a, but ((((bb)b)b)a) gives c.

Give an algorithm, with time polynomial in n and k, to decide whether such
a parenthesization exists for a given string, multiplication table, and goal sym-
bol.

10-38. [6] Let α and β be constants. Assume that it costs α to go left in a binary
search tree, and β to go right. Devise an algorithm that builds a tree with
optimal expected query cost, given keys k1, . . . , kn and the probabilities that
each will be searched p1, . . . , pn.

Interview Problems

10-39. [5] Given a set of coin denominations, find the minimum number of coins to
make a certain amount of change.

10-40. [5] You are given an array of n numbers, each of which may be positive, negative,
or zero. Give an efficient algorithm to identify the index positions i and j to
obtain the maximum sum of the ith through jth numbers.

10-41. [7]Observe that when you cut a character out of a magazine, the character on the
reverse side of the page is also removed. Give an algorithm to determine whether
you can generate a given string by pasting cutouts from a given magazine.
Assume that you are given a function that will identify the character and its
position on the reverse side of the page for any given character position.

LeetCode

10-1. https://leetcode.com/problems/binary-tree-cameras/

10-2. https://leetcode.com/problems/edit-distance/

10-3. https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/

https://leetcode.com/problems/binary-tree-cameras/
https://leetcode.com/problems/edit-distance/
https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/
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HackerRank

10-1. https://www.hackerrank.com/challenges/ctci-recursive-staircase/

10-2. https://www.hackerrank.com/challenges/coin-change/

10-3. https://www.hackerrank.com/challenges/longest-increasing-subsequent/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

10-1. “Is Bigger Smarter?”—Chapter 11, problem 10131.

10-2. “Weights and Measures”—Chapter 11, problem 10154.

10-3. “Unidirectional TSP”—Chapter 11, problem 116.

10-4. “Cutting Sticks”—Chapter 11, problem 10003.

10-5. “Ferry Loading”—Chapter 11, problem 10261.

https://www.hackerrank.com/challenges/ctci-recursive-staircase/
https://www.hackerrank.com/challenges/coin-change/
https://www.hackerrank.com/challenges/longest-increasing-subsequent/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 11

NP-Completeness

I will now introduce techniques for proving that no efficient algorithm can exist
for a given problem. The practical reader is probably squirming at the notion
of proving anything, and will be particularly alarmed at the idea of investing
time to prove that something does not exist. Why are you better off knowing
that something you don’t know how to do in fact can’t be done at all?

The truth is that the theory of NP-completeness is an immensely useful tool
for the algorithm designer, even though all it provides are negative results. The
theory of NP-completeness enables us to focus our efforts more productively,
by revealing when the search for an efficient algorithm is doomed to failure.
Whenever one tries and fails to show a problem is hard, that suggests there
may well be an efficient algorithm to solve it. Two war stories in Chapter 10
described happy results springing from bogus claims of hardness.

The theory of NP-completeness also enables us to identify which proper-
ties make a particular problem hard. This can provide direction to model it in
different ways, or exploit more benevolent characteristics of the problem. De-
veloping a sense for which problems are hard is an important skill for algorithm
designers, and only comes from hands-on experience with proving hardness.

The fundamental concept we will use here is reduction, showing that two
problems are really equivalent. We illustrate this idea through a series of re-
ductions, each of which either yields an efficient algorithm for one problem or
an argument that no such algorithm can exist for the other. We also provide a
brief introduction to the complexity-theoretic aspects of NP-completeness, one
of the most fundamental notions in computer science.

11.1 Problems and Reductions

We have encountered several problems in this book where we couldn’t find any
efficient algorithm. The theory of NP-completeness provides the tools needed
to show that these problems are all, on some level, really the same problem.

The key idea to demonstrating the hardness of a problem is that of a re-
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duction, or translation, between two problems. The following allegory of NP-
completeness may help explain the idea. A bunch of kids take turns fighting
each other in the school yard to prove how “tough” they are. Adam beats
up Bill, who then beats up Dwayne. So who if any among them qualifies as
“tough?” The truth is that there is no way to know without an external stan-
dard. If I tell you that the action takes place in a kindergarten school yard,
then the fight results don’t mean very much. But suppose instead that I tell
you Dwayne was in fact Dwayne “The Rock” Johnson, certified tough guy. You
have to be impressed—both Adam and Bill must be at least as tough as he is.
In this telling, each fight represents a reduction, and Dwayne Johnson takes on
the role of satisfiability—a certifiably hard problem.

Reductions are algorithms that convert one problem into another. To de-
scribe them, we must be somewhat rigorous in our definitions. An algorithmic
problem is a general question, with parameters for input and conditions on what
constitutes a satisfactory answer or solution. An instance is a problem with the
input parameters specified. The difference can be made clear by an example:

Problem: The Traveling Salesman Problem (TSP)

Input: A weighted graph G.

Output: Which tour (v1, v2, ..., vn) minimizes
∑n−1

i=1 d[vi, vi+1] + d[vn, v1]?

Any weighted graph defines an instance of TSP. Each particular instance has
at least one minimum cost tour. The general traveling salesman problem asks
for an algorithm to find the optimal tour for any possible instance.

11.1.1 The Key Idea

Now consider two algorithmic problems, called Bandersnatch and Bo-billy. Sup-
pose that I gave you the following reduction/algorithm to solve the Bandersnatch
problem:

Bandersnatch(G)
Translate the input G to an instance Y of the Bo-billy problem.
Call the subroutine Bo-billy to solve instance Y .
Return the answer of Bo-billy(Y ) as the answer to Bandersnatch(G).

This algorithm will correctly solve the Bandersnatch problem provided that
the translation to Bo-billy always preserves the correctness of the answer. In
other words, provided that the translation has the property that for any instance
G,

Bandersnatch(G) = Bo-billy(Y )

A translation of instances from one type of problem to instances of another such
that the answers are preserved is what we mean by a reduction.

Now suppose this reduction translates instance G to Y in O(P (n)) time.
There are two possible implications:
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• If my Bo-billy subroutine ran in O(P ′(n)), this yields an algorithm to
solve the Bandersnatch problem in O(P (n) + P ′(n)), by translating the
problem and then executing the Bo-billy subroutine to solve it.

• If I know that Ω(P ′(n)) is a lower bound on computing Bandersnatch,
meaning there definitely cannot exist a faster algorithm to solve it, then
Ω(P ′(n) − P (n)) must be a lower bound to compute Bo-billy. Why? If I
could solve Bo-billy faster than this, the above reduction would violate my
lower bound on solving Bandersnatch. Because this is impossible, there
can be no way to solve Bo-billy any faster than claimed.

Essentially, this reduction shows that Bo-billy is no easier than Bander-
snatch. Therefore, if Bandersnatch is hard this means Bo-billy must also be
hard. We will illustrate this point by giving a variety of problem reductions in
this chapter.

Take-Home Lesson: Reductions are a way to show that two problems are es-
sentially identical. A fast algorithm (or the lack of one) for one of the problems
implies a fast algorithm (or the lack of one) for the other.

11.1.2 Decision Problems

Reductions translate between problems so that their answers are identical in
every problem instance. Problems differ in the range or type of possible answers.
The traveling salesman problem returns a permutation of vertices as the answer,
while other types of problems may return strings or numbers as answers, perhaps
restricted to positive numbers or integers.

The simplest interesting class of problems have answers restricted to true
and false. These are called decision problems. It proves convenient to re-
duce/translate answers between decision problems because both only allow true
and false as possible answers.

Fortunately, most interesting optimization problems can be phrased as de-
cision problems that capture the essence of the computation. For example, the
traveling salesman decision problem is defined as:

Problem: The Traveling Salesman Decision Problem (TSDP)
Input: A weighted graph G and integer k.
Output: Does there exist a TSP tour with cost ≤ k?

This decision version captures the heart of the traveling salesman problem,
in that if you had a fast algorithm for the decision problem, you could do a
binary search with different values of k and quickly home in on the cost of the
optimal TSP solution. With just a bit more cleverness, you could reconstruct
the actual tour permutation using a fast solution to the decision problem.

From now on I will generally talk about decision problems, because they
prove easier to work with and still capture the power of the theory of NP-
completeness.
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11.2 Reductions for Algorithms

Reductions are an honorable way to generate new algorithms from old ones.
Whenever we can translate the input for a problem we want to solve into input
for a problem we know how to solve, we can compose the translation and the
solution into an algorithm to deal with our problem.

In this section, we look at several reductions that lead to efficient algorithms.
To solve problem A, we translate/reduce the A instance to an instance of B,
and then solve this instance using an efficient algorithm for problem B. The
overall running time is the time needed to perform the reduction plus that to
solve the B instance.

11.2.1 Closest Pair

The closest-pair problem asks to find the pair of numbers within a set S that
have the smallest difference between them. For example, the closest pair in
S = {10, 4, 8, 3, 12} is (3, 4). We can make it a decision problem by asking if
this value is less than some threshold:

Input: A set S of n numbers, and threshold t.

Output: Is there a pair si, sj ∈ S such that |si − sj | ≤ t?

Finding the closest pair is a simple application of sorting, since the closest
pair must be neighbors after sorting. This gives the following algorithm:

CloseEnoughPair(S,t)
Sort S.
Is min1≤i<n |si+1 − si| ≤ t?

There are several things to note about this simple reduction:

• The decision version captured what is interesting about the general prob-
lem, meaning it is no easier than finding the actual closest pair.

• The complexity of this algorithm depends upon the complexity of sorting.
Use an O(n log n) algorithm to sort, and it takes O(n log n+n) to find the
closest pair.

• This reduction and the fact that there is an Ω(n log n) lower bound on sort-
ing does not prove that the close-enough pair problem must take Ω(n log n)
time in the worst case. Perhaps this is just a slow algorithm for close-
enough pair, and there is a faster approach that avoids sorting?

• On the other hand, if we knew that a close-enough pair required Ω(n log n)
time to solve in the worst case, this reduction would suffice to prove that
sorting couldn’t be solved any faster than Ω(n log n) because that would
imply a faster algorithm for close-enough pair.
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11.2.2 Longest Increasing Subsequence

Recall Chapter 10, where dynamic programming was used to solve a variety of
problems, including string edit distance. To review:

Problem: Edit Distance

Input: Integer or character sequences S and T ; penalty costs for each insertion
(cins), deletion (cdel), and substitution (csub).

Output: What is the cost of the least expensive sequence of operations that
transforms S to T?

It was shown that many other problems can be solved using edit distance.
But these algorithms can often be viewed as reductions. Consider:

Problem: Longest Increasing Subsequence (LIS)

Input: An integer or character sequence S.

Output: What is the length of the longest sequence of positions p1, . . . , pm such
that pi < pi+1 and Spi < Spi+1?

In Section 10.3 (page 324) I demonstrated that longest increasing subse-
quence can be solved as a special case of edit distance:

LongestIncreasingSubsequence(S)
T = Sort(S)
cins = cdel = 1
csub = ∞
Return (|S|− EditDistance(S,T ,cins,cdel,csub)/2)

Why does this work? By constructing the second sequence T as the elements
of S sorted in increasing order, we ensure that any common subsequence must
be an increasing subsequence. If we are never allowed to do any substitutions
(because csub = ∞), the optimal alignment of S and T finds the longest common
subsequence between them and removes everything else. For example, trans-
forming S = cab to abc costs two, namely inserting and deleting the unmatched
c. The length of S minus half this cost gives the length of the LIS.

What are the implications of this reduction? The reduction takes O(n log n)
time because of the cost of sorting. Because edit distance takes time O(|S| · |T |),
this gives a quadratic algorithm to find the longest increasing subsequence of
S. In fact, there exists a faster O(n log n) algorithm for LIS using clever data
structures, while edit distance is known to be quadratic in the worst case. Hence,
our reduction gives us a simple but not optimal polynomial-time algorithm.

11.2.3 Least Common Multiple

The least common multiple (lcm) and greatest common divisor (gcd) problems
arise often in working with integers. We say b divides a (written b | a) if there
exists an integer d such that a = bd. Then:
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Problem: Least Common Multiple (lcm)
Input: Two positive integers x and y.
Output: Return the smallest positive integer m such that m is a multiple of x
and also a multiple of y.

Problem: Greatest Common Divisor (gcd)
Input: Two positive integers x and y.
Output: Return the largest integer d such that d divides both x and y.

For example, lcm(24, 36) = 72 and gcd(24, 36) = 12. Both problems can
be solved easily after reducing x and y to their prime factorizations, but no
efficient algorithm is known for factoring integers (see Section 16.8 (page 490)).
Fortunately, Euclid’s algorithm gives an efficient way to solve greatest common
divisor without factoring. It is a recursive algorithm that rests on two observa-
tions. First,

if (b | a), then gcd(a, b) = b.

This should be pretty clear. if b divides a, then a = bk for some integer k, and
thus gcd(bk, b) = b. Second,

If a = bt+ r for integers t and r, then gcd(a, b) = gcd(b, r).

Then, for a ≥ b, Euclid’s algorithm repeatedly replaces (a, b) by (b, a mod b)
until b = 0. Its worst-case running time is O(log b).

Since x · y is a multiple of both x and y, lcm(x, y) ≤ xy. The only way that
there can be a smaller common multiple is if there is some non-trivial factor
shared between x and y. This observation, coupled with Euclid’s algorithm,
provides an efficient way to compute least common multiple, namely:

LeastCommonMultiple(x,y)
Return (xy/gcd(x, y)).

This reduction gives us a nice way to reuse Euclid’s efforts for lcm.

11.2.4 Convex Hull (*)

My final example of a reduction from an “easy” problem (meaning one that
can be solved in polynomial time) involves finding convex hulls of point sets.
A polygon is convex if the straight line segment drawn between any two points
inside the polygon P lies completely within the polygon. This is the case when
P contains no notches or concavities, so convex polygons are nicely shaped.
The convex hull provides a very useful way to provide structure to a point set.
Applications are presented in Section 20.2 (page 626).

Problem: Convex Hull
Input: A set S of n points in the plane.
Output: Find the smallest convex polygon containing all the points of S.
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Figure 11.1: Reducing sorting to convex hull by mapping points to a parabola

I will now show how to transform an instance of sorting (say {13, 5, 11, 17})
to an instance of the convex hull problem. This means we must translate each
number to a point in the plane. We do so by mapping x to (x, x2). Why? This
maps each integer to a point on the parabola y = x2, as shown in Figure 11.1.
Since the region above this parabola is convex, every point must be on the convex
hull. Furthermore, since neighboring points on the convex hull have neighboring
x values, the convex hull returns the points sorted by the x-coordinate—that is,
the original numbers. Creating and reading off these points takes O(n) time:

Sort(S)
For each i ∈ S, create point (i, i2).
Call subroutine convex-hull on this point set.
From the left-most point in the hull,

read off the points from left to right.

What does this mean? Recall the sorting lower bound of Ω(n log n). If we
could compute convex hull in better than n log n, this reduction would imply
that we could sort faster than Ω(n log n), which violates our lower bound. Thus,
convex hull must take Ω(n log n) as well! Observe that any O(n log n) convex hull
algorithm also gives us a complicated but correct O(n log n) sorting algorithm
when coupled with this reduction.

11.3 Elementary Hardness Reductions

The reductions in Section 11.2 (page 358) demonstrate transformations between
pairs of problems for which efficient algorithms exist. However, we are mainly
concerned with using reductions to prove hardness, by showing that Bo-billy is
at least as hard as Bandersnatch.

For now, I want you to trust me when I say that Hamiltonian cycle and
vertex cover are hard problems. The entire picture (presented in Figure 11.2)
will become clear by the end of the chapter.
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Figure 11.2: A portion of the reduction tree for NP-complete problems. Blue
lines denote the reductions presented in this chapter.

11.3.1 Hamiltonian Cycle

The Hamiltonian cycle problem is one of the most famous in graph theory. It
seeks a tour that visits each vertex of a given graph exactly once. Hamiltonian
cycle has a long history and many applications, as discussed in Section 19.5.
Formally, it is defined as:

Problem: Hamiltonian Cycle

Input: An unweighted graph G.

Output: Does there exist a simple tour that visits each vertex of G without
repetition?

Hamiltonian cycle has some obvious similarity to the traveling salesman
problem. Both problems seek a tour that visits each vertex exactly once. There
are also differences between the two problems. TSP works on weighted graphs,
while Hamiltonian cycle works on unweighted graphs. The following reduction
from Hamiltonian cycle to traveling salesman shows that the similarities are
greater than the differences:

HamiltonianCycle(G = (V,E))
Construct a complete weighted graph G′ = (V ′, E′) where V ′ = V .
n = |V |
for i = 1 to n do

for j = 1 to n do
if (i, j) ∈ E then w(i, j) = 1 else w(i, j) = 2

Return the answer to Traveling-Salesman-Decision-Problem(G′, n).
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Figure 11.3: Graphs with (left) and without (right) a Hamiltonian cycle.

The actual reduction is quite simple, with the translation from unweighted
to weighted graph designed to ensure that the answers of the two problems will
be identical. If the graph G has a Hamiltonian cycle (v1, . . . , vn), then this very
same tour will correspond to n edges in E′ each of weight 1: this defines a TSP
tour in G′ of weight exactly n. If G does not have a Hamiltonian cycle, then
every tour in G′ must contain at least one weight 2 edge, so there cannot be a
TSP tour of weight n.

This reduction is truth preserving and fast, running in Θ(n2) time. A fast
algorithm for TSP would imply a fast algorithm for Hamiltonian cycle, while a
hardness proof for Hamiltonian cycle would imply that TSP is hard. Since the
latter is the case, this reduction shows that TSP is hard, at least as hard as
Hamiltonian cycle.

11.3.2 Independent Set and Vertex Cover

The vertex cover problem, discussed more thoroughly in Section 19.3 (page 591),
asks for a small set of vertices that touch every edge in a graph. More formally:

Problem: Vertex Cover

Input: A graph G = (V,E) and integer k ≤ |V |.
Output: Is there a subset S of at most k vertices such that every e ∈ E contains
at least one vertex in S?

It is trivial to find a vertex cover of a graph: consider the cover that consists
of all the vertices. More tricky is to cover the edges using as small a set of
vertices as possible. For the graph in Figure 11.4, four of the eight vertices are
sufficient to cover.

A set of vertices S of graph G is independent if there are no edges (x, y)
where both x ∈ S and y ∈ S. This means there are no edges between any two
vertices in an independent set. Again, finding an independent set is trivial: just
take any single vertex. As discussed in Section 19.2 (page 589), independent
set arises in facility location problems. The maximum independent set decision
problem is defined:

Problem: Independent Set

Input: A graph G and integer k ≤ |V |.
Output: Does there exist a set of k independent vertices in G?
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Figure 11.4: Red vertices form a vertex cover of G, so the blue vertices must
define an independent set.

Both vertex cover and independent set are problems that revolve around
finding special subsets of vertices: the first with representatives of every edge,
the second with no edges. If S is a vertex cover of G, then the remaining vertices
V − S must form an independent set, for if there was an edge (x, y) that had
both vertices in V − S, then S could not have been a vertex cover. This gives
us a reduction between the two problems:

VertexCover(G, k)
G′ = G
k′ = |V | − k
Return the answer to IndependentSet(G′, k′)

Again, a simple reduction shows that one problem is at least as hard as the
other. Notice how translation occurs without any knowledge of the answer: we
transform the input, not the solution. This reduction shows that the hardness
of vertex cover implies that independent set must also be hard. It is easy to
reverse the roles of the two problems in this particular reduction, thus proving
that the two problems are equally hard.

Stop and Think: Hardness of General Movie Scheduling

Problem: Recall the movie scheduling problem, discussed in Section 1.2 (page
8). There, each possible movie project came with a single time interval during
which filming took place. We sought the largest possible subset of movie projects
such that no two conflicting projects (meaning both requiring the actor at the
same time) were selected.

The general problem allows movie projects to have discontinuous schedules.
For example, Project A running both January–March and May–June does not
intersect Project B running in April and August, but does collide with Project
C running from June to July.

Prove that the general movie scheduling problem is NP-complete, with a
reduction from independent set.
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Figure 11.5: Reduction from independent set to generalized movie scheduling,
with numbered vertices and lettered edges.

Problem: General Movie Scheduling Decision Problem
Input: A set I = {I1, . . . , In} of n sets of intervals on the line, integer k.
Output: Can a subset of at least k mutually non-overlapping interval sets be
selected from I?

Solution: To prove a problem hard, we first need to establish which is Ban-
dersnatch and which is Bo-billy. Here we need to show how to translate all
independent set instances into instances of general movie scheduling—meaning
sets of disjoint line intervals. Thus, independent set is Bandersnatch and general
movie scheduling is Bo-billy.

What is the correspondence between the two problems? Both problems
involve selecting the largest subsets possible—of vertices and movies, respec-
tively. This suggests we must translate vertices into movies. Furthermore, both
require the selected elements not to interfere, by sharing an edge or overlapping
an interval, respectively.

My construction is as follows. Create an interval on the line for each of the
m edges of the graph. The movie associated with each vertex will contain the
intervals for the edges adjacent with it, as shown in Figure 11.5.

IndependentSet(G, k)
I = ∅
For the ith edge (x, y), 1 ≤ i ≤ m

Add interval [i, i+ 0.5] to movie x’s interval set Ix in I
Add interval [i, i+ 0.5] to movie y’s interval set Iy in I

Return the answer to GeneralMovieScheduling(I, k)

Each pair of vertices sharing an edge (forbidden to be in an independent
set) defines a pair of movies sharing a time interval (forbidden to be in the
actor’s schedule). Thus, the largest satisfying subsets for both problems are the
same, and a fast algorithm for solving general movie scheduling gives us a fast
algorithm for solving independent set. Thus, general movie scheduling must be
at least as hard as independent set, and hence NP-complete.
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Figure 11.6: A small graph with a four-vertex clique (left), with the corre-
sponding independent set in black forming a two-vertex clique in the graph’s
complement (right).

11.3.3 Clique

A social clique is a group of mutual friends who all hang around together.
Everyone knows everybody. A graph-theoretic clique is a complete subgraph,
where each vertex pair has an edge between them. Cliques are the densest
possible subgraphs:

Problem: Maximum Clique
Input: A graph G = (V,E) and integer k ≤ |V |.
Output: Does the graph contain a clique of k vertices, meaning is there a subset
of vertices S where |S| = k such that every pair of vertices in S defines an edge
of G?

The graph in Figure 11.6 contains a clique of four blue vertices. Within the
friendship graph, we would expect to see large cliques corresponding to families,
workplaces, neighborhoods, religious organizations, and schools. Applications
of clique are further discussed in Section 19.1 (page 586).

In the independent set problem, we looked for a subset S with no edges
between two vertices of S. This contrasts with clique, where we insist that there
always be an edge between two vertices. A reduction between these problems
follows by reversing the roles of edges and non-edges—an operation known as
complementing the graph:

IndependentSet(G, k)
Construct a graph G′ = (V ′, E′) where V ′ = V , and

For all (i, j) �∈ E, add (i, j) to E′

Return Clique(G′, k)

These last two reductions provide a chain linking three different problems
together. The hardness of clique is implied by the hardness of independent set,
which is implied by the hardness of vertex cover. By constructing reductions
in a chain, we link together pairs of problems in implications of hardness. Our
work is complete once all these chains begin with a single “Dwayne Johnson”
problem that is accepted as hard. Satisfiability is the problem that will serve
as the first link in this chain.
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11.4 Satisfiability

To demonstrate the hardness of problems by using reductions, we must start
from a single problem that is absolutely, certifiably, undeniably hard to compute.
The mother of all NP-complete problems is a logic problem named satisfiability:

Problem: Satisfiability (SAT)
Input: A set of Boolean variables V and a set of logic clauses C over V .
Output: Does there exist a satisfying truth assignment for C—in other words,
a way to set each of the variables {v1, . . . , vn} either true or false so that every
clause contains at least one true literal?

This can be made clear with two examples. Consider C = {{v1, v2}, {v1, v2}}
over the Boolean variables V = {v1, v2}. We use vi to denote the complement
of the variable vi, because vi means “not vi.” We get credit for satisfying a
particular clause containing vi if vi = true, or a clause containing vi if vi = false.
Therefore, satisfying a particular set of clauses involves making a series of n
true or false decisions, trying to find the right truth assignment to satisfy all
of them. The example clause set C = {{v1, v2}, {v1, v2}} corresponds to the
logical expression

(v1 ∨ v̄2) ∧ (v̄1 ∨ v2)

and can be satisfied either by setting v1 = v2 = true or v1 = v2 = false.
However, consider the set of clauses {{v1, v2}, {v1, v2}, {v1}}. Here there

can be no satisfying assignment, because v1 must be false to satisfy the third
clause, which means that v2 must be false to satisfy the second clause, which
then leaves the first clause unsatisfiable. Although you try, and you try, and
you try, you can’t get no satisfaction.

For a combination of social and technical reasons, it is well accepted that
satisfiability is a hard problem; one for which no worst-case polynomial-time
algorithm exists. Literally every top-notch algorithm expert in the world (and
countless lesser lights) has directly or indirectly tried to come up with a fast
algorithm to test whether any given set of clauses is satisfiable. All have failed.
Furthermore, many strange and impossible-to-believe things in the field of com-
putational complexity have been shown to be true if there exists a fast satisfia-
bility algorithm. Proving something is as hard as satisfiability means that it is
hard. See Section 17.10 (page 537) for more on the satisfiability problem and
its applications.

11.4.1 3-Satisfiability

Satisfiability’s role as the first NP-complete problem implies that the problem
is hard to solve in the worst case. But certain special-case instances of the
problem are not necessarily so tough. Suppose that each clause contains exactly
one literal, say {vi} or {v̄j}. There is only one way to set the literal so as to
satisfy such a clause: clearly vi had better be set true and vj set false to have
any hope of satisfying the full set of clauses. Only when we have two clauses
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that directly contradict each other, such as C = {{v1}, {v1}}, will the set not
be satisfiable.

Since it is so easy to determine whether clause sets with exactly one literal
per clause are satisfiable, we are interested in slightly larger classes. How many
literals per clause do you need to turn the problem from polynomial to hard?
This transition occurs when each clause contains three literals, that is,

Problem: 3-Satisfiability (3-SAT)
Input: A collection of clauses C where each clause contains exactly 3 literals,
over a set of Boolean variables V .
Output: Is there a truth assignment to V such that each clause is satisfied?

Since 3-SAT is a restricted case of satisfiability, the hardness of 3-SAT would
imply that general satisfiability is hard. The converse isn’t true, since the hard-
ness of general satisfiability could conceivably depend upon having long clauses.
But we can show the hardness of 3-SAT using a reduction that translates every
instance of satisfiability into an instance of 3-SAT without changing whether it
is satisfiable.

This reduction transforms each clause independently based on its length, by
adding new clauses and Boolean variables along the way. Suppose clause Ci

contained k literals:

• k = 1, say Ci = {z1} – We create two new variables v1, v2 and four new
3-literal clauses: {v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}, {v1, v2, z1}. Observe
that the only way that all four of these clauses can be simultaneously sat-
isfied is if z1 = true, which means the original Ci will have been satisfied.

• k = 2, say Ci = {z1, z2} – We create one new variable v1 and two new
clauses: {v1, z1, z2}, {v1, z1, z2}. Again, the only way to satisfy both of
these clauses is to have at least one of z1 and z2 be true, thus satisfying
Ci.

• k = 3, say Ci = {z1, z2, z3} – We copy Ci into the 3-SAT instance un-
changed: {z1, z2, z3}.

• k > 3, say Ci = {z1, z2, ..., zk} – Here we create k−3 new variables and k−2
new clauses in a chain, where Ci,1 = {z1, z2, vi,1}, Ci,j = {vi,j−1, zj+1, vi,j}
for 2 ≤ j ≤ k − 3, and Ci,k−2 = {vi,k−3, zk−1, zk}. This is best illustrated
with an example. The clause

Ci = {z1, z2, z3, z4, z5, z6}
gets transformed into the following set of four 3-literal clauses with three
new Boolean variables: vi,1, vi,2, and vi,3:

{{z1, z2, v̄i,1}, {vi,1, z3, v̄i,2}, {vi,2, z4, v̄i,3}, {vi,3, z5, z6}}

The most complicated case is that of the large clauses. If none of the original
literals in Ci are true, then there are not enough new free variables to be able
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to satisfy all the new subclauses. You can satisfy Ci,1 by setting vi,1 = false,
but this forces vi,2 = false, and so on until finally Ci,k−2 cannot be satisfied.
However, if any single literal zi = true, then we have k − 3 free variables and
k − 3 remaining 3-clauses, so we can satisfy all of them.

This transform takes O(n+c) time if there were c clauses and n total literals
in the SAT instance. Since any solution to the original SAT problem instance
also satisfies the 3-SAT instance we have constructed, and vice versa, the trans-
formed problem is equivalent to the original.

Note that a slight modification to this construction would serve to prove
that 4-SAT, 5-SAT, or any (k ≥ 3)-SAT is also NP-complete. However, this
construction breaks down if we try to use it for 2-SAT, since there is no way to
stuff anything into the chain of clauses. It turns out that a breadth-first search
on an appropriate graph can be used to give a linear-time algorithm for 2-SAT,
as discussed in Section 17.10 (page 537).

11.5 Creative Reductions from SAT

Since both satisfiability and 3-SAT are known to be hard, we can use either
of them in future reductions. Usually 3-SAT is the better choice, because it
is simpler to work with. What follows are a pair of more complicated reduc-
tions, designed to serve as examples and also increase our repertoire of known
hard problems. Many reductions are quite intricate, because we are essentially
programming one problem in the language of a significantly different problem.

One perpetual point of confusion is getting the direction of the reduction
right. Recall that we must transform any instance of a known NP-complete
problem (Bandersnatch) into an instance of the problem we are really interested
in (Bo-billy). If we perform the reduction the other way, all we get is a slow way
to solve the problem of interest, by using a subroutine that takes exponential
time. This always is confusing at first, because it seems backwards. Make sure
you understand the direction of reduction now, and think back to this whenever
you get confused.

11.5.1 Vertex Cover

Algorithmic graph theory proves to be a fertile ground for hard problems. The
prototypical NP-complete graph problem is vertex cover, previously defined in
Section 11.3.2 (page 363) as follows:

Problem: Vertex Cover
Input: A graph G = (V,E) and integer k ≤ |V |.
Output: Is there a subset S of at most k vertices such that every e ∈ E has at
least one vertex in S?

Demonstrating the hardness of vertex cover proves more difficult than the
previous reductions we have seen, because the structure of the two relevant
problems seems very different. A reduction from 3-SAT to vertex cover must
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Figure 11.7: Reducing 3-SAT instance {{v1, v̄3, v̄4}, {v̄1, v2, v̄4}} to vertex cover
(left). The red vertices (on right) define a minimum vertex cover, and hence the
red variable vertices on top define a satisfying truth assignment.

construct a graph G and bound k from the variables and clauses of the satisfi-
ability instance.

Here is a way to do it. First, we translate the variables of the 3-SAT problem.
For each Boolean variable vi, we create two vertices vi and v̄i connected by an
edge. At least n of these 2n vertices will be needed just to cover these edges,
because we need at least one vertex per pair.

Second, we translate the clauses of the 3-SAT problem. For each of the c
clauses, we create three new vertices: one for each literal in the clause. These
three vertices will be connected so as to form a triangle for each clause. At least
two vertices per triangle must be included in any vertex cover of these triangles,
for a total of 2c cover vertices.

Finally, we will connect these two sets of components together. Each literal
in a vertex “gadget” is connected to vertices in the clause gadgets (triangles)
that share the given literal. From a 3-SAT instance with n variables and c
clauses, this constructs a graph with 2n+ 3c vertices. The complete reduction
for the 3-SAT problem {{v1, v̄3, v̄4}, {v̄1, v2, v̄4}} is shown in Figure 11.7.

This graph has been very carefully designed to have a vertex cover of size
n+2c iff the original expression is satisfiable. By the earlier analysis, any vertex
cover must contain at least n+2c vertices. To show that our reduction is correct,
we must demonstrate that:

• Every satisfying truth assignment gives a vertex cover of size n + 2c –
Given a satisfying truth assignment for the clauses, select the n vertices
from the vertex gadgets that correspond to true literals to be members of
the vertex cover. Since this defines a satisfying truth assignment, a true
literal from each clause must cover at least one of the three cross edges
connecting each triangle vertex to a vertex gadget. Therefore, by selecting
the other two vertices of each clause triangle, we also pick up all remaining
cross edges.

• Every vertex cover of size n+ 2c gives a satisfying truth assignment – In
any vertex cover C of this size, exactly n of the vertices must belong to the
vertex gadgets. Let these first stage vertices define the truth assignment,
with the remaining 2c cover vertices distributed at two per clause-gadget
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for otherwise a clause-gadget edge would go uncovered. These clause-
gadget vertices can cover only two of the three connecting edges per clause.
Therefore, if C gives a vertex cover, at least one connecting edge per clause
must be covered by first-stage vertices, meaning that the corresponding
truth assignment satisfies all clauses.

This proof of the hardness of vertex cover, chained with the clique and
independent set reductions of Section 11.3.2 (page 363), gives us a library of
hard graph problems that we can use to make future hardness proofs easier.

Take-Home Lesson: A small set of NP-complete problems (3-SAT, vertex
cover, integer partition, and Hamiltonian cycle) suffice to prove the hardness
of most other hard problems.

11.5.2 Integer Programming

As discussed in Section 16.6 (page 482), integer programming is a fundamental
combinatorial optimization problem. It is best thought of as linear program-
ming, with the variables restricted to take only integer (instead of real) values.

Problem: Integer Programming (IP)
Input: A set of integer variables V , a set of linear inequalities over V , a linear
maximization function f(V ), and an integer B.
Output: Does there exist an assignment of integers to V such that all inequalities
are true and f(V ) ≥ B?

Consider the following two examples. Suppose

V1 ≥ 1, V2 ≥ 0

V1 + V2 ≤ 3

f(V ) : 2V2, B = 3

A solution to this would be V1 = 1, V2 = 2. Note that this respects integrality,
and yields an objective value f(V ) = 4 ≥ B. Not all problems have realizable
solutions, however. For the following problem:

V1 ≥ 1, V2 ≥ 0

V1 + V2 ≤ 3

f(V ) : 2V2, B = 5

the maximum possible value of f(V ) given the constraints is 2× 2 = 4, so there
can be no solution to the associated decision problem.

We show that integer programming is hard using a reduction from general
satisfiability. 3-SAT generally makes reductions easier, and would work equally
as well here—in an identical manner.
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In which direction must the reduction go? We want to prove integer program-
ming is hard, and know that satisfiability is hard. If we could solve satisfiability
using integer programming and integer programming were easy, this would mean
that satisfiability would be easy. Now the direction should be clear: we must
translate satisfiability (Bandersnatch) into integer programming (Bo-billy).

What should the translation look like? Every satisfiability instance contains
Boolean (true/false) variables and clauses. Every integer programming instance
contains integer variables and constraints. A reasonable idea is to make the
integer variables correspond to Boolean variables and use constraints to serve
the same role as the clauses do in the original problem.

Our translated integer programming problem will have twice as many vari-
ables as the SAT instance—one for each Boolean variable and one for its com-
plement. For each variable vi in the satisfiability problem, we add the following
constraints:

• We restrict each integer programming variable Vi to values of either 0 or
1, by adding constraints 0 ≤ Vi ≤ 1 and 0 ≤ V i ≤ 1. Coupled with
integrality, they correspond to values of true and false.

• We ensure that exactly one of the two integer programming variables
associated with a given SAT variable is true, by adding constraints so
that 1 ≤ Vi + V i ≤ 1.

For each clause Ci = {z1, . . . , zk}, construct the constraint

Z1 + . . .+ Zk ≥ 1

To satisfy this constraint, at least one literal per clause must be set to 1, thus
corresponding to a true literal. Satisfying this constraint is therefore equivalent
to satisfying the clause.

The maximization function and bound prove relatively unimportant here,
because we have already encoded the entire satisfiability instance. By using
f(V ) = V1 and B = 0, we ensure that they will not interfere with any variable
assignment satisfying all the inequalities. Clearly, this reduction can be done
in polynomial time. To establish that this reduction preserves the answer, we
must verify two things:

• Every SAT solution gives a solution to the IP problem – In any SAT
solution, a true literal corresponds to a 1 in the integer program, since the
clause is satisfied. Therefore, the sum in each clause inequality is ≥ 1.

• Every IP solution gives a solution to the original SAT problem – All vari-
ables must be set to either 0 or 1 in any solution to this integer program-
ming instance. If Vi = 1, then set literal zi = true. If Vi = 0, then set
literal zi = false. This is a legal assignment that satisfies all the clauses.

This reduction works both ways, so integer programming must be hard.
Notice the following properties, which hold true in general for NP-completeness
proofs:
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• This reduction preserved the structure of the problem. It did not solve
the problem, just put it into a different format.

• The possible IP instances resulting from this transformation represent only
a small subset of all possible IP instances. But because the instances in
this small subset are hard, the more general problem is obviously hard.

• The transformation captures the essence of why IP is hard. It has noth-
ing to do with big coefficients or large ranges on the variables, because
restricting them all to 0/1 is enough. It has nothing to do with having in-
equalities having large numbers of variables. Integer programming is hard
because satisfying a large set of constraints is hard. A careful study of the
properties needed for a reduction can tell us a lot about the problem.

11.6 The Art of Proving Hardness

Proving that problems are hard is a skill. But once you get the hang of it,
reductions can be surprisingly straightforward and pleasurable to do. Indeed,
the dirty little secret of NP-completeness proofs is that they are usually easier
to create than explain, in much the same way that it can be easier to rewrite
old code than to understand and modify it.

It takes experience to judge which problems are likely to be hard. The
quickest way to gain this experience is through careful study of the catalog.
Slightly changing the wording of a problem can make the difference between it
being polynomial or NP-complete. Finding the shortest path in a graph is easy,
but finding the longest path in a graph is hard. Constructing a tour that visits
all the edges once in a graph is easy (Eulerian cycle), but constructing a tour
that visits all the vertices once is hard (Hamiltonian cycle).

The first place to look when you suspect a problem might be NP-complete is
Garey and Johnson’s book Computers and Intractability [GJ79], which contains
a list of several hundred problems known to be NP-complete. Likely one of these
is the problem you are interested in.

Otherwise I offer the following advice to those seeking to prove the hardness
of a given problem:

• Make your source problem as simple (meaning restricted) as possible –
Never try to use the general traveling salesman problem (TSP) as a source
problem. Better, use Hamiltonian cycle: TSP where all the weights are
restricted 1 or ∞. Even better, use Hamiltonian path instead of cycle,
so you never have to worry about closing up the cycle. Best of all, use
Hamiltonian path on directed planar graphs where each vertex has total
degree 3. All of these problems are equally hard, but the more you can
restrict the problem that you are translating from, the less work your
reduction has to do.

As another example, never try to use full satisfiability to prove hardness.
Start with 3-satisfiability. In fact, you don’t even have to use full 3-
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satisfiability. Instead, you can use planar 3-satisfiability, where there must
exist a way to draw the clauses as a graph in the plane such that you can
connect all instances of the same literal together without edges crossing.
This property tends to be useful in proving the intractability of geometric
problems. All these variants are equally hard, and hence NP-completeness
reductions using any of them are equally convincing.

• Make your target problem as hard as possible – Don’t be afraid to add
extra constraints or freedoms to make your target problem more general
and therefore harder. Perhaps your undirected graph problem can be
generalized into a directed graph problem, and can hence only be easier
to prove hard. After you have a proof of hardness for the harder problem,
you can then go back and try to simplify the target.

• Select the right source problem for the right reason – Selecting the right
source problem makes a big difference in how difficult it is to prove hard-
ness. This is the first and easiest place to go wrong, although theoretically
any NP-complete problem works as well as any other. When trying to
prove that a problem is hard, some people fish around through lists of
dozens of problems, looking for the best fit. These people are amateurs:
odds are they will never recognize the problem they are looking for when
they see it.

I use four (and only four) problems as candidates for my hard source
problem. Limiting them to four means that I can know a lot about each
one, like which variants of the problems are hard and which are not. My
favorite source problems are:

– 3-SAT: The old reliable. When none of the three problems below
seem appropriate, I go back to the original source.

– Integer partition: This is the one and only choice for problems whose
hardness seems to require using large numbers.

– Vertex cover: This is the answer for any graph problem whose hard-
ness depends upon selection. Chromatic number, clique, and inde-
pendent set all involve trying to select the right subset of vertices or
edges.

– Hamiltonian path: This is my choice for any graph problem whose
hardness depends upon ordering. If you are trying to route or sched-
ule something, Hamiltonian path is likely your lever into the problem.

• Amplify the penalties for making the undesired selection – Many people are
too timid in their thinking about hardness proofs. You want to translate
one problem into another, while keeping the problems as close to their
original identities as possible. The easiest way to do this is by being bold
with your penalties, to punish for deviating from your intended solution.
Your thinking should be, “if you select this element, then you must pick
up this huge set that blocks you from finding an optimal solution.” The
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sharper the consequences for doing what is undesired, the easier it is to
prove the equivalence of the results.

• Think strategically at a high level, then build gadgets to enforce tactics –
You should be asking yourself questions, like:

1. How can I force that A or B is chosen but not both?

2. How can I force that A is taken before B?

3. How can I clean up the things I did not select?

Once you know what you want your gadgets to do, you can then worry
about how to actually craft them.

• When you get stuck, switch between looking for an algorithm and a re-
duction – Sometimes the reason you cannot prove hardness is that there
exists an efficient algorithm to solve your problem! Techniques such as
dynamic programming or reducing problems to powerful but polynomial-
time graph problems like matching or network flow can yield surprising
algorithms. When you can’t prove hardness, it pays to stop and try to
find an algorithm—just to keep yourself honest.

11.7 War Story: Hard Against the Clock

My class’s attention span was running down like sand through an hourglass.
Eyes were starting to glaze, even in the front row. Breathing had become soft
and regular in the middle of the room. Heads were tilted back and eyes shut in
the back.

There were twenty minutes left to go in my lecture on NP-completeness, and
I couldn’t really blame them. They had already seen several reductions like the
ones presented here. But NP-completeness reductions are often easier to create
than to explain. They had to watch one being created in order to appreciate
how things worked.

I reached for my trusty copy of Garey and Johnson’s book [GJ79], which
contains a list of over three hundred different known NP-complete problems in
an appendix.

“Enough of this!” I announced loudly enough to startle those in the back
row. “NP-completeness proofs are sufficiently routine that we can construct
them on demand. I need a volunteer with a finger. Can anyone help me?”

A few students in the front held up their hands. A few students in the back
held up their fingers. I opted for one from the front row.

“Select a problem at random from the back of this book. I can prove the
hardness of any of these problems in the now seventeen minutes remaining in
this class. Stick your finger in and read me a problem.”

I had definitely gotten their attention. But I could have done that by offering
to juggle chain saws. Now I had to deliver results without cutting myself into
ribbons.
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The student picked out a problem. “OK, prove that Inequivalence of Pro-
grams with Assignments is hard,” she said.

“Huh? I’ve never heard of that problem before. What is it? Read me the
entire problem description so I can write it on the board.” The problem was as
follows:

Problem: Inequivalence of Programs with Assignments
Input: A finite set X of variables, two programs P1 and P2, each a sequence of
assignments of the form

x0 ← if (x1 = x2) then x3 else x4

where the xi are in X; and a value set V .
Output: Is there an initial assignment of a value from V to each variable in X
such that programs P1 and P2 yield different final values for some variable in
X?

I looked at my watch. Fifteen minutes to go. But everything was now on
the table. I was faced with a language problem. The input was two programs
with variables, and I had to test whether they always do the same thing.

“First things first. We need to select a source problem for our reduction. Do
we start with integer partition? 3-SAT? Vertex cover or Hamiltonian path?”

Since I had an audience, I tried thinking out loud. “Our target is not a
graph problem or a numerical problem, so let’s start thinking about the old
reliable: 3-SAT. There seem to be some similarities. 3-SAT has variables. This
thing has variables. To be more like 3-SAT, we could try limiting the variables
in this problem so they only take on Boolean values—V = {true, false}. Yes.
That seems convenient.”

My watch said fourteen minutes left. “So, class, which way does the reduc-
tion go? 3-SAT to program or program to 3-SAT?”

The front row correctly murmured, “3-SAT to program.”
“Right. So we have to translate our set of clauses into two programs. How

can we do that? We might consider trying to split the clauses into two sets
and write separate programs for each of them. But how do we split them?
I don’t see any natural way to do it, because eliminating any single clause
from the problem might suddenly make an unsatisfiable formula satisfiable, thus
completely changing the answer.

Instead, let’s try something else. We can translate all the clauses into one
program, and then let the second program be trivial. For example, the second
program might ignore the input and always output either only true or only false.
This sounds better. Much better.”

I was still talking out loud to myself, which wasn’t that unusual. But I had
people listening to me, which was.

“Now, how can we turn a set of clauses into a program? We want to know
whether the set of clauses can be satisfied, or in other words if there is an
assignment of the variables to make it true. Suppose we constructed a program
to evaluate whether C1 = {x1, x2, x3} is satisfied.”
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It took me a few minutes of scratching before I found the right program to
simulate a clause. I assumed that I had access to constants for true and false:

C1 = if (x1 = true) then true else false
C1 = if (x2 = false) then true else C1

C1 = if (x3 = true) then true else C1

“Great. Now I have a way to evaluate the truth of each clause. I can do the
same thing at the end to evaluate whether all the clauses are satisfied:”

sat = if (C1 = true) then true else false
sat = if (C2 = true) then sat else false
...
sat = if (Cc = true) then sat else false

Now the back of the classroom was getting excited. They were starting to
see a ray of hope that class would end on time.

“Great. So now we have a program that can evaluate to be true if and only
if there is a way to assign the variables to satisfy the set of clauses. We need a
second program to finish the job. What about sat = false? Yes, that is all we
need. Our language problem asks whether the two programs always output the
same thing, regardless of the possible variable assignments. If the clauses are
satisfiable, that means that there must be an assignment of the variables such
that the long program would output true. Testing whether the programs are
equivalent is exactly the same as asking if the clauses are satisfiable.”

I lifted my arms in triumph. “And so, the problem is neat, sweet, and
NP-complete.” I got the last word out just before the bell rang.

11.8 War Story: And Then I Failed

This exercise of picking a random NP-complete problem from Garey and John-
son’s book and proving hardness on demand was so much fun that I have re-
peated it each time I have taught the algorithms course. Sure enough, I got it
eight times in a row. But just as Joe DiMaggio’s 56-game hitting streak came
to an end, and Google will eventually have a losing quarter financially, the time
came for me to get my comeuppance.

The class had voted to see a reduction from the graph theory section of the
catalog, and a randomly selected student picked number 30. Problem GT30
turned out to be the following:

Problem: Uniconnected Subgraph
Input: A directed graph G = (V,A), positive integer k ≤ |A|.
Output: Is there a subset of arcs A′ ⊆ A with |A′| ≥ k such that G′ = (V,A′)
has at most one directed path between any pair of vertices?

It took a while for me to grok this problem. An undirected version of this
would be finding a spanning tree, because that defines exactly one path between
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any pair of vertices. Adding even a single edge (x, y) to this tree would create
a cycle, meaning two distinct paths between x and y.

Any form of directed tree would also be uniconnected. But this problem asks
for the largest such subgraph. Consider a bipartite-DAG consisting of directed
edges (li, rj) all going from a given set of “left” vertices to distinct “right”
vertices. No path in this graph consists of more than one edge, yet the graph
can contain Ω(n2) edges.

“It is a selection problem,” I realized after grokking. After all, we had to
select the largest possible subset of arcs so that there were no pair of vertices with
multiple paths between them. This meant that vertex cover was the problem of
choice.

I worked through how the two problems stacked up. Both sought subsets,
although vertex cover wanted subsets of vertices and uniconnected subgraph
wanted subsets of edges. Vertex cover wanted the smallest possible subset, while
unidirected subgraph wanted the largest possible subset. My source problem
had undirected edges while my target had directed arcs, so somehow I would
have to add edge direction into the reduction.

I had to do something to direct the edges of the vertex cover graph. I could
try to replace each undirected edge (x, y) with a single arc, say from y to x. But
quite different directed graphs would result depending upon which direction I
selected. Finding the “right” orientation of edges might be a hard problem,
certainly too hard to use in the translation phase of the reduction.

I realized I could direct the edges so the resulting graph was a DAG. But
then, so what? DAGs certainly can have many different directed paths between
pairs of vertices.

Alternately, I could try to replace each undirected edge (x, y) with two arcs,
from x to y and y to x. Now there was no need to chose the right arcs for my
reduction, but the graph certainly got complicated. I couldn’t see how to force
things to prevent vertex pairs from having unwanted multiple paths between
them.

Meanwhile, the clock was running and I knew it. A sense of panic set in
during the last ten minutes of the class, and I realized I wasn’t going to get it
this time.

There is no feeling worse for a professor than botching up a lecture. You
stand up there flailing away, knowing (1) that the students don’t understand
what you are saying, but (2) they do understand that you also don’t understand
what you are saying. The bell rang and the students left the room with faces
either sympathetic or smirking.

I promised them a solution for the next class, but somehow I kept getting
stuck in the same place each time I thought about it. I even tried to cheat and
look up the proof in a journal. But the reference cited by Garey and Johnson
was a 30-year old unpublished technical report. It wasn’t on the web or in our
library.

I dreaded returning to give my next class, the last lecture of the semester.
But the night before class the answer came to me in a dream. “Split the edges,”
the voice said. I awoke with a start and looked at the clock. It was 3:00 AM.



11.9. P VS. NP 379

1

2

4

3

6

5

s

1

2

4

3

6

5

Figure 11.8: Reducing vertex cover to unidirected subgraph, by dividing edges
and adding a sink node.

I sat up in bed and scratched out the proof. Suppose I replace each undi-
rected edge (x, y) with a gadget consisting of a new central vertex vxy with arcs
going from it to x and y, respectively. This is nice. Now, which vertices are
capable of having multiple paths between them? The new vertices have only
outgoing edges, so only they can serve as the source of multiple paths. The old
vertices have only incoming edges. There is at most one way to get from one of
the new source vertices to any of the original vertices of the vertex cover graph,
so these could not result in multiple paths.

But now add a sink node s with edges from all the original vertices. There
are exactly two paths from each new source vertex to this sink—one through
each of the two original vertices it is adjacent to. One of these has to be broken
to create a uniconnected subgraph. How could we break it? We could pick one
of these two vertices to disconnect from the sink by deleting either arc (x, s)
or (y, s) for new vertex vxy. We maximize the size of our subgraph by finding
the smallest number of arcs to delete. We must delete the outgoing arc from at
least one of the two vertices defining each original edge. But this is exactly the
same as finding the vertex cover in this graph! The reduction is illustrated in
Figure 11.8.

Presenting this proof in class provided some personal vindication, because it
validates the principles I teach for proving hardness. Observe that the reduction
really wasn’t that difficult after all: just split the edges and add a sink node.
NP-completeness reductions are often surprisingly simple once you look at them
the right way.

11.9 P vs. NP

The theory of NP-completeness rests on a foundation of rigorous but subtle
definitions from automata and formal language theory. This terminology is
typically confusing to (or misused by) beginners who lack a mastery of these
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foundations. These details are not really essential to the practical aspects of
designing and applying reductions. That said, the question “Is P=NP?” is
the most profound open problem in computer science, so any educated algorist
should have some idea what the stakes are.

11.9.1 Verification vs. Discovery

The primary issue in P vs. NP is whether verification is really an easier task
than initial discovery. Suppose that while taking an exam you “happen” to
notice the answer of the student next to you. Are you now better off? You
wouldn’t dare turn it in without checking, since an able student like you could
answer the question correctly if you spent enough time to solve it. The question
here is whether you really can verify the answer faster than you can find it from
scratch.

For the NP-complete decision problems we have studied here, the answer
seems obvious:

• Can you verify that a proposed TSP tour has weight of at most k in a
given graph? Sure. Just add up the weights of the edges on the tour and
show it is at most k. That is easier than finding the tour from scratch,
isn’t it?

• Can you verify that a given truth assignment represents a solution to a
given satisfiability problem? Sure. Just check each clause and make sure
it contains at least one true literal from the given truth assignment. That
is easier than finding the satisfying assignment from scratch, isn’t it?

• Can you verify that a given k-vertex subset S is a vertex cover of graph
G? Sure. Just traverse each edge (u, v) of G, and check that either u or v
is in S. That is easier than finding the vertex cover from scratch, isn’t it?

At first glance, this seems obvious. The given solutions can be verified
in linear time for all three of these problems, while no algorithm faster than
exponential brute-force search is known for any of them. The catch is that we
have no rigorous lower bound proof that prevents the existence of fast algorithms
to solve these problems. Perhaps there are in fact polynomial algorithms (say
O(n87)) that we have just been too blind to see yet.

11.9.2 The Classes P and NP

Every well-defined algorithmic problem must have an asymptotically fastest-
possible algorithm solving it, as measured in the Big Oh, worst-case sense of
fastest.

We can think of the class P as an exclusive club for algorithmic problems
where there exists a polynomial-time algorithm to solve it from scratch. Shortest
path, minimum spanning tree, and the original movie scheduling problem are
all members in good standing of this class P. The P stands for polynomial time.
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A less exclusive club welcomes all the algorithmic problems whose solutions
can be verified in polynomial time. As shown above, this club contains travel-
ing salesman, satisfiability, and vertex cover, none of which currently have the
credentials to join P. However, all the members of P get a free pass into this
less exclusive club. If you can solve a decision problem from scratch in polyno-
mial time, you certainly can verify another solution to it that fast: just check
whether you agree on the yes–no answer.

We call this less-exclusive club NP. You can think of this as standing for Not
necessarily Polynomial time.1

The $1,000,000 question is whether there are problems in NP that are not
members of P. If no such problem exists, the classes must be the same and
P = NP . If even one such a problem exists, the two classes are different and
P �= NP . The opinion of most algorists and complexity theorists is that P �=
NP , meaning that some NP problems do not have polynomial-time algorithms,
but a much stronger proof than “I can’t find a fast enough algorithm” is needed.

11.9.3 Why Satisfiability is Hard

An enormous tree of NP-completeness reductions has been established that
entirely rests on the hardness of satisfiability. The portion of this tree demon-
strated and/or stated in this chapter is shown in Figure 11.2.

This may seem like a fragile foundation. What would it mean if someone
did find a polynomial-time algorithm for satisfiability? A fast algorithm for any
given NP-complete problem (say traveling salesman) implies fast algorithm for
all the problems on the path in the reduction tree between TSP and satisfia-
bility (Hamiltonian cycle, vertex cover, and 3-SAT). But a fast algorithm for
satisfiability doesn’t immediately yield us anything because the reduction path
from SAT to SAT is empty.

Fear not. There exists an extraordinary super-reduction called Cook’s the-
orem reducing all the problems in NP to satisfiability. Thus, if you prove that
satisfiability (or equivalently any single NP-complete problem) is in P, then all
other problems in NP follow and P = NP. Since essentially every problem
mentioned in this book is in NP, this would be an enormously powerful and
surprising result.

Cook’s theorem proves that satisfiability is as hard as any problem in NP.
Furthermore, it proves that every NP-complete problem is as hard as any other.
Any domino falling (meaning a polynomial-time algorithm to solve just one NP-
complete problem) knocks them all down. Our inability to find a fast algorithm
for any of these problems is a strong reason for believing that they are all truly
hard, meaning P �= NP.

1In fact, it stands for non-deterministic polynomial time. This is in the sense of non-
deterministic automata, if you happen to know about such things.
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11.9.4 NP-hard vs. NP-complete?

The final technicality we will discuss is the difference between a problem being
NP-hard and NP-complete. I tend to be somewhat loose with my terminology,
but there is a subtle (usually irrelevant) distinction between the two concepts.

We say that a problem is NP-hard if, like satisfiability, it is at least as hard as
any problem in NP. We say that a problem is NP-complete if it is NP-hard, and
also in NP itself. Because NP is such a large class of problems, most NP-hard
problems you encounter will actually be in NP and thus NP-complete. The
issue can always be settled by giving a (usually simple) verification strategy
for the problem. All the NP-hard problems encountered in this book are also
NP-complete.

That said, there are some problems that appear to be NP-hard yet are not
in NP. These problems might be even harder than NP-complete! Two-player
games such as chess provide examples of problems that are not in NP. Imagine
sitting down to play chess with some know-it-all who is playing white. He pushes
his king’s pawn up two squares to start the game, and announces “checkmate.”
The only obvious way to verify that he is right would be to construct the full
tree of all your possible moves with his irrefutable replies and demonstrate that
you, in fact, cannot win from the current position. This full tree will have a
number of nodes exponential in its height, which is the number of moves before
you lose playing your most spirited possible defense. Clearly this tree cannot
be constructed and analyzed in polynomial time, so the problem is not in NP.

Chapter Notes

The notion of NP-completeness was first developed by Cook [Coo71]. Satisfia-
bility really is a $1,000,000 problem, and the Clay Mathematics Institute has
offered such a prize to any person who resolves the P = NP question. See
http://www.claymath.org/ for more on the problem and the prize.

Karp [Kar72] showed the importance of Cook’s result by providing reduc-
tions from satisfiability to more than twenty important algorithmic problems.
I recommend Karp’s paper for its sheer beauty and economy—he condenses
each reduction to three line descriptions showing the problem equivalence. To-
gether, these provided the tools to resolve the complexity of literally hundreds
of important problems where no efficient algorithms were known.

The best introduction to the theory of NP-completeness remains Garey and
Johnson’s book Computers and Intractability [GJ79]. It introduces the general
theory, including an accessible proof of Cook’s theorem [Coo71] that satisfiabil-
ity is as hard as anything in NP. They also provide an essential reference catalog
of more than 300 NP-complete problems, which is a great resource for learn-
ing what is known about the most interesting hard problems. The reductions
claimed but omitted from this chapter can be found in Garey and Johnson, or
textbooks like Cormen et al. [CLRS09].

Factor Man [Gin18] is an exciting novel about a man who discovers a polynomial-

http://www.claymath.org/
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time algorithm for satisfiability, and must dodge government agents and assas-
sins for his troubles. I give it two thumbs up. The Golden Ticket [For13] is an
accessible tour of complexity theory, and the question of P = NP.

A few catalog problems exist in a limbo state where it is not yet known
whether the problem has a fast algorithm or is NP-complete. The most promi-
nent of these are graph isomorphism (see Section 19.9 (page 610)) and integer
factorization (see Section 16.8 (page 490)). That this limbo list is so short is
quite a tribute to the state-of-the-art in algorithm design, and the power of
the theory of NP-completeness. For almost every important problem we either
know a fast algorithm or have a good solid reason why one doesn’t exist.

For an alternative and inspiring view of NP-completeness, check out the
videos of Erik Demaine’s MIT course Algorithmic Lower Bounds: Fun with
Hardness Proofs at http://courses.csail.mit.edu/6.890/fall14/. The war
story problem on unidirected subgraph was originally proven hard in Mahesh-
wari [Mah76].

11.10 Exercises

Transformations and Satisfiability

11-1. [2] Give the 3-SAT formula that results from applying the reduction of satisfi-
ability to 3-SAT for the formula:

(x∨ y ∨ z ∨w ∨ u∨ v)∧ (x∨ y ∨ z ∨w ∨ u∨ v)∧ (x∨ y ∨ z ∨w ∨ u∨ v)∧ (x∨ y)

11-2. [3] Draw the graph that results from the reduction of 3-SAT to vertex cover for
the expression

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ x)

11-3. [3] Prove that 4-SAT is NP-hard.

11-4. [3] Stingy SAT is the following problem: given a set of clauses (each a disjunction
of literals) and an integer k, find a satisfying assignment in which at most k
variables are true, if such an assignment exists. Prove that stingy SAT is NP-
hard.

11-5. [3] The Double SAT problem asks whether a given satisfiability problem has
at least two different satisfying assignments. For example, the prob-
lem {{v1, v2}, {v̄1, v2}, {v̄1, v̄2}} is satisfiable, but has only one solution (v1 =
F, v2 = T ). In contrast, {{v1, v2}, {v̄1, v̄2}} has exactly two solutions. Show
that Double-SAT is NP-hard.

11-6. [4] Suppose we are given a subroutine that can solve the traveling salesman
decision problem on page 357 in (say) linear time. Give an efficient algorithm
to find the actual TSP tour by making a polynomial number of calls to this
subroutine.

11-7. [7] Implement a SAT to 3-SAT reduction that translates satisfiability instances
into equivalent 3-SAT instances.

http://courses.csail.mit.edu/6.890/fall14/
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11-8. [7] Design and implement a backtracking algorithm to test whether a set of
clause sets is satisfiable. What criteria can you use to prune this search?

11-9. [8] Implement the vertex cover to satisfiability reduction, and run the resulting
clauses through a satisfiability solver code. Does this seem like a practical way
to compute things?

Basic Reductions

11-10. [4] An instance of the set cover problem consists of a set X of n elements, a
family F of subsets of X, and an integer k. The question is, does there exist k
subsets from F whose union is X?

For example, if X = {1, 2, 3, 4} and F = {{1, 2}, {2, 3}, {4}, {2, 4}}, there
does not exist a solution for k = 2, but there does for k = 3 (for example,
{1, 2}, {2, 3}, {4}).
Prove that set cover is NP-hard with a reduction from vertex cover.

11-11. [4] The baseball card collector problem is as follows. Given packets P1, . . . , Pm,
each of which contains a subset of this year’s baseball cards, is it possible to
collect all the year’s cards by buying ≤ k packets?

For example, if the players are {Aaron,Mays,Ruth, Skiena} and the packets
are

{{Aaron,Mays}, {Mays,Ruth}, {Skiena}, {Mays, Skiena}},
there does not exist a solution for k = 2, but there does for k = 3, such as

{Aaron,Mays}, {Mays,Ruth}, {Skiena}

Prove that the baseball card collector problem is NP-hard using a reduction
from vertex cover.

11-12. [4] The low-degree spanning tree problem is as follows. Given a graph G and an
integer k, does G contain a spanning tree such that all vertices in the tree have
degree at most k (obviously, only tree edges count towards the degree)? For
example, in the following graph, there is no spanning tree such that all vertices
have a degree at most three.

(a) Prove that the low-degree spanning tree problem is NP-hard with a reduc-
tion from Hamiltonian path.

(b) Now consider the high-degree spanning tree problem, which is as follows.
Given a graph G and an integer k, does G contain a spanning tree whose
highest degree vertex is at least k? In the previous example, there exists
a spanning tree with a highest degree of 7. Give an efficient algorithm to
solve the high-degree spanning tree problem, and an analysis of its time
complexity.
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11-13. [5] In the minimum element set cover problem, we seek a set cover S ⊆ C of
a universal set U = {1, . . . , n} such that sum of the sizes of the subsets in S is
at most k. (a) Show that C = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {3, 4, 5}} has a cover
of size 6, but none of size 5 because of a repeated element. (b) Prove that this
problem is NP-hard. (Hint: set cover remains hard if all subsets are of the same
size.)

11-14. [3] The half-Hamiltonian cycle problem is, given a graph G with n vertices,
determine whether G has a simple cycle of length exactly �n/2�, where the floor
function rounds its input down to the nearest integer. Prove that this problem
is NP-hard.

11-15. [5] The 3-phase power balance problem asks for a way to partition a set of n
positive integers into three sets A, B, or C such that

∑
i ai =

∑
i bi =

∑
i ci.

Prove that this problem is NP-hard using a reduction from integer partition or
subset sum (see Section 10.5 (page 329)).

11-16. [4] Show that the following problem is NP-hard:

Problem: Dense Subgraph

Input: A graph G, and integers k and y.

Output: Does G contain a subgraph of exactly k vertices and at least y edges?

11-17. [4] Show that the following problem is NP-hard:

Problem: Clique, No-clique

Input: An undirected graph G = (V,E) and an integer k.

Output: Does G contain both a clique of size k and an independent set of size
k?

11-18. [5] An Eulerian cycle is a tour that visits every edge in a graph exactly once.
An Eulerian subgraph is a subset of the edges and vertices of a graph that has
an Eulerian cycle. Prove that the problem of finding the number of edges in the
largest Eulerian subgraph of a graph is NP-hard. (Hint: the Hamiltonian circuit
problem is NP-hard even if each vertex in the graph is incident upon exactly
three edges.)

11-19. [5] Show that the following problem is NP-hard:

Problem: Maximum Common Subgraph

Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2), and a budget b.

Output: Two sets of nodes S1 ⊆ V1 and S2 ⊆ V2 whose deletion leaves at least
b nodes in each graph, and makes the two graphs identical.

11-20. [5] A strongly independent set is a subset of vertices S in a graph G such that for
any two vertices in S, there is no path of length two in G. Prove that strongly
independent set is NP-hard.

11-21. [5] A kite is a graph on an even number of vertices, say 2n, in which n of the
vertices form a clique and the remaining n vertices are connected in a tail that
consists of a path joined to one of the vertices of the clique. Given a graph and
a goal g, the max kite problem asks for a subgraph that is a kite and contains
2g nodes. Prove that max kite is NP-hard.
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Creative Reductions

11-22. [5] Prove that the following problem is NP-hard:

Problem: Hitting Set

Input: A collection C of subsets of a set S, positive integer k.

Output: Does S contain a subset S′ such that |S′| ≤ k and each subset in C
contains at least one element from S′?

11-23. [5] Prove that the following problem is NP-hard:

Problem: Knapsack

Input: A set S of n items, such that the ith item has value vi and weight wi.
Two positive integers: weight limit W and value requirement V .

Output: Does there exist a subset S′ ⊆ S such that
∑

i∈S′ wi ≤ W and∑
i∈S′ vi ≥ V ? (Hint: start from integer partition.)

11-24. [5] Prove that the following problem is NP-hard:

Problem: Hamiltonian Path

Input: A graph G, and vertices s and t.

Output: DoesG contain a path that starts from s, ends at t, and visits all vertices
without visiting any vertex more than once? (Hint: start from Hamiltonian
cycle.)

11-25. [5] Prove that the following problem is NP-hard:

Problem: Longest Path

Input: A graph G and positive integer k.

Output: Does G contain a path that visits at least k different vertices without
visiting any vertex more than once?

11-26. [6] Prove that the following problem is NP-hard:

Problem: Dominating Set

Input: A graph G = (V,E) and positive integer k.

Output: Is there a subset V ′ ⊆ V such that |V ′| ≤ k where for each vertex x ∈ V
either x ∈ V ′ or there exists an edge (x, y) ∈ E such that y ∈ V ′.

11-27. [7] Prove that the vertex cover problem (does there exist a subset S of k vertices
in a graph G such that every edge in G is incident upon at least one vertex in
S?) remains NP-hard even when all the vertices in the graph are restricted to
have even degrees.

11-28. [7] Prove that the following problem is NP-hard:

Problem: Set Packing

Input: A collection C of subsets of a set S, positive integer k.

Output: Does C contain at least k disjoint subsets (i.e., such that no pair of
subsets has any elements in common)?
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11-29. [7] Prove that the following problem is NP-hard:

Problem: Feedback Vertex Set

Input: A directed graph G = (V,A) and positive integer k.

Output: Is there a subset V ′ ⊆ V such that |V ′| ≤ k, such that deleting the
vertices of V ′ from G leaves a DAG?

11-30. [8] Give a reduction from Sudoku to the vertex coloring problem in graphs.
Specifically, describe how to take any partially filled Sudoku board and construct
a graph that can be colored with nine colors iff the Sudoku board is solvable.

Algorithms for Special Cases

11-31. [5] A Hamiltonian path P is a path that visits each vertex exactly once. The
problem of testing whether a graph G contains a Hamiltonian path is NP-
complete. There does not have to be an edge in G from the ending vertex
to the starting vertex of P , unlike in the Hamiltonian cycle problem.

Give an O(n+m)-time algorithm to test whether a directed acyclic graph G (a
DAG) contains a Hamiltonian path. (Hint: think about topological sorting and
DFS.)

11-32. [3] Consider the k-clique problem, which is the general clique problem restricted
to graphs in which every vertex has degree at most k. Prove that k-clique has
an efficient algorithm for any given k, meaning that k is a constant.

11-33. [8] The 2-SAT problem is, given a Boolean formula in 2-conjunctive normal form
(CNF), to decide whether the formula is satisfiable. 2-SAT is like 3-SAT, except
that each clause can have only two literals. For example, the following formula
is in 2-CNF:

(x1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x1 ∨ x̄3)

Give a polynomial-time algorithm to solve 2-SAT.

P = NP?

11-34. [4] Show that the following problems are in NP:

• Does graph G have a simple path (i.e., with no vertex repeated) of length
k?

• Is integer n composite (i.e., not prime)?

• Does graph G have a vertex cover of size k?

11-35. [7] Until 2002, it was an open question whether the decision problem “Is integer
n a composite number, in other words, not prime?” could be computed in time
polynomial in the size of its input. Why doesn’t the following algorithm suffice
to prove it is in P, since it runs in O(n) time?

PrimalityTesting(n)
composite = false
for i := 2 to n− 1 do

if (n mod i) = 0 then
composite = true
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LeetCode

11-1. https://leetcode.com/problems/target-sum/

11-2. https://leetcode.com/problems/word-break-ii/

11-3. https://leetcode.com/problems/number-of-squareful-arrays/

HackerRank

11-1. https://www.hackerrank.com/challenges/spies-revised

11-2. https://www.hackerrank.com/challenges/brick-tiling/

11-3. https://www.hackerrank.com/challenges/tbsp/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

11-1. “The Monocycle”—Chapter 12, problem 10047.

11-2. “Dog and Gopher”—Chapter 13, problem 111301.

11-3. “Chocolate Chip Cookies”—Chapter 13, problem 10136.

11-4. “Birthday Cake”—Chapter 13, problem 10167.

These are not particularly relevant to NP-completeness, but are added for
completeness.

https://leetcode.com/problems/target-sum/
https://leetcode.com/problems/word-break-ii/
https://leetcode.com/problems/number-of-squareful-arrays/
https://www.hackerrank.com/challenges/spies-revised
https://www.hackerrank.com/challenges/brick-tiling/
https://www.hackerrank.com/challenges/tbsp/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 12

Dealing with Hard
Problems

For the practical person, demonstrating that a problem is NP-complete is never
the end of the line. Presumably, there was a reason why you wanted to solve
it in the first place. That application won’t go away after you learn there is no
polynomial-time algorithm. You still seek a program that solves the problem
of interest. All you know is that you won’t find one that quickly solves the
problem to optimality in the worst case. There are still three possibilities:

• Algorithms fast in the average case – Examples of such algorithms include
backtracking algorithms with substantial pruning.

• Heuristics – Heuristic methods like simulated annealing or greedy ap-
proaches can be used to quickly find a solution, albeit with no guarantee
that it will be the best one.

• Approximation algorithms – The theory of NP-completeness stipulates
that it is hard to get the exact answer. With clever, problem-specific
heuristics, we can get provably close to the optimal answer on all possible
instances.

This chapter will investigate these possibilities deeper. I include a brief
introduction to quantum computing, an exciting technology that is shaking (but
not really breaking) the boundaries of what problems are efficiently computable.

12.1 Approximation Algorithms

Approximation algorithms produce solutions with a guarantee attached, namely
that the quality of the optimal solution is provably bounded by the quality
of your heuristic solution. Thus, no matter what your input instance is and
how lucky you are, such an approximation algorithm is destined to produce a
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Figure 12.1: Failing to pick the center vertex leads to a terrible vertex cover.

correct answer. Furthermore, provably good approximation algorithms are often
conceptually simple, fast, and easy to program.

One thing that is usually not clear, however, is how well the solution from
an approximation algorithm compares to what you might get from a heuristic
that gives you no guarantees. The answer may be worse, or it could be better.
Leaving your money in a bank savings account may guarantee you 3% interest
without risk. Still, you likely will do much better investing your money in stocks
than leaving it in the bank, even though performance is not guaranteed.

One way to get the best of approximation algorithms and unwashed heuris-
tics is to run both of them on the given problem instance, and pick the solution
giving the better result. This way, you will get a solution that comes with a
guarantee and a second chance to do even better. When it comes to heuristics
for hard problems, sometimes you can have it both ways.

12.2 Approximating Vertex Cover

Recall the vertex cover problem, where we seek a small subset S of the vertices
of a given graph G such that for every edge (x, y) in G, at least one of x or
y is in S. As we have seen, finding the minimum vertex cover of a graph is
NP-complete. However, a very simple procedure will always find a cover that is
at most twice as large as the optimal cover. It repeatedly selects an uncovered
edge, and picks both of its vertices for the cover:

VertexCover(G = (V,E))
While (E �= ∅) do:

Select an arbitrary edge (u, v) ∈ E
Add both u and v to the vertex cover
Delete all edges from E that are incident to either u or v.

It should be apparent that this procedure always produces a vertex cover,
since each edge is deleted only after an incident vertex has been added to the
cover. More interesting is the claim that the best vertex cover must use at least
half as many vertices as this one. Why? Consider only the k edges selected
by the algorithm that constitute a matching in the graph. No two of these
matching edges can share a vertex, so any cover of just these k edges must
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Figure 12.2: A bad example for the greedy heuristic for vertex cover. The
optimal cover of this bipartite graph is the row of vertices on top, yet the
greedy heuristic will select the vertices from the bottom row from left to right.
This example can be enlarged to create an instance where the greedy solution
is Θ(log n) times larger than the minimum vertex cover.

include at least one vertex per edge, which makes it at least half the size of this
2k-vertex greedy cover.

There are several interesting things to notice about this algorithm:

• Although the procedure is simple, it is not stupid – Many seemingly smarter
heuristics can give a far worse performance in the worst case. For example,
why not modify the above procedure to select only one of the two vertices
for the cover, instead of both? After all, the selected edge will be equally
well covered by only one vertex. But consider the star-shaped graph of
Figure 12.1. The original heuristic will produce a two-vertex cover, while
the single-vertex heuristic might return a cover as large as n− 1 vertices,
should we get unlucky and repeatedly select the leaf instead of the center
as the cover vertex we retain.

• Greedy isn’t always the answer – Perhaps the most natural heuristic for
vertex cover would repeatedly select (and then delete) the vertex with
highest remaining degree for the vertex cover. After all, this vertex will
cover the largest number of possible edges. However, in the case of ties or
near ties, this heuristic can go seriously astray. In the worst case, it can
yield a cover that is Θ(lg n) times optimal, as shown by the example of
Figure 12.2.

• Making a heuristic more complicated does not necessarily make it better –
It is easy to complicate heuristics by adding more special cases or details.
For example, the procedure above did not specify which edge should be
selected next for the matching. It might seem reasonable to pick the edge
whose endpoints have the highest total degree. However, this does not
improve the worst-case bound, and just makes it more difficult to analyze.

• A post-processing cleanup step can’t hurt – The flip side of designing sim-
ple heuristics is that they can often be modified to yield better-in-practice



392 CHAPTER 12. DEALING WITH HARD PROBLEMS

solutions without weakening the approximation bound. For example, a
post-processing step that deletes any unnecessary vertex from the cover
can only improve things in practice, even though it won’t help the worst-
case bound. And it is fair to repeat the process multiple times with dif-
ferent starting edges and take the best of the resulting runs.

The important property of approximation algorithms is relating the size of
the solution produced to a lower bound on the optimal solution. Instead of
thinking about how well we might do, we must think about the worst case—
that is, how badly the algorithm might perform.

Stop and Think: Leaving Behind a Vertex Cover

Problem: Suppose we do a depth-first search of graph G, naturally building a
depth-first search tree T in the process. A leaf node in a tree is any non-root
vertex of degree 1. Delete every leaf node from T . Show that (1) the set of all
non-leaf nodes of T form a vertex cover of graph G, and (2) that this vertex
cover is of size at most twice that of the minimum vertex cover.

Solution: Why must the set of all non-leaf nodes in the DFS tree T form a
vertex cover? Recall that the magic property of depth-first search is that it
partitions all edges into tree edges and back edges. If a vertex v is a leaf of T ,
then there is a single tree edge (x, v) containing it, which will be covered by
taking non-leaf vertex x. If there are other edges containing v, they must be
back edges going to ancestors of v, all of which were selected to be in the cover.
So all edges will be covered by the set of non-leaves.

But why is the set of non-leaves at most twice the size of the optimal cover?
Start from any leaf v and walk up the tree to the root. Suppose this path is
of length k edges, meaning k + 1 vertices leaf-to-root. This heuristic will select
the k non-leaf vertices for the cover. But the best possible cover for this path
requires k/2� vertices, so we are always within a factor of at most two times
optimal.

12.2.1 A Randomized Vertex Cover Heuristic

Although we proved that our original vertex cover heuristic of selecting arbitrary
uncovered edges and adding both vertices to the cover yields a factor two approx-
imation algorithm, it feels wrong to grow the cover by two vertices when either
one would equally cover the given edge. However, the star-shaped example of
Figure 12.1 shows that if we repeatedly pick the wrong (meaning non-center)
vertex for each edge, we could end up with a cover of size n− 1 instead of 1.

Such a horrible performance requires making the wrong decision n− 1 times
in a row, which implies either a special talent or horrendous luck. We can make
it a matter of luck by choosing the vertex at random:
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w

v

u

Figure 12.3: The triangle inequality, that d(u,w) ≤ d(u, v) + d(v, w), holds for
distances defined between geometric points.

VertexCover(G = (V,E))
While (E �= ∅) do:

Select an arbitrary edge (u, v) ∈ E
Randomly pick either u or v, and add it to the vertex cover
Delete all edges from E that are incident to the selected vertex.

At the end of this procedure, we will end up with a vertex cover, but how well
does its expected size compare to a particular minimum size cover C? Observe
that with each edge (u, v) we select, at least one of the two endpoints must
appear in the optimal cover C. Thus, at least half the time we get lucky and
pick the “right” vertex. At the end of this procedure we will have picked a set
C ′ ⊂ C of cover vertices plus a set D of vertices from V − C for our cover. We
know that |C ′| always must be less than or equal to |C|. Further, the expected
size of D is equal to that of C ′. Thus, in expectation |C ′|+ |D| ≤ 2|C|, and we
get a solution whose size is expected to be at most twice that of optimal.

Randomization is a very powerful tool for developing approximation algo-
rithms. Its role is to make bad special cases go away by making it very unlikely
that they will occur. The careful analysis of such probabilities often requires
sophisticated efforts, but the heuristics themselves are generally very simple and
easy to implement.

12.3 Euclidean TSP

In most natural applications of the traveling salesman problem (TSP), direct
routes are inherently shorter than indirect routes. For example, when a graph’s
edge weights are the straight-line distances between pairs of cities, the shortest
path from x to y must always be “as the crow flies.”

The edge weights induced by Euclidean geometry satisfy the triangle in-
equality, namely that d(u,w) ≤ d(u, v) + d(v, w) for all triples of vertices u, v,
and w. The general reasonableness of this condition is demonstrated in Figure
12.3. The cost of airfares is an example of a distance function that violates the
triangle inequality, because it is often cheaper to fly through an intermediate
city than to fly direct to the destination—which is why finding the cheapest
fare can be such a pain. But the triangle inequality holds naturally for many
problems and applications.

The traveling salesman problem remains hard when the edge weights are
defined by Euclidean distances between points. But we can approximate the
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Figure 12.4: A depth-first traversal of a spanning tree, with the shortcut tour
(left). The same DFS tree with a minimum weight matching between odd degree
vertices, creating an Eulerian graph for the Christofides heuristic (right).

optimal traveling salesman tour on such graphs that obey the triangle inequality
using minimum spanning trees. First, observe that the weight of the minimum
spanning tree of graph G must be a lower bound on the cost of the optimal TSP
tour T of G. Why? Distances are always non-negative, so deleting any edge
from tour T leaves a path with total weight no greater than that of T . This
path has no cycles, and hence is a tree, which means its weight must be at least
that of the minimum spanning tree. The weight of the minimum spanning tree
thus gives a lower bound on the cost of the optimal TSP tour.

Consider now what happens when performing a depth-first traversal of a
spanning tree. We visit each edge twice, once going down the tree when discov-
ering the edge and once more going up after exploring the entire subtree. For
example, the depth-first search of Figure 12.4 (left) visits the vertices in order:

1, 2, 1, 3, 5, 8, 5, 9, 5, 3, 6, 3, 1, 4, 7, 10, 7, 11, 7, 4, 1

This circuit travels along each edge of the minimum spanning tree twice, and
hence costs at most twice the optimal tour.

However, many vertices will be repeated on this depth-first search circuit.
To remove the extra copies, we can take a direct path to the next unvisited
vertex at each step. The shortcut tour for the circuit above is

1, 2, 3, 5, 8, 9, 6, 4, 7, 10, 11, 1

Because we have replaced a chain of edges by a single direct edge, the triangle
inequality ensures that the tour can only get shorter. Thus, this shortcut tour,
which can be constructed in O(n +m) time on an n-vertex and m-edge graph
G, always has weight at most twice that of the optimal TSP tour of G.

12.3.1 The Christofides Heuristic

There is another way of looking at this minimum spanning tree doubling idea,
which will lead to an even better approximation algorithm for TSP. Recall that
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an Eulerian cycle in graph G is a circuit traversing each edge of G exactly once.1

There is a simple characterization to test when a connected graph contains an
Eulerian cycle, namely each vertex must be of even degree. This even-degree
condition is obviously necessary, because you must be able to walk out of each
vertex exactly the number of times you walk in. But it is also sufficient, and
furthermore an Eulerian cycle on any connected, even-degree graph can be easily
found in linear time.

We can reinterpret the minimum spanning tree heuristic for TSP in terms
of Eulerian cycles. Construct a multigraph M , which consists of two copies of
each edge of the minimum spanning tree of G. This n-vertex, 2(n − 1)-edge
multigraph must be Eulerian, because every vertex has degree twice that of the
minimum spanning tree of G. Any Eulerian cycle of M will define a circuit with
exactly the same properties as the DFS circuit described above, and hence can
be shortcut in the same way to construct a TSP tour with cost at most twice
that of the optimal tour.

This suggests that we might find an even better approximation for TSP if we
could find a cheaper way to ensure that all vertices are of even degree. Recall
(from Section 8.5.1 (page 267)) that a matching in a graph G = (V,E) is a
subset of edges E′ ⊂ E such that no two edges of E′ share a vertex. Adding a
set of matching edges to a given graph thus raises the degree of affected vertices
by one, turning odd-degree vertices even and even-degree vertices odd, as shown
in Figure 12.4 (right).

So let’s start by identifying the odd-degree vertices in the minimum span-
ning tree of G, which are the obstacle preventing us from finding an Eulerian
cycle on the minimum spanning tree itself. There must be an even number of
odd-degree vertices in any graph. By adding a set of matching edges between
these odd-degree vertices, we make the graph Eulerian. The lowest cost perfect
matching (meaning every vertex must appear in exactly one matching edge) can
be computed efficiently, as discussed in Section 18.6 (page 562).

The Christofides heuristic constructs a multigraph M consisting of the mini-
mum spanning tree of G plus the minimum weight set of matching edges between
odd-degree vertices in this tree. Thus, M is an Eulerian graph, and contains an
Eulerian cycle that can be shortcut to build a TSP tour of weight at most M .

Note that the cost of this matching of just the odd-degree vertices must
be a lower bound on the cost of the lowest cost matching of the full graph G,
presuming it satisfies the triangle inequality.

Observe in Figure 12.5 that the alternating edges of any TSP tour must
define a matching, because each vertex appears only once in the given edge set.
These red edges (or blue edges) must cost at least as much as the minimum
weight matching of G, and (for the lighter color) weigh at most half that of the
TSP tour. The matching edges we added to M thus must have cost at most
half that of the optimal TSP tour.

In conclusion, the total weight of M must be at most (1 + (1/2)) = (3/2)
times that of the optimal TSP tour, and thus the Christofides heuristic con-

1Or, if you don’t recall this, tour Section 18.7 (page 565) for a refresher.
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Figure 12.5: Any TSP tour in a graph with an even number of vertices that
observes the triangle inequality can be partitioned into red and blue matchings,
one of which must be at most half the cost of the tour.

structs a tour of weight at most 3/2 times that of the optimal tour. As with the
minimum spanning tree heuristic, the weight lost due to shortcuts might mean
the resulting tour is even better than this guarantee. But it can never do worse.

12.4 When Average is Good Enough

In the mythical land of Lake Wobegon, all the children are above average. For
certain optimization problems, all (or most) of the solutions are seemingly close
to the best possible. Recognizing this yields very simple approximation al-
gorithms with provable guarantees, that can often be refined by the heuristic
search strategies we will discuss in Section 12.6 (page 399) into something even
better.

12.4.1 Maximum k-SAT

Recall the problem of 3-SAT discussed in Section 11.4.1 (page 367), where we
are given a set of three-element logic clauses like

v3 or v̄17 or v24

and asked to find an assignment of either true or false to each variable vi so as
to make all the clauses true.

A more general problem is maximum 3-SAT, where we seek the Boolean
variable assignment that makes the largest number of these clauses true. Asking
whether you can satisfy 100% of the clauses is the original 3-SAT problem, so
maximum 3-SAT must still be hard. But now it is an optimization problem, so
we can think about approximation algorithms for it.

What happens when we flip a coin to decide the value of each variable vi, and
thus construct a completely random truth assignment? What fraction of clauses
would we expect to satisfy? Consider the clause above. It will be satisfied unless
we pick v3 = false , v17 = true , and v24 = false . The probability we get a good
assignment for the clause is 1− (1/2)3 = 7/8. Thus, we expect that any random
assignment will satisfy (7/8) of the clauses, in other words 87.5% of them.
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That seems pretty good for a mindless approach to an NP-complete problem.
For a maximum k-SAT instance with m input clauses, we expect to satisfy
m(1 − (1/2)k) of them with any random assignment. From an approximation
standpoint, the longer the clauses, the easier it is to get close to the optimum.

12.4.2 Maximum Acyclic Subgraph

Directed acyclic graphs (DAGs) are easier to work with than general directed
graphs. Sometimes it is useful to simplify a given graph by deleting a set of
edges or vertices that suffice to break all cycles. Such feedback set problems are
discussed in Section 19.11 (page 618).

Here we consider an interesting problem in this class, where we seek to retain
as many edges as possible while breaking all directed cycles:

Problem: Maximum Directed Acyclic Subgraph
Input: A directed graph G = (V,E).
Output: Find the largest possible subset E′ ⊆ E such that G′ = (V,E′) is
acyclic.

In fact, there is a very simple algorithm that guarantees you a solution with
at least half as many edges as optimum. I encourage you to try to find it now
before peeking.

Problem: Construct any permutation of the vertices, and interpret it as a left-
to-right ordering, akin to topological sorting. Now some of the edges will point
from left to right, while the rest point from right to left.

One of these two edge subsets must be at least as large as the other. This
means it contains at least half the edges. Furthermore, each of these two edge
subsets must be acyclic for the same reason only DAGs can be topologically
sorted—you cannot form a cycle by repeatedly moving in one direction. Thus,
the larger edge subset must be acyclic, and contain at least half the edges of the
optimal solution.

This approximation algorithm is simple almost to the point of being stupid.
But note that heuristics can make it perform better in practice without losing
this guarantee. Perhaps we can try many random permutations, and pick the
best. Or we can try to exchange pairs of vertices in the permutations retaining
those swaps that throw more edges onto the bigger side.

12.5 Set Cover

The previous sections may encourage a false belief that every problem can be
approximated to within a constant factor. Indeed, several catalog problems such
as maximum clique cannot be approximated to any interesting factor.

Set cover occupies a middle ground between these extremes, having a factor-
Θ(lg n) approximation algorithm. Set cover is a more general version of the
vertex cover problem. As defined in Section 21.1 (page 678):
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milestone class 6 5 4 3 2 1 0
uncovered elements 64 51 40 30 25 22 19 16 13 10 7 4 2 1
selected subset size 13 11 10 5 3 3 3 3 3 3 3 2 1 1

Figure 12.6: The coverage process for the greedy heuristic on a particular in-
stance of set cover. The width w is defined by the five subsets in milestone class
4, when the number of uncovered elements gets halved from at least 25 − 1 to
at most 24.

Problem: Set Cover
Input: A collection of subsets S = {S1, . . . , Sm} of the universal set U =
{1, . . . , n}.
Output: What is the smallest subset T of S whose union equals the universal

set—i.e., ∪|T |
i=1Ti = U?

The natural heuristic is greedy. Repeatedly select the subset that covers the
largest collection of thus-far uncovered elements, until everything is covered. In
pseudocode,

SetCover(S)
While (U �= ∅) do:

Identify the subset Si with the largest intersection with U
Select Si for the set cover
U = U − Si

One consequence of this selection process is that the number of freshly
covered elements defines a non-increasing sequence as the algorithm proceeds.
Why? If not, greedy would have picked the more powerful subset earlier if it,
in fact, existed.

Thus we can view this heuristic as reducing the number of uncovered ele-
ments from n down to zero by progressively smaller amounts. A trace of such
an execution is shown in Figure 12.6. An important milestone in such a trace
occurs each time the number of remaining uncovered elements reduces past a
power of two. Clearly there can be at most lg n� such events.

Let wi denote the number of subsets that were selected by the heuristic to
cover elements between milestones 2i+1−1 and 2i. Define the width w to be the
maximum wi, where 0 ≤ i ≤ lg n. In the example of Figure 12.6, the maximum
width is given by the five subsets needed to go from 25 − 1 down to 24.

Since there are at most lg n such milestones, the solution produced by the
greedy heuristic must contain at most w · lg n subsets. But I claim that the
optimal solution must contain at least w subsets, so the heuristic solution is no
worse than lg n times optimal.

Why? Consider the average number of new elements covered as we move
between milestones 2i+1 − 1 and 2i. These 2i elements require wi subsets, so
the average coverage is μi = 2i/wi. More to the point, the last/smallest of these
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subsets can cover at most μi subsets. Thus, no subset exists in S that can cover
more than μi of the remaining 2i elements. So, to finish the job, we need at
least 2i/μi = wi subsets.

The surprising thing here is that there are set cover instances where the
greedy heuristic finds solutions that are Ω(lg n) times optimal: recall the bad
vertex cover instance of Figure 12.2. This logarithmic approximation ratio is an
inherent property of the problem/heuristic, not an artifact of weak analysis.

Take-Home Lesson: Approximation algorithms guarantee answers that are
always close to the optimal solution. They can provide a practical approach to
dealing with NP-complete problems.

12.6 Heuristic Search Methods

Backtracking gave us a method to find the best of all possible solutions, as scored
by a given objective function. However, any algorithm searching all configura-
tions is doomed to be impossibly expensive on large instances. Heuristic search
methods provide an alternate approach to difficult combinatorial optimization
problems.

In this section, I will discuss approaches to heuristic search. The bulk of our
attention will be devoted to simulated annealing, which I find to be the most
reliable method to apply in practice. Heuristic search algorithms have an air of
voodoo about them, but how they work and why one method can work better
than another follows logically enough if you think them through.

In particular, we will look at three different heuristic search methods: ran-
dom sampling, gradient descent search, and simulated annealing. The traveling
salesman problem will be our ongoing example for comparing heuristics. All
three heuristics share two common components:

• Solution candidate representation – This is a complete yet concise de-
scription of possible solutions for the problem, just like we used for back-
tracking. For traveling salesman, the solution space consists of (n − 1)!
elements—namely all possible circular permutations of the vertices. We
need a data structure that can represent each element of the solution space.
For TSP, the candidate solutions can naturally be represented using an
array S of n− 1 vertices, where Si defines the (i+1)st vertex on the tour
starting from v1.

• Cost function – Search methods need a cost or evaluation function to
assess the quality of each possible solution. Our search heuristic identifies
the element with the best score—either the highest or lowest depending
upon the nature of the problem. For TSP, the cost function for evaluating
candidate solutions S just sums up the weights of all edges (Si, Si+1),
where S0 and Sn both denote v1.
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12.6.1 Random Sampling

The simplest approach to search in a solution space uses random sampling, also
known as the Monte Carlo method. We repeatedly construct random solutions
and evaluate them, stopping as soon as we get a good enough solution, or (more
likely) when we get tired of waiting. We report the best solution found over the
course of our sampling.

True random sampling requires that we select elements from the solution
space uniformly at random. This means that each of the elements of the solu-
tion space must have an equal probability of being the next candidate selected.
Such sampling can be a subtle problem. Algorithms for generating random per-
mutations, subsets, partitions, and graphs are discussed in Sections 17.4 through
17.7.

void random_sampling(tsp_instance *t, int nsamples, tsp_solution *s) {

tsp_solution s_now; /* current tsp solution */

double best_cost; /* best cost so far */

double cost_now; /* current cost */

int i; /* counter */

initialize_solution(t->n, &s_now);

best_cost = solution_cost(&s_now, t);

copy_solution(&s_now, s);

for (i = 1; i <= nsamples; i++) {

random_solution(&s_now);

cost_now = solution_cost(&s_now, t);

if (cost_now < best_cost) {

best_cost = cost_now;

copy_solution(&s_now, s);

}

solution_count_update(&s_now, t);

}

}

When might random sampling do well?

• When there is a large proportion of acceptable solutions – Finding a piece of
hay in a haystack is easy, since almost anything you grab is a straw. When
good solutions are plentiful, a random search should find one quickly.

Finding prime numbers is a domain where a random search proves suc-
cessful. Generating large random prime numbers for keys is an important
aspect of cryptographic systems such as RSA. Roughly one out of every
lnn integers is prime, so only a modest number of random samples need
to be taken to discover primes that are several hundred digits long.
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Figure 12.7: Search time/quality tradeoffs for TSP using random sampling.
Progress is made infrequently, whenever a new best (here smallest) solution is
stumbled upon.

• When there is no coherence in the solution space – Random sampling is
the right thing to do when there is no sense of when we are getting closer
to a solution. Suppose you wanted to find one of your friends who has a
social security number that ends in 00. There is not much else you can do
but tap an arbitrary fellow on the shoulder and ask. No cleverer method
will be better than random sampling.

Consider again the problem of hunting for a large prime number. Primes
are scattered quite arbitrarily among the integers. Random sampling is
as systematic as anything else would be.

How does random sampling do on TSP? Pretty lousy. The best solution I
found after testing 100 million random permutations of a TSP instance with 150
sites was 43,251, which is more than eight times the cost of the optimal tour!
The solution space consists almost entirely of mediocre to bad solutions, so
quality grows very slowly with the amount of sampling/running time we invest.
Figure 12.7 shows the arbitrary up-and-down movements of the generally poor
quality solutions encountered using random sampling, so you can get a sense of
how the score varied over each iteration.

Most problems we encounter, like TSP, have relatively few good solutions
and a highly coherent solution space. More powerful heuristic search algorithms
are required to hunt where the needle in the haystack is likely to be.

Stop and Think: Picking the Pair

Problem: We need an efficient and unbiased way to generate random pairs
of vertices to perform random vertex swaps. Propose an efficient algorithm
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to generate elements from the
(
n
2

)
unordered pairs on {1, . . . , n} uniformly at

random.

Solution: Uniformly generating random structures is a surprisingly subtle prob-
lem. Consider the following procedure to generate random unordered pairs:

i = random int(1,n-1);

j = random int(i+1,n);

It is clear that this indeed generates unordered pairs, since i < j. Further,
it is clear that all

(
n
2

)
unordered pairs can indeed be generated, presuming that

random int generates integers uniformly between its two arguments.
But are they uniform? The answer is no. What is the probability that pair

(1, 2) is generated? There is a 1/(n − 1) chance of getting the 1, and then a

1/(n − 1) chance of getting the 2, which yields p(1, 2) = 1/(n− 1)
2
. But what

is the probability of getting (n − 1, n)? Again, there is a 1/(n − 1) chance of
getting the first number, but now there is only one possible choice for the second
candidate! This pair will occur n− 1 times more often than (1, 2)!

The problem is that fewer pairs start with big numbers than little numbers.
We could solve this problem by calculating exactly how many unordered pairs
start with i (exactly (n− i)) and appropriately bias the probability. The second
value could then be selected uniformly at random from i+ 1 to n.

But instead of working through the math, let’s exploit the fact that ran-
domly generating the n2 ordered pairs uniformly is easy. Just pick two integers
independently of each other. Ignoring the ordering, by permuting the ordered
pair to unordered pair (x, y) where x < y, gives us a 2/n2 probability of gener-
ating each unordered pair of distinct elements. If we happen to generate a pair
(x, x), we discard it and try again. We will get unordered pairs uniformly at
random in constant expected time by using the following algorithm:

do {
i = random int(1,n);

j = random int(1,n);

if (i > j) swap(&i,&j);

} while (i==j);

12.6.2 Local Search

Now suppose you want to hire an algorithms expert as a consultant to solve
your problem. You could dial a phone number at random, ask if they are an
algorithms expert, and hang up if they say no. After many repetitions you will
eventually find one, but it would probably be more efficient to ask the person
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Figure 12.8: Improving a candidate TSP tour by swapping vertices 3 and 7
replaces four old tour edges with four new ones.

on the phone for someone more likely to be an algorithms expert, and call them
up instead.

A local search scans the neighborhood around elements in the solution space.
Think of each such candidate solution x as a vertex, with a directed edge (x, y)
to every other candidate solution y that is a neighbor of x. Our search proceeds
from x to the most promising candidate in x’s neighborhood.

We certainly do not want to explicitly construct this neighborhood graph for
any sizable solution space. Think about TSP, which will have (n− 1)! vertices
in this graph. We are conducting a heuristic search precisely because we cannot
hope to do this many operations in a reasonable amount of time.

Instead, we want a general transition mechanism that takes us to a nearby
solution by slightly modifying the current one. Typical transition mechanisms
include swapping a random pair of items or changing (inserting or deleting) a
single item in the solution.

A reasonable transition mechanism for TSP would be to swap the current
tour positions of a random pair of vertices Si and Sj , as shown in Figure 12.8.
This changes up to eight edges on the tour, deleting the four edges currently
adjacent to both Si and Sj , and adding their replacements. The effect of such
an incremental change on the quality of the solution can be computed incre-
mentally, so the cost function evaluation takes time proportional to the size of
the change (typically constant), which is a big win over being linear in the size
of the solution. Even better might be to swap two edges on the tour with two
others that replace it, since it may be easier to find moves that improve the cost
of the tour.

Local search heuristics start from an arbitrary element of the solution space,
and then scan the neighborhood looking for a favorable transition to take. In a
favorable vertex swap, the four edges we insert are cheaper than the four edges
we delete, a computation performed by the transition function. In a greedy
hill-climbing procedure, we try to find the top of a mountain (or alternately, the
lowest point in a ditch) by starting at some arbitrary point and taking any step
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that leads in the direction we want to travel. We repeat until we have reached a
point where all our neighbors lead us in the wrong direction. We are now King
of the Hill, or for a minimization problem Dean of the Ditch.

But unfortunately, we are probably not King of the Mountain. Suppose you
wake up in a ski lodge, eager to reach the top of the neighboring peak. Your first
transition to gain altitude might be to go upstairs to the top of the building.
And then you are trapped. To reach the top of the mountain, you must go
downstairs and walk outside, but this violates the requirement that each step
must increase your score. Hill climbing and closely related heuristics such as
greedy search or local search are great at finding local optima quickly, but often
fail to find the globally best solution.

void hill_climbing(tsp_instance *t, tsp_solution *s) {

double cost; /* best cost so far */

double delta; /* swap cost */

int i, j; /* counters */

bool stuck; /* did I get a better solution? */

initialize_solution(t->n, s);

random_solution(s);

cost = solution_cost(s, t);

do {

stuck = true;

for (i = 1; i < t->n; i++) {

for (j = i + 1; j <= t->n; j++) {

delta = transition(s, t, i, j);

if (delta < 0) {

stuck = false;

cost = cost + delta;

} else {

transition(s, t, j, i);

}

solution_count_update(s, t);

}

}

} while (stuck);

}

When does local search do well?

• When there is great coherence in the solution space – Hill climbing is at
its best when the solution space is convex. In other words, it consists of
exactly one hill. No matter where you start on the hill, there is always a
direction to walk up until you are at the absolute global maximum.
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Figure 12.9: Search time/quality tradeoffs for TSP using hill climbing.

Many natural problems have this property. We can think of a binary
search as starting in the middle of a search space, where exactly one of
the two possible directions we can walk will get us closer to the target key.
The simplex algorithm for linear programming (see Section 16.6 (page
482)) is nothing more than hill climbing over the right solution space, yet
it guarantees us the optimal solution to any linear programming problem.

• Whenever the cost of incremental evaluation is much cheaper than global
evaluation – It costs Θ(n) to evaluate the cost of an arbitrary n-vertex
candidate TSP solution, because we must sum up the cost of each edge
in the circular permutation describing the tour. Once that is found, how-
ever, the cost of the tour after swapping a given pair of vertices can be
determined in constant time.

If we are given a very large value of n and a very small budget of how much
time we can spend searching, we are better off using it to do a bunch of
incremental evaluations than a few random samples, even if we are looking
for a needle in a haystack.

The primary drawback of a local search is that there isn’t anything more for
us to do after we find the local optimum. Sure, if we have more time we could
restart from different random points, but in landscapes of many low hills we are
unlikely to stumble on the optimum.

How does local search do on TSP? Much better than random sampling for a
similar amount of time. This best local search tour found on our hard 150-site
TSP instance had a length of 15,715—improving the quality of our solution by
almost a factor of three over random sampling.2

This is good, but not great. You would not be happy to learn you are paying
twice the taxes than you should be. Figure 12.9 illustrates the trajectory of a
local search: repeated streaks from random tours down to decent solutions of

2This is still more than double the optimal solution cost of 6,828, so the minimum spanning
tree approximation of Section 12.3 (page 393) would beat it.
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fairly similar quality. We need more powerful methods to get closer to the
optimal solution.

12.6.3 Simulated Annealing

Simulated annealing is a heuristic search procedure that allows occasional tran-
sitions leading to more expensive (and hence inferior) solutions. This may not
sound like progress, but it helps keep our search from getting stuck in local
optima. That poor fellow trapped on the second floor of the ski lodge would do
better to break the glass and jump out the window if they really want to reach
the top of the mountain.

The inspiration for simulated annealing comes from the physical process of
cooling molten materials down to the solid state. In thermodynamic theory,
the energy state of a system is described by the energy state of each parti-
cle constituting it. But a particle’s energy state jumps about randomly, with
such transitions governed by the temperature of the system. In particular,
the backwards transition from a low energy (high quality) state ei to higher
energy (lower quality) state ej at temperature T is accepted with probability
P (ei, ej , T ), where

P (ei, ej , T ) = e(ei−ej)/(kBT )

Here kB is a positive constant—called Boltzmann’s constant, used to tune the
desired frequency of backwards moves.

What does this formula mean? Transitioning from a low energy state to
higher energy state, ei − ej < 0, implies that the exponent is negative. Note
that 0 ≤ e−x = 1/ex ≤ 1 for any positive x. This makes it a probability, one
that gets smaller as |ei − ej | gets larger. There is thus a non-zero probability
of accepting a transition into a high-energy (lower quality) state. Small jumps
are much more likely than big ones. The higher the temperature T is, the more
likely such energy jumps will occur.

Simulated-Annealing()
Create initial solution s
Initialize temperature T
repeat

for i = 1 to iteration-length do
Randomly select a neighbor of s to be si
If (C(s) ≥ C(si)) then s = si
else if (e(C(s)−C(si))/(kB ·T ) > random[0, 1)) then s = si

Reduce temperature T
until (no change in C(s))
Return s

What relevance does this have for combinatorial optimization? A physical
system, as it cools, seeks to reach a minimum-energy state. Minimizing the total
energy is a combinatorial optimization problem for any set of discrete particles.
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Through random transitions generated according to the given probability distri-
bution, we can mimic the physics to solve arbitrary combinatorial optimization
problems.

Take-Home Lesson: Don’t worry about this molten metal business. Simulated
annealing is effective because it spends much more of its time working on good
elements of the solution space than on bad ones, and because it avoids getting
trapped in local optimum.

As with a local search, the problem representation includes both a repre-
sentation of the solution space and an easily computable cost function C(s)
measuring the quality of a given solution. The new component is the cooling
schedule, whose parameters govern how likely we are to accept a bad transition
as a function of time.

At the beginning of the search, we are eager to use randomness to explore the
search space widely, so the probability of accepting a bad transition should be
high. As the search progresses, we seek to limit transitions to local improvements
and optimizations. This cooling schedule can be regulated by the following
parameters:

• Initial system temperature – Typically T1 = 1.

• Temperature decrement function – Typically Ti = α·Ti−1, where 0.8 ≤ α ≤
0.99. This implies an exponential decay in the temperature, as opposed
to a linear decay.

• Number of iterations between temperature change – Typically, 1,000 itera-
tions or so might be permitted before lowering the temperature. Also, it
generally pays to stay at a given temperature for multiple rounds so long
as we are making progress there.

• Acceptance criteria – A typical criterion is to accept any good transition,
and also accept a bad transition whenever

e
C(si−1)−C(si)

kBT > r,

where r is a random number 0 ≤ r < 1. The “Boltzmann” constant kB
scales this cost function so that almost all transitions are accepted at the
starting temperature.

• Stop criteria – Typically, when the value of the current solution has not
changed or improved within the last iteration or so, the search is termi-
nated and the current solution reported.

Creating the proper cooling schedule is a trial-and-error process of mucking
with constants and seeing what happens. It probably pays to start from an
existing implementation of simulated annealing, so experiment with my full
implementation at www.algorist.com.

http://www.algorist.com
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Figure 12.10: Search time/quality tradeoffs for TSP using simulated annealing.

Compare the time/quality profiles of our three heuristics. Simulated anneal-
ing does best of all. Figure 12.10 shows three runs from three different random
initializations, each looking like a dying heartbeat as it converges to a minima.
Because they don’t get stuck in a local optimum, all three runs lead to much
better solutions than the best hill-climbing result. Further, the rapid plunges
toward optimum show that it takes relatively few iterations to score most of the
improvement.

After ten million iterations simulated annealing gave us a solution of cost
7,212—only 10.4% over the optimum. Even better solutions are available to
those willing to wait a bit longer. Letting it run for one billion iterations (taking
only 5 minutes, 21 seconds on my laptop) got the score down to 6,850, just 4.9%
over the optimum.

In expert hands, the best problem-specific heuristics for TSP will slightly
outperform simulated annealing. But here the simulated annealing solution
works admirably. It is my heuristic method of choice for optimization problems.

Implementation

The implementation follows the pseudocode quite closely:
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void anneal(tsp_instance *t, tsp_solution *s) {

int x, y; /* pair of items to swap */

int i, j; /* counters */

bool accept_win, accept_loss; /* conditions to accept transition */

double temperature; /* the current system temp */

double current_value; /* value of current state */

double start_value; /* value at start of loop */

double delta; /* value after swap */

double exponent; /* exponent for energy funct */

temperature = INITIAL_TEMPERATURE;

initialize_solution(t->n, s);

current_value = solution_cost(s, t);

for (i = 1; i <= COOLING_STEPS; i++) {

temperature *= COOLING_FRACTION;

start_value = current_value;

for (j = 1; j <= STEPS_PER_TEMP; j++) {

/* pick indices of elements to swap */

x = random_int(1, t->n);

y = random_int(1, t->n);

delta = transition(s, t, x, y);

accept_win = (delta < 0); /* did swap reduce cost? */

exponent = (-delta / current_value) / (K * temperature);

accept_loss = (exp(exponent) > random_float(0,1));

if (accept_win || accept_loss) {

current_value += delta;

} else {

transition(s, t, x, y); /* reverse transition */

}

solution_count_update(s, t);

}

if (current_value < start_value) { /* rerun at this temp */

temperature /= COOLING_FRACTION;

}

}

}
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12.6.4 Applications of Simulated Annealing

We provide several examples to demonstrate how careful modeling of the state
representation and cost function can lead to elegant simulated annealing solu-
tions for real combinatorial search problems.

Maximum Cut

The maximum cut problem seeks to partition the vertices of a weighted graph G
into sets V1 and V2 to maximize the weight (or number) of edges with one vertex
in each set. For graphs that specify an electronic circuit, the maximum cut in
the graph defines the largest amount of simultaneous data communication that
can take place in the circuit. As discussed in Section 19.6 (page 601), maximum
cut is NP-complete.

How can we formulate maximum cut for simulated annealing? The solution
space consists of all 2n−1 possible vertex partitions. We save a factor of two over
all vertex subsets by fixing vertex v1 to be on the left side of the partition. The
subset of vertices accompanying it can be represented using a bit vector. The
cost of a solution is the sum of the weights cut in the current configuration. A
natural transition mechanism selects one vertex at random and moves it across
the partition simply by flipping the corresponding bit in the bit vector. The
change in the cost function will be the weight of its old neighbors minus the
weight of its new neighbors. This can be computed in time proportional to the
degree of the vertex.

This kind of simple, natural modeling represents the right type of heuristic
to seek in practice.

Independent Set

An independent set of a graph G is a subset of vertices S such that there is no
edge with both endpoints in S. The maximum independent set of a graph is the
largest vertex set that induces an empty (i.e. edgeless) subgraph. Finding large
independent sets arises in dispersion problems associated with facility location
and coding theory, as discussed in Section 19.2 (page 589).

The natural state space for a simulated annealing solution would consist
of all 2n possible subsets of the vertices, represented as a bit vector. As with
maximum cut, a simple transition mechanism would add or delete one vertex
from S.

One natural objective function for subset S might be 0 if the S-induced
subgraph contains an edge, and |S| if it is indeed an independent set. Such a
function would ensures that we work towards an independent set at all times.
However, this condition is so strict that we are liable to move in only a narrow
portion of the total search space. More flexibility and quicker objective function
computations can result from allowing non-empty graphs at the early stages of
cooling. This can be obtained with an objective function like C(S) = |S| − λ ·
mS/T , where λ is a constant, T is the temperature, and mS is the number of
edges in the subgraph induced by S. This objective likes large subsets with few
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edges, and the dependence of C(S) on T ensures that the search will eventually
drive the edges out as the system cools.

Circuit Board Placement

In designing printed circuit boards, we are faced with the problem of position-
ing modules (typically, integrated circuits) appropriately on the board. Desired
criteria in a layout may include (1) minimizing the area or optimizing the as-
pect ratio of the board so that it properly fits within the allotted space, and
(2) minimizing the total or longest wire length in connecting the components.
Circuit board placement is representative of the type of messy, multicriterion
optimization problems for which simulated annealing is ideally suited.

Formally, we are given a collection of rectangular modules r1, . . . , rn, each
with associated dimensions hi × li. Further, for each pair of modules ri, rj , we
are given the number of wires wij that must connect the two modules. We seek
a placement of the rectangles that minimizes area and wire length, subject to
the constraint that no two rectangles overlap each other.

The state space for this problem must describe the positions of each rectangle
on the board. To make this discrete, these rectangles can be restricted to lie on
vertices of an integer grid. Reasonable transition mechanisms include moving
one rectangle to a different location, or swapping the position of two rectangles.
A natural cost function might be:

C(S) = λarea(Sheight · Swidth) +
n∑

i=1

n∑

j=1

(λwire · wij · dij + λoverlap(ri ∩ rj))

where λarea, λwire, and λoverlap are weights governing the impact of these com-
ponents on the cost function. Presumably, λoverlap should be a decreasing func-
tion of temperature, so after gross placement it adjusts the rectangle positions
to not overlap.

Take-Home Lesson: Simulated annealing is a simple but effective technique
for efficiently obtaining good but not optimal solutions to combinatorial search
problems.

12.7 War Story: Only it is Not a Radio

“Think of it as a radio,” he chuckled. “Only it is not a radio.”
I’d been whisked by corporate jet to the research center of a large but very

secretive company located somewhere east of California. They were so paranoid
that I never did get to see the object we were working on, but the people who
brought me in did a great job of abstracting the problem.

The issue concerned a manufacturing technique known as selective assembly.
Eli Whitney helped kick start the Industrial Revolution through his system of
interchangeable parts. He carefully specified the manufacturing tolerances on
each part in his machine so that the parts were interchangeable, meaning that
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Figure 12.11: Part assignments for three not-radios, such that each had at most
fifty defect points.

any legal cog-widget could be used to replace any other legal cog-widget. This
greatly sped up the process of manufacturing, because the workers could just
put parts together instead of having to stop to file down rough edges and the
like. It made replacing broken parts a snap. This was a very good thing.

Unfortunately, it also resulted in large piles of cog-widgets that were slightly
outside the manufacturing tolerance, and thus had to be discarded. Another
clever fellow then observed that maybe one of these defective cog-widgets could
be used when all the other parts in the given assembly exceeded their required
manufacturing tolerances. Good plus bad could well equal good enough. This
is the idea of selective assembly.

“Each not-radio is made up of n different types of not-radio parts,” he told
me. For the ith part type (say the right flange gasket), we have a pile of si
instances of this part type. Each part (flange gasket) comes with a measure of
how much it deviates from perfection. We need to match up the parts so as to
create the greatest number of working not-radios as possible.”

The situation is illustrated in Figure 12.11. Each not-radio consists of three
parts, and the sum of the defects in any functional not-radio must total at most
fifty. By cleverly balancing the good and bad parts in each machine, we can use
all the parts and make three working not-radios.

I thought about the problem. The simplest procedure would take the best
part for each part type, make a not-radio out of them, and repeat until the not-
radio didn’t play (or do whatever a not-radio is supposed to do). But this would
create a small number of not-radios drastically varying in quality, whereas they
wanted as many decent not-radios as possible.

The goal was to match up good parts and bad parts so the total amount
of badness wasn’t so bad. Indeed, the problem sounded related to matching
in graphs (see Section 18.6 (page 562)). Suppose we build a graph where the
vertices were the part instances, and add an edge for all two part instances that
were within the total error tolerance. In graph matching, we seek the largest
number of edges such that no vertex appears more than once in the matching.
This is analogous to the largest number of two-part assemblies we can form from
the given set of parts.
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“I can solve your problem using bipartite matching,” I announced, “provided
not-radios are each made of only two parts.”

There was silence. Then they all started laughing at me. “Everyone knows
not-radios have more than two parts,” they said, shaking their heads.

That spelled the end of this algorithmic approach. Extending to more than
two parts turned the problem into matching on hypergraphs3—a problem that
is NP-complete. Further, it might take exponential time in the number of part
types just to build the graph, since we had to explicitly construct each possible
hyperedge/assembly.

I went back to the drawing board. They wanted to put parts into assemblies
so that no assembly would have more total defects than allowed. Described
that way, it sounded like a packing problem. In the bin packing problem (see
Section 20.9 (page 652)), we are given a collection of items of different sizes and
asked to store them using the smallest possible number of bins, each of which
has a fixed capacity of size k. Here, the assemblies represented the bins, each
of which could absorb total defect ≤ k. The items to pack were the individual
parts, whose size would reflect its quality of manufacture.

It wasn’t pure bin packing, however, because parts came in different types,
and the task imposed constraints on the allowable contents of each bin. Creat-
ing the maximum number of not-radios meant that we sought a packing that
maximized the number of bins that contained exactly one part for each of the
m different parts types.

Bin packing is NP-complete, but is a natural candidate for a heuristic search
approach. The solution space consists of assignments of parts to bins. We
initially assign a random part of each type for each bin to provide a starting
configuration for the search.

The local neighborhood operation involves moving parts around from one bin
to another. We might move one part at a time, but more effective was swapping
parts of the same type between two randomly chosen bins. In such a swap,
both bins remain complete not-radios, hopefully with better error tolerance than
before. Thus, our swap operator required three random integers—one to select
the appropriate part type (from 1 to m) and two more to select the assembly
bins involved (between 1 and b).

The key decision was the cost function to use. They supplied the hard limit
k on the total defect level for each individual assembly. But what was the best
way to score a set of assemblies? We could just return the number of acceptable
complete assemblies as our score—an integer from 1 to b. Although this was
indeed what we wanted to optimize, it would not be sensitive enough to detect
when we were making partial progress towards a solution. Suppose one of our
swaps succeeded in bringing one of the non-functional assemblies much closer to
the not-radio limit k. That would be a better starting point for further progress
than the original, and should be favored.

My final cost function was as follows. I gave one point for every working

3A hypergraph is made up of edges that can contain more than two vertices each. They
can be thought of as general collections of subsets of vertices/elements.
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assembly, and a significantly smaller credit for each non-working assembly based
on how close to the threshold k it was. The score for a nonworking assembly
decreased exponentially based on how much it was over k. The optimizer would
thus seek to maximize the number of working assemblies, and then try to drive
down the number of defects in another assembly that was close to the limit.

I implemented this algorithm, and then ran the search on the test case they
provided. It was an instance taken directly from the factory floor. It turns
out that not-radios contain m = 8 important parts types. Some parts types
are more expensive than others, and so they have fewer candidates available to
consider. The most constrained parts type had only eight representatives, so
there could be at most eight possible assemblies from this given mix.

I watched as simulated annealing chugged and bubbled on this problem
instance. The number of completed assemblies instantly climbed (one, two,
three, four) before progress started to slow a bit. Then came five and six in a
hiccup, with a pause before assembly seven came triumphantly together. But
try as it might, the program could not put eight not-radios together before I
lost interest in watching.

I called and tried to admit defeat, but they wouldn’t hear of it. It turned
out that the best the factory had managed after extensive efforts was only six
working not-radios, so my result represented a significant improvement!

12.8 War Story: Annealing Arrays

The war story of Section 3.9 (page 98) reported how we used advanced data
structures to simulate a new method for sequencing DNA. Our method, inter-
active sequencing by hybridization (SBH), required building arrays of specific
oligonucleotides on demand.

A biochemist at Oxford University got interested in our technique, and more-
over he had in his laboratory the equipment we needed to test it out. The
Southern Array Maker, manufactured by Beckman Instruments, prepared dis-
crete oligonucleotide sequences in 64 parallel rows across a polypropylene sub-
strate. The device constructs arrays by appending single characters to each cell
along specific rows and columns of arrays. Figure 12.12 shows how to construct
an array of all 24 = 16 purine (A or G) 4-mers by building the prefixes along
four rows and the suffixes along four columns. This technology provided an
ideal environment for testing the feasibility of interactive SBH in a laboratory,
because with proper programming it gave a way to fabricate a wide variety of
oligonucleotide arrays on demand.

However, we had to provide the proper programming. Fabricating compli-
cated arrays required solving a difficult combinatorial problem. We were given
as input a set of n strings (representing oligonucleotides) to fabricate in an
m ×m array (where m = 64 on the Southern apparatus). We had to produce
a schedule of row and column commands to realize the set of strings S. We
proved that the problem of designing dense arrays was NP-complete, but that
didn’t really matter. My student Ricky Bradley and I had to solve it anyway.
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suffix
prefix AA AG GA GG

AA AAAA AAAG AAGA AAGG
AG AGAA AGAG AGGA AGGG
GA GAAA GAAG GAGA GAGG
GG GGAA GGAG GGGA GGGG

Figure 12.12: A prefix–suffix array of all purine 4-mers.

“We are going to have to use a heuristic,” I told him. “So how can we model
this problem?”

“Well, each string can be partitioned into prefix and suffix pairs that realize
it. For example, the string ACC can be realized in four different ways: prefix ‘’
and suffix ACC, prefix A and suffix CC, prefix AC and suffix C, or prefix ACC
and suffix ‘’. We seek the smallest set of prefixes and suffixes that together
realize all the given strings,” Ricky said.

“Good. This gives us a natural representation for simulated annealing. The
state space will consist of all possible subsets of prefixes and suffixes. The
natural transitions between states might include inserting or deleting strings
from our subsets, or swapping a pair in or out.”

“What’s a good cost function?” he asked.

“Well, we need as small an array as possible that covers all the strings.
How about taking the maximum of the number of rows (prefixes) or columns
(suffixes) used in our array, plus the number of strings from S that are not yet
covered. Try it and let’s see what happens.”

Ricky went off and implemented a simulated annealing program along these
lines. It printed out the state of the solution each time a transition was accepted
and was fun to watch. The program quickly kicked out unnecessary prefixes
and suffixes, and the array began shrinking rapidly in size. But after several
hundred iterations, progress started to slow. A transition would knock out an
unnecessary suffix, wait a while, then add a different suffix back again. After a
few thousand iterations, no real improvement was happening.

“The program doesn’t seem to recognize when it is making progress. The
evaluation function only gives credit for minimizing the larger of the two dimen-
sions. Why not add a term to give some credit to the other dimension.”

Ricky changed the evaluation function, and we tried again. This time, the
program did not hesitate to improve the shorter dimension. Indeed, our arrays
started to turn into skinny rectangles instead of squares.

“OK. Let’s add another term to the evaluation function to give it points for
being roughly square.”

Ricky tried again. Now the arrays were the right shape, and progress was in
the right direction. But the progress was still slow.

“Too many of the insertion moves don’t affect many strings. Maybe we
should skew the random selections so that the important prefix/suffixes get
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Figure 12.13: Compression of the HIV array by simulated annealing—after 0,
500, 1,000, and 5,750 iterations.

picked more often.”
Ricky tried again. Now it converged faster, but sometimes it still got stuck.

We changed the cooling schedule. It did better, but was it doing well? Without
a lower bound knowing how close we were to optimal, it couldn’t really tell how
good our solution was. We tweaked and tweaked until our program stopped
improving.

Our final solution refined the initial array by applying the following random
moves:

• Swap – swap a prefix/suffix on the array with one that isn’t.

• Add – add a random prefix/suffix to the array.

• Delete – delete a random prefix/suffix from the array.

• Useful add – add the prefix/suffix with the highest usefulness to the array.

• Useful delete – delete the prefix/suffix with the lowest usefulness from the
array.

• String add – randomly select a string not on the array, and add the most
useful prefix and/or suffix to cover this string.

We used a standard cooling schedule, with an exponentially decreasing tem-
perature (dependent upon the problem size) and a temperature-dependent Boltz-
mann criterion for accepting states that have higher costs. Our final cost func-
tion was defined as

cost = 2×max+min+
(max−min)

2

4
+ 4(strtotal − strin)

where max is the size of the maximum chip dimension, min is the size of the
minimum chip dimension, strtotal = |S|, and strin is the number of strings from
S currently on the chip.

How well did we do? Figure 12.13 shows the convergence of an array consist-
ing of the 5,716 unique 7-mers of the HIV virus. Figure 12.13 shows snapshots
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of the state of the chip at four points during the annealing process, after 0, 500,
1,000, and finally 5,750 iterations. Red pixels represent the first occurrence of
an HIV 7-mer. The final chip size here is 130×132—quite an improvement over
the initial size of 192 × 192. It took about fifteen minutes of computation to
complete the optimization, which was perfectly acceptable for the application.

But how well did we do? Since simulated annealing is only a heuristic, we
really don’t know how close to optimal our solution is. I think we did pretty
well, but can’t really be sure. Simulated annealing is a good way to handle
complex optimization problems. However, to get the best results, expect to
spend more time tweaking and refining your program than you did in writing it
in the first place. This is dirty work, but sometimes you have to do it.

12.9 Genetic Algorithms and Other Heuristics

Many heuristic search methods have been proposed for combinatorial optimiza-
tion problems. Like simulated annealing, many of these techniques rely on
analogies to real-world processes, including genetic algorithms, neural networks,
and ant colony optimization.

The intuition behind these methods is highly appealing, but skeptics decry
them as voodoo optimization techniques that rely more on superficial analo-
gies to nature than producing superior computational results on real problems
compared to other methods.

The question isn’t whether you can get decent answers for many problems
given enough effort using these techniques. Clearly you can. The real question
is whether they lead to better solutions with less implementation complexity or
greater efficiency than the other methods we have discussed.

In general, I don’t believe that they do. But in the spirit of free inquiry, I
introduce genetic algorithms, which is the most popular of these methods. See
the Chapter Notes section for more detailed readings.

Genetic Algorithms

Genetic algorithms draw their inspiration from evolution and natural selection.
Through the process of natural selection, organisms adapt to optimize their
chances for survival in a given environment. Random mutations occur in an
organism’s genetic description, which then get passed on to its offspring. Should
a mutation prove helpful, these children are more likely to survive and reproduce.
Should it prove harmful, they won’t, and so the bad trait will die with them.

Genetic algorithms maintain a “population” of solution candidates for the
given problem. Elements are drawn at random from this population and allowed
to “reproduce” by combining aspects of the two-parent solutions. The probabil-
ity that an element is chosen to reproduce is based on its “fitness,” essentially
the quality of the solution it represents. Unfit elements are removed from the
population, to be replaced by a successful-solution offspring.
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The idea behind genetic algorithms is extremely appealing. However, they
just don’t seem to work as well on practical combinatorial optimization problems
as simulated annealing does. There are two primary reasons for this. First,
it is quite unnatural to model applications in terms of genetic operators like
mutation and crossover on bit strings. The pseudo-biology adds another level of
complexity between you and your problem. Second, genetic algorithms take a
very long time on non-trivial problems. The crossover and mutation operations
typically make no use of problem-specific structure, so most transitions lead to
inferior solutions, and convergence is slow. Indeed, the analogy with evolution—
where significant progress require millions of years—can be quite appropriate.

I will not discuss genetic algorithms further, except to discourage you from
considering them for your applications. However, pointers to implementations
of genetic algorithms are provided in Section 16.5 (page 478) if you really insist
on playing with them.

Take-Home Lesson: I have never encountered any problem where genetic
algorithms seemed to me the right way to attack it. Further, I have never seen
any computational results reported using genetic algorithms that favorably
impressed me. Stick to simulated annealing for your heuristic search voodoo
needs.

12.10 Quantum Computing

We live in an era where the random access machine (RAM) model of computa-
tion introduced in Section 2.1 is being augmented by a new class of computing
devices. These devices are powered by the principles of quantum mechanics,
which ascribes seemingly impossible properties to how systems of atoms be-
have. Quantum computers exploit these properties to perform certain types of
computations with algorithmic efficiencies asymptotically faster than conven-
tional machines.

Quantummechanics is well known for being so completely unintuitive that no
one really understands it. Superposition! Quantum weirdness! Entanglement!
Schrödinger’s cat! Collapsing wave functions! Gaa!! I must make clear that
there is absolutely no controversy about the rules of how quantum computers
will behave. People in the know agree on the properties of quantum mechanics
and the theoretical powers of these machines. You don’t have to understand
why a law exists in order to follow it to the letter. Research in quantum com-
puting revolves around developing technologies to implement large and reliable
quantum systems, and devising new algorithms to exploit this power.

I presume that you the reader may well never have taken a physics course,
and are likely rusty with linear algebra and complex numbers, so I will try
to dispense with such matters. My goal here is to show why these machines
have great potential power, and to provide some insight as how this can be
exploited to yield asymptotically faster algorithms for certain problems. My
approach is to make up a new model of a “quantum” computer. This model isn’t
really correct, but hopefully provides insight as to what makes these machines
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exciting. I provide a taste of how three of the most famous quantum algorithms
work. Finally, I make some predictions on what the future holds for quantum
computing, and confess some of my model’s lies in Section 12.10.5.

12.10.1 Properties of “Quantum” Computers

Consider a conventional deterministic computer with n bits of memory labeled
b0, . . . , bn−1. There are exactly N = 2n possible states this computer can exist
in, because each bit can be set to either 0 or 1. The ith state of the machine
corresponds to the string of bits corresponding to the binary representation of
integer i. Each instruction that is executed changes the state of the machine,
flipping a specific set of bits.

We can think of a conventional deterministic computer as maintaining a
probability distribution of the machine’s current state. At any moment, the
probability p(i) of being in state i equals zero for 2n − 1 of the possible states,
with p(j) = 1 if the computer happens to be in state j. Yes, this is a probability
distribution over states, but not a very interesting one.

Quantum computers come with n qubits of memory, q0, . . . , qn−1. Thus,
there are also N = 2n possible bit patterns associated with this computer, but
the actual state it is in at any moment is a probability distribution. Each of
the 2n bit patterns has an associated probability, where p(i) is the probability
that when the machine is read, it would report being in state i. This probability
distribution is much richer than with conventional deterministic machines: there
can be a non-zero probability of being in all N states at any given time. Being
able to manipulate probability distribution in parallel for all N = 2n states is
the real win of quantum computing. As is true of any probability distribution,
all these probabilities must sum to one, so

∑N−1
i=0 p(i) = 1.

“Quantum” computers support the following operations:

• Initialize-state(Q,n,D) – Initialize the probability distribution of the n
qubits of machine Q as per the description D. Obviously this would take
Θ(2n) time if D was given as an explicit list of the desired probability of
each state. We thus seek general descriptions that are smaller, say O(n)
in size, like “set each of the N = 2n states to be of equal probability, so
p(i) = 1/2n.” The time of the Initialize-state operation is O(|D|), not
O(N).

• Quantum-gate(Q,c) – Change the probability distribution of machine Q
according to a quantum gate condition c. Quantum gates are logic oper-
ations akin to and or or, changing the probabilities of states according to
the current contents of (say) qubits qx and qy. The time of this operation
is proportional to the number of qubits involved with condition c, but
typically is O(1).

• Jack(Q,c) – Increase the probabilities of all states defined by condition
c. For example, we might want to jack up the probabilities of all states
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Figure 12.14: Jacking the probability of all states where qubit q2 = 1.

where c = “qubit q2 = 1”, as shown in Figure 12.14. This takes time
proportional to the number of qubits in condition c, but typically is O(1).

That this can be done in constant time should be recognized as surprising.
Even if the condition raises the probability of just one state i, in order to
keep the sum totaling to one the probabilities of all 2n − 1 other states
must be lowered. That this can be done in constant time is one of the
strange properties of “quantum” physics.

• Sample(Q) – Select exactly one of the 2n states at random as per the
current probability distribution of machine Q, and return the values of
the n qubits q0, . . . , qn−1. This takes O(n) time to report the state of the
machine.

“Quantum” algorithms are sequences of these powerful operations, perhaps
augmented with control logic from conventional computers.

12.10.2 Grover’s Algorithm for Database Search

The first algorithm we will consider is for database search, or more generally
function inversion. Suppose we think of the unique binary string defining each
of the N = 2n states as a key, with each state i associated with a value v(i). If
these values take m bits to store, we can think of our database as consisting of
2n unsorted strings with non-zero probability each n+m qubits long, with the
value v(i) stored in the m highest-order qubits.

We can create such a system Q using the Initialize-state(Q,n,D) instruction,
with an appropriate condition D. To any n + m qubit string of the form i
concatenated to v(i) we assign a probability of 1/2n. All of the 2m−1 other n+m
qubit strings with prefix i are assigned probability zero. For a given m-bit search
string S, we seek to return an n+m qubit string such that S = qn . . . qn+m−1.

The instruction set described above does not give us a print statement, other
than Sample(Q). To make it likely that this sample returns what we want, we
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must jack up the probability of all strings with the right value qubits. This
suggests an algorithm like the following:

Search(Q,S)
Repeat

Jack(Q,“all strings where S = qn . . . qn+m−1”)
Until probability of success is high enough
Return the first n bits of Sample(Q)

Each such Jack operation takes constant time, which is fast. But it increases
the probabilities at a slow-enough rate that Θ(

√
N) rounds are necessary and

sufficient to make success likely. Thus, this algorithm returns the appropriate
string in Θ(

√
N), a big win over the Θ(N) complexity of sequential search.

Solving Satisfiability?

An interesting application of Grover’s database searching algorithm is an al-
gorithm for solving satisfiability, the mother of all NP-complete problems dis-
cussed in Section 11.4. As we have seen, an n-qubit quantum system represents
all N = 2n binary strings of length n. By thinking of each 1 as true and 0 as
false, each such string defines a truth assignment on n Boolean variables.

Now let’s add an (n + 1)st qubit to the system, to store whether the ith
string satisfies a given Boolean logic formula F . Testing whether a given truth
assignment satisfies a given set of clauses is easy: explicitly test whether each
clause contains at least one true literal. Such testing can be done in parallel
using a sequence of quantum gates. If F is a 3-SAT formula with k clauses, this
testing can be done making a pass over each clause, using a total of roughly
3k quantum gates. We set qubit qn = 1 if q0, . . . , qn−1 is a satisfying truth
assignment, and qn = 0 if not. This means that all strings s corresponding to
incorrect values of F get set to p(s) = 0.

Now suppose we perform a Search(Q,(qn == 1)) operation, returning quan-
tum state {q0, . . . , qn−1}. With high probability, this is a satisfying truth as-
signment, so this gives us an efficient quantum algorithm to solve satisfiability!

Grover’s search algorithm runs in O(
√
N) time, where N = 2n. Since

√
N =√

2n = (
√
2)n, this runs in O(1.414n) vs. the naive bound, which is a big

improvement. For n = 100, this cuts the number of steps from 1.27 × 1030 to
1.13×1015. But (

√
2)n still grows exponentially, so this is not a polynomial-time

algorithm. This quantum algorithm is a big win over brute-force search, but it
is not enough to have the effect of P = NP .

Take-Home Lesson: Despite their powers, quantum computers cannot
solve NP-complete problems in polynomial time. Of course, the world
changes if P = NP , but presumably P �= NP . We believe that the class of
problems that can be solved in polynomial time on a quantum computer (called
BQP) does not contain NP with roughly the same confidence that we believe
P �= NP .
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Figure 12.15: Transforming the integers from the frequency to the time domain
computes the number of factors for each integer.

12.10.3 The Faster “Fourier Transform”

The fast Fourier Transform (FFT) is the most important algorithm in signal
processing, converting an N -element numerical time series to an equivalent rep-
resentation as the sum of N periodic functions of different frequencies. Many fil-
tering and compression algorithms on signals reduce to eliminating high and/or
low frequency components from the Fourier transform of the signal, as discussed
in Section 16.11.

Computing Fourier transforms is most simply done using an O(N2) algo-
rithm, with each of the N elements produced as the sum of N terms. The FFT
is a divide-and-conquer algorithm for evaluating this convolution in O(N logN),
which we discussed in Section 5.9. The FFT can be also implemented as a circuit
with logM stages, where each stage involves M independent, parallel multipli-
cations.

It happens that each of these stages of the FFT circuit can be implemented
using logM quantum gates. Thus, the Fourier transform of the N = 2n states
of an n-qubit system can be solved on a “quantum” computer in O((logN)2) =
O(n2) time. This is an exponential-time improvement over the FFT!

But there is a catch. We now have an n-qubit quantum system Q, where
the Fourier coefficient associated with each input element 0 ≤ ai ≤ N − 1 is
represented as the probability of string i in Q. There is no way to get even
one of these 2n coefficients out of machine Q. All we can do is call Sample(Q)
and get the index of a (presumably) large coefficient, selected with probability
proportional to its magnitude.

This is a very restricted type of “Fourier transform,” returning just the
index of what is likely to have a large coefficient. But it lays the groundwork
for perhaps the most famous quantum algorithm, Shor’s algorithm for integer
factorization.

12.10.4 Shor’s Algorithm for Integer Factorization

There is an interesting connection between periodic functions (meaning they
repeat at fixed intervals) and the integers that have a given integer k as a
factor, or equivalently as a divisor. It should be clear that these integers must
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Figure 12.16: Sampling from multiples of the factors of M (here 21) is unlikely
to directly yield a factor, but the greatest common divisor of multiple samples
is almost certain to give a factor.

occur k positions apart on a number line. What are the integers that have 7
as factor? They are 7, 14, 21, 28, . . ., clearly a periodic function with a period of
k = 7.

The FFT enables us to convert a series in the “time domain” (here consisting
of all multiples of 7 less than N) into the “frequency domain,”with a non-zero
value for the seventh Fourier coefficient signifying a repeating function of period
seven. And vice versa. As Figure 12.15 shows, an n-qubit system Q with each
state i initialized to a probability p(i) = 1/2n represents the period of every
possible factor i. Taking an FFT of Q takes us into the time domain, yielding
the number of factors for every integer 0 ≤ i ≤ N − 1.

Now suppose we are interested in factoring a given integer M < N . Through
quantum magic we can set up system Q in a time domain where exactly the
integers that are multiples of factors of M have large probabilities, as shown in
Figure 12.16. Whenever we sample from this system, we get a random multiple
of a factor of M . For M = 77 = 7 × 11, we might get samples like 33, 42, and
55. These seem helpful, but note that none of these is actually a factor of M .

The greatest common divisor gcd(x, y) is the largest integer d such that d
divides x and d also divides y. Fast algorithms exist to compute gcd(x, y), as dis-
cussed in Section 11.2.3. Whenever the greatest common divisor is greater than
1, we have an excellent candidate for a factor of M . Observe that gcd(33, 55) =
11.

The complete Shor’s algorithm for factoring, in pseudocode, is as follows:

Factor(M)
Set up an n-qubit quantum system Q, where N = 2n and M < N .
Initialize Q so that p(i) = 1/2n for all 0 ≤ i ≤ N − 1.
Repeat

Jack(Q,“all i such that (gcd(i,M) > 1)”)
Until the probabilities of all terms relatively prime to M are very small.
FFT(Q).
For j = 1 to n

Sj = Sample(Q)
If ((d = GCD(Sj , Sk)) > 1) and (d divides M)), for some k < j

Return(d) as a factor of M
Otherwise report no factor was found

Each of these operations takes time proportional to n, not M = Θ(2n),
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so this is an exponential-time improvement over divide-and-test factoring. No
polynomial-time algorithm is known for integer factoring on conventional ma-
chines, but neither is it NP-complete. Thus, no complexity-theoretic assump-
tions are violated by having a fast algorithm for integer factorization.

12.10.5 Prospects for Quantum Computing

What are the prospects for quantum computing? I write this in the year of
normal vision (2020), and developments are happening quickly. My vision is not
necessarily better than anyone else’s, but I will make some educated guesses:

• Quantum computing is a real thing, and is gonna happen – One develops a
reasonably trustworthy bullsh*t detector after watching technology hype-
cycles for forty years, and quantum computing now passes my sniff test
by a safe margin. I see very smart people excited by the prospects of the
field, clear and steady technological progress, and substantial investment
by big companies and other important players. At this point, I would be
surprised if it fizzles out completely.

• Quantum computing is unlikely to impact the problems considered in this
book – The value of your hard-won algorithms expertise gained from read-
ing my book will hold up just fine in the quantum computing era. I see it
as a technology with specialized applications, akin to the way the fastest
supercomputers are seen primarily in scientific computing instead of in-
dustry. With the exception of factoring integers, there is nothing in this
book that I see as potentially better done on quantum computers.

The fastest technology does not necessarily take over the world. The
highest achievable data transmission rates involve giant aircraft packed
with DVDs or an even denser storage media. Still, no one has figured
out a way to exploit this technology commercially. Similarly, quantum
computing is not necessarily a good fit with most of traditional computing.

• The big wins are likely to be in problems computer scientists don’t really
care about – It is not yet clear what the killer app for quantum computing
will be, but the most promising applications seem to involve simulating
quantum systems. This is a big deal in chemistry and material science,
and may well lead to amazing revolutions in drug design and engineering.
But it is unclear to what degree computer scientists will lead the fight in
this revolution.

We shall see. I look forward to writing the fourth edition of this book,
perhaps in 2035, to learn how well these predictions held up.

You should be aware that the “quantum” computing model I describe here
differs from real quantum computers in several important ways, although I be-
lieve it basically captures the flavor of how they work. Still, in real quantum
computers:
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• The role of probabilities are played by complex numbers – Probabilities
are real numbers between 0 and 1 that add up to 1 over all elements of
the probability space. Quantum probabilities are complex numbers whose
squares lie between 0 and 1 that add up to 1 over all elements of the
probability space. Recall that the FFT algorithm described in Section 5.9
works on complex numbers, which is the source of its power.

• Reading the state of a quantum system destroys it – When we randomly
sample from the state of a quantum system, we lose all information about
the remaining 2n − 1 states. Thus, we cannot repeatedly sample from
the distribution, as we did above. But we can recreate the system from
scratch as many times as we need, and sample each of these to get the
effect of repeated sampling.

The key hurdle of quantum computing is how to extract the answer we
want, because this measurement yields only a tiny bit of the information
inherent in Q. If some but not all of the qubits in Q are measured, then
the remaining qubits also get “measured” in that their state collapses
accordingly. This is the real source of magic in quantum computing, and
is referred to as entanglement.

• Real quantum systems breakdown (or decohere) easily – Manipulating indi-
vidual atoms to do complex things is not child’s play. Quantum computers
are generally run at extremely low temperatures and in shielded environ-
ments to get them to hang together as long as possible. With current
technologies this isn’t very long, limiting the complexity of algorithms
that can be run and mandating the development of error-correction tech-
nologies for quantum systems.

• Initializing quantum states and the powers of quantum gates are somewhat
different than described above – I have played fast and loose with exactly
how you can initialize quantum states and what operations you can do with
them. Quantum gates are essentially unitary matrices, multiplication by
which changes the probabilities of Q. These operations are well defined
by the properties of quantum mechanics, but the details matter here.

Chapter Notes

Kirkpatrick et al.’s original paper on simulated annealing [KGV83] included an
application to VLSI module placement problems. The applications from Section
12.6.4 (page 410) are based on material from Aarts and Korst [AK89]. There is
a class of quantum computers manufactured by D-Wave that aspire to quantum
annealing to solve optimization problems, but the jury is still out as to whether
this is an important technology.

The heuristic TSP solutions presented here employ vertex-swap as the local
neighborhood operation. In fact, edge-swap is a more powerful operation. Each
edge-swap changes two edges in the tour at most, as opposed to at most four
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edges with a vertex-swap. This improves the possibility of a local improvement.
However, more sophisticated data structures are necessary to efficiently maintain
the order of the resulting tour. See Fredman et al. [FJMO93].

The different heuristic search techniques are ably presented in Aarts and
Lenstra [AL97], which I strongly recommend for those interested in learning
more about heuristic searches. Their coverage includes tabu search, a variant
of simulated annealing that uses extra data structures to avoid transitions to
recently visited states. Ant colony optimization is discussed in Dorigo and Stut-
zle [DT04]. Livnat and Papadimitriou [LP16] propose a theory for why genetic
algorithms are generally lousy: the purpose of sexual reproduction is to create
diverse populations, not highly optimized individuals. Still, see Michalewicz
and Fogel [MF00] for a more favorable view of genetic algorithms and the like.

Our work using simulated annealing to compress DNA arrays was reported
in Bradley and Skiena [BS97]. See Pugh [Pug86] and Coullard et al. [CGJ98]
for more on selective assembly.

If my introduction to quantum computing whetted your interest, I would
encourage you to look at more definitive sources. Books with interesting treat-
ments of quantum computing include [Aar13, Ber19, DPV08], with Yanofsky
and Mannucci [YM08] particularly gentle and accessible. Scott Aaronson’s blog
https://www.scottaaronson.com/blog/ is fascinating reading, covering the
latest in quantum computing algorithms, as well as the broader world of com-
plexity theory.

12.11 Exercises

Special Cases of Hard Problems

12-1. [5] Dominos are tiles represented by integer pairs (xi, yi), where each of the
values xi and yi are integers between 1 and n. Let S be a sequence of m inte-
ger pairs [(x1, y1), (x2, y2), ..., (xm, ym)]. The goal of the game is to create long
chains [(xi1, yi1), (xi2, yi2), ..., (xit, yit)] such that yij = xi(j+1). Dominos can be
flipped, so (xi, yi) equivalent to (yi, xi). For S = [(1, 3), (4, 2), (3, 5), (2, 3), (3, 8)],
the longest domino sequences include [(4, 2), (2, 3), (3, 8)] and [(1, 3), (3, 2), (2, 4)].

(a) Prove that finding the longest domino chain is NP-complete.

(b) Give an efficient algorithm to find the longest domino chain where the
numbers increase along the chain. For S above, the longest such chains are
[(1, 3), (3, 5)] and [(2, 3), (3, 5)].

12-2. [5] Let G = (V,E) be a graph and x and y be two distinct vertices of G. Each
vertex v contains a given number of tokens t(v) that you can collect if you visit
v.

(a) Prove that it is NP-complete to find the path from x to y where you can
collect the greatest possible number of tokens.

(b) Give an efficient algorithm if G is a directed acyclic graph (DAG).

12-3. [8] The Hamiltonian completion problem takes a given graph G and seeks an
algorithm to add the smallest number of edges to G so that it contains a Hamil-
tonian cycle. This problem is NP-complete for general graphs; however, it has

https://www.scottaaronson.com/blog/
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an efficient algorithm if G is a tree. Give an efficient and provably correct algo-
rithm to add the minimum number of possible edges to tree T so that T plus
these edges is Hamiltonian.

Approximation Algorithms

12-4. [4] In the maximum satisfiability problem, we seek a truth assignment that
satisfies as many clauses as possible. Give an heuristic that always satisfies at
least half as many clauses as the optimal solution.

12-5. [5] Consider the following heuristic for vertex cover. Construct a DFS tree of
the graph, and delete all the leaves from this tree. What remains must be a
vertex cover of the graph. Prove that the size of this cover is at most twice as
large as optimal.

12-6. [5] The maximum cut problem for a graph G = (V,E) seeks to partition the
vertices V into disjoint sets A and B so as to maximize the number of edges
(a, b) ∈ E such that a ∈ A and b ∈ B. Consider the following heuristic for
maximum cut. First assign v1 to A and v2 to B. For each remaining vertex,
assign it to the side that adds the most edges to the cut. Prove that this cut is
at least half as large as the optimal cut.

12-7. [5] In the bin-packing problem, we are given n objects with weights w1, w2, ..., wn,
respectively. Our goal is to find the smallest number of bins that will hold the
n objects, where each bin has a capacity of at most one kilogram.

The first-fit heuristic considers the objects in the order in which they are given.
For each object, place it into the first bin that has room for it. If no such bin
exists, start a new bin. Prove that this heuristic uses at most twice as many
bins as the optimal solution.

12-8. [5] For the first-fit heuristic described just above, give an example where the
packing it finds uses at least 5/3 times as many bins as optimal.

12-9. [5] Given an undirected graph G = (V,E) in which each node has degree ≤ d,
show how to efficiently find an independent set whose size is at least 1/(d + 1)
times that of the largest independent set.

12-10. [5] A vertex coloring of graph G = (V,E) is an assignment of colors to vertices of
V such that each edge (x, y) implies that vertices x and y are assigned different
colors. Give an algorithm for vertex coloring G using at most Δ + 1 colors,
where Δ is the maximum vertex degree of G.

12-11. [5] Show that you can solve any given Sudoku puzzle by finding the minimum
vertex coloring of a specific, appropriately constructed (9×9)+9 vertex graph.

Combinatorial Optimization

For each of the problems below, design and implement a simulated annealing
heuristic to get reasonable solutions. How well does your program perform in
practice?

12-12. [5] Design and implement a heuristic for the bandwidth minimization problem
discussed in Section 16.2 (page 470).

12-13. [5] Design and implement a heuristic for the maximum satisfiability problem
discussed in Section 17.10 (page 537).



428 CHAPTER 12. DEALING WITH HARD PROBLEMS

12-14. [5] Design and implement a heuristic for the maximum clique problem discussed
in Section 19.1 (page 586).

12-15. [5] Design and implement a heuristic for the minimum vertex coloring problem
discussed in Section 19.7 (page 604).

12-16. [5] Design and implement a heuristic for the minimum edge coloring problem
discussed in Section 19.8 (page 608).

12-17. [5] Design and implement a heuristic for the minimum feedback vertex set prob-
lem discussed in Section 19.11 (page 618).

12-18. [5] Design and implement a heuristic for the set cover problem discussed in
Section 21.1 (page 678).

“Quantum” Computing

12-19. [5] Consider an n qubit “quantum” system Q, where each of the N = 2n states
start out with equal probability p(i) = 1/2n. Say the Jack(Q, 0n) operation
doubles the probability of the state where all qubits are zero. How many calls
to this Jack operation are necessary until the probability of sampling this null
state becomes ≥ 1/2?

12-20. [5] For the satisfiability problem, construct (a) an instance on n variables that
has exactly one solution, and (b) an instance on n variables that has exactly 2n

different solutions.

12-21. [3] Consider the first ten multiples of 11, namely 11, 22, . . . 110. Pick two of
them (x and y) at random. What is the probability that gcd(x, y) = 11?

12-22. [8] IBM quantum computing (https://www.ibm.com/quantum-computing/) of-
fers the opportunity to program a quantum computing simulator. Take a look
at an example quantum computing program and run it to see what happens.

LeetCode

12-1. https://leetcode.com/problems/split-array-with-same-average/

12-2. https://leetcode.com/problems/smallest-sufficient-team/

12-3. https://leetcode.com/problems/longest-palindromic-substring/

HackerRank

12-1. https://www.hackerrank.com/challenges/mancala6/

12-2. https://www.hackerrank.com/challenges/sams-puzzle/

12-3. https://www.hackerrank.com/challenges/walking-the-approximate longest-path/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

12-1. “Euclid Problem”—Chapter 7, problem 10104.

12-2. “Chainsaw Massacre”—Chapter 14, problem 10043.

12-3. “Hotter Colder”—Chapter 14, problem 10084.

12-4. “Useless Tile Packers”—Chapter 14, problem 10065.

https://www.ibm.com/quantum-computing/
https://leetcode.com/problems/split-array-with-same-average/
https://leetcode.com/problems/smallest-sufficient-team/
https://leetcode.com/problems/longest-palindromic-substring/
https://www.hackerrank.com/challenges/mancala6/
https://www.hackerrank.com/challenges/sams-puzzle/
https://www.hackerrank.com/challenges/walking-the-approximate-longest-path/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28


Chapter 13

How to Design Algorithms

Designing the right algorithm for a given application is a major creative act—
that of taking a problem and pulling a solution out of the air. The space of
choices you can make in algorithm design is enormous, leaving you plenty of
freedom to hang yourself.

This book has been designed to make you a better algorithm designer. The
techniques presented in Part I provide the basic ideas underlying all combina-
torial algorithms. The problem catalog of Part II will help you with modeling
your application, and inform you what is known about the relevant problems.
However, being a successful algorithm designer requires more than book knowl-
edge. It requires a certain attitude—the right problem-solving approach. It is
difficult to teach this mindset in a book, yet getting it is essential to becoming
a successful algorithm designer.

The key to algorithm design (or any other problem-solving task) is to proceed
by asking yourself questions to guide your thought process. “What if we do this?
What if we do that?” Should you get stuck on the problem, the best thing to do
is move onto the next question. In any group brainstorming session, the most
useful person in the room is the one who keeps asking “Why can’t we do it this
way?”; not the nitpicker who keeps telling them why. Because he or she will
eventually stumble on an approach that can’t be shot down.

Towards this end, I provide a sequence of questions designed to guide your
search for the right algorithm for your problem. To use it effectively, you must
not only ask the questions, but answer them. The key is working through the
answers carefully by writing them down in a log. The correct answer to “Can
I do it this way?” is never “no,” but “no, because. . . .” By clearly articulating
your reasoning as to why something doesn’t work, you can check whether you
have glossed over a possibility that you didn’t think hard enough about. It
is amazing how often the reason you can’t find a convincing explanation for
something is because your conclusion is wrong.

The distinction between strategy and tactics is important to keep aware of
during any design process. Strategy represents the quest for the big picture—
the framework around which we construct our path to the goal. Tactics are used
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to win the minor battles we must fight along the way. In problem-solving, it is
important to repeatedly check whether you are thinking on the right level. If
you do not have a global strategy of how to attack your problem, it is pointless
to worry about the tactics. An example of a strategic question is “Can I model
my application as a graph algorithm problem?” A tactical question might be
“Should I use an adjacency list or adjacency matrix data structure to represent
my graph?” Of course, such tactical decisions are critical to the ultimate quality
of the solution, but they can be properly evaluated only in light of a successful
strategy.

Too many people freeze up in their thinking when faced with a design prob-
lem. After reading or hearing the problem, they sit down and realize that they
don’t know what to do next. Avoid this fate. Follow the sequence of questions I
provide below and in most of the catalog problem sections. I will try to tell you
what to do next.

Obviously, the more experience you have with algorithm design techniques
such as dynamic programming, graph algorithms, intractability, and data struc-
tures, the more successful you will be at working through the list of questions.
Part I of this book has been designed to strengthen this technical background.
However, it pays to work through these questions regardless of how strong your
technical skills are. The earliest and most important questions on the list focus
on obtaining a detailed understanding of your problem and do not require any
specific expertise.

This list of questions was inspired by a passage in The Right Stuff [Wol79]—a
wonderful book about the US space program. It concerned the radio transmis-
sions from test pilots just before their planes crashed. One might have ex-
pected that they would panic, so ground control would hear the pilot yelling
“Ahhhhhhhhhhh—,” terminated only by the sound of smacking into a moun-
tain. Instead, the pilots ran through a list of what their possible actions could
be. “I’ve tried the flaps. I’ve checked the engine. Still got two wings. I’ve reset
the—.” They had the right stuff. Because of this, they sometimes managed to
miss the mountain.

I hope this book has provided you with the right stuff to be a successful
algorithm designer. And that prevents you from crashing along the way.

1. Do I really understand the problem?

(a) What exactly does the input consist of?

(b) What exactly are the desired results or output?

(c) Can I construct an input example small enough to solve by hand?
What happens when I try to solve it?

(d) How important is it to my application that I always find the optimal
answer? Might I settle for something close to the best answer?

(e) How large is a typical instance of my problem? Will I be working on
10 items? 1,000 items? 1,000,000 items? More?
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(f) How important is speed in my application? Must the problem be
solved within one second? One minute? One hour? One day?

(g) How much time and effort can I invest in implementation? Will I be
limited to simple algorithms that can be coded up in a day, or do
I have the freedom to experiment with several approaches and see
which one is best?

(h) Am I trying to solve a numerical problem? A graph problem? A
geometric problem? A string problem? A set problem? Which for-
mulation seems easiest?

2. Can I find a simple algorithm or heuristic for my problem?

(a) Will brute force solve my problem correctly by searching through all
subsets or arrangements and picking the best one?

i. If so, why am I sure that this algorithm always gives the correct
answer?

ii. How do I measure the quality of a solution once I construct it?

iii. Does this simple, slow solution run in polynomial or exponential
time? Is my problem small enough that a brute-force solution
will suffice?

iv. Am I certain that my problem is sufficiently well defined to ac-
tually have a correct solution?

(b) Can I solve my problem by repeatedly trying some simple rule, like
picking the biggest item first? The smallest item first? A random
item first?

i. If so, on what types of inputs does this heuristic work well? Do
these correspond to the data that might arise in my application?

ii. On what inputs does this heuristic work badly? If no such ex-
amples can be found, can I show that it always works well?

iii. How fast does my heuristic come up with an answer? Does it
have a simple implementation?

3. Is my problem in the catalog of algorithmic problems in the back of this
book?

(a) What is known about the problem? Is there an available implemen-
tation that I can use?

(b) Did I look in the right place for my problem? Did I browse through
all the pictures? Did I look in the index under all possible keywords?

(c) Are there relevant resources available on the World Wide Web? Did
I do a Google Scholar search? Did I go to the page associated with
this book: www.algorist.com?

4. Are there special cases of the problem that I know how to solve?

http://www.algorist.com


432 CHAPTER 13. HOW TO DESIGN ALGORITHMS

(a) Can I solve the problem efficiently when I ignore some of the input
parameters?

(b) Does the problem become easier to solve when some of the input
parameters are set to trivial values, such as 0 or 1?

(c) How can I simplify the problem to the point where I can solve it
efficiently? Why can’t this special-case algorithm be generalized to
a wider class of inputs?

(d) Is my problem a special case of a more general problem in the catalog?

5. Which of the standard algorithm design paradigms are most relevant to
my problem?

(a) Is there a set of items that can be sorted by size or some key? Does
this sorted order make it easier to find the answer?

(b) Is there a way to split the problem into two smaller problems, perhaps
by doing a binary search? How about partitioning the elements into
big and small, or left and right? Does this suggest a divide-and-
conquer algorithm?

(c) Does the set of input objects have a natural left-to-right order among
its components, like the characters in a string, elements of a permu-
tation, or the leaves of a rooted tree? Could I use dynamic program-
ming to exploit this order?

(d) Are there certain operations being done repeatedly, such as searching,
or finding the largest/smallest element? Can I use a data structure
to speed up these queries? Perhaps a dictionary/hash table or a
heap/priority queue?

(e) Can I use random sampling to select which object to pick next? What
about constructing many random configurations and picking the best
one? Can I use a heuristic search technique like simulated annealing
to zoom in on a good solution?

(f) Can I formulate my problem as a linear program? How about an
integer program?

(g) Does my problem resemble satisfiability, the traveling salesman prob-
lem, or some other NP-complete problem? Might it be NP-complete
and thus not have an efficient algorithm? Is it in the problem list in
the back of Garey and Johnson [GJ79]?

6. Am I still stumped?

(a) Am I willing to spend money to hire an expert (like the author) to tell
me what to do? If so, check out the professional consulting services
mentioned in Section 22.4 (page 718).

(b) Go back to the beginning and work through these questions again.
Did any of my answers change during my latest trip through the list?
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Problem-solving is not a science, but part art and part skill. It is one of
the skills most worth developing. My favorite book on problem-solving remains
Pólya’s How to Solve It [Pol57], which features a catalog of problem-solving
techniques that is fascinating to browse through.

13.1 Preparing for Tech Company Interviews

I gather that many of you reading this book have been inspired more by a fear
of technical job interviews than an inherent love of algorithms. Hopefully you
are enjoying your reading—and coming to understand the beauty and power of
algorithmic thinking. But this section is devoted to some brief suggestions to
help you when it comes time to interview at tech companies.

First, with respect to algorithm design people know what they know, and
hence cramming the night before an interview won’t help much. I think you can
learn something valuable about algorithm design with one serious week spent
with this book, and even more with additional time. The material I cover here
is useful and well worth knowing, so you are not cramming for an exam whose
contents you will forget in 24 hours. Algorithm design techniques tend to stick
with you after you learn them, so it pays to put in the time with my book.

Algorithm design problems tend to creep into the interview process in two
ways: preliminary coding tests and blackboard design problems. The major tech
companies attract so many applications that the first round of screening is often
mechanical: can you solve some programming challenge problem on an interview
site like HackerRank (https://www.hackerrank.com/)? These programming
challenge problems test coding speed and correctness, and are generally used to
screen out less promising candidates.

That said, performance on these programming challenge problems improves
with practice. If you are a college student, try to get involved with your school’s
ACM International Collegiate Programming Contest (ICPC) team. Each team
consists of three students working together to solve five to ten programming
challenge problems within five hours. These problems are often algorithmic and
usually interesting. There is much to be gained even if you don’t make the
regional championships.

For self-study, I recommend solving some coding problems on judging sites
like HackerRank and LeetCode (https://leetcode.com/). Indeed, I suggest
appropriate coding challenges on each of these sites in the exercises at the end
of each chapter. Start simple and build up your speed, and do it to have
fun. But figure out whether your weak spot is in the correctness of boundary
cases or errors in your algorithm itself, and then work to improve. I humbly
recommend my book Programming Challenges [SR03], which is designed as a
training manual for such programming problems. If you like this book, you may
well benefit from that one as well.

After you get past the preliminary screening, you will be granted a video or
on-site interview. Here you may well be asked to solve some algorithm design
problems on a whiteboard at the prompting of your interviewer. These will

https://www.hackerrank.com/
https://leetcode.com/
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generally be like the exercises at the end of each chapter. Some have been
designated interview questions because they have been rumored to be used by
certain tech companies. But all of my exercises are good for self-study and
interview preparation.

What should you do at the whiteboard to look like you know what you are
talking about? First, I encourage you to ask enough clarifying questions to
make sure you understand exactly what the problem is. You are likely to get
few points for correctly solving the wrong problem. I strongly encourage you
to first present a simple, slow, and correct algorithm before trying to get fancy.
After that you can, and should, see whether you can do better. Usually the
questioners want to see how you think, and are less concerned with the actual
final algorithm than seeing an active thought process.

Students of mine who take these interviews often report that they are given
incorrect solutions by their interviewers! Getting a job at a nice company does
not turn you into an algorithms expert by osmosis. Often the interviewers are
just asking questions that other people asked them, so don’t be intimidated. Do
the best you can, and it will likely be good enough.

Finally, I have a confession to make. For several years, I served as Chief
Scientist at a startup company named General Sentiment, and interviewed all
the developers we hired. Most of them knew me as the author of this book, and
feared they were in for a grilling. But I never asked them a single algorithm
puzzle question. We needed developers who could wrangle a complicated dis-
tributed system, not solve puzzles. I asked a lot of questions about the biggest
program they had worked on and what they did with it, in order to get a sense
of the sophistication of what they could handle and what they liked to do. I am
very proud of the excellent people we hired at General Sentiment, all of whom
have gone on to even more exciting places.

Of course I strongly encourage that other companies continue to base their
screening on algorithm questions. The more companies that do this, the more
copies of this book I am going to sell.

Good luck to you on your job quest, and may what you learn from this book
help you with your job, professional growth, and career. Follow me on Twitter
at @StevenSkiena!

https://twitter.com/StevenSkiena


Part II

The Hitchhiker’s Guide to
Algorithms



Chapter 14

A Catalog of Algorithmic
Problems

This is a catalog of algorithmic problems that arise commonly in practice. It
describes what is known about them, and gives suggestions about how best to
proceed if the problem arises in your application.

What is the best way to use this catalog? First, think about your prob-
lem. If you recall the name, look up the catalog entry in the index or table of
contents. Read through the entire entry, since it contains pointers to other rel-
evant problems. Leaf through the catalog, looking at the pictures and problem
names to see if anything strikes a chord. Don’t be afraid to use the index, for
every problem in the book is listed there under several possible keywords and
applications.

The catalog entries contain a variety of different types of information that
were never really collected in one place before. Different fields in each entry
present information of practical and historical interest.

To make this catalog more accessible, I introduce each problem with a pair
of graphics representing the problem instance or input on the left and the result
of solving the problem on the right. Considerable thought has been invested
in creating stylized examples that illustrate desired behaviors, more than just
definitions. For example, the minimum spanning tree figures illustrate how
points can be clustered using minimum spanning trees. I hope that you will be
able to flip through the pictures and identify problems that might be relevant
to you. These pictures are augmented with more formal problem descriptions
to eliminate the ambiguity inherent in a purely pictorial representation.

Once you have identified your problem, the discussion section tells you what
you should do about it. I describe applications where the problem is likely to
arise, and any special issues with associated data. I also discuss the kind of
results you might reasonably hope for and, most importantly, what you should
do to get them. For each problem, a quick-and-dirty solution is outlined, with
pointers to more powerful algorithms to try if the first attempt is not sufficient.
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Available software implementations are discussed in the implementation field
of each catalog entry. Many of these routines are quite good, and can perhaps be
plugged directly into your application. Others may be inadequate for production
use, but they can provide a good model for your own implementation. In general,
implementations are listed in order of descending usefulness, but I will explicitly
recommend the best one available for each problem if a clear winner exists. More
detailed information for many of these implementations appears in Chapter 22.
Just about all of the implementations are available at the website associated
with this book: www.algorist.com.

Finally, in deliberately smaller print, the history of each problem will be dis-
cussed, and results of primarily theoretical interest presented. I have attempted
to report the best results known for each problem, and point out empirical com-
parisons of algorithms or survey articles if they exist. These should interest
students, researchers, and practitioners who need to know whether anything
better is possible.

Caveats

This is a catalog of algorithmic problems. It is not a cookbook. It cannot be,
because there are too many recipes and too many possible variations on what
people want to eat. My goal is to point you in the right direction so that you
can solve your own problems. I try to identify the issues you will encounter
along the way. In particular:

• For each problem, I suggest algorithms and directions to attack it. These
recommendations are based on my experience, and are aimed toward what
I see as typical applications. I feel it is better to make concrete recom-
mendations for the masses than to try to cover all possible situations. If
you don’t agree with my advice, you don’t have to follow it. But try to
understand my reasoning so you can articulate why your needs violate my
assumptions.

• The implementations I recommend are not necessarily complete solutions
to your problem. Some programs are useful only as models for you to write
your own codes. Others are embedded in large systems and so might be
too painful to extract and run on their own. All of them contain bugs.
Many are quite serious, so beware.

• Please respect the licensing conditions for any implementations you use
commercially. Many of these codes are not open source, and most have
license restrictions. See Section 22.1 for a further discussion of this issue.

• I would be interested in hearing about your experiences with my recom-
mendations, both positive and negative. I would be especially interested
in learning about any other implementations that you know about.

http://www.algorist.com


Chapter 15

Data Structures

Data structures are not so much algorithms as they are the fundamental con-
structs around which you build your application. Becoming fluent in what the
standard data structures can do is essential to get full value from them.

This puts data structures slightly out of sync with the rest of the catalog.
Perhaps the most useful aspect of it will be the pointers to various implementa-
tions and data structure libraries. Many of these data structures are non-trivial
to implement well, so the programs I point to will be useful as models even if
they do not do exactly what you need. Certain fundamental data structures,
like kd-trees and suffix trees, are not as well known as they should be. Hopefully,
this catalog will serve to better publicize them.

There are a large number of books on elementary data structures available.
My favorites include:

• Sedgewick [SW11] – This comprehensive introduction to algorithms and
data structures stands out for the clever and beautiful images of algorithms
in action. It comes in C, C++, and Java editions.

• Weiss [Wei11] – A nice text, emphasizing data structures more than algo-
rithms. It comes in Java, C, C++, and Ada editions.

• Goodrich and Tamassia [GTG14] – The Java edition makes particularly
good use of the author’s Java Data Structures Library (JDSL).

• Brass [Bra08] – This is a good treatment of more advanced data structures
than those covered in other texts, with implementations in C++.

The Handbook of Data Structures and Applications [MS18] provides a com-
prehensive and up-to-date survey of research in data structures. The student
who took only an elementary course in data structures is likely to be surprised
and impressed by the volume of recent work on the subject.

439© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_15

Springer Nature Switzerland AG 2020
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Input Output

15.1 Dictionaries

Input description: A set of n records, each identified by one or more keys.

Problem description: Build and maintain a data structure to efficiently lo-
cate, insert, and delete the record associated with any query key q.

Discussion: The abstract data type “dictionary” is one of the most impor-
tant structures in computer science. Dozens of data structures have been pro-
posed for implementing dictionaries, including hash tables, skip lists, and bal-
anced/unbalanced binary search trees. This means that choosing the best one
can be tricky. However, in practice, it is more important to avoid using a bad
data structure than to identify the single best option available.

An essential piece of advice is to carefully isolate the implementation of
your dictionary data structure from its interface. Use explicit calls to methods
or subroutines that initialize, search, and modify the data structure, rather
than embed them within the code. This leads to a much cleaner program, but
it also makes it easy to experiment with different implementations to see how
they perform. Do not obsess about the costs of procedure calls inherent in
such an abstraction. If your application is so time-critical that such overhead is
meaningful, then it is even more essential that you experiment to find the right
dictionary implementation.

To choose the right data structure for your dictionary, answer the following
questions:
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• How many items will you have in your data structure? – Will you know
this number in advance? Are you looking at a problem small enough that
a simple data structure will suffice? Or one so large that we must worry
about running out of memory or virtual memory performance?

• Do you know the relative frequencies of insert, delete, and search opera-
tions? – Static data structures (like sorted arrays) suffice in applications
when there will be no modifications to the data structure after it is first
constructed. Semi-dynamic data structures, which support insertion but
not deletion, can have significantly simpler implementations than fully
dynamic ones.

• Will the access pattern for keys be uniform and random? – Search queries
exhibit a skewed access distribution in many applications, meaning that
certain elements are much more popular than others. Further, queries
often have a sense of temporal locality, meaning elements are likely to be
repeatedly accessed in clusters instead of at fairly regular intervals. Data
structures such as splay trees can take advantage of a skewed and clustered
universe.

• Is it critical that each individual operation be fast, or only that the total
amount of work done over the entire program be minimized? – When
response time is critical, such as in a program controlling a heart–lung
machine, you can’t wait too long between steps. But when you are doing
a lot of queries over the database, such as identifying all criminals who
happen to be politicians, it is not critical that you pick out any particular
legislator quickly. Just get them all with the minimum total effort.

An object-oriented generation has emerged that is no more likely to write
their own container class than to fix the engine in their car. This is good: default
containers should work just fine for most applications. Still, it is sometimes
valuable to know exactly what you have under the hood:

• Unsorted linked lists or arrays – For small data sets, an unsorted array
is probably the easiest data structure to maintain. Linked structures can
have terrible cache performance compared with sleek, compact arrays.
However, once your dictionary becomes larger than (say) fifty to a hundred
items, the linear search time will kill you for either lists or arrays.

A particularly interesting and useful variant is the self-organizing list.
Whenever a key is accessed or inserted, we move it to the head of the list.
Thus, the key will be near the front if it is accessed again in the near future,
and so require only a short search to find it. Most applications exhibit both
uneven access frequencies and locality of reference, so the average time for
a successful search in a self-organizing list is typically much better than
in a sorted or unsorted list. Self-organizing data structures can be built
from arrays as well as linked lists and trees.
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• Sorted linked lists or arrays – Maintaining a sorted linked list is usually
not worth the effort unless you are trying to eliminate duplicates, since we
cannot perform binary searches in such a data structure. A sorted array
will be appropriate iff there are not many insertions or deletions.

• Hash tables – For applications involving a moderate-to-large number of
keys, a hash table is probably the right way to go. We use a function
that maps keys (be they strings, numbers, or whatever) to integers be-
tween 0 and m − 1. We maintain an array of m buckets, each typically
implemented using an unsorted linked list. The hash function immedi-
ately identifies which bucket contains a given key. Presuming the hash
function spreads the keys out nicely through a sufficiently large hash ta-
ble, each bucket should contain very few items, thus making linear search
acceptable. Insertion and deletion from a hash table reduce to insertion
and deletion from the bucket/list. Section 3.7 (page 93) provides a more
detailed discussion of hashing and its applications.

A well-tuned hash table will outperform a sorted array in most applica-
tions. However, several design decisions go into creating good hash tables:

– How do I deal with collisions? Open addressing can lead to more
concise tables with better cache performance than bucketing, but
performance will be more brittle if the load factor (ratio of occupancy
to capacity) of the hash table gets too high.

– How big should the table be? With bucketing, m should be about
the same as the maximum number of items you expect to put in the
table. With open addressing, make the table 30% to 50% larger.
Selecting m to be a prime number minimizes the dangers of a bad
hash function.

– What hash function should I use? For strings, something like

H(S) = α|S| +
|S|−1∑

i=0

α|S|−(i+1) × char(si) (mod m)

should work, where α is the size of the alphabet and char(x) is
the function that maps each character x to its character code. Use
Horner’s rule (or precompute values of αx) to implement this hash
function computation efficiently, as discussed in Section 16.9 (page
493). A variant of this hash function (discussed in Section 6.7 (page
188)) has the nifty property that hash codes of successive k-character
windows of a string can be computed in constant time, instead of
O(k).

When evaluating a hash function/table implementation, print statistics on
the distribution of keys per bucket to see how uniform it really is. Odds
are the first hash function you try will not prove to be the best. Botching
up the hash function is an excellent way to slow down any application.
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• Binary search trees – Binary search trees are elegant data structures that
support fast insertions, deletions, and queries reviewed in Section 3.4 (page
81). The primary distinction between different types of trees is whether
they are explicitly rebalanced after insertion or deletion, and how this
rebalancing is done. In simple random search trees, we insert each node
at the leaf position where we can find it, with no rebalancing. Although
such trees perform well under random insertions, most applications are not
random. Indeed, unbalanced search trees constructed by inserting keys in
sorted order are a disaster, degenerating to a linked list.

Balanced search trees use local rotation operations for restructuring, mov-
ing more distant nodes closer to the root while maintaining the in-order
search structure of the tree. Among balanced search trees, AVL and 2/3
trees are now passé, and red–black trees seem to be most popular. A par-
ticularly interesting self-organizing data structure is the splay tree, which
uses rotations to move any accessed key to the root. Frequently used or
recently accessed nodes thus sit near the top of the tree, allowing faster
searches.

Bottom line: Which tree is best for your application? Probably the one
of which you have the best implementation. Which flavor of balanced tree
is likely not as important as the skill of the programmer who coded it.

• B-trees – For data sets so large that they will not fit in main memory
your best bet will be some flavor of a B-tree. The search time of a data
structure grows by several orders of magnitude once it is stored outside
of main memory. With modern cache architectures, similar effects can
happen on a smaller scale, because cache is much faster than RAM.

The idea behind a B-tree is to collapse several levels of a binary search
tree into a single large node, so that we can make the equivalent of sev-
eral search steps before another disk access is needed. B-trees can access
enormous numbers of keys using only a few disk accesses. To get the full
benefit from using a B-tree, it is important to understand how the sec-
ondary storage device and virtual memory systems interact—in particular,
constants such as page size and virtual/real address space. Cache-oblivious
algorithms (described below) can mitigate such concerns.

Even for modest-sized data sets, unexpectedly poor performance of a data
structure may result from excessive swapping, so listen to your disk to help
decide whether you should be using a B-tree.

• Skip lists – These are somewhat of a cult data structure. A hierarchy of
sorted linked lists is maintained, where a coin is flipped for each element
to decide whether it gets copied into the next highest list. This implies
roughly lg n lists, each roughly half as large as the one above it. Search
starts in the smallest list. The search key lies in an interval between two
elements, which is then explored in the next larger list. Each searched
interval contains an expected constant number of elements per list, for a
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total expected O(lg n) query time. The primary benefits of skip lists are
ease of analysis and implementation relative to balanced trees.

Implementations: Modern programming languages provide libraries offering
complete and efficient container implementations. The C++ Standard Template
Library (STL) is now provided with most compilers. See Josuttis [Jos12], Meyers
[Mey01], and Musser [MDS01] for more detailed guides to using STL and the
C++ standard library. Java Collections (JC), a small library of data structures,
is included in the java.util package of the Java standard edition.

LEDA (see Section 22.1.1 (page 713)) provides a complete collection of dic-
tionary data structures in C++, including hashing, perfect hashing, B-trees,
red-black trees, random search trees, and skip lists. Experiments reported in
Mehlhorn and Naher [MN99] declared hashing to be the best dictionary choice,
with skip lists and 2–4 trees (a special case of B-trees) as the most efficient
tree-like structures.

Notes: Knuth [Knu97a] provides the most detailed analysis and exposition on fun-
damental dictionary data structures, but misses certain modern data structures as
red–black and splay trees. Spending some time with his books is an important rite of
passage for all computer science students.

The Handbook of Data Structures and Applications [MS18] provides up-to-date
surveys on all aspects of dictionary data structures. Other surveys include Mehlhorn
and Tsakalidis [MT90b] and Gonnet and Baeza-Yates [GBY91]. Good textbook ex-
positions on dictionary data structures include Sedgewick [Sed98], Weiss [Wei11], and
Goodrich et al. [GTG14]. I defer to all these sources to avoid giving original references
for each of the data structures described above.

The 1996 DIMACS implementation challenge focused on elementary data struc-
tures, including dictionaries. See Goldwasser et al. [GJM02]. Data sets, and codes are
accessible from http://dimacs.rutgers.edu/Challenges.

The cost of transferring data back and forth between levels of the memory hierarchy
(RAM-to-cache or disk-to-RAM) dominates the cost of actual computation for many
problems. Each data transfer moves one block of size b, so efficient algorithms seek
to minimize the number of block transfers. The complexity of fundamental algorithm
and data structure problems on such an external memory model has been extensively
studied by Vitter [Vit01]. Cache-oblivious data structures offer performance guar-
antees under such a model without explicit knowledge of the block-size parameter
b. Hence, good performance can be obtained on any machine without architecture-
specific tuning. See [ABF05, Dem02] for excellent surveys on cache-oblivious data
structures.

Splay trees and other modern data structures have been studied using amortized
analysis, where we bound the total amount of time used by any sequence of operations.
In an amortized analysis, a single operation can be very expensive, but only because
we have already benefited from enough cheap operations to pay off the higher cost. A
data structure realizing an amortized complexity of O(f(n)) is less desirable than one
whose worst-case complexity is O(f(n)) (since a very bad operation might still occur)
but better than one with an average-case complexity O(f(n)), since the amortized
bound will achieve this average on any input.

Related problems: Sorting (see page 506), searching (see page 510).

http://dimacs.rutgers.edu/Challenges
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15.2 Priority Queues

Input description: A set of records with totally ordered keys.

Problem description: Build and maintain a data structure for providing quick
access to the smallest or largest key in the set.

Discussion: Priority queues are useful data structures in simulations, partic-
ularly for maintaining a set of future events ordered by time. They are called
“priority” queues because you retrieve items not according to the insertion time
(as in a stack or queue), nor by a key match (as in a dictionary), but by highest
priority of retrieval.

If your application will perform no insertions after the initial query, there is
no need for an explicit priority queue. Simply sort the records by priority and
proceed from top to bottom, maintaining a pointer to the last record retrieved.
This situation occurs in Kruskal’s minimum spanning tree algorithm, or when
simulating a completely scripted set of events.

However, you will need a real priority queue when mixing queries with in-
sertions and deletions. The following questions will help select the right one:

• What other operations do you need? – Will you be searching for arbitrary
keys, or just searching for the smallest? Will you be deleting arbitrary
elements from the data, or just repeatedly deleting the top or smallest
element?

• Do you know the maximum data structure size in advance? – The issue
here is whether you can pre-allocate space for the data structure.

• Might you raise or lower the priority of elements already in the queue?
– Changing the priority of elements requires that we are able to retrieve
elements from the queue based on their key, in addition to finding the
largest element.
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Your choices are between the following basic priority queue implementations:

• Sorted array or list – A sorted array is very efficient to both identify the
smallest element and “delete” it by decrementing the top index. However,
maintaining the total order makes inserting new elements slow. Sorted
arrays are suitable when there will be no insertions into the queue. Basic
priority queue implementations are reviewed in Section 3.5 (page 87).

• Binary heaps – This simple, elegant data structure supports both insertion
and extract-min in O(lg n) time each. Heaps maintain an implicit binary
tree structure in an array, such that the key of the root of any subtree is
less than that of all its descendants. Thus, the minimum key always sits
at the top of the heap. New keys are inserted by placing them at an open
leaf and percolating the element upwards until it sits at its proper place
in the partial order. An implementation of binary heap construction and
retrieval in C appears in Section 4.3.1 (page 116).

Binary heaps are the right answer when you know an upper bound on the
number of items in your priority queue, since you must specify the array
size at creation time. Even this constraint can be mitigated by using
dynamic arrays (see Section 3.1.1 (page 70)).

• Bounded-height priority queue – This array-based data structure permits
constant-time insertion and find-min operations whenever the range of
possible key values is limited. Suppose we know that all key values will
be integers between 1 and n. We can set up an array of n linked lists,
such that the ith list serves as a bucket containing all items with key
i. We will maintain a top pointer to the smallest non-empty list. To
insert an item with key k into the queue, add it to the kth bucket and
set top = min(top, k). To extract the minimum, report the first item from
bucket top, delete it, and move top down if the bucket has become empty.

Bounded-height priority queues are very useful to maintain the vertices
of a graph sorted by degree, which is a fundamental operation in graph
algorithms. Still, they are not as widely known as they should be. They
are usually the right priority queue for any small, discrete range of keys.

• Binary search trees – Binary search trees make effective priority queues,
since the smallest element is always the left-most leaf, while the largest
element is always the right-most leaf. The min (max) is found by simply
tracing down left (right) pointers until the next pointer is nil. Binary
tree heaps prove most appropriate when you also need other dictionary
operations, or if you have an unbounded key range and do not know the
maximum priority queue size in advance.

• Fibonacci and pairing heaps – These complicated priority queues are de-
signed to speed up decrease-key operations, where the priority of an item
already in the priority queue is reduced. This arises, for example, in
shortest path computations when we discover a shorter route to a vertex
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v than previously established. Properly implemented and used, they lead
to better performance on very large computations.

Implementations: Modern programming languages provide libraries offering
complete and efficient priority queue implementations. The Java Collections
PriorityQueue class is included in the java.util package of Java Standard
Edition. Member functions push, top, and pop of the C++ Standard Tem-
plate Library (STL) priority queue template mirror heap operations insert,
findmax, and deletemax. See Meyers [Mey01] and Musser [MDS01] for more
detailed guides to using STL.

LEDA (see Section 22.1.1 (page 713)) provides a complete collection of pri-
ority queues in C++, including Fibonacci heaps, pairing heaps, van Emde Boas
trees, and bounded-height priority queues. Experiments reported in Mehlhorn
and Naher [MN99] identified simple binary heaps as quite competitive in most
applications, with pairing heaps beating Fibonacci heaps in head-to-head tests.
Sanders [San00] did extensive experiments demonstrating that his sequence
heap, based on k-way merging, was roughly twice as fast as a well-implemented
binary heap.

Notes: The Handbook of Data Structures and Applications [MS18] provides several
up-to-date surveys on all aspects of priority queues. Empirical comparisons between
priority queue data structures include [CGS99, GBY91, Jon86, LL96, San00].

Double-ended priority queues extend the basic heap operations to simultaneously
support both find-min and find-max. See Sahni [Sah05] for a survey of four different
implementations of double-ended priority queues.

Bounded-height priority queues are useful data structures in practice, but do not
promise good worst-case performance for unbounded key ranges. However, van Emde
Boas priority queues [vEBKZ77] support O(lg lg n) insertion, deletion, search, max,
and min operations where each key is an element from 1 to n.

Fibonacci heaps [FT87, BLT12] support insert and decrease-key operations in con-
stant amortized time, with O(lg n) amortized time extract-min and delete operations.
The constant-time decrease-key operation leads to faster implementations of classical
algorithms for shortest paths, weighted bipartite matching, and minimum spanning
tree. In practice, Fibonacci heaps are difficult to implement and have large constant
factors associated with them. However, pairing heaps appear to realize the same
bounds with less overhead. Experiments with pairing and other heaps are reported in
[LST14, SV87].

Heaps define a partial order that can be built using a linear number of compar-

isons. The familiar linear-time merging algorithm for heap construction is due to

Floyd [Flo64]. In the worst case, 1.625n comparisons suffice, see [GM86]. Further,

1.5n−O(lg n) comparisons are necessary for heap construction, see [CC92].

Related problems: Dictionaries (see page 440), sorting (see page 506), short-
est path (see page 554).
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15.3 Suffix Trees and Arrays

Input description: A reference string S.

Problem description: Build a data structure for quickly finding all places
where an arbitrary query string q occurs in S.

Discussion: Suffix trees and arrays are phenomenally useful data structures
for solving string problems elegantly and efficiently. The proper use of suffix
trees often speeds up string processing algorithms from O(n2) to linear time.
Indeed, suffix trees were the hero of the war story reported in Section 3.9 (page
98).

In its simplest instantiation, a suffix tree is simply a trie of the n suffixes of
an n-character string S. A trie is a tree structure, where each edge represents
one character, and the root represents the null string. Each path from the root
represents a string, described by the characters labeling the edges traversed.
Every finite set of words defines a distinct trie, and two words with common
prefixes branch off from each other at the first distinguishing character. Each
leaf denotes the end of a string. Figure 15.1 illustrates a simple trie.

Tries are useful in testing whether a given query string q is in the set of
strings. We traverse the trie from the root, along branches defined by successive
characters of q. If a branch does not exist in the trie, then q cannot be in the
set of strings. Otherwise we find the query string in |q| character comparisons
regardless of how many other strings are in the trie. Tries are very simple to
build (repeatedly insert new strings) and very fast to search (just walk down),
although they can be expensive in terms of memory.

A suffix tree is simply a trie of all proper suffixes of S. The suffix tree enables
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Figure 15.1: A trie on strings the, their, there, was, and when (on left). The
suffix array of XY ZXY Z$ (on right).

you to test whether q is a substring of S, because any substring of S is the prefix
of some suffix (got it?). The search time is again linear in |q|.

The catch is that constructing a full suffix tree in this manner can require
O(n2) time and, even worse, O(n2) space, since the average length of the n
suffixes is n/2. But if we are clever, linear space suffices to represent a full suffix
tree. Observe that most of the nodes in a trie-based suffix tree occur on simple
unbranching paths between nodes of outdegree ≥ 2 in the tree. Each simple
path corresponds to a substring of the original string. If we store the original
string in an array, we can represent any such collapsed path by the starting and
ending array indices representing the substring. Thus, each of the tree edges is
labeled using only two integers, so we have all the information of the full suffix
tree in only O(n) space. The output figure for this section displays a collapsed
suffix tree in all its glory.

Even better, there exist O(n) algorithms to construct this collapsed tree, by
making clever use of pointers to minimize construction time. These additional
pointers can also be used to speed up many applications of suffix trees.

But what can you do with suffix trees? Consider the following applications:

• Find all occurrences of q as a substring of S – Just as with a trie, we can
walk from the root to the node nq associated with q. The positions of all
occurrences of q in S are represented by the descendants of nq, which can
be identified using a depth-first search from nq. With a collapsed suffix
tree, it takes O(|q|+ k) time to find the k occurrences of q in S.

• Longest substring common to a set of strings – Build a single collapsed
suffix tree containing all suffixes of all strings, with each leaf labeled with
its original string. In the course of doing a depth-first search on this tree,
we mark each node with both the length of its common prefix and the
number of distinct strings that are children of it. From this information,
the best node can be selected in linear time.
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• Find the longest palindrome in S – A palindrome is a string that reads the
same if the order of characters is reversed, such as madam. To find the
longest palindrome in a string S, build a single suffix tree containing all
suffixes of S and the reversal of S, with each leaf identified by its starting
position. A palindrome is defined by any node in this tree that has forward
and reversed children from the same position.

Since linear-time suffix tree construction algorithms are non-trivial, I rec-
ommend using an existing implementation. But another good option is to use
suffix arrays, which do most of what suffix trees do, but are easier to implement.

A suffix array is in principle just an array that contains all the n suffixes
of S in sorted order. Thus, a binary search of this array for string q suffices
to locate the prefix of a suffix that matches q, permitting an efficient substring
search in O(lg n) string comparisons. With the addition of an index specifying
the common prefix length of all bounding suffixes, only lg n + |q| character
comparisons need be performed on any query, since we can identify the next
character position that must be tested in the binary search. For example, if the
lower range of the search is cowabunga and the upper range is cowslip, all keys
in between must share the same first three letters, so only the fourth character
of any intermediate key needs to be tested against q.

In practice, suffix arrays are typically as fast or faster to search than suffix
trees. They also use much less memory, typically by a factor of four. Each suffix
is represented completely by its unique starting position (from 1 to n) and can
be read off as needed using a single reference copy of the input string.

Some care must be taken to construct suffix arrays efficiently, because there
are O(n2) characters in the strings being sorted. One solution is to first build
a suffix tree, then perform an in-order traversal of it to read the strings off in
sorted order! However, recent breakthroughs have led to space/time efficient
algorithms for constructing suffix arrays directly.

Implementations: There now exist a wealth of suffix array implementations
available. Indeed, all of the recent linear-time construction algorithms have been
implemented and benchmarked [PST07]. Schürmann and Stoye [SS07] provide
an excellent C implementation at https://bibiserv.cebitec.uni-bielefeld.
de/bpr/.

No less than eight different C/C++ implementations of compressed text
indexes appear at the Pizza&Chili corpus http://pizzachili.dcc.uchile.

cl/. These data structures go to great lengths to minimize space usage, typically
compressing the input string to near the empirical entropy while still achieving
excellent query times!

Suffix tree implementations are also readily available. A SuffixTree class
is provided in BioJava (http://www.biojava.org/)—an open source project
providing a Java framework for processing biological data. Libstree is a C
implementation of Ukkonen’s algorithm, available at http://www.icir.org/

christian/libstree/. Strmat is a collection of C programs implementing ex-
act pattern matching algorithms in association with Gusfield [Gus97], including

https://bibiserv.cebitec.uni-bielefeld.de/bpr/
https://bibiserv.cebitec.uni-bielefeld.de/bpr/
http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/
http://www.biojava.org/
http://www.icir.org/christian/libstree/
http://www.icir.org/christian/libstree/
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an implementation of suffix trees. It is available at https://web.cs.ucdavis.
edu/~gusfield/strmat.html.

Notes: Tries were first proposed by Fredkin [Fre62], the name coming from the central
letters of the word “retrieval.” A survey of basic trie data structures with extensive
references appears in Gonnet and Baeza-Yates [GBY91].

Efficient algorithms for suffix tree construction are due to Weiner [Wei73], Mc-
Creight [McC76], and Ukkonen [Ukk92]. Good expositions on these algorithms in-
clude Crochmore and Rytter [CR03] and Gusfield [Gus97]. The interesting forty-year
history of suffix trees is recounted in Apostolico et al. [ACFC+16].

Suffix arrays were invented by Manber and Myers [MM93], although an equiv-
alent idea called Pat trees due to Gonnet and Baeza-Yates appears in [GBY91].
Three teams independently emerged with linear-time suffix array algorithms in 2003
[KSPP03, KA03, KSB06], and progress has continued rapidly. See Puglisi et al.
[PST07] for a survey covering all these developments.

Recent work has resulted in the development of compressed full text indexes that
offer essentially all the power of suffix trees/arrays in a data structure whose size is
proportional to the compressed text string. Makinen and Navarro [MN07] survey these
remarkable data structures.

The power of suffix trees can be further augmented by using a data structure

to compute the least common ancestor (LCA) of any pair of nodes x, y in a tree in

constant time, after linear-time preprocessing of the tree. The original data structure

due to Harel and Tarjan [HT84], has been progressively simplified by Schieber and

Vishkin [SV88] and later Bender and Farach [BF00]. Expositions include Gusfield

[Gus97]. The least common ancestor of two nodes in a suffix tree or trie defines the

node representing the longest common prefix of the two associated strings. That we

can answer such queries in constant time is amazing, and proves useful as a building

block for many other algorithms.

Related problems: String matching (see page 685), text compression (see
page 693), longest common substring (see page 706).

https://web.cs.ucdavis.edu/~gusfield/strmat.html
https://web.cs.ucdavis.edu/~gusfield/strmat.html
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15.4 Graph Data Structures

Input description: A graph G.

Problem description: Represent the graph G using a flexible, efficient data
structure.

Discussion: The two basic data structures for representing graphs are adja-
cency matrices and adjacency lists. Full descriptions of both these data struc-
tures appear in Section 7.2 (page 203), along with an implementation of adja-
cency lists. In general, for most things, adjacency lists are the way to go.

The issues in deciding which data structure to use include:

• How big will your graph be? – How many vertices will it have, both
typically and in the worst case? Ditto for the number of edges. Graphs
with 1,000 vertices imply adjacency matrices with 1,000,000 entries. This
is within the boundary of reality. But adjacency matrices make sense only
for small or very dense graphs.

• How dense will your graph be? – If your graph is very dense, meaning
that a large fraction of the vertex pairs define edges, there is probably no
compelling reason to use adjacency lists. You are doomed to use Θ(n2)
space anyway. Indeed, for complete graphs, matrices will be more concise
due to the elimination of pointers.

• Which algorithms will you be implementing? – Certain algorithms are
more natural on adjacency matrices, such as all-pairs shortest path, but
most DFS-based algorithms favor adjacency lists. Adjacency matrices win
for algorithms that repeatedly ask, “Is (i, j) in G?” However, most graph
algorithms can be designed to eliminate such queries—and if this is all
you are doing you would be better off using a hash table of edges.
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• Will you modify the graph over the course of the computation? – Efficient
static graph implementations can be used when no edge insertion/deletion
operations will be done following initial construction. Indeed, more com-
mon than modifying the topology of the graph is modifying the attributes
of a vertex or edge of the graph, such as size, weight, label, or color. At-
tributes are best handled as extra fields in the vertex or edge records of
adjacency lists.

• Will your graph be a persistent, online structure? – Data structures
and databases are two different things. People use databases to sup-
port commercial-strength applications that must maintain access to large
amounts of data. I trust that Facebook is not storing its friendship graph
in a memory-resident adjacency list. Graph databases like Neo4j are useful
for representing networks in a persistent, online fashion.

Building a good general purpose graph type is a substantial project. I thus
suggest that you check out existing implementations (particularly LEDA) before
hacking up your own. Note that it costs only time linear in the size of the larger
data structure to convert between adjacency matrices and adjacency lists. This
conversion is unlikely to be the bottleneck in any application, so you might use
both data structures if you have the space to store them. This usually isn’t
necessary, but could prove simplest if you are confused about the alternatives.

Planar graphs are those that can be drawn in the plane so no two edges cross.
Graphs arising in many applications are planar by definition, such as maps of
countries. Others are planar by happenstance, like trees. Planar graphs are
always sparse, since any n-vertex planar graph can have at most 3n− 6 edges.
They should thus be represented using adjacency lists. If the planar drawing
(or embedding) of the graph is fundamental to what is being computed, planar
graphs are best represented geometrically. See Section 18.12 (page 581) for
algorithms for constructing planar embeddings from graphs.

Hypergraphs are generalized graphs where each edge may link subsets of more
than two vertices. Suppose we want to encode which representative is on what
congressional committee. The vertices of our hypergraph would be the individ-
ual congressmen, while each hyperedge would represent one committee. Such
arbitrary collections of subsets of a set are naturally thought of as hypergraphs.

Two basic data structures for hypergraphs are:

• Incidence matrices, which are analogous to adjacency matrices. They
require n × m space, where m is the number of hyperedges. Each row
corresponds to a vertex, and each column to an edge, with a non-zero
entry in M [i, j] iff vertex i is incident to edge j. Traditional graphs have
exactly two non-zero entries in each column. The degree of each vertex
governs the number of non-zero entries in each row.

• Bipartite incidence structures, which are analogous to adjacency lists, and
thus suited for sparse hypergraphs. We create a vertex of the incidence
structure associated for every edge and vertex of the hypergraph, and
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add an edge (i, j) in the incidence structure whenever vertex i of the
hypergraph appears in edge j of the hypergraph. Adjacency lists should
be used to represent this incidence structure. Drawing the associated
bipartite graph provides a natural way to visualize the hypergraph.

Special efforts must be taken to represent very large graphs efficiently. How-
ever, interesting problems have been solved on graphs with millions of edges
and vertices. The first step is to make your data structure as lean as possible,
by packing your adjacency matrix in a bit vector (see Section 15.5 (page 456))
or removing unnecessary pointers from your adjacency list representation. For
example, in static graphs (which do not support edge insertions or deletions)
each edge list can be replaced by a packed array of vertex identifiers, eliminating
pointers and thus potentially saving half the space.

If your graph is extremely large, it may become necessary to switch to a
hierarchical representation, where the vertices are clustered into subgraphs that
are compressed into single vertices. Two approaches exist to construct such
a hierarchical decomposition. The first breaks the graph into components in
a natural or application-specific way. For example, a network of roads and
cities suggests a natural decomposition—partition the map into districts, towns,
counties, and states. Alternatively, you can run a graph partition algorithm as
discussed in Section 19.6 (page 601). A natural decomposition will likely do
a better job than some naive heuristic for an NP-complete problem. If your
graph is really unmanageably large, you cannot afford to do a very good job of
algorithmically partitioning it. First verify that standard data structures fail
on your problem before attempting such heroic measures.

Implementations: LEDA (see Section 22.1.1 (page 713)) is a commercial prod-
uct that provides the best graph data type currently implemented in C++.
Study the methods it provides for graph manipulation, so as to see how the
right level of abstract graph type makes implementing algorithms clean and
easy.

The C++ Boost Graph Library [SLL02] (http://www.boost.org/libs/
graph) is more readily available. Implementations of adjacency lists, matri-
ces, and edge lists are included, along with a reasonable library of basic graph
algorithms. Its interface and components are generic in the same sense as the
C++ standard template library (STL).

Neo4j (https://neo4j.com/) is a widely used graph database, where the J
stands for Java. Needham and Hodler [NH19] present examples of graph algo-
rithms in Neo4j. JUNG (http://jung.sourceforge.net/) is a Java graph li-
brary particularly popular in the social networks community. JGraphT (https:
//jgrapht.org/) is a more recent development with similar functionality.

The Stanford Graphbase (see Section 22.1.7 (page 715)) provides a simple
but flexible graph data structure in CWEB, a literate version of the C language.
It is instructive to see what Knuth does and does not place in his basic data
structure, although I recommend other implementations as a better basis for
further development.

http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
https://neo4j.com/
http://jung.sourceforge.net/
https://jgrapht.org/
https://jgrapht.org/
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My (biased) preferences in C language graph types include the libraries from
this book, as well as my book Programming Challenges [SR03]. See Section
22.1.9 (page 716) for details. Simple graph data structures in Mathematica
are provided by Combinatorica [PS03], with a library of algorithms and display
routines. See Section 22.1.8 (page 716).

Notes: The advantages of adjacency list data structures for graphs became apparent
with the linear-time algorithms of Hopcroft and Tarjan [HT73b, Tar72]. The basic
adjacency list and matrix data structures are presented in essentially all books on
algorithms or data structures, including [CLRS09, AHU83, Tar83]. Hypergraphs are
presented in Berge [Ber89].

The improved efficiency of static graph types was revealed by Naher and Zlotowski
[NZ02], who sped up certain LEDA graph algorithms by a factor of four by simply
switching to a more compact graph structure.

Matrix representations of graphs can exploit the power of linear algebra in problems
ranging from shortest paths to partitioning. Laplacians and other matrix structures
are presented in Bapat [Bap10]. An interesting question concerns minimizing the
number of bits needed to represent arbitrary graphs on n vertices, particularly if
certain operations must be supported efficiently. Such issues are surveyed in van
Leeuwen [vL90b].

Dynamic graph algorithms [EGI98] are data structures that maintain quick access
to an invariant (such as minimum spanning tree or connectivity) under edge insertion
and deletion. Sparsification [EGIN97] is a general approach to constructing dynamic
graph algorithms. Jeff Westbrook, a pioneer in dynamic graph algorithms [Wes89],
went on to become a writer for the TV show The Simpsons.

Hierarchically defined graphs often arise in VLSI design problems, because de-
signers make extensive use of cell libraries [Len90]. Algorithms specifically for hier-
archically defined graphs include planarity testing [Len89], connectivity [LW88], and
minimum spanning trees [Len87a].

Related problems: Set data structures (see page 456), graph partition (see
page 601).
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15.5 Set Data Structures

Input description: A universe of items U = {u1, . . . , un} on which is defined
a collection of subsets S = {S1, . . . , Sm}.
Problem description: Represent each subset so as to efficiently (1) test
whether ui ∈ Sj , (2) compute the union or intersection of Si and Sj , and
(3) insert or delete members of S.

Discussion: In mathematical terms, a set is an unordered collection of objects
drawn from a fixed universal set. However, it is usually useful to represent each
set in a single canonical order, typically sorted, to speed up or simplify various
operations. Sorted order turns the problem of finding the union or intersection
of two subsets into a linear-time operation—just sweep from left to right and
see what you are missing. It makes possible element searching in sublinear time.
Finally, printing the elements of a set in a canonical order paradoxically reminds
us that order doesn’t really matter.

We distinguish sets from two other types of objects: dictionaries and strings.
A collection of objects not drawn from a fixed-size universal set is best thought
of as a dictionary, discussed in Section 15.1 (page 440). Strings are structures
where order matters, meaning that {A,B,C} is not the same as {B,C,A}.
Section 15.3 and Chapter 21 discuss data structures and algorithms for strings,
respectively.

Multisets permit elements to have more than one occurrence. Data structures
for sets can generally be extended to multisets by maintaining a count field, or
a linked list of equivalent entries for each element.

When every subset contains exactly two elements, they can be thought of as
edges in a graph whose vertices represent the universal set. A system of subsets
with no restrictions on the cardinality of its members is called a hypergraph. It
is worth considering whether your problem has a graph-theoretical analogy, like
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connected components or shortest path in a graph/hypergraph.
Your primary alternatives for representing arbitrary subsets are:

• Bit vectors – An n-bit vector or array can represent any subset S on a
universal set U containing n items. Bit i is set to 1 if i ∈ S, and 0 if
not. Because only one bit is needed per element, bit vectors can be very
space efficient for surprisingly large values of |U |. Element insertion and
deletion simply flips the appropriate bit. Intersection and union are done
by “and-ing” or “or-ing” the bits together. The primary drawback of a bit
vector is its performance on sparse subsets. For example, it takes O(n)
time to explicitly identify all the members of a sparse (or even empty)
subset S.

• Containers or dictionaries – A subset S can also be represented using
a linked list, array, or dictionary containing exactly the elements in S.
No notion of a fixed universal set is needed for such a data structure.
Dictionaries can be more space and time efficient for sparse subsets than
bit vectors, and easier to work with. For efficient union and intersection
operations, it pays to keep the elements in each subset sorted, so a linear-
time merge of both subsets identifies all duplicates.

• Bloom filters – We can emulate a bit vector in the absence of a fixed
universal set by hashing each subset element to an integer from 0 to n− 1
and setting the corresponding bit. Thus, bit H(e) is set to 1 if e ∈ S.
Collisions leave some possibility for error under this scheme, however,
because a different key might have hashed to the same position.

A Bloom filter uses several (say k) different hash functions H1, . . . Hk, and
sets all k bits Hi(e) upon insertion of key e. Now e can be in S only if
all k bits are 1. The probability of false positives can be made arbitrarily
low by increasing the number of hash functions k and the table size n.

This hashing-based data structure is much more space-efficient than dic-
tionaries, for static subset applications that can tolerate a small proba-
bility of error. Many can. For instance, spell checkers that occasionally
leave some rare random string uncorrected would prove no great tragedy.
Bloom filters are more fully described in Section 6.4.

Many applications involve collections of subsets that are pairwise disjoint,
meaning that each element occurs in exactly one subset. For example, consider
maintaining the connected components of a graph or the party affiliations of
politicians. Each vertex/scoundrel appears in exactly one component/party.
Such a system of subsets is called a set partition. Algorithms for generating
partitions of a given set are provided in Section 17.6 (page 524).

The primary issue with set partition data structures is maintaining changes
over time, perhaps as edges get added or party members defect. Typical queries
include “which set is a particular item in?” and “are two items in the same
set?” as we modify the set by (1) changing one item, (2) merging or unioning
two sets, or (3) breaking a set apart. Your basic options are:
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• Collection of containers – Representing each subset in its own container
or dictionary permits fast access to all their elements, which facilitates
union and intersection operations. The cost comes in membership testing,
since we must search each subset data structure independently until we
find our target.

• Generalized bit vector – Let the ith element of an array denote the num-
ber/name of the subset that contains it. Set identification queries and
single element modifications can be performed in constant time. However,
operations like performing the union of two subsets take time proportional
to the size of the universe, since each element in the two subsets must be
identified and have its name changed.

• Dictionary with a subset attribute – Similarly, each item in a binary tree
can be associated with a field that records the name of its subset. Set
identification queries and single element modifications can be performed
in the time it takes to search the dictionary. But union/intersection oper-
ations are again slow. The need to perform such union operations quickly
provides the motivation for the . . .

• Union–find data structure – We represent a subset using a rooted tree
where each node points to its parent instead of its children. The name of
each subset will be the name of the item at the root. To find the subset
name for a given element, keep traversing up the parent pointers until you
hit the root. Unioning two subsets is also easy. Assign the root of one of
two trees to point to the other, so now all elements have the same root
and hence the same subset name.

Implementation details have a big impact on asymptotic performance here.
Always selecting the larger (or taller) tree as the root in a merger guaran-
tees logarithmic height trees, as with our implementation in Section 8.1.3
(page 250). Shrinking the path traced after each find, by explicitly point-
ing each path node directly to the root, is called path compression and
reduces the tree to almost constant height. Union–find is a fast, simple
data structure that every programmer should know.

Implementations: Modern programming languages provide libraries offering
complete and efficient set implementations. The C++ Standard Template Li-
brary (STL) provides set and multiset containers. LEDA (see Section 22.1.1
(page 713)) provides efficient dictionary data structures, sparse arrays, and
union–find data structures to maintain set partitions, all in C++. Java Col-
lections (JC) contains HashSet and TreeSet containers and is included in the
java.util package of Java Standard Edition.

An implementation of union–find underlies any implementation of Kruskal’s
minimum spanning tree algorithm. For this reason, all the graph libraries of Sec-
tion 15.4 (page 452) presumably contain an implementation. Minimum spanning
tree codes are described in Section 18.3 (page 549).
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The computer algebra system REDUCE (http://www.reduce-algebra.
com/) contains SETS, a package supporting set-theoretic operations on both
explicit and implicit (symbolic) sets. Other computer algebra systems may sup-
port similar functionality.

Notes: Optimal algorithms for set operations such as intersection and union were pre-
sented in Reingold [Rei72]. Raman [Ram05] provides an excellent survey on data struc-
tures for a variety of different set operations. Bloom filters are ably surveyed in Broder
and Mitzenmacher [BM05], with experimental results presented in [PSS07]. The
cuckoo filter [FAKM14] is an improved Bloom filter variant offering better space/time
performance and support for deletions.

Certain balanced tree data structures support merge/meld/link/cut operations,
which permit fast ways to union and intersect disjoint subsets. See Tarjan [Tar83]
for a nice presentation of such structures. Jacobson [Jac89] augmented the bit-vector
data structure to support select operations (where is the ith 1 bit?) efficiently in both
time and space.

Galil and Italiano [GI91] survey data structures for disjoint set union. The upper
bound of O(mα(m,n)) onm union–find operations on an n-element set is due to Tarjan
[Tar75], as is a matching lower bound on a restricted model of computation [Tar79].
The inverse Ackerman function α(m,n) grows notoriously slowly, so this performance
is close to linear. An interesting connection between the worst-case of union–find and
the length of Davenport–Schinzel sequences—a combinatorial structure that arises in
computational geometry—is established in Sharir and Agarwal [SA95].

The power set of a set S is the collection of all 2|S| subsets of S. Explicit manipu-

lation of power sets quickly becomes intractable due to their size. Implicit representa-

tions of power sets in symbolic form becomes necessary for non-trivial computations.

See [BCGR92] for algorithms on, and computational experience with, symbolic power

set representations.

Related problems: Generating subsets (see page 521), generating partitions
(see page 524), set cover (see page 678), minimum spanning tree (see page 549).

http://www.reduce-algebra.com/
http://www.reduce-algebra.com/


460 CHAPTER 15. DATA STRUCTURES

Input Output

15.6 Kd-Trees

Input description: A set S of n points (or more complicated geometric ob-
jects) in k dimensions.

Problem description: Construct a tree that partitions space by half-planes
such that each object is contained in its own box-shaped region.

Discussion: Kd-trees and related spatial data structures hierarchically decom-
pose space into a small number of cells, each containing only a few representa-
tives from an input set of points. This provides a fast way to access an object
by position. We traverse down the hierarchy to find the smallest cell containing
it, and then scan through the objects in this cell until we find what we want.

Typical algorithms construct kd-trees by partitioning point sets. Each node
in the tree is defined by a plane cutting through one of the dimensions. Ideally,
this plane partitions the subset of points into equal-sized left/right (or up/down)
subsets. These children are again partitioned into equal halves, using planes
through a different dimension. Partitioning stops after lg n levels, with every
point in its own leaf cell.

The cutting planes along any path from the root to another node defines a
unique box-shaped region of space. Each subsequent plane cuts this box into two
boxes. Each box-shaped region is defined by 2k planes, where k is the number
of dimensions. Indeed, the “kd” in kd-tree is short for “k-dimensional.” We
maintain the region of interest defined by the intersection of these half-spaces
as we move down the tree.

Flavors of kd-trees differ in exactly how the splitting plane is selected, but
options include:
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• Cycling through the dimensions – partition first on d1, then d2, . . . , dk
before cycling back to d1.

• Cutting along the largest dimension – select the partition dimension that
makes the resulting boxes as square or cube-like as possible. Selecting a
plane to partition the points equally does not always put the splitter in
the middle of the box-shaped region, because all the points may happen
to lie in the left side of the box.

• Quadtrees or octtrees – Instead of partitioning with single planes, use all
axis-parallel planes that pass through a given partition point. In two
dimensions, this creates four child cells. In three dimensions, we get eight
child cells. Quadtrees seem particularly popular on image data, where leaf
cells imply that all pixels in the regions have the same color.

• Random projection trees – Here the cutting plane for a node is defined by
a random slope/direction (or more generally, a d − 1 dimensional plane
through the origin). We identify a line/plane perpendicular to this direc-
tion that evenly partitions the points into two halves: such a line must
exist and can be easily found. Then recur. These trees must have log-
arithmic height, yet can follow the points better than kd-trees when low
dimensional structures occur in higher dimensionsional data.

• BSP-trees – Binary space partitions use general (i.e.not just axis-parallel)
cutting planes to carve up space into cells such that each cell ends up con-
taining only one object (say a polygon). Such partitions are not possible
using only axis-parallel cuts for certain sets of objects. The downside is
that such polyhedral cell boundaries are more complicated to work with
than boxes.

• Ball trees – A ball tree is a hierarchical data structure on points, where
each node is associated with a ball, defined by its center and radius. Each
node’s ball is the smallest that contains the balls of its children. Unlike
kd-trees, this means that sibling balls can intersect, and do not partition
the entire space. But they are very good for nearest-neighbor search in
high dimensions, where kd-trees break down.

Ideally, our partitions will split both the space (ensuring fat, regular regions)
and the set of points (ensuring a log height tree) evenly, but doing both simulta-
neously can be impossible on a given input. The advantages of fat cells become
clear in many applications of kd-trees:

• Point location – To identify which cell a query point q lies in, start at the
root and test which side of the partition plane contains q. By repeating
this process on the appropriate child node, we travel down the tree to find
the leaf cell containing q in time proportional to its height. See Section
20.7 (page 644) for more on point location.
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• Nearest-neighbor search – To find the point in S closest to a given query
point q, we perform point location to find the cell c containing q. Since
this cell is associated with some point p, we can compute the distance
d(p, q) from p to q.

Point p is likely close to q, but it might not be the absolute closest neighbor.
Why? Suppose q lies at the right boundary of its cell. Then q’s nearest
neighbor might well lie towards the left of the boundary of the neighboring
cell. Thus, we must traverse all cells that lie within a distance of d(p, q)
of q and verify that none of them contain any closer points. In trees with
nice, fat cells, very few cells should need to be tested. See Section 20.5
(page 637) for more on nearest-neighbor search.

• Range search – Which points lie within a query box or region? Starting
from the root, check whether the query region intersects (or contains) the
cell defining the current node. If it does, check the children; if not, none of
the leaf cells below this node can possibly be of interest. We quickly prune
away irrelevant portions of the space. Section 20.6 (page 641) focuses on
range search.

• Partial key search – Suppose we want to find a point p in S, but we do
not have full information about p. Say we are looking for someone of age
59 and height 5 feet 8 inches but of unknown weight in a kd-tree with
dimensions of age, weight, and height. Starting from the root, we can
identify the correct descendant for all but the weight dimension. To be
sure we find the right point, we must search both children of these nodes.
The more fields we know the better, but such partial key search can be
substantially faster than checking all points against the key.

Kd-trees are most useful for a small to moderate number of dimensions,
say from two up to maybe twenty dimensions. They lose effectiveness as the
dimensionality increases, primarily because the ratio of the volume of a unit
sphere in k-dimensions shrinks exponentially compared to the unit cube. Thus,
exponentially many cells will have to be searched within a given radius of a
query point, say for nearest-neighbor search. Also, the number of neighbors for
any cell grows to 2k and eventually becomes unmanageable.

The bottom line is you should try to avoid working in high-dimensional
spaces, perhaps by discarding (or projecting away) the least important dimen-
sions.

Implementations: KDTREE 2 contains C++ and Fortran 95 implementations
of kd-trees for efficient nearest-neighbor search in many dimensions. See http:

//arxiv.org/abs/physics/0408067. Ball trees are included as part of the
popular Python package scikit-learn, again for nearest-neighbor search in high
dimensional data.

Samet’s spatial index demos (http://donar.umiacs.umd.edu/quadtree/)
provide a series of Java applets illustrating many variants of kd-trees, in asso-
ciation with his book [Sam06].

http://arxiv.org/abs/physics/0408067
http://arxiv.org/abs/physics/0408067
http://donar.umiacs.umd.edu/quadtree/


15.6. KD-TREES 463

The 1999 DIMACS implementation challenge focused on data structures
for nearest-neighbor search [GJM02]. Data sets and codes are accessible from
http://dimacs.rutgers.edu/Challenges.

Notes: Samet [Sam06] is the best reference on kd-trees and other spatial data
structures. All major (and many minor) variants are developed in substantial de-
tail. Samet’s shorter survey [Sam05] is also available. Bentley [Ben75] is generally
credited with developing kd-trees, although they have the murky history associated
with most folk data structures.

The performance of spatial data structures degrades with high dimensionality.
Balltrees [Omo89] and random projection trees [DF08] are examples of data structures
designed to address this issue.

Projecting high-dimensional spaces onto a random lower-dimensional hyperplane
has recently emerged as a simple but powerful method for dimensionality reduction.
Both theoretical [IMS18] and empirical [BM01] results indicate that this method pre-
serves distances quite nicely.

Algorithms that quickly produce a point provably close to the query point are an

important aspect higher-dimensional nearest-neighbor search. See [ML14] for recent

experimental results on finding high-dimensional near neighbors. Locality sensitive

hashing methods such as Andoni and Indyk [AI06] are very popular and effective.

Another approach by Arya et al. [AMN+98] builds a sparse weighted-graph structure

from the data set, with the nearest neighbor found by starting at a random point and

walking greedily in the graph towards the query point. The closest point found over

several random trials is declared the winner. Similar methods hold promise for other

problems in high-dimensional spaces.

Related problems: Nearest-neighbor search (see page 637), point location
(see page 644), range search (see page 641).

http://dimacs.rutgers.edu/Challenges


Chapter 16

Numerical Problems

If most problems you encounter are numerical in nature, there is an excellent
chance that you are reading the wrong book. Numerical Recipes [PFTV07]
gives a terrific overview of the fundamental problems in numerical computing,
including linear algebra, numerical integration, statistics, and differential equa-
tions. Different flavors of the book include source code for all the algorithms in
C++, Fortran, and even Pascal. Their coverage is somewhat skimpier on the
combinatorial/numerical problems considered in this section, but you should be
aware of it. Check them out at http://numerical.recipes/.

Numerical computation has been of increasing importance because of ma-
chine learning, which heavily relies on linear algebra and unconstrained opti-
mization. But note that numerical algorithms tend to be different beasts than
combinatorial algorithms for at least two reasons:

• Issues of precision and error – Numerical algorithms typically perform
repeated floating-point computations, which accumulate error at each op-
eration until, eventually, the results are meaningless. My favorite example
concerns the Vancouver Stock Exchange, which over a 22-month period
accumulated enough round-off error to reduce its index from the correct
value of 1098.982 to 574.081 [MV99].

A simple and dependable way to test for round-off errors in numerical
programs is to run them both at single and double precision, and then
think hard if there is a substantial disagreement.

• Extensive libraries of codes – Large, high-quality libraries of numerical
algorithms have existed since the 1960s, which is still not yet the case for
combinatorial algorithms. There are several reasons for this, including (1)
the early emergence of Fortran as a standard for numerical computation,
(2) the nature of numerical computations to be recognizably independent
modules instead of embedded in large applications, and (3) the existence
of large scientific communities needing general numerical libraries.

Regardless of why, you should exploit this software base. There is probably
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no reason to implement algorithms for any of the problems in this section,
as opposed to using existing codes. Searching Netlib (see Section 22.1.4)
is an excellent place to start.

Many scientists and engineers have ideas about algorithms that culturally
derive from the simple control and data structures of numerical methods. In
contrast, computer scientists grow up programming with pointers and recursion,
and hence are comfortable with the more sophisticated data structures required
for combinatorial algorithms. Both sides can and should learn from each other,
since many problems can be modeled either numerically or combinatorially.

There is a vast literature on numerical algorithms. In addition to Numerical
Recipes, recommended books include:

• Chapra and Canale [CC16] – The contemporary market leader in numer-
ical analysis texts.

• Mak [Mak02] – This enjoyable text introduces Java to the world of nu-
merical computation, and vice versa. Source code is provided.

• Hamming [Ham87] – This oldie but goodie provides a clear and lucid treat-
ment of fundamental methods in numerical computation. It is available
in a low-priced Dover Publications edition.

• Skeel and Keiper [SK00] – A readable and interesting treatment of ba-
sic numerical methods, avoiding overly detailed algorithm descriptions
through its use of the computer algebra system Mathematica. I like it.

• Cheney and Kincaid [CK12] – A traditional Fortran-based numerical anal-
ysis text, with discussions of optimization and Monte Carlo methods in
addition to such standard topics as root-finding, numerical integration,
linear systems, splines, and differential equations.

• Buchanan and Turner [BT92] – Thorough language-independent treat-
ment of all standard topics, including parallel algorithms. It is the most
comprehensive of the texts described here.
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16.1 Solving Linear Equations

Input description: An m × n matrix A and an m × 1 vector b, together
representing m linear equations on n variables.

Problem description: What is the vector x such that A · x = b?

Discussion: The need to solve linear systems arises in an estimated 75% of all
scientific computing problems [DB74]. For example, applying Kirchhoff’s laws
to analyze electrical circuits generates a system of equations—the solution of
which predicts the current through each branch of the circuit. Many machine
learning algorithms reduce to solving linear systems, including linear regression
and singular value decomposition (SVD). Even finding the point of intersection
between two or more lines reduces to solving a small linear system.

Not all systems of equations have solutions. Just try to solve 2x + 3y = 5
and 2x + 3y = 6. Some systems of equations have multiple solutions, such as
2x+ 3y = 5 and 4x+ 6y = 10. Such degenerate systems of equations are called
singular, and they can be recognized by testing whether the determinant of the
coefficient matrix is zero.

Solving linear systems is a problem of such scientific and commercial impor-
tance that excellent codes are readily available. There is never a good reason to
implement your own solver, even though the basic algorithm (Gaussian elimi-
nation) is one you learned in high school. This is especially true when working
with large systems.

Gaussian elimination is based on the observation that the solution to a sys-
tem of linear equations is invariant under scaling (if x = y, then 2x = 2y) and
adding equations (the solution to x = y and w = z is the same as the solution
to x = y and x + w = y + z). Gaussian elimination scales and adds equations
to eliminate each variable from all but one equation, leaving the system in such
a state that the solution can be directly read off from the resulting equations.

The time complexity of Gaussian elimination on an n×n system of equations
is O(n3), because we add a scaled copy of the n-term ith row to each of the n−1
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other equations to clear the ith (of n) variable. But on this problem, constants
matter. Algorithms that only partially reduce the coefficient matrix and then
back substitute to get the answer use 50% fewer floating-point operations than
the naive algorithm.

Issues to worry about include:

• Are round-off errors and numerical stability affecting my solution? –
Gaussian elimination would be quite straightforward to implement ex-
cept for round-off errors. These accumulate with each row operation and
quickly wreak havoc on the solution, particularly with matrices that are
almost singular.

To eliminate the danger of numerical errors, it pays to substitute the
solution back into each of the original equations and test how close they
are to the desired value. Iterative techniques for solving linear systems,
like the Jacobi and Gauss-Seidel methods, refine initial solutions to obtain
more accurate answers. Good linear systems packages will include such
routines.

The key to minimizing round-off errors in Gaussian elimination is selecting
the right equations and variables to pivot on, and to scale the equations
to eliminate large coefficients. This is an art as much as a science, which
is why you should use a well-crafted library routine as described below.

• Which routine in the library should I use? – Selecting the right code is
also somewhat of an art. If you are taking your advice from this book,
start with a general linear system solver and hope it will suffice for your
needs. But search through the manual for more efficient procedures solving
special types of linear systems. If your matrix happens to be one of these
special types, the solution time can reduce from cubic to quadratic or even
linear.

• Is my system sparse? – A key to recognizing that you have a special-case
linear system is establishing how many matrix elements you really need
to describe A. If there are only a few non-zero elements, your matrix is
sparse and you are in luck. If these few non-zero elements are clustered
near the diagonal, your matrix is banded and you are in even more luck.
Algorithms for reducing the bandwidth of a matrix are discussed in Section
16.2. Many other regular patterns of sparse matrices can also be exploited,
so consult the manual of your solver or a good book on numerical analysis
for details.

• Will I be solving many systems using the same coefficient matrix? – In
applications such as least-squares curve fitting, people often solve A ·x = b
repeatedly with different b vectors. We can preprocess A to make this
easier. The lower-upper or LU-decomposition of A creates lower- and
upper-triangular matrices L and U such that L · U = A. We can use this
decomposition to solve A · x = b, since

A · x = (L · U) · x = L · (U · x) = b
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This is efficient because back substitution solves a triangular system of
equations in quadratic time. Solving L · y = b and then U · x = y gives
the solution x using two O(n2) steps instead of one O(n3) step, after the
LU-decomposition was computed in O(n3) time.

The problem of solving linear systems is equivalent to that of matrix inver-
sion, since Ax = B ↔ A−1Ax = A−1B, where I = A−1A is the identity matrix.
Avoid it, however, because matrix inversion proves to be three times slower
than Gaussian elimination. LU-decomposition is very useful to invert matrices
as well as compute determinants (see Section 16.4 (page 475)).

Implementations: The library of choice for solving linear systems is appar-
ently LAPACK—a descendant of LINPACK [DMBS79]. Both of these Fortran
codes, as well as many others, are available from Netlib (https://www.netlib.
org/). Variants of LAPACK exist for other languages, like CLAPACK (C) and
LAPACK++ (C++). The Template Numerical Toolkit is an interface to such
routines in C++, and is available at http://math.nist.gov/tnt/.

JScience provides an extensive linear algebra package (including determi-
nants) as part of its comprehensive scientific computing library. JAMA is an-
other matrix package written in Java. Links to both and many related libraries
are available at http://math.nist.gov/javanumerics/.

Numerical Recipes [PFTV07] (http://numerical.recipes/) provides guid-
ance and routines for solving linear systems. Lack of confidence in dealing with
numerical procedures is the most compelling reason to use these ahead of the
free codes.

Notes: Golub and van Loan [GL96] is the standard reference on algorithms for
linear systems. Good expositions on algorithms for Gaussian elimination and LU-
decomposition include [CLRS09] and a host of numerical analysis texts [BT92, CK12,
SK00]. Data structures for linear systems are surveyed in [PT05].

Parallel algorithms for linear systems are discussed in [Gal90, GO14, HNP91,
KSV97]. Solving linear systems is one of the most important applications where par-
allel architectures are used widely in practice.

Matrix inversion and (hence) linear systems solving can be done in matrix multi-
plication time using Strassen’s algorithm plus a reduction. Good expositions on the
equivalence of these problems include [AHU74, CLRS09].

The HHL quantum computing algorithm has been proposed to solve n× n linear
systems in O(log n) time [HHL09], which would be an exponential-time speedup over
what is possible on conventional computers. This would be a real game-changer but
there are many caveats, clearly explained by Aaronson [Aar15].

Related problems: Matrix multiplication (see page 472), determinant/permanent
(see page 475).

https://www.netlib.org/
https://www.netlib.org/
http://math.nist.gov/tnt/
http://math.nist.gov/javanumerics/
http://numerical.recipes/
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Input Output

16.2 Bandwidth Reduction

Input description: A graph G = (V,E), representing an n × n matrix M of
zero and non-zero elements.

Problem description: Which permutation p of the vertices minimizes the
length of the longest edge—i.e., minimizes max(i,j)∈E |p(i)− p(j)|?
Discussion: Bandwidth reduction lurks as a hidden but important problem for
both graphs and matrices. Applied to matrices, bandwidth reduction permutes
the rows and columns of a sparse matrix to minimize the distance b of the
furthest non-zero entry from the center diagonal. This is important in solving
linear systems, because Gaussian elimination can be performed in O(nb2) on
matrices of bandwidth b: a big win over the general O(n3) algorithm if b � n.

Bandwidth minimization on graphs arises in more subtle ways. Arranging
n circuit components in a row to minimize the length of the longest wire (and
hence time delay) is a bandwidth problem, where each vertex of graph G cor-
responds to a circuit component and there is an edge for every wire linking
two components. More general formulations such as rectangular circuit layouts
inherit the same hardness and classes of heuristics from the linear versions.

The bandwidth problem seeks a linear ordering of the vertices, which min-
imizes the length of the longest edge. But there are other variations of the
problem. In linear arrangement, we seek to minimize the sum of the lengths
of the edges. This has application to circuit layout, where we seek to position
the chips to minimize the total wire length. In profile minimization, we seek
to minimize the sum of one-way distances, for each vertex v the length of the
longest edge whose other vertex is to the left of v.

Unfortunately, all these variants of bandwidth minimization are NP-complete.
It stays NP-complete even if the input graph is a tree whose maximum vertex
degree is 3, which is about as strong a condition as I have seen on any problem.
Therefore, our only options are brute-force search and heuristics.

Fortunately, ad hoc heuristics have been well studied and production-quality
implementations of the best heuristics are available. These are based on per-
forming a breadth-first search from a given vertex v, where v is placed at the
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left-most point of the ordering. All of the vertices that are distance 1 from v are
placed to its immediate right, followed by all the vertices at distance 2, and so
forth until all vertices in G are accounted for. The popular heuristics differ ac-
cording to how many different start vertices are considered, and how equidistant
vertices are ordered among themselves. Breaking ties with low-degree vertices
over to the left generally seems to be a good idea.

Implementations of the most popular heuristics—the Cuthill–McKee and
Gibbs–Poole–Stockmeyer algorithms—are discussed below. The worst case time
of the Gibbs–Poole–Stockmeyer algorithm is O(n3), but its performance in prac-
tice is close to linear.

Brute-force search programs can find the exact minimum bandwidth, by
backtracking through the set of all n! possible permutations of vertices. Con-
siderable pruning can be achieved to reduce the search space by starting with
a good heuristic bandwidth solution and alternately adding vertices to the left-
and rightmost open slots in the partial permutation.

Implementations: Del Corso and Manzini’s [CM99] code for exact solutions
to bandwidth problems is available at https://people.unipmn.it/manzini/

bandmin. Caprara and Salazar-González [CSG05] developed improved methods
based on integer programming. Their branch-and-bound implementation in C
is available at the Algorithms Repository.

Fortran language implementations of both the Cuthill-McKee algorithm
[CM69] and the Gibbs-Poole-Stockmeyer algorithm [GPS76] are available from
Netlib. Empirical evaluations of these and other algorithms on a test suite
of thirty matrices [Eve79], show Gibbs–Poole–Stockmeyer to be the consistent
winner. Petit [Pet03] performed an extensive experimental study on heuristics
for the minimum linear arrangement problem. His codes and data are available
at http://www.lsi.upc.edu/~jpetit/MinLA/Experiments/.

Notes: Diaz et al. [DPS02] provide an excellent survey on algorithms for bandwidth
and related graph layout problems. See [CCDG82] for graph-theoretic and algorithmic
results on bandwidth minimization, up to 1981. Ad hoc heuristics have been widely
studied—a tribute to its importance in numerical computation. Everstine [Eve79] cites
no less than 49 different bandwidth reduction algorithms!

The hardness of the bandwidth problem was first established by Papadimitriou
[Pap76b], and its hardness on trees of maximum degree 3 in [GGJK78]. There are
algorithms that run in polynomial time for fixed bandwidth k [Sax80]. Approxima-
tion algorithms offering a polylogarithmic guarantee exist for the general problem
[BKRV00, FL07], beyond which the problem is hard to approximate [DFU11].

Related problems: Solving linear equations (see page 467), topological sorting
(see page 546).

https://people.unipmn.it/manzini/bandmin
https://people.unipmn.it/manzini/bandmin
http://www.lsi.upc.edu/~jpetit/MinLA/Experiments/
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16.3 Matrix Multiplication

Input description: An x× y matrix A and a y × z matrix B.

Problem description: Compute the x× z matrix A×B.

Discussion: Matrix multiplication is a fundamental problem in linear algebra.
Its main significance for combinatorial algorithms is its equivalence to many
other problems, including transitive closure/reduction, parsing, solving linear
systems, and matrix inversion. A faster algorithm for matrix multiplication
implies faster algorithms for all of these problems. Matrix multiplication arises
in its own right in computing the results of such coordinate transformations as
scaling, rotation, and translation for robotics and computer graphics.

Matrix multiplication is often used for data rearrangement problems instead
of hard-coded logic. Multiplying by the identity matrix does nothing at all.
But consider the input/output figures above. Observe that multiplying by the
permutation matrix (on left) rearranged the rows of the output matrix. Effi-
cient sparse matrix multiplication libraries can be astonishingly fast on such
operations.

The following tight algorithm computes the product of x× y matrix A and
y × z matrix B, and runs in O(xyz). Remember to first initialize M [i, j] to 0
for all 1 ≤ i ≤ x and i ≤ j ≤ z:

for i = 1 to x do
for j = 1 to z

for k = 1 to y
M [i, j] = M [i, j] +A[i, k] ·B[k, j]

An implementation in C appears in Section 2.5.4 (page 45). This straightfor-
ward algorithm would seem to be tough to beat in practice. That said, observe
that the three loops can be arbitrarily permuted without changing the resulting
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answer. Such a permutation will change the memory access patterns and thus
how effectively the cache is used. One can expect a 10–20% variation in run
time among the six possible implementations, but probably not confidently pre-
dict the winner (typically ikj) without running it on your machine with your
particular matrices.

When multiplying two bandwidth-b matrices, a speedup to O(xbz) is possi-
ble. Zero values cannot contribute to the product, and all non-zero elements of
A and B must lie within b positions of their main diagonals.

Asymptotically faster algorithms for matrix multiplication exist, using clever
divide-and-conquer recurrences. However, these prove difficult to program, re-
quire very large matrices, and are less numerically stable to boot. The most
famous of these is Strassen’s O(n2.81) algorithm. Empirical results (discussed
below) disagree on the exact crossover point where Strassen’s algorithm beats
the simple cubic algorithm, but it is in the ballpark of n ≈ 100.

There is a better way to save computation when you are multiplying a chain
of more than two matrices together. Recall that multiplying an x×y matrix by
a y×z matrix creates an x×z matrix. Thus, multiplying a chain of matrices from
left to right might create large intermediate matrices, each taking a lot of time
to compute. Matrix multiplication is not commutative, but it is associative,
so we can parenthesize the chain in whatever manner we deem best without
changing the final product. A standard dynamic programming algorithm can
be used to construct the optimal parenthesization. Whether it pays to do this
optimization will depend upon whether your matrix dimensions are sufficiently
irregular and your chain multiplied often enough to justify it. Note that we
are optimizing over the sizes of the dimensions in the chain, not the matrices
themselves. No improvement is possible when all your matrices have the same
dimensions.

Matrix multiplication has a particularly interesting interpretation in count-
ing the number of paths between two vertices in a graph. Let A be the adjacency
matrix of a graph G, meaning A[i, j] = 1 if there is an edge between i and j.
Otherwise, A[i, j] = 0. Now consider the square of this matrix, A2 = A × A.
If A2[i, j] ≥ 1, there must be a vertex k such that A[i, k] = A[k, j] = 1, so i to
k to j is a path of length 2 in G. More generally, Ak[i, j] counts the number
of paths of length exactly k between i and j. This count includes non-simple
paths, where vertices are repeated, such as i to k to i to j.

Implementations: D’Alberto and Nicolau [DN07] have engineered a very ef-
ficient matrix multiplication code, which switches from Strassen’s to the cubic
algorithm at the optimal point. It is available at http://www.fastmmw.com.
Earlier experiments put the crossover point where Strassen’s algorithm beats
the cubic algorithm at about n = 128 [BLS91, CR76].

An O(n3) algorithm will likely be your best bet unless your matrices are
very large. The linear algebra library of choice is LAPACK, a descendant of
LINPACK [DMBS79], which includes several routines for matrix multiplication.
These Fortran codes are available from Netlib.

http://www.fastmmw.com
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Notes: Winograd’s algorithm [Win68] for fast matrix multiplication reduces the
number of multiplications by a factor of two over the straightforward algorithm. This
can be a win despite the additional bookkeeping required [DN09].

In my opinion, the history of theoretical algorithm design began when Strassen
[Str69] published his O(n2.81)-time matrix multiplication algorithm. For the first time,
improving an algorithm in the asymptotic sense became a respected goal in its own
right. Progressive improvements to Strassen’s algorithm have gotten progressively
less practical. The current best result for matrix multiplication is Williams’ [Wil12]
O(n2.3727) algorithm, beating the previous champion (Coppersmith and Winograd
[CW90]) by a factor of n0.003. The conjecture is that Θ(n2) suffices.

The problem of Boolean matrix multiplication can be reduced to that of general
matrix multiplication [CLRS09]. The four-Russians algorithm for Boolean matrix
multiplication [ADKF70] uses preprocessing to construct all subsets of lg n rows for fast
retrieval in performing the actual multiplication, yielding a complexity of O(n3/ lg n).
Additional preprocessing can improve this to O(n3/ lg2 n) [Ryt85].

Engineering efficient matrix multiplication algorithms requires careful management
of cache memory. See [BDN01, HUW02] for studies on these issues.

The inverse of multiplying matrices is factoring them, reducing M to A and B such
that M = A · B. LU-decomposition is an example of exact matrix factorization, but
there is now increasing interest in low dimensional factorization of feature matrices for
data science and machine learning [KBV09].

The interest in the squares of graphs goes beyond counting paths. Fleischner
[Fle74] proved that the square of any biconnected graph has a Hamiltonian cycle. See
[LS95] for results on finding the square roots of graphs—that is, finding A given A2.

Good expositions of the matrix-chain algorithm include [BvG99, CLRS09], where

it is given as a standard textbook example of dynamic programming.

Related problems: Solving linear equations (see page 467), shortest path (see
page 554).
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16.4 Determinants and Permanents

Input description: An n× n matrix M .

Problem description: What is the determinant |M | or permanent perm(M)
of the matrix M?

Discussion: Determinants of matrices provide a clean and useful abstraction
that can be used to solve a variety of linear algebra problems:

• Testing whether a matrix is singular, meaning that the matrix does not
have an inverse. A matrix M is singular iff |M | = 0.

• Testing whether a set of d points lies on a plane in fewer than d dimensions.
If so, the system of equations they define is singular, so |M | = 0.

• Testing whether a point lies to the left or right of a line or plane. This
problem reduces to evaluating whether the sign of a determinant is positive
or negative, as discussed in Section 20.1 (page 622).

• Computing the area or volume of a triangle, tetrahedron, or other sim-
plicial complex. These quantities are a function of the magnitude of the
determinant, also discussed in Section 20.1 (page 622).

The determinant of a matrix M is defined as a sum over all n! possible
permutations πi of the n columns of M :

|M | =
n!∑

i=1

(−1)sign(πi)
n∏

j=1

M [j, πj ]

where sign(πi) denotes the number of pairs of elements out of order (called
inversions) in permutation πi.
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Directly implementing this definition yields an O(n!) algorithm, as does
the cofactor expansion method I learned in high school. Better algorithms
to evaluate determinants are based on LU-decomposition, discussed in Section
16.1 (page 467). The determinant of M is simply the product of the diagonal
elements of the LU-decomposition of M , which can be found in O(n3) time.

The permanent is a closely related function that arises in combinatorial prob-
lems. For example, the permanent of the adjacency matrix of a graph G counts
the number of perfect matchings in G. The permanent of a matrix M is defined
by

perm(M) =

n!∑

i=1

n∏

j=1

M [j, πj ]

differing from the determinant only in that all products are positive.
Surprisingly, it is NP-hard to compute the permanent, even though the de-

terminant can easily be computed in O(n3) time. The fundamental difference
is that det(AB) = det(A) × det(B), while perm(AB) �= perm(A) × perm(B).
There are permanent algorithms running in O(n22n) time that are considerably
faster than the O(n!) definition. Thus, finding the permanent of a 20×20 matrix
is not out of the realm of possibility.

Implementations: The linear algebra package LINPACK contains a variety
of Fortran routines for computing determinants, optimized for different data
types and matrix structures. JScience provides an extensive linear algebra
package (including determinants) as part of its comprehensive scientific com-
puting library. JAMA is another matrix package written in Java. Links to
both and many related libraries are available from http://math.nist.gov/

javanumerics/.
Nijenhuis and Wilf [NW78] provide an efficient Fortran routine to compute

the permanent of a matrix. See Section 22.1.9 (page 716). Cash [Cas95] provides
a C routine to compute the permanent, motivated by the Kekulé structure count
of computational chemistry.

Two different codes for approximating the permanent are provided by Barvi-
nok. The first, based on [BS07], provides codes for approximating the permanent
and a Hafnian of a matrix, as well as the number of spanning forests in a graph.
See http://www.math.lsa.umich.edu/~barvinok/manual.html. The second,
based on [SB01], can provide estimates of the permanent of 200× 200 matrices
in seconds. See http://www.math.lsa.umich.edu/~barvinok/code.html.

Notes: Cramer’s rule reduces the problems of matrix inversion and solving lin-
ear systems to that of computing determinants. However, algorithms based on LU-
decomposition are faster. See [BM53] for an exposition on Cramer’s rule.

Determinants can be computed in o(n3) time using fast matrix multiplication, as
shown in [AHU83]. Section 16.3 (page 472) discusses such algorithms. A fast algorithm
for computing the sign of the determinant—an important problem in performing robust
geometric computations—is due to Clarkson [Cla92].

The problem of computing the permanent was shown to be #P-complete by Valiant
[Val79], where #P is the class of problems solvable on a “counting” machine in polyno-

http://math.nist.gov/javanumerics/
http://math.nist.gov/javanumerics/
http://www.math.lsa.umich.edu/~barvinok/manual.html
http://www.math.lsa.umich.edu/~barvinok/code.html
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mial time. A counting machine returns the number of distinct solutions to a problem.
Counting the number of Hamiltonian cycles in a graph is a #P-complete problem that
is trivially NP-hard (and presumably harder), since a count greater than zero proves
that the graph is Hamiltonian. But counting problems can be #P-complete even if
the corresponding decision problem can be solved in polynomial time, as shown by the
permanent and perfect matchings.

Minc [Min78] is the primary reference on permanents. A variant of an O(n22n)-
time algorithm due to Ryser for computing the permanent is presented in [NW78].

Probabilistic algorithms have been developed for estimating the permanent, cul-

minating in a fully polynomial randomized approximation scheme that provides an

arbitrary close approximation in time that depends polynomially upon the input ma-

trix and the desired error [JSV04].

Related problems: Solving linear systems (see page 467), matching (see page
562), geometric primitives (see page 622).
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Input Output

16.5 Constrained/Unconstrained Optimization

Input description: A function f(x1, . . . , xn).

Problem description: Which point p = (p1, . . . , pn) maximizes (or minimizes)
the function f?

Discussion: Of the seventy-five problems in this catalog, this is the one whose
importance has grown most dramatically since the previous edition of my book.
Convex and non-convex optimization are the algorithmic problems most asso-
ciated with machine learning, from linear regression to deep learning.

Optimization arises whenever you have an objective function that must be
tuned for optimal performance. Suppose you are building a program to identify
good stocks to invest in. You have certain financial data available to analyze—
such as the price–earnings ratio, the interest rate, and the stock price—all as a
function of time t. The key question is how much weight we should give to each
of these factors, where these weights correspond to coefficients of a formula:

stock-goodness(t) = c1 × price(t) + c2 × interest(t) + c3 × PE-ratio(t)

We seek the numerical values c1, c2, c3 whose stock-goodness function does
the best job of evaluating stocks from past data. Similar issues arise in tuning
evaluation functions for any pattern recognition or machine learning task.

Unconstrained optimization problems also arise in scientific computation.
Physical systems from protein molecules to galaxies of stars naturally seek to
minimize their “energy” or “potential function.” Programs that simulate nature
thus often define potential functions assigning a score to each possible object
configuration, and then select the configuration that minimizes this potential.

Global optimization problems tend to be hard, and there are many ways
to go about them. Ask the following questions to steer yourself in the right
direction:
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• Am I doing constrained or unconstrained optimization? – In unconstrained
optimization, there are no limitations on the values of the parameters
other than they maximize the value of f . However, many applications
impose constraints on these parameters that make certain points illegal,
points that might otherwise be the global optimum. For example, compa-
nies cannot employ less than zero employees, no matter how much money
they think they might save doing so. Constrained optimization problems
typically require mathematical programming approaches like linear pro-
gramming, discussed in Section 16.6 (page 482).

• Is the function I am trying to optimize described by a formula? – Some-
times you need to find the maxima or minima of a function presented as an
algebraic formula, such as finding the minimum of f(n) = n2− 6n+2n+1.
If so, the solution is to analytically take its derivative f ′(n) and test for
which points p′ we have f ′(p′) = 0. These points are either local maxima
or minima, which can be distinguished by taking a second derivative or just
plugging p′ back into f and seeing what happens. Be aware that things
get more complicated in multivariate functions. Symbolic computation
systems such as Mathematica and Maple are quite effective at computing
derivatives. Although using computer algebra systems effectively is some-
what of a black art, they are definitely worth a try. And you can always
use them to plot a picture of your function, in order to get a better idea
of what you are dealing with.

• Is your function convex? The main difficulty of global optimization is get-
ting trapped in local optima. Consider the problem of finding the highest
point in a mountain range. If there is only one mountain and it is nicely
shaped, we can find the top by just walking in whatever direction heads
up. However, when there are many false summits, or other mountains in
the area, it is difficult to convince ourselves whether we really are at the
highest possible point.

Convex functions have exactly one maxima (or minima), corresponding to
a world with a single mountain peak. Gradient descent search analyzes the
partial derivatives (slope) to determine the fastest way up (or down) the
mountain. The optima is reached when the derivatives at this point are
zero. Convex optimization can be used to quickly solve massive problems,
even in a large number of dimensions. Consider the task of finding the set
of coefficients that minimize fitting error for a linear regression problem in
(say) 1,000 input variables or dimensions. The optimal solution (minimal
point) here defines 1,000 parameters. If the objective function is convex
(as it is in the case of linear regression) gradient descent search will make
short work of the problem.

How do you know whether your function is convex? This is beyond the
scope of my book, involving analysis of its derivatives. But trust somebody
smart when they tell you a function is convex.
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• How continuous or smooth is my function? – Even if your function is
non-convex, there is a good chance that it is at least smooth. Smoothness
is the property that points in the local neighborhood of point p should
have a value close to that of p. We assume smoothness in any search
procedure. If the height at any given point was a completely random
value, there would be no algorithm that could hope to find the optima
short of sampling every single point.

• Is it expensive to compute the function at a given point? – Sometimes we
are given a program or subroutine that evaluates f at a given point X,
instead of an analytical function. We can request the value at any given
point on demand by calling this function, so we can poke around and hunt
for the maximum or minimum value.

Our freedom to search in such a situation depends upon how efficiently we
can evaluate f(X). When point evaluation is expensive, the best approach
is a simple grid search. Suppose you can afford to test m ≈ sk possible
points, for some integer s. Identify a smallest and largest possible value
along each of your k dimensions, and then partition each range into s
equally spaced values. There are sk distinct points that can be defined by
picking one value from each of these k ranges, points that broadly cover
the set of possibilities. Evaluate f(X) on each one of the points, and call
the best performing one the “optima.” The winner can also be used as a
starting point to do a more systematic search.

Such a situation arises in tuning evaluation functions for games. Suppose
that f(x1, . . . , xn) is the board evaluation function in a computer chess
program, such that x1 is how much a pawn is worth, x2 is how much a
bishop is worth, and so forth. To evaluate how good a set of coefficients
is as a board evaluator, we must play a bunch of games with it or test it
on a library of known positions. Clearly, this is time-consuming, so we
must be frugal in the number of evaluations of f we use to optimize the
coefficients.

The most efficient algorithms for convex optimization use derivatives and
partial derivatives to find local optima, to point out which direction to move
from the current point so as to most rapidly increase or decrease the func-
tion. Such derivatives can sometimes be computed analytically, or they can
be estimated numerically by taking the difference between the values of nearby
points. A variety of steepest descent and conjugate gradientmethods to find local
optima have been developed—similar in many ways to numerical root-finding
algorithms.

For constrained optimization, finding a point that satisfies all the constraints
is often the difficult part of the problem. One approach is to use a method for
unconstrained optimization, but add a penalty according to how many con-
straints are violated. This is the idea behind Lagrangian relaxation, which you
might recall from calculus. Determining the right penalty function is problem-
specific, but it often makes sense to vary the penalties as optimization proceeds.
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At the end, the penalties should be very high to ensure that all constraints are
satisfied.

Simulated annealing is a fairly robust approach to constrained optimization,
particularly when we are optimizing over combinatorial structures (permuta-
tions, graphs, subsets). Techniques for simulated annealing are described in
Section 12.6.3 (page 406).

It is a good idea to try several different methods on any given optimization
problem. For this reason, I recommend experimenting with the implementations
below before attempting to implement your own method. Clear descriptions of
these algorithms are provided in many numerical algorithms books. My favorite
is Numerical Recipes [PFTV07].

Implementations: The world of constrained/unconstrained optimization is
sufficiently complex that several guides have been created to point people to
the right codes. Particularly nice is Hans Mittlemann’s Decision Tree for Opti-
mization Software at http://plato.asu.edu/guide.html.

NEOS (Network-Enabled Optimization System) provides a unique service—
the opportunity to solve your problem remotely on computers and software at
the Wisconsin Institute of Discovery. Linear programming and unconstrained
optimization are both supported. Check out https://neos-server.org when
you need a solution instead of a program.

General purpose simulated annealing implementations are available, and are
likely the best place to start experimenting with this technique for constrained
optimization. Feel free to try my code from Section 12.6.3 (page 406). Partic-
ularly popular is Adaptive Simulated Annealing (ASA), written in C by Lester
Ingber and available at http://asa-caltech.sourceforge.net/.

Notes: Bertsekas [Ber15], Boyd and Vandenberghe [BV04], and Nesterov [Nes13]
provide comprehensive treatments of convex optimization, including methods based
on gradient descent. Unconstrained optimization and Lagrangian relaxation are the
topics of several books, including [Ber82, PFTV07].

The full objective functions associated with machine learning problems are often
linear in the size of the training data, which makes it very expensive to compute
partial derivatives for gradient descent. Much better in practice is to estimate the
derivatives at the current position using a small random sample of the training data.
Such stochastic gradient descent algorithms are discussed in [Bot12]. Good books
about machine learning include [Bis06, FHT01].

Simulated annealing was devised by Kirkpatrick et al. [KGV83] as a modern
variation of the Metropolis algorithm [MRRT53]. Both use Monte Carlo techniques to
compute the minimum energy state of a system. Good expositions on all local search
variations, including simulated annealing, appear in [AL97].

Genetic algorithms were developed and popularized by Holland [Hol75, Hol92].
Books more partial to genetic algorithms than mine include [LP02, MF00].

Related problems: Linear programming (see page 482), satisfiability (see page
537).

http://plato.asu.edu/guide.html
https://neos-server.org
http://asa-caltech.sourceforge.net/
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Input Output

16.6 Linear Programming

Input description: A set S of n linear inequalities on m variables

Si =

m∑

j=1

cij · xj ≥ bi, 1 ≤ i ≤ n

and a linear optimization function f(X) =
∑m

j=1 cj · xj .

Problem description: Which variable assignment X ′ maximizes the objective
function f while satisfying all inequalities S?

Discussion: Linear programming is the most important problem in mathemat-
ical optimization and operations research. Applications include:

• Resource allocation – We seek to invest a given amount of money to maxi-
mize our return. Often our possible options, payoffs, and expenses can be
expressed as a system of linear inequalities such that we seek to maximize
our possible profit given the constraints. Very large linear programming
problems are routinely solved by airlines and other corporations.

• Approximating the solution of inconsistent equations – A set of n linear
equations on m variables xi, 1 ≤ i ≤ m is over-determined if n > m.
Such over-determined systems are often inconsistent, meaning that there
does not exist an assignment to the variables that simultaneously solves
all the equations. To find an assignment that best fits the equations, we
can replace each variable xi by x′

i+εi and solve the new system as a linear
program, minimizing the sum of the error terms.

• Graph algorithms – Many graph problems described in this book, includ-
ing shortest path, bipartite matching, and network flow, can be solved as
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special cases of linear programming. Most of the rest, including travel-
ing salesman, set cover, and knapsack, can be solved using integer linear
programming.

The simplex method is the standard algorithm for linear programming. Each
constraint in a linear programming problem acts like a knife that carves away
a region from the space of possible solutions. We seek the point within the re-
maining region that maximizes (or minimizes) f(X). By appropriately rotating
the solution space, this optimal point can always be made to be the highest
point in the region. The region (simplex) defined by the intersection of a set of
linear constraints is convex, so there is always a higher vertex neighboring any
starting point unless we are already at the top. When we cannot find a higher
neighbor to walk to, we must have reached the optimal solution.

While the basic simplex algorithm is not particularly complex, there is con-
siderable art to producing an efficient implementation capable of solving large
linear programs. Large programs tend to be sparse (meaning that most inequal-
ities use few variables), so sophisticated data structures must be used. There are
issues of numerical stability and robustness, as well as choosing the best neigh-
bor to walk to next (the so-called pivoting rule). There also exist sophisticated
interior-point methods, algorithms that cut through the interior of the simplex
instead of walking along the outside, and beat simplex in many applications.

The bottom line on linear programming is that you are much better off using
an existing LP code than writing your own. Further, you might be better off
paying money for it than surfing the web. Linear programming is an algorithmic
problem of such economic importance that commercial implementations are
superior to free versions.

Issues that arise in linear programming include:

• Do any variables have integrality constraints? – It is impossible to send
6.54 airplanes from New York to Washington each business day, even if
that value maximizes profit according to your model. Such variables often
have natural integrality constraints. A linear program is called an integer
program if all its variables have integrality constraints, and a mixed integer
program if some of them do.

Unfortunately, it is NP-complete to solve integer or mixed programs to
optimality. But there are integer programming techniques that work rea-
sonably well in practice. Cutting plane techniques solve the problem first
as a linear program, and then add extra constraints to enforce integral-
ity around the optimal solution point before solving it again. After suffi-
ciently many iterations, the optimum point of the resulting linear program
matches that of the original integer program. As with most exponential-
time algorithms, run times for integer programming depend upon the dif-
ficulty of the problem instance and are unpredictable.

• Do I have more variables or constraints? – Any linear program with m
variables and n inequalities can be written as an equivalent dual linear
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program with n variables and m inequalities. This is important to know,
because the running time of a given solver might be quite different on the
two formulations. In general, linear programs (LPs) with more variables
than constraints should be solved directly. If there are more constraints
than variables, it is usually better to solve the dual linear program or
(equivalently) apply the dual simplex method to the primal LP.

• What if my optimization function or constraints are not linear? – In
least-squares curve fitting, we seek the line that best approximates a set
of points by minimizing the sum of squares of the distance between each
point and the line. In formulating this as a mathematical program, the
natural objective function is no longer linear, but quadratic. Although fast
algorithms exist for least squares fitting, general quadratic programming
is NP-complete.

There are three possible courses of action when you must solve a non-
linear program. The best is to try and model it in some other way, as
is the case with least-squares fitting. The second is to try to track down
special codes for quadratic programming. Finally, you can model your
problem as a constrained or unconstrained optimization problem and try
to solve it with the codes discussed in Section 16.5 (page 478).

• What if my model does not match the input format of my LP solver? –
Many linear programming implementations accept models only in so-called
standard form, where all variables are constrained to be non-negative, the
object function must be minimized, and all constraints must be equalities
(instead of inequalities).

Do not fear. There exist standard transformations to map arbitrary LP
models into standard form. To convert a maximization problem to a
minimization one, just multiply each coefficient of the objective function
by −1. The remaining problems can be solved by adding slack variables to
the model. See any textbook on linear programming for details. Modeling
languages such as AMPL can provide a nice interface to your solver and
deal with these issues for you.

Implementations: There are at least three reasonable choices in free LP-
solvers. Lp solve, written in ANSI C by Michel Berkelaar, can also han-
dle integer and mixed-integer problems. It is available at http://lpsolve.

sourceforge.net/5.5/, and a substantial user community exists. The simplex
solver CLP produced under the Computational Infrastructure for Operations Re-
search is available (with other optimization software) at http://www.coin-or.
org/. Finally, the GNU Linear Programming Kit (GLPK) is intended for solving
large-scale linear programming, mixed integer programming (MIP), and other
related problems. It is available at http://www.gnu.org/software/glpk/.

Benchmark studies [GAD+13, MT12] agree that commercial solvers perform
much better than open codes. But they are split as to whether CLP or GLPK is
the better choice. Read the reports for details.

http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
http://www.coin-or.org/
http://www.coin-or.org/
http://www.gnu.org/software/glpk/
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NEOS (Network-Enabled Optimization System) provides a unique service—
the opportunity to solve your problem remotely on computers and software at
the Wisconsin Institute of Discovery. Linear programming and unconstrained
optimization are both supported. Check out https://neos-server.org when
you need a solution instead of a program.

Notes: The need for optimization via linear programming arose in logistics problems
in World War II. The simplex algorithm was invented by George Danzig in 1947
[Dan63]. Klee and Minty [KM72] proved that the simplex algorithm is exponential in
worst case, but it is very efficient in practice.

Smoothed analysis measures the complexity of algorithms assuming that their
inputs are subject to small amounts of random noise. Carefully constructed worst-
case instances for many problems break down under such perturbations. Spielman and
Teng [ST04] used smoothed analysis to explain the efficiency of simplex in practice.
Kelner and Spielman developed a randomized simplex algorithm running in polynomial
time [KS05b].

Khachian’s ellipsoid algorithm [Kha79] first proved that linear programming was
polynomial in 1979. Karmarkar’s algorithm [Kar84] is an interior-point method that
has proven to be both a theoretical and practical improvement of the ellipsoid algo-
rithm, as well as a challenge for the simplex method. Good expositions on the simplex
and ellipsoid algorithms for linear programming include [Chv83, Gas03, MG07].

Semidefinite programming deals with optimization problems over symmetric posi-
tive semidefinite matrix variables, with linear cost function and linear constraints. Im-
portant special cases include linear programming and convex quadratic programming
with convex quadratic constraints. Semidefinite programming and its applications to
combinatorial optimization problems are surveyed in [Goe97, VB96].

Linear programming is P-complete under log-space reductions [DLR79]. This

makes it unlikely to have an NC parallel algorithm, where a problem is in NC iff

it can be solved on a PRAM in polylogarithmic time using a polynomial number of

processors. Any problem that is P-complete under log-space reduction cannot be in NC

unless P=NC. See [GHR95] for a thorough exposition of the theory of P-completeness,

including an extensive list of P-complete problems.

Related problems: Constrained and unconstrained optimization (see page
478), network flow (see page 571).

https://neos-server.org
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16.7 Random Number Generation

Input description: Nothing, or perhaps a seed.

Problem description: Generate a sequence of random integers.

Discussion: Random numbers have a surprising variety of interesting and im-
portant applications. They form the foundation of simulated annealing and
related heuristic optimization techniques. Discrete event simulations run on
streams of random numbers, and are used to model everything from transporta-
tion systems to casino poker. Passwords and cryptographic keys are typically
generated randomly. Randomized algorithms for graph and geometric problems
are revolutionizing these fields, and establishing randomization as one of the
fundamental ideas of computer science.

Unfortunately, generating random numbers looks much easier than it really
is. Indeed, it is fundamentally impossible to produce truly random numbers
on any deterministic device. Von Neumann [Neu63] said it best: “Anyone who
considers arithmetical methods of producing random digits is, of course, in a
state of sin.” The best we can hope for are pseudorandom numbers, a stream
of numbers that appear as if they were generated randomly.

There can be serious consequences to using a bad random-number generator.
In one famous case, a web browser’s encryption scheme was broken after the
discovery that the seeds of its random-number generator employed too few ran-
dom bits [GW96]. Simulation accuracy is regularly compromised or invalidated
by poor random number generation. This is an area where people shouldn’t fool
around, but they do. Issues to think about include:

• Should my program produce the same “random” numbers each time it
runs? – A poker game that deals you the exact same hand every time
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you play quickly loses interest. One common solution uses the lower-order
bits of the machine clock as the seed or starting point for a stream of
random numbers, so that each time the program runs it does something
different.

Such methods are adequate for games, but not for serious simulations.
There are liable to be periodicities in the distribution of random numbers
whenever calls are made in a loop. Also, debugging is seriously com-
plicated when program results are not repeatable. Should your program
crash, you can’t go back and discover why. A possible compromise is to use
a deterministic pseudorandom-number generator, but write the current
seed to a file between runs. During debugging, this file can be overwritten
with a fixed initial value of the seed.

• How good is my compiler’s built-in random number generator? – If you
need uniformly generated random numbers, and are not betting the farm
on the accuracy of your simulation, my recommendation is simply to use
what your compiler provides. Your best opportunity to mess things up
will be with a bad choice of the initial seed, so read the manual for its
recommendations.

If you are going to bet the farm on the results of your simulation, you had
better test your random number generator. Be aware that it is difficult to
eyeball the results and decide whether the output is really random. This
is because people have very skewed ideas of how random sources should
behave, and often see patterns that don’t really exist. Several different
tests should be used to evaluate a random number generator, and the
statistical significance of the results established. The National Institute of
Standards and Technology (NIST) has developed test suites for evaluating
random number generators, discussed below.

• What if I must implement my own random-number generator? – The
standard algorithm of choice is the linear congruential generator. It is
fast, simple, and (if instantiated with the right constants) gives reasonable
pseudorandom numbers. The nth random number Rn is a function of the
(n− 1)st random number:

Rn = (aRn−1 + c) mod m

Linear congruential generators work the same way roulette wheels do.
The long path of the ball around and around the wheel (captured by
aRn−1 + c) ends in one of a relatively small number of bins, the choice of
which is extremely sensitive to the length of the path (captured by the
mod m-truncation).

A substantial theory has been developed to properly select the constants
a, c, m, and R0. The period length is largely a function of the modulus
m, which is typically constrained by the word length of your machine.
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Note that the stream of numbers produced by a linear congruential gen-
erator starts to cycle the instant the first number repeats. Computers
are fast enough to make 232 calls to a random-number generator in a few
minutes. Thus, any 32-bit linear congruential generator is in danger of
cycling, motivating generators with significantly longer periods.

• What if I don’t want such large random numbers? – The linear congru-
ential generator Rn produces a uniformly distributed sequence of integers
between 0 and m − 1 that can be easily scaled to produce other uniform
distributions. To generate real numbers between 0 and 1, use Rn/m. Note
that 1 cannot be realized this way, although 0 can. If you need uniformly
distributed integers between l and h, use �l + (h− l + 1)Rn/m	.

• What if I need non-uniformly distributed random numbers? – Generat-
ing random numbers according to a given non-uniform distribution can
be a tricky business. The most reliable way to do this correctly is the
acceptance–rejection method. We bound the geometric region we seek to
sample from by a box, and then select a random point p from the box. This
in-the-box point can be generated by selecting the x- and y-coordinates
independently at random. If p lies within the region of interest, we can
return it as being selected at random. Otherwise we throw it away and
repeat with another random point. Essentially, we throw darts at random
and report those that hit the target.

This method is correct, but can be slow. When the volume of the region
of interest is small relative to that of the bounding box, most of our darts
will miss the target. Efficient generators for Gaussian and other special
distributions are described in the references and implementations below.

Be cautious about inventing your own technique, because it can be tricky
to obtain the right probability distribution. For example, an incorrect way
to select points uniformly from a circle of radius r would be to generate
polar coordinates by selecting an angle from 0 to 2π and a displacement
between 0 and r—both uniformly at random. In such a scheme, half the
generated points will lie within r/2 of the center, when only one-fourth of
them should be! This is different enough to seriously distort the results,
while being sufficiently subtle that the skew could easily escape detection.

• How long should I run my Monte Carlo simulation? – The longer you
run a simulation, the more accurately the results should approximate the
limiting distribution. But this is true only until you exceed the period,
or cycle length, of your random-number generator. From then on, your
sequence of random numbers repeats itself, so longer runs generate no
additional information.

Instead of jacking up the length of a simulation run to the max, it is
usually more informative to do many shorter runs (say ten to a hundred)
each with different seeds. Then consider the range of results you obtain.
The variance provides a healthy measure of the degree to which your
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results are repeatable. This exercise corrects the natural tendency to see
a simulation as giving “the” correct answer.

Implementations: See https://www.agner.org/random for an excellent web-
site on random-number generation, including pointers to papers and many im-
plementations of random-number generators.

Parallel simulations make special demands on random-number generators.
How can we ensure that random streams are independent on each machine?
L’Ecuyer et.al [LSCK02] provides object-oriented generators with a period length
of approximately 2191. Implementations in C, C++, and Java are available at
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/. Independent
streams of random numbers are supported for parallel applications. Another
possibility is the Scalable Parallel Random Number Generators Library (SPRNG)
[MS00], available at http://sprng.cs.fsu.edu/.

The National Institute of Standards [BRS+10] has prepared an extensive sta-
tistical test suite to validate random number generators. Both the software and
the report describing it are available at https://csrc.nist.gov/projects/

random-bit-generation/documentation-and-software.
True random-number generators extract random bits by observing physical

processes. The website http://www.random.org makes available random num-
bers derived from atmospheric noise that pass the NIST statistical tests. This
presents an amusing solution if you need a small quantity of random numbers
(say to run a lottery), instead of a random-number generator.

Notes: Knuth [Knu97b] provides a thorough treatment of random-number gener-
ation, which I heartily recommend. He gives the theory behind several methods,
including the middle-square and shift-register methods I have not described, plus a
detailed discussion of statistical tests for validating random-number generators.

That said, see [Gen06, L’E12] for more recent developments in random number gen-
eration. The Mersenne twister [MN98] is a fast random number generator of period
219937 − 1. Other modern methods include [Den05, PLM06]. Methods for generat-
ing non-uniform random variates are surveyed in [HLD04]. Comparisons of different
random-number generators in practice include [PM88].

Tables of random numbers appear in most mathematical handbooks as relics from
the days before there was ready access to computers. Most notable is [RC55], which
provides one million random digits. For a good laugh, I encourage you to check out
the hundreds of reviews of this book on Amazon. You will be impressed just how
many wiseguys exist on the Internet.

The deep relationship between randomness and information is explored within the

theory of Kolmogorov complexity, which measures the complexity of a string by its

compressibility. Truly random strings are incompressible. The string of seemingly

random digits of π are not random under this definition, since the entire sequence is

defined by a program implementing the series expansion for π. Li and Vitáni [LV97]

provide a thorough treatment of the theory of Kolmogorov complexity.

Related problems: Constrained/unconstrained optimization (see page 478),
generating permutations (see page 517), generating subsets (see page 521).

https://www.agner.org/random
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/
http://sprng.cs.fsu.edu/
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
http://www.random.org
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16.8 Factoring and Primality Testing

Input description: An integer n.

Problem description: Is n a prime number? If not, what are its factors?

Discussion: The dual problems of integer factorization and primality testing
have surprisingly many applications for a problem long suspected of being only
of mathematical interest. The security of the RSA public-key cryptography sys-
tem (see Section 21.6 (page 697)) is based on the computational intractability
of factoring large integers. It is known that hash table performance typically
improves when the table size is a prime number. To get this benefit, an initial-
ization routine must identify a prime near the desired table size. Finally, prime
numbers are just interesting to play with. This is why the program to generate
large primes used to reside in the games directory of UNIX systems.

Factoring and primality testing are closely related problems, although they
are quite different algorithmically. There exist algorithms that can demonstrate
that an integer is composite (i.e. not prime) without actually giving the factors.
To convince yourself of the plausibility of this, note that you can demonstrate
the compositeness of any non-trivial integer whose last digit is 0, 2, 4, 5, 6, or
8 without doing the actual division.

The simplest algorithm for both of these problems is brute-force trial di-
vision. To factor n, compute the remainder of n/i for all 1 < i ≤ √

n. The
prime factorization of n will contain at least one instance of every i such that
n/i = �n/i	, unless n is prime. Make sure you handle the multiplicities correctly,
and account for any primes larger than

√
n.

Such algorithms can be sped up by using a precomputed table of small primes
to avoid testing all possible i. Surprisingly many primes can be represented in
surprisingly little space by using bit vectors (see Section 15.5 (page 456)). A bit



16.8. FACTORING AND PRIMALITY TESTING 491

vector of all odd numbers less than 1,000,000 fits in under 64 kilobytes. Even
tighter encodings become possible by eliminating all multiples of 3 and other
small primes.

Although trial division runs in O(
√
n) time, it is not a polynomial-time algo-

rithm. It only takes lg n bits to represent n, so trial division takes time exponen-
tial in the input size. Considerably faster (but still exponential time) factoring
algorithms exist, whose correctness depends upon more substantial number the-
ory. The fastest known algorithm, the number field sieve, uses randomness to
construct a system of congruences—the solution of which usually gives a factor
of the integer. Integers with 250 digits (829 bits) have been factored using this
method, although such feats require enormous amounts of computation.

Randomized algorithms make it much easier to test whether an integer is
prime. Fermat’s little theorem states that an−1 = 1(mod n) for all a not divis-
ible by n, provided n is prime. Suppose we pick a random value 1 ≤ a < n and
compute the residue of an−1(mod n). If this residue is not 1, we have just proven
that n must be composite. Such randomized primality tests are very efficient.
PGP (see Section 21.6 (page 697)) finds 300+ digit primes using hundreds of
these tests in minutes, for use as cryptographic keys.

Although the primes are scattered in a seemingly random way throughout
the integers, there is some regularity to their distribution. The prime number
theorem states that the number of primes less than n (commonly denoted by
π(n)) is approximately n/ lnn. Further, there never are large gaps between
primes, so in general one should expect to examine about ln n integers to find the
first prime larger than n. This distribution, coupled with the fast randomized
primality test, explains how PGP can find such large primes so quickly.

Quantum computers are (theoretically!) capable of factoring large integers
very fast, indeed exponentially faster than conventional machines. I would not
be shocked if quantum computers capable of fast factoring exist before I write
the fourth edition of this book. But serious technical challenges remain: a recent
proposal to factor RSA-scale (2,048 bit) integers using Shor’s algorithm require
20 million qubits because of the need for extensive error correction [GE19]. I’ve
heard RSA factoring described as the “suicide app” for quantum computing:
because the moment it succeeds, RSA stops being used and the application
goes away.

Implementations: Several general systems for computational number theory
are available. PARI is capable of handling complex number-theoretic problems
on arbitrary-precision integers (to be precise, limited to 80,807,123 digits on 32-
bit machines), as well as reals, rationals, complex numbers, polynomials, and
matrices. It is written mainly in C, with assembly code for inner loops on ma-
jor architectures, and includes more than 200 special predefined mathematical
functions. PARI can be used as a library, but it also possesses a calculator mode
that gives instant access to all the types and functions. PARI is available at
http://pari.math.u-bordeaux.fr/

A Library for doing Number Theory (NTL) is a high-performance, portable
C++ library providing data structures and algorithms to manipulate signed, ar-

http://pari.math.u-bordeaux.fr/
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bitrary length integers and vectors, matrices, and polynomials over the integers
and over finite fields. It is available at http://www.shoup.net/ntl/.

Finally, MIRACL (Multiprecision Integer and Rational Arithmetic C/C++
Library) implements six different integer factorization algorithms, including the
quadratic sieve. It is available at https://github.com/miracl/MIRACL.

Notes: Expositions on modern algorithms for factoring and primality testing include
Crandall and Pomerance [CP05] and Yan [Yan03]. More general surveys of computa-
tional number theory include Bach and Shallit [BS96] and Shoup [Sho09].

Agrawal, Kayal, and Saxena [AKS04] solved a long-standing open problem giv-
ing the first polynomial-time deterministic algorithm to test whether an integer is
composite. Their algorithm is surprisingly elementary for such an important result,
involving a careful analysis of techniques from earlier randomized algorithms. Its ex-
istence serves as somewhat of a rebuke to researchers (like me) who shy away from
classical open problems due to fear. Dietzfelbinger [Die04] provides a self-contained
treatment of this result.

The complexity class co-NP is the set of problems for which a polynomial-time
algorithm can verify “no” instances given the appropriate certificate. An important
problem in computational complexity theory is whether P = NP ∩ co-NP. The decision
problem “is n a composite number?” used to be the best candidate for a counterex-
ample. By exhibiting the factors of n, it is trivially in NP. It must be co-NP because
every prime has a short proof of its primality [Pra75]. The recent proof that compos-
ite numbers testing is in P shot down this line of reasoning. For more information on
complexity classes, see [AB09, GJ79].

Shor [Sho99] sparked great interest in quantum computing with his algorithm for
factoring integers in polynomial time. Factoring 15 = 3 × 5 remains the experimental
state of the art [MNM+16] as of this writing. Introductions to quantum computing
include [Aar13, Ber19].

The Miller–Rabin [Mil76, Rab80] randomized primality testing algorithm elimi-
nates problems with Carmichael numbers, which are composite integers that always
satisfy Fermat’s theorem. The best algorithms for integer factorization include the
quadratic-sieve [Pom84] and the elliptic-curve methods [Len87b].

Mechanical sieving devices provided the fastest way to factor integers surprisingly
far into the computing era. See [SWM95] for a fascinating account of one such device,
built during World War I. Hand-cranked, it proved the primality of 231 − 1 in 15
minutes of sieving time.

The integer RSA-129 was factored in eight months using over 1,600 computers.

This was particularly noteworthy because in the original RSA paper [RSA78] they

had originally predicted such a factorization would take 40 quadrillion years using

1970s technology. The current record for integer factorization is the successful attack

on the 250-digit integer RSA-250 in February 2020.

Related problems: Cryptography (see page 697), high precision arithmetic
(see page 493).

http://www.shoup.net/ntl/
https://github.com/miracl/MIRACL
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16.9 Arbitrary-Precision Arithmetic

Input description: Two very large integers, x and y.

Problem description: What is x+ y, x− y, x× y, and x/y?

Discussion: Every programming language rising above basic assembler sup-
ports single- and perhaps double-precision integer/real addition, subtraction,
multiplication, and division. But what if we wanted to represent the national
debt of the United States in pennies? $22.4 trillion worth of pennies requires
16 decimal digits, which is far more than can fit into a 32-bit integer (although
it still fits comfortably in 64-bits).

Other applications require much larger integers. The RSA algorithm for
public-key cryptography recommends integer keys of at least 2,048 bits or equiv-
alently 617 digits to achieve adequate security. Experimenting with number-
theoretic conjectures for fun or research requires playing with large numbers. I
once solved a minor open problem by performing an exact computation on the
integer

(
5906
2953

) ≈ 9.93285× 101775, as presented in Section 6.9 (page 191).
What should you do when you need large integers?

• Am I solving a problem instance requiring large integers, or do I have an
embedded application? – If all you need is the answer to a specific com-
putation with large integers, as in the number theory example above, you
should consider using a Python interpreter or a computer algebra system
like Maple or Mathematica. These provide arbitrary-precision arithmetic
as a default with easy-to-use language interpreters as the front end—
together often reducing your problem to a 5-to-10-line program.

If you have an embedded application requiring high-precision arithmetic
instead, you should use an existing arbitrary precision math library. You
are likely to get additional functions beyond the four basic operations, for
computing things like greatest common divisor and square roots. See the
Implementations section for details.
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• Do I need high- or arbitrary-precision arithmetic? – Is there an upper
bound on how big your integers can get, or do you really need unbounded
arbitrary-precision? This determines whether you can use a fixed-length
array to represent your integer instead of a linked-list of digits. The array
should be simpler and not prove a constraint in most applications.

• What base should I do arithmetic in? – It is perhaps simplest to implement
your own high-precision arithmetic package in decimal, thus representing
each integer as a string of base-10 digits. However, it is far more compu-
tationally efficient to use a higher base, ideally equal to the square root of
the largest integer supported fully by hardware arithmetic.

Why? The higher the base, the fewer digits we need to represent a number.
Compare 64 decimal with 1000000 binary. Since hardware addition usually
takes one clock cycle independent of the value of the numbers being added,
the best performance is achieved by using the highest supported base. The
factor limiting us to base b =

√
maxint is the desire to avoid overflow when

multiplying two of these “digits” together.

The primary complication of using a larger base is that integers must be
converted to and from base-10 for input and output. The conversion is
easy to perform using the four basic high-precision arithmetical operations.

• How low-level are you willing to go for fast computation? – Hardware
addition is much faster than a subroutine call, so you take a significant hit
on speed using high-precision arithmetic when low-precision arithmetic
suffices. High-precision arithmetic is one of few problems in this book
where inner loops in assembly language prove the right idea to speed
things up. Similarly, using bit-level masking and shift operations instead of
arithmetical operations can be a performance win if you really understand
the machine integer representation.

The algorithms of choice for the basic arithmetic operations are as follows:

• Addition – The basic schoolhouse method of lining up the decimal points
and then adding the digits from right to left with “carries” runs in time
linear in the number of digits. More sophisticated carry-look-ahead paral-
lel algorithms are available for low-level hardware implementation. They
are presumably used in your microprocessor for low-precision addition.

• Subtraction – By fooling with the sign bits of the numbers, subtraction can
be a special considered case of addition: (A−(−B)) = (A+B). The tricky
part of subtraction is performing the “borrow.” This can be simplified
by always subtracting the smaller number from the larger absolute value
and adjusting the signs afterwards, so we can be certain there is always
something to borrow from. Computer architects use two’s complement
representation to simplify subtraction with signed integers.

• Multiplication – The repeated addition method takes exponential time
on large integers, so stay away from it. The digit-by-digit schoolhouse
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method is reasonable to program and runs in O(n2) time to multiply two
n-digit integers. On very large integers, Karatsuba’s O(n1.59) divide-and-
conquer algorithm wins. Dan Grayson, author of Mathematica’s arbitrary-
precision arithmetic, found that the switch-over happened at well under
one hundred digits. An even faster algorithm for very large integers is
based on Fourier transforms. See Section 16.11 (page 501).

• Division – Repeated subtraction takes exponential time, so the easiest rea-
sonable algorithm to use is the long-division method you hated in school.
This requires arbitrary-precision multiplication and subtraction as sub-
routines, as well as trial-and-error, to determine the correct digit at each
position of the quotient.

In fact, integer division can be reduced to integer multiplication, although
in a non-trivial way. So if you are implementing asymptotically fast mul-
tiplication, you can reuse that effort in long division. See the references
below for details.

• Exponentiation – We can evaluate an using n− 1 multiplications, by com-
puting a×a×. . .×a. However, a much better divide-and-conquer algorithm
is based on the observation that n = �n/2	 + n/2�. If n is even, then
an = (an/2)2. If n is odd, then an = a(a�n/2�)2. In either case, we have
halved the size of our exponent at the cost of at most two multiplications,
so O(lg n) multiplications suffice to compute the final value:

function power(a, n)
if (n = 0) return(1)
x = power(a, �n/2	)
if (n is even) then return(x2)

else return(a× x2)

High- but not arbitrary-precision arithmetic can be conveniently performed
using the Chinese remainder theorem and modular arithmetic. The Chinese
remainder theorem states that every integer between 1 and P =

∏k
i=1 pi is

uniquely determined by its set of residues mod pi, where each pi, pj are relatively
prime integers. Addition, subtraction, and multiplication (but not division) can
be supported using such residue systems, with the advantage that large integers
can be manipulated without complicated data structures.

Many algorithms on long integers can be directly applied to computations on
polynomials. A particularly useful algorithm is Horner’s rule for fast polynomial
evaluation. When P (x) =

∑n
i=0 ci · xi is blindly evaluated term by term, O(n2)

multiplications will be performed. Much better is observing that P (x) = c0 +
x(c1 + x(c2 + x(c3 + . . .))), the evaluation of which uses only a linear number of
operations.

Implementations: Python plus commercial computer algebra systems like
Maple and Mathematica incorporate high-precision arithmetic. This is your
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best option for a quick, non-embedded application if you have access. The rest
of this section focuses on source code available for embedded applications.

The premier C/C++ library for fast, arbitrary-precision is the GNUMultiple
Precision Arithmetic Library (GMP), which operates on signed integers, rational
numbers, and floating point numbers. It is widely used and well supported, and
available at http://gmplib.org/.

The java.math BigInteger class provides arbitrary-precision analogues to
all of Java’s primitive integer operators. BigInteger provides additional oper-
ations for modular arithmetic, GCD calculation, primality testing, prime gen-
eration, bit manipulation, and a few other miscellaneous operations.

A lower-performance, less well-tested but more personal implementation of
high-precision arithmetic appears in the library from my book Programming
Challenges [SR03]. See Section 22.1.9 (page 716) for details.

Several general systems for computational number theory are available. Each
of these supports operations of arbitrary-precision integers. Information about
the PARI and NTL number-theoretic libraries can be found in Section 16.8
(page 490).

Notes: Knuth [Knu97b] is the primary reference on algorithms for all basic arithmetic
operations, including implementations of them in the MIX assembly language. Bach
and Shallit [BS96] and Shoup [Sho09] provide more recent treatments of computational
number theory. Brent and Zimmermann [BZ10] present a modern treatment of the
venerable topic of computer arithmetic.

Expositions on the O(n1.59)-time divide-and-conquer algorithm for multiplication
[KO63] include [AHU74, Man89]. An FFT-based algorithm multiplies two n-bit num-
bers in O(n lg n lg lg n) time and is due to Schönhage and Strassen [SS71]. Expositions
include [AHU74, Knu97b]. This was finally improved to O(n lg n) by Harvey and Van
der Hoven [HVDH19, HVDHL16] in 2019. It is remarkable that an asymptotically
optimal algorithm for such a fundamental problem as integer multiplication took so
long to be discovered. The reduction between integer division and multiplication is
presented in [AHU74, Knu97b]. Applications of fast multiplication to other arithmetic
operations are presented by Bernstein [Ber04]

Good expositions of algorithms for modular arithmetic and the Chinese remainder
theorem include [AHU74, CLRS09]. A good exposition of circuit-level algorithms for
elementary arithmetic algorithms is [CLRS09].

Euclid’s algorithm for computing the greatest common divisor of two numbers is
perhaps the oldest interesting algorithm. Expositions include [CLRS09, Knu97b].

Related problems: Factoring integers (see page 490), cryptography (see page
697).

http://gmplib.org/
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16.10 Knapsack Problem

Input description: A set of items S = {1, . . . , n}, where item i has size si and
value vi. A knapsack capacity C.

Problem description: Find the subset S′ of S that maximizes the value of∑
i∈S′ vi, given

∑
i∈S′ si ≤ C; that is, all the items fit in a knapsack of size C.

Discussion: The knapsack problem arises in resource allocation with financial
constraints. How do you select what things to buy given a fixed budget? Ev-
erything has a cost and value, so we seek the most value for the given cost. The
knapsack problem should invoke the image of the backpacker who is constrained
by a fixed-size knapsack, and so must fill it with the most useful and portable
items.

The most common formulation is the 0/1 knapsack problem, where each item
must either be placed entirely in the knapsack or discarded. Objects cannot be
broken up arbitrarily, so it is not fair taking one can of Coke from a six-pack or
opening a can to take just a sip. It is this 0/1 property that makes the knapsack
problem hard, for a simple greedy algorithm finds the optimal selection when we
are allowed to subdivide objects. We compute the “price per pound” for each
item, and repeatedly take the most expensive item or the biggest part thereof
until the knapsack is full. Unfortunately, this 0/1 constraint is inherent in most
applications.

Issues that arise in selecting the best algorithm include:

• Does every item have the same cost, or perhaps the same size? – When all
items are worth exactly the same, we maximize our total value by taking
the greatest number of items. Therefore, the optimal solution is to sort the
items in order of increasing size and insert them into the knapsack in this
order until no more fit. The problem is similarly solved when all objects
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Figure 16.1: Integer partition is a special case of the knapsack problem.

have the same size. Sort by cost, and take the most valuable elements
first. These are the easy cases of knapsack.

• Do all items have the same “price per pound”? – If so, our problem is
equivalent to ignoring the price and just trying to minimize the amount
of empty space left in the knapsack. Unfortunately, even this restricted
version is NP-complete, so we cannot expect an efficient algorithm that
always solves the problem. But don’t lose hope, because knapsack proves
to be an “easy” hard problem, one that can usually be handled with the
algorithms described below.

An important special case of a constant “price-per-pound” knapsack is
the integer partition problem, presented in cartoon form in Figure 16.1.
Here, we seek to partition the elements of S into two sets A and B such
that

∑
a∈A a =

∑
b∈B b, or more generally make the difference as small

as possible. Integer partition can be thought of as bin packing into two
equal-sized bins or knapsack with a capacity of half the total weight, so
all three problems are closely related and NP-complete.

The constant “price-per-pound” knapsack problem is often called the sub-
set sum problem, because we seek a subset of items that adds up to a
specific target number C; that is, the capacity of our knapsack.

• Are all the sizes relatively small integers? – When the sizes of the items
and the knapsack capacity C are all integers, there exists an efficient
dynamic programming algorithm (presented in Section 10.5 (page 329))
that finds the optimal solution in time O(nC) and O(C) space. Whether
this works for you depends upon how big C is. It is great for C ≤ 1,000,
but not so great for C ≥ 1,000,000,000.

The algorithm works as follows: Let S′ be a set of items, and let C[i, S′]
be true if and only if there is a subset of S′ whose size adds up exactly to
i. Thus, C[i, ∅] is false for all 1 ≤ i ≤ C. One by one we add a new item
sj to S′ and update the affected values of C[i, S′]. Observe that

C[i, S′ ∪ sj ] = true iff (C[i, S′] = true ) or (C[i− sj , S
′] = true)

because we either use sj in realizing the sum or we don’t. We identify all
sums that can be realized by performing n sweeps through all C elements—
one for each sj , 1 ≤ j ≤ n—and so updating the array. The knapsack
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solution is given by the index of the true element of largest realizable size.
To reconstruct this winning subset, we must also store the name of the
item number that turned C[i] from false to true for each 1 ≤ i ≤ C and
then scan backwards through the array.

This dynamic programming formulation ignores the values of the items.
To generalize the algorithm, now each element of the array stores the value
of the best subset to date summing up to i. We update when the sum of
the cost of C[i− sj , S

′] plus the cost of sj is better than the previous cost
of C[i, S′ ∪ sj ].

• What if I have multiple knapsacks? – When there are multiple knapsacks,
your problem might be better thought of as a bin-packing problem. Sec-
tion 20.9 (page 652) discusses bin-packing/cutting-stock algorithms. That
said, algorithms for optimizing over multiple knapsacks are provided in the
Implementations section below.

Exact solutions for large capacity knapsacks can be found using integer pro-
gramming or backtracking. A 0/1 integer variable xi is used to denote whether
item i is present in the optimal subset. We maximize

∑n
i=1 xi · vi given the

constraint that
∑n

i=1 xi · si ≤ C. Integer programming codes are discussed in
Section 16.6 (page 482).

Heuristics must be used when exact solutions prove too costly to compute.
The simple greedy heuristic inserts items according to the maximum “price
per pound” rule described previously. Often this heuristic solution is close
to optimal, but it might prove arbitrarily bad depending upon the problem
instance. The “price per pound” rule can also be used to reduce the problem
size in exhaustive search-based algorithms by eliminating “cheap but heavy”
objects from future consideration.

Another heuristic is based on scaling. Dynamic programming works well if
the knapsack capacity is a reasonably small integer, say ≤ Cs. But what if
we have a problem with capacity C > Cs? We can scale down the sizes of all
items by a factor of C/Cs, round the size down to the nearest integer, and then
use dynamic programming on the scaled items. Scaling works well in practice,
especially when the range of item sizes is not too large.

Implementations: Martello and Toth’s collection of Fortran implementations
of algorithms for a variety of knapsack problem variants are available at http:
//www.or.deis.unibo.it/kp.html. An electronic copy of the associated book
[MT90a] has also been generously made available.

David Pisinger maintains a well-organized collection of C-language codes
for knapsack problems and related variants like bin packing and container load-
ing. These are available at http://www.diku.dk/~pisinger/codes.html. The
strongest code is based on the dynamic programming algorithm of [MPT99].

Algorithm 632 [MT85] of the Collected Algorithms of the ACM is a Fortran
code for the 0/1 knapsack problem, with the twist that it supports multiple
knapsacks. See Section 22.1.4 (page 714).

http://www.or.deis.unibo.it/kp.html
http://www.or.deis.unibo.it/kp.html
http://www.diku.dk/~pisinger/codes.html
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Notes: Keller, Pferschy, and Pisinger [KPP04] is the most current reference on the
knapsack problem and variants. Martello and Toth’s book [MT90a] and survey article
[MT87] are standard references on the knapsack problem, including both theoretical
and experimental results. An excellent exposition on integer programming approaches
to knapsack problems appears in [MPT99]. See [MPT00] for a computational study
of algorithms for 0/1 knapsack problems.

A polynomial-time approximation scheme (PTAS) is an algorithm that approxi-
mates the optimal solution of a problem in time polynomial in both its size and the
approximation factor ε. This very strong condition implies a smooth tradeoff between
running time and approximation quality. Good expositions on polynomial-time ap-
proximation schemes [IK75] for knapsack and subset sum includes [BvG99, CLRS09].
Polynomial-time approximation schemes exist even for the case of multiple knapsacks
[CK05].

An interesting special variant of the knapsack problem is the 3-sum problem, where
we are given three sets A, B, and C, each with n integers. We seek an a ∈ A, b ∈ B,
and c ∈ C such that a + b = c. The best algorithm known for 3-sum is O(n2), and
reductions to 3-sum are often used to suggest that no sub-quadratic algorithm exists
for a given problem [GO95].

Vector bin packing is a generalization of knapsack where the knapsack has capacity
constraints along d axes (say CPU and memory limits), and each object is defined by
a vector of d corresponding demands. Heuristics have been studied for vector bin
packing in the context of virtual machine placement [PTUW11].

The first algorithm for generalized public key encryption by Merkle and Hellman
[MH78] was based on the hardness of the knapsack problem. See [Sch15] for an expo-
sition.

Related problems: Bin packing (see page 652), integer programming (see
page 482).
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16.11 Discrete Fourier Transform

Input description: A sequence of n real or complex values hi, 0 ≤ i ≤ n− 1,
sampled at uniform intervals from a function h.

Problem description: The discrete Fourier transformHm =
∑n−1

k=0 hke
−2πikm/n

for 0 ≤ m ≤ n− 1.

Discussion: Although computer scientists tend to be fairly ignorant about
Fourier transforms, scientists and engineers eat them for breakfast. Function-
ally, Fourier transforms provide a way to convert samples of a standard time-
series into the frequency domain. This provides a dual representation of the
function, in which certain operations become easier than the original time do-
main. Applications of Fourier transforms include:

• Filtering – Taking the Fourier transform of a function is equivalent to
representing it as the sum of sine functions. We can filter an image to re-
move noise and other artifacts by dropping some of the sine functions, say
eliminating undesirable high- and/or low-frequency components. Taking
an inverse Fourier transform then gets us back into the time domain. For
example, the sharp spike in the plot above represents the period of the
single sine function that closely models the input data. The rest is noise.

• Image compression – A smoothed, filtered image contains less information
than the original, while retaining a similar appearance. By eliminating
the coefficients of sine functions that contribute relatively little to the
image, we reduce the size of the image at little cost in image fidelity.

• Convolution and deconvolution – Fourier transforms can efficiently com-
pute convolutions of two sequences. A convolution is the pairwise prod-
uct of elements from two different sequences, such as in multiplying two



502 CHAPTER 16. NUMERICAL PROBLEMS

n-variable polynomials f and g or comparing two character strings.
Implementing such products directly takes O(n2), while the fast Fourier
transform led to a O(n lg n) algorithm.

Another example comes from image processing. Because a scanner mea-
sures the intensity of an image patch instead of just a single point, the
scanned input is always blurred. The original signal can be reconstructed
by deconvoluting the input signal with a Gaussian point-spread function.

• Computing the correlation of functions – The correlation function of two
functions f(t) and g(t) is defined by

z(t) =

∫ ∞

−∞
f(τ)g(t+ τ)dτ

and can be easily computed using Fourier transforms. When functions
f(t) and g(t) are similar in shape but one is shifted relative to the other
(such as f(t) = sin(t) and g(t) = cos(t)), the value of z(t0) will be large
at this shift offset t0. As an application, consider the task of detecting
periodicities in our random-number generator. We can generate a large
series of random numbers, turn them into a time series (the ith number
at time i), and compute the correlation function of this series. Any large
spikes will correspond to potential periodicities.

The discrete Fourier transform takes as input n complex numbers hk, 0 ≤
k ≤ n− 1, corresponding to equally spaced points in a time series, and outputs
n complex numbers Hk, 0 ≤ k ≤ n− 1, each describing a sine function of given
frequency. The discrete Fourier transform is defined by

Hm =

n−1∑

k=0

hk · e−2πikm/n =

n−1∑

k=0

hk

[
cos

(
2πkm

n

)
− i sin

(
2πkm

n

)]

and the inverse Fourier transform is defined by

hm =
1

n

n−1∑

k=0

Hk · e2πikm/n =
1

n

n−1∑

k=0

Hk

[
cos

(
2πkm

n

)
+ i sin

(
2πkm

n

)]

which enables us to move easily between h and H.
Since the output of the discrete Fourier transform consists of n numbers, each

of which is computed using a formula on n numbers, they can be computed in
O(n2) time. The fast Fourier transform (FFT) is an algorithm that computes the
discrete Fourier transform in O(n log n). This is arguably the most important
algorithm known, for it opened the door to modern signal processing. Several
different algorithms call themselves FFTs, each based on a divide-and-conquer
approach. Essentially, the problem of computing the discrete Fourier transform
on n points is reduced to computing two transforms on n/2 points each, and
then applied recursively.
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The FFT usually assumes that n is a power of two. If this is not the case, you
are usually better off padding your data with zeros to create n = 2k elements
rather than hunting for a more general code.

Many signal-processing systems have strong real-time constraints, so FFTs
are often implemented in hardware, or at least in assembly language tuned to
the particular machine. Keep this in mind if the codes below prove too slow.

Implementations: FFTW is a C subroutine library for computing the discrete
Fourier transform in one or more dimensions, with arbitrary input size, and
supporting both real and complex data. It is the clear choice among freely
available FFT codes. Extensive benchmarking proves that FFTW is indeed
the “Fastest Fourier Transform in the West.” FFTW received the 1999 J. H.
Wilkinson Prize for Numerical Software. See http://www.fftw.org/.

FFTPACK is a package of Fortran subprograms for the fast Fourier trans-
form of periodic and other symmetric sequences, written by P. Swartzrauber. It
includes complex, real, sine, cosine, and quarter-wave transforms. FFTPACK
resides at http://www.netlib.org/fftpack. The GNU Scientific Library for
C/C++ provides a re-implementation of FFTPACK. See http://www.gnu.org/
software/gsl/.

Notes: Bracewell [Bra99] and Brigham [Bri88] are excellent introductions to Fourier
transforms and the FFT. See also the exposition in [PFTV07]. Credit for inventing
the fast Fourier transform is usually given to Cooley and Tukey [CT65], but see [Bri88]
for a complete history.

A cache-oblivious algorithm for the fast Fourier transform is given in [FLPR99].
This paper first introduced the notion of cache-oblivious algorithms. The FFTW is
based on this algorithm. See [FJ05] for more on the design of the FFTW. Faster
algorithms are known for the case where we seek only the k largest coefficients of the
transform, when k � n [HIKP12].

An interesting divide-and-conquer algorithm for polynomial multiplication [KO63]
does the job in O(n1.59) time and is discussed in [AHU74, Man89]. An FFT-based al-
gorithm that multiplies two n-bit numbers in O(n lg n lg lg n) time is due to Schönhage
and Strassen [SS71].

The quantum Fourier transform provides an exponential speedup over the classical
FFT, working on 2n amplitudes stored in n qubits using only O(n2) operations [NC02].
The catch is efficiently getting your desired amplitudes into (or out of) the qubits. This
operation is an essential component of Shor’s quantum factoring algorithm [Sho99].
For intuition why, consider a set of sine functions with periods 2, 3, 5, 7, 11, . . . in the
frequency domain. If n is divisible by any of these, then n must have a peak in the
time domain.

It is an open question of whether complex variables are really fundamental to
fast algorithms for convolution. Fortunately, fast convolution can generally be used
as a black box in applications. Many variants of string matching are based on fast
convolution [Ind98].

In recent years, wavelets have been proposed to replace Fourier transforms in

filtering. See [BN09] for an introduction to wavelets.

Related problems: Data compression (see page 693), high-precision arith-
metic (see page 493).

http://www.fftw.org/
http://www.netlib.org/fftpack
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/


Chapter 17

Combinatorial Problems

We will now consider several algorithmic problems of a purely combinatorial
nature. These include sorting and searching, both among the first non-numerical
problems arising on electronic computers. Sorting can be viewed as identifying
or imposing a total order on the keys, while searching and selection involve
identifying specific keys based on their position in this total order.

The rest of this section deals with combinatorial objects, such as permuta-
tions, partitions, subsets, calendars, and schedules. We are particularly inter-
ested in algorithms that rank and unrank combinatorial objects—mapping each
distinct object to/from a unique integer. Rank/unrank operations make many
other tasks simple, such as generating random objects (pick a random number
and unrank) or listing all objects in order (iterate from 1 to n and unrank).

I conclude with the problem of generating graphs. Graph algorithms are
more fully presented in subsequent sections of the catalog.

Books on general combinatorial algorithms, in this restricted sense, include:

• Knuth – The standard reference on sorting and searching [Knu98]. New
material on the generation of permutations, subsets, partitions, and trees
comprises the first part of his mythical Volume 4 [Knu11].

• Ruskey [Rus03] – He never officially completed it, but this manuscript is
a standard reference on generating combinatorial objects. Previews are
available if you Google Ruskey Combinatorial Generation.

• Kreher and Stinson [KS99] – This book on combinatorial generation al-
gorithms, with additional particular focus on algebraic problems such as
isomorphism and dealing with symmetry.

• Pemmaraju and Skiena [PS03] – This description of Combinatorica, a
library of over 400 Mathematica functions for generating combinatorial
objects and graph theory (see Section 22.1.8), provides a distinctive view
of how different algorithms can fit together. Its second author is well
qualified to write a manual on algorithm design.

505© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_17

Springer Nature Switzerland AG 2020
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Input Output

17.1 Sorting

Input description: A set of n items.

Problem description: Arrange the items in increasing order.

Discussion: Sorting is the most fundamental algorithmic problem in computer
science. Learning the different sorting algorithms is like learning scales for a
musician. Sorting proves to be the first step in solving a host of other algorithm
problems, as discussed in Section 4.2 (page 113). Indeed, “when in doubt, sort”
is one of the first rules of algorithm design.

Sorting also illustrates most of the standard paradigms of algorithm design.
Programmers are generally familiar with several different sorting algorithms,
which sows confusion as to which should be used for a given application. The
following criteria can help you decide:

• How many keys will you be sorting? – For small amounts of data (say
n ≤ 100), it doesn’t really matter which quadratic-time algorithm you
use. Insertion sort is faster, simpler, and less likely to be buggy than
bubblesort. Shellsort is closely related to, but much faster than, insertion
sort, although it requires looking up the right insert sequences in Knuth
[Knu98].

But if you have more than one hundred items to sort, it becomes important
to use an O(n lg n)-time algorithm like heapsort, quicksort, or mergesort.
Partisans may favor one of these algorithms over the others, but it usually
doesn’t really matter.

Once you get past (say) 100,000,000 items, it is important to start thinking
about external-memory sorting algorithms that minimize disk or network
access. Both types of algorithm are discussed below.

• Will there be duplicate keys? – The sorted order is completely defined
if all items have distinct keys. However, when two items share the same
key, something else must determine which one comes first. Sometimes this
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matters. Ties are often broken by sorting on a secondary key, like the first
name or initial when the family names collide.

Ties sometimes get broken by their initial position in the data set. Suppose
the 5th and 27th items of the initial data set share the same key. This
means the 5th item must appear before the 27th in the final order. A stable
sorting algorithm preserves the original ordering in case of ties. Most
of the quadratic-time sorting algorithms are stable, while many of the
O(n lg n) algorithms are not. If it is important that your sort be stable,
it is probably best to explicitly use the initial position as a secondary
key in your comparison function instead of trusting the stability of your
implementation.

• What do you know about your data? – Perhaps you can exploit special
knowledge about your data to get it sorted faster or more easily. General
sorting is a fast O(n lg n) operation, so if the time spent sorting really is
the bottleneck in your application, you are indeed a fortunate person.

– Has the data already been partially sorted? If so, certain algorithms
like insertion sort perform better than they otherwise would.

– Do you know the distribution of the keys? If the keys are randomly
or uniformly distributed, a bucket or distribution sort makes sense.
Throw the keys into bins based on their first letter, and recur until
each bin is small enough to sort by brute force. This is very efficient
provided the keys are evenly distributed in key space. Note that
bucket sort would perform very badly sorting names on the member-
ship roster of the “Smith Society.”

– Are your keys very long or hard to compare? When sorting long
text strings, it might pay to use a relatively short prefix (say ten
characters) of each key for an initial sort, and then resolve ties using
the full key. This is particularly important in external sorting (see
below), since you don’t want to waste fast memory on the dead weight
of irrelevant detail.

Another idea might be to use radix sort. This always takes time
linear in the number of characters in the file, instead of O(n lg n)
times the cost of comparing two keys.

– Is the range of possible keys very small? If you want to sort a subset
of (say) n/2 distinct integers, each with a value from 1 to n, the
fastest algorithm would be to initialize an n-element bit vector, turn
on the bits corresponding to keys, then scan from left to right and
report the positions with true bits.

• Should I worry about disk accesses? – In massive sorting problems, it is
not possible to keep all data in memory simultaneously. This problem
is called external sorting, because the data is maintained on an external
storage device. Traditionally, this meant tape drives, and Knuth [Knu98]
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describes a variety of intricate algorithms for efficiently merging data from
different tapes. Today, it usually means virtual memory. Any sorting
algorithm will run using virtual memory, but clumsy ones will spend most
of their time swapping.

The simplest approach to external sorting loads the data into a B-tree,
and then does an in-order traversal of the tree to read the keys off in sorted
order. The highest performance sorting programs are based on multiway-
mergesort. Files containing portions of the data are sorted using a fast
internal sort, and then these sorted runs are merged in stages using 2- or
k-way merging. Complicated merging patterns and buffer management
based on the properties of the external storage device can be used to
optimize performance.

The best general-purpose internal sorting algorithm is quicksort (see Sec-
tion 4.2 (page 113)), although it requires tuning effort to achieve maximum
performance. Indeed, you are much better off using a library function instead
of coding it yourself. A poorly written quicksort will likely run more slowly
than a poorly written heapsort. If you are determined to implement your own
quicksort, use the following heuristics, which make a big difference in practice:

• Use randomization – By randomly permuting (see Section 17.4 (page 517))
the keys before sorting, you can eliminate the potential embarrassment of
quadratic-time behavior on nearly sorted data.

• Median of three – For your pivot element, use the median of the first, last,
and middle elements of the array to increase the likelihood of partitioning
the array into roughly equal pieces. Experiments suggest using a larger
sample on big subarrays and a smaller sample on small ones.

• Leave small subarrays for insertion sort – Terminating the quicksort re-
cursion and switching to insertion sort makes sense when the subarrays
get small, say fewer than 20 elements. You should experiment to identify
the best switch point for your implementation.

• Do the smaller partition first – You can minimize run-time memory by
processing the smaller partition before the larger one. Since each succes-
sive stored call is at most half as large as the previous one, only O(lg n)
stack space is needed.

Before you get started, see Bentley’s article on building a faster quicksort
[Ben92b].

Implementations: The best freely available sort program is presumably GNU
sort, part of the GNU core utilities library. See http://www.gnu.org/software/
coreutils/. There are also commercial vendors of high-performance external
sorting programs, including Cosort (www.iri.com), Syncsort (www.syncsort.
com), and Ordinal Technology (www.ordinal.com).

http://www.gnu.org/software/coreutils/
http://www.gnu.org/software/coreutils/
www.iri.com
www.syncsort.com
www.syncsort.com
www.ordinal.com
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Modern programming languages provide libraries so you should never need
to implement your own sort routine. The C standard library contains qsort,
a generic implementation of (presumably) quicksort. The C++ Standard Tem-
plate Library (STL) provides both sort and stable sort methods. See Josuttis
[Jos12] and Meyers [Mey01] for more detailed guides to using STL and the C++
standard library. Java Collections (JC), a small library of data structures, is
included in the java.util package of Java SE. In particular, SortedMap and
SortedSet classes are provided.

High-performance sorting systems distribute the work over many machines.
Map-Reduce systems like Hadoop [Whi12] make it relatively easy to implement
parallel bucketsort, such as the terabyte champion system reported in [O08].
Efficient sorting algorithms for GPUs are considered by Satish et.al [SHG09].

Numerous websites provide animations of all the basic sorting algorithms,
many quite interesting to watch. Indeed, sorting is the canonical problem for
algorithm animation. Search on Google and YouTube for “sorting animations”
and watch the most popular ones.

Notes: Knuth [Knu98] is the best book that will ever be written on sorting. It
is now almost fifty years old, but remains fascinating reading. One area that has
developed since Knuth is sorting under presortedness measures, surveyed in [ECW92].
Timsort, a popular candidate for the fastest sorting algorithm in practice, exploits
naturally ordered sequences to take O(n log p) time, where p is the number of sorted
runs discovered in the input data [AJNP18].

Expositions on the basic internal sorting algorithms appear in every algorithms
textbook. Heapsort was first invented by Williams [Wil64]. Quicksort was invented
by Hoare [Hoa62], with careful analysis and implementation by Sedgewick [Sed78].
Von Neumann is credited with having produced the first implementation of mergesort
on the EDVAC in 1945. See Knuth [Knu98] for a full discussion of the history of
sorting, dating back to the days of punch-card tabulating machines.

The primary competitive forum for high-performance sorting is an annual com-
petition initiated by the late Jim Gray. See http://sortbenchmark.org/ for current
and previous results, which are either inspiring or depressing depending upon how you
look at it. The magnitude of progress is inspiring (the million-record instances of the
original benchmarks are now too small to bother with) but it is depressing (to me) that
systems/memory management issues thoroughly trump the combinatorial/algorithmic
aspects of sorting. Modern attempts to engineer high-performance sort programs in-
clude work on both cache-conscious [LL99] and cache-oblivious [BFV07] sorting.

Sorting has a well-known Ω(n lg n) lower bound under the algebraic decision tree
model [BO83]. Determining the exact number of comparisons required for sorting n
elements, for small values of n, has generated considerable study. See [Aig88, Raw92]
for expositions and Peczarski [Pec04, Pec07] for the latest results.

This lower-bound does not hold under different models of computation. Fredman

and Willard [FW93] present an O(n
√
lg n) algorithm for sorting under a model of

computation that permits arithmetic operations on keys. Andersson [And05] surveys

algorithms for fast sorting on such non-standard models of computation.

Related problems: Dictionaries (see page 440), searching (see page 510),
topological sorting (see page 546).

http://sortbenchmark.org/
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17.2 Searching

Input description: A set of n keys S, and a query key q.

Problem description: Where is q in S?

Discussion: “Searching” is a word that means different things to different
people. Searching for the global maximum or minimum of a function is the
problem of unconstrained optimization, discussed in Section 16.5 (page 478).
Chess-playing programs select the best move to play through an exhaustive
search of possible candidates using a variation of backtracking (see Section 9.1
(page 281)).

But here we consider the task of searching for a key in a list, array, or
tree. Dictionary data structures maintain efficient access to sets of keys under
insertion and deletion, and are discussed in Section 15.1 (page 440). Typical
dictionaries include binary search trees and hash tables.

I treat searching as a problem distinct from dictionaries because simpler and
more efficient solutions can emerge when our primary interest is static searching
without insertion/deletion. These little data structures can yield substantial
performance improvements when properly employed in an innermost loop. Also,
ideas such as binary search and self-organization apply to other problems and
well justify our attention.

The two basic approaches we consider are sequential search and binary
search. Both are simple, yet have interesting and subtle variations. In se-
quential search, we start from the front of our list/array of keys and compare
each successive item against the search key q until we find a match, or reach the
end. In binary search, we start with a sorted array of keys. To search for q, we
compare it to the middle key Sn/2. If q is before Sn/2, it must reside in the top
half of our set; if not, it must reside in the bottom half of our set. By repeating
this process on the correct half, we find q using lg n� comparisons. This is a
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big win over the n/2 comparisons we expect with sequential search. See Section
5.1 (page 148) for more on binary search.

A sequential search is the simplest algorithm, and likely to be fastest on up
to about twenty elements. Beyond (say) one hundred elements, binary search
will clearly be more efficient than sequential search, easily justifying the cost
of sorting if there will be multiple queries. But other issues come into play in
identifying the proper variant of the algorithm:

• How much time can you spend programming? – A binary search is a
notoriously tricky algorithm to program correctly. It took seventeen years
after its invention until the first correct version of a binary search was
published! Don’t be afraid to start from an implementation described
below. Test it completely by writing a driver that searches for every key
in the set S as well as between the keys.

• Are certain items accessed more often than other ones? – Certain English
words (such as “the”) are much more likely to occur than others (such as
“defenestrate”). We can reduce the number of comparisons in a sequential
search by putting the most popular words on the top of the list and the
least popular ones at the bottom. Non-uniform access is usually the rule,
not the exception. Many real-world distributions are governed by power
laws. A classic example is word use in English, which is fairly accurately
modeled by Zipf’s law. Under Zipf’s law, the ith most frequently accessed
key is selected with probability (i−1)/i times the probability of the (i−1)st
most popular key, for all 1 ≤ i ≤ n.

Knowledge of access frequencies is easy to exploit with sequential search.
But the issue is more complicated with binary trees. We want popular
keys close to the root (so we hit them quickly) but not at the expense of
losing balance and degenerating into sequential search. The answer is to
employ a dynamic programming algorithm that builds the optimal binary
search tree. The critical observation is that every possible root node i
partitions the space of keys into those to the left of i and those to the
right; each of which should be represented by an optimal binary search
tree on a smaller subrange of keys. The root of the optimal tree is selected
to minimize the expected search costs of the resulting partition.

• Might access frequencies change over time? – Reordering a list or tree
to exploit a skewed access pattern requires knowing the access pattern in
advance. For many applications, it can be difficult to obtain this informa-
tion. Better are self-organizing lists, where the order of the keys changes
in response to the queries. The best self-organizing scheme is move-to-
front; that is, we move the most recently searched-for key from its current
position to the front of the list. Popular keys keep getting boosted to the
front, while unsearched-for keys drift towards the back of the list. There
is no need to keep track of the frequency of access; just move the keys
on demand. Self-organizing lists also exploit locality of reference, since
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accesses to any given key are likely to occur in clusters. A hot key will be
maintained near the top of the list during its cluster of accesses, even if
other keys have proven more popular in the past.

Self-organization can extend the useful size range of sequential search,
although you should switch to binary search beyond one hundred elements.
But consider using splay trees, which are self-organizing binary search
trees that rotate each searched-for node to the root. They offer excellent
amortized performance guarantees.

• Is the key close by? – Suppose we know that the target key is to the right
of position p, and we think it is nearby. A sequential search is fast if we
are correct, but we will be punished severely should we guess wrong. A
better idea is to test repeatedly at larger intervals (p + 1, p + 2, p + 4,
p+8, p+16, . . .) to the right until we find a key to the right of our target.
This defines a window containing the target, so now we can proceed with
a conventional binary search.

Such a one-sided binary search finds the target at position p + l using at
most 2lg l� comparisons, so it is faster than binary search when l � n,
yet it can never be much worse. One-sided binary search is particularly
useful in unbounded search problems, such as in numerical root finding.

• Is my data structure sitting on external memory? – Once the number
of keys grows too large, binary search loses its status as the best search
technique. Such a search jumps wildly around the set of keys looking
for midpoints to compare, so each comparison requires reading in a new
page from external memory. Much better are data structures such as B-
trees (see Section 15.1 (page 440)) or van Emde Boas trees (see the Notes
section), which cluster the keys into pages to minimize the number of disk
accesses per search.

• Can I guess where the key should be? – In interpolation search, we exploit
our understanding of the distribution of keys to guess where to look next.
Interpolation search is probably a more accurate description of how we
use a telephone book than binary search. Suppose we search for Wash-
ington, George in a sorted telephone book. We feel safe making our first
comparison three-fourths of the way down the list, essentially doing two
comparisons for the price of one.

Although an interpolation search is an appealing idea, I caution against it
for three reasons: First, you must work very hard to optimize your search
algorithm before you can hope for a speedup over binary search. Second,
even if you do beat a binary search, it is unlikely to be by enough to have
justified the exercise. Finally, your program will be much less robust and
efficient when the distribution changes, such as when your application gets
ported to work on French text instead of English.
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Implementations: The basic sequential and binary search algorithms are sim-
ple enough that you should consider implementing them yourself. That said, the
C standard library contains bsearch, a generic implementation of (presumably)
binary search. The C++ Standard Template Library (STL) provides find (se-
quential search) and binary search iterators. Java Collections (JC), provides
binarySearch in the java.util package of Java standard edition.

Many data structure textbooks provide extensive and illustrative implemen-
tations. Sedgewick (https://algs4.cs.princeton.edu/code/) [SW11] and
Weiss (http://www.cs.fiu.edu/~weiss/) [Wei11] provide implementations of
splay trees and other search structures in both C++ and Java.

Notes: The Handbook of Data Structures and Applications [MS18] provides up-
to-date surveys on all aspects of dictionary data structures. Other surveys include
Mehlhorn and Tsakalidis [MT90b] and Gonnet and Baeza-Yates [GBY91]. Knuth
[Knu97a] provides a detailed analysis and exposition on all fundamental search al-
gorithms and dictionary data structures, but omits such modern data structures as
red–black and splay trees.

The next position probed in linear interpolation search on an array of sorted num-
bers is given by

next = (low − 1) + � q − S[low − 1]

S[high+ 1]− S[low − 1]
× (high− low + 1)�

where q is the query numerical key and S the sorted numerical array. If the keys
are drawn independently from a uniform distribution, the expected search time is
O(lg lg n) [DJP04, PIA78]. But in practice, they won’t be.

Non-uniform access patterns can be exploited in binary search trees by structuring
them so that popular keys are located near the root, thus minimizing search time.
Dynamic programming can be used to construct such optimal search trees in O(n lg n)
time [Knu98]. Stout and Warren [SW86] provide a slick algorithm to efficiently trans-
form a binary tree to a minimum height (optimally balanced) tree using rotations.

The van Emde Boas layout of a binary tree (or sorted array) offers better external
memory performance than conventional binary search, at a cost of greater implemen-
tation complexity. See the survey of Arge et al. [ABF05] for more on this and other
cache-oblivious data structures.

Grover’s algorithm permits searching in an unsorted database in O(
√
n) time on

a quantum computer [NC02]. The basic intuition is that quantum computers work on

probabilities, initially uniform among n items in superposition. But a single amplitude

amplification operation can increase the probability of a target element by a factor of√
n. After O(

√
n) such amplifications, we become highly likely to sample the target

element.

Related problems: Dictionaries (see page 440), sorting (see page 506).

https://algs4.cs.princeton.edu/code/
http://www.cs.fiu.edu/~weiss/
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Input Output

17.3 Median and Selection

Input description: A set of n numbers or keys, and an integer k.

Problem description: Find the key greater than or equal to exactly k of the
n keys.

Discussion: Median finding is an essential problem in statistics, where it pro-
vides a more robust notion of average than the mean. The mean wealth of
people who have published research papers on sorting is significantly influenced
by the presence of one William Gates [GP79], although his effect on the median
wealth is merely to cancel out one starving graduate student.

Median finding is a special case of the more general selection problem, which
seeks the kth element in sorted order. Selection arises in several applications:

• Filtering outlying elements – When dealing with noisy data, it is often
a good idea to throw out the 10% largest and smallest values. Selection
can be used to identify the items defining the 10th and 90th percentiles.
The outliers are then filtered away by comparing each item to the selected
bounds.

• Identifying the most promising candidates – A computer chess program
might quickly assess all possible next moves, and then evaluate the top
25% more carefully. This is again selection followed by filtering.

• Deciles and related divisions – A useful way to present income distribution
in a population charts the salary of the people ranked at regular intervals,
say exactly at the 10th percentile, 20th percentile, and so on. Computing
these values is simply selection on the appropriate position ranks.

• Order statistics – Particularly interesting special cases of selection include
finding the smallest element (k = 1), the largest element (k = n), and the
median element (k = n/2).
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The mean of n numbers can be computed in linear time by summing the
elements and dividing by n. But finding the median is a more difficult problem.
Algorithms that compute the median can readily be generalized to arbitrary
selection. Issues in median finding and selection include:

• How fast does it have to be? – The most elementary median-finding algo-
rithm sorts the items in O(n lg n) time and then returns the item occupying
the (n/2)nd position. As a plus, you get much more information than just
the median, enabling selection for any kth element (1 ≤ k ≤ n) in constant
time after the sort. However, there are faster algorithms if all you want is
the median.

In particular, quick-select is an O(n) expected-time algorithm based on
quicksort. Select a random element from the data set as a pivot, and use
it to partition the data into sets less than and greater than the pivot. From
the sizes of these sets, we know the position of the pivot in the total order,
and hence whether the median lies to the left or right of this point. Now
we recur on the appropriate subset until it converges on the median. This
takes (on average) O(lg n) iterations, with the cost of each iteration being
roughly half that of the previous one. This defines a geometric series that
converges to a linear-time algorithm, although if you are very unlucky it
takes Θ(n2), the same worst-case time as quicksort.

More complicated algorithms can find the median in worst-case linear
time. However, this expected-time algorithm will likely win in practice.

• What if you only get to see each element once? – Selection and median
finding become expensive on large datasets because they require several
passes through external memory. In data-streaming applications, the vol-
ume of data is often too large to store, making repeated consideration
(and thus exact median finding) impossible. Much better is computing
a small summary of the data for future analysis, say approximate deciles
of frequency moments (where the kth moment of stream x is defined as
Fk =

∑
i x

k
i ).

One solution to such a problem is random sampling. Flip a coin for each
value to decide whether to save it, with the probability of heads set low
enough that you won’t overflow your buffer. Likely the median of your
samples will be close to that of the underlying data set. Alternatively,
you can devote some fraction of memory to retaining (say) decile values
of large blocks, and then combine these decile distributions to yield more
refined decile bounds.

• How fast can you find the mode? – Beyond mean and median lies a third
notion of average. The mode is defined to be the element that occurs with
highest frequency in the data set. The best way to compute the mode
sorts the set in O(n log n) time, which creates runs of identical elements.
By doing a linear sweep from left to right on this sorted set, we can count
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the length of the longest run and hence compute the mode in a total of
O(n log n) time.

The mode can also be found in expected linear time using hashing, but no
such worst-case algorithm is possible. Testing whether there exist two
identical elements in a set (a problem called element uniqueness) has
an Ω(n log n) lower bound. Element uniqueness is equivalent to asking
whether the mode occurs more than once. Possibilities exist for improve-
ment, at least theoretically, when the mode is large using fast median
computations.

Implementations: The C++ Standard Template Library (STL) provides a
general selection method (nth element) implemented using the linear expected-
time algorithm. See Josuttis [Jos12], Meyers [Mey01], and Musser [MDS01] for
more detailed guides to using STL and the C++ standard library.

Notes: The linear expected-time algorithm for median and selection is due to Hoare
[Hoa61]. Floyd and Rivest [FR75] provide an algorithm that uses fewer comparisons on
average. Good expositions on linear-time selection include [BvG99, CLRS09, Raw92],
with [Raw92] being particularly enlightening.

Streaming algorithms have extensive applications to large data sets, and are well
surveyed by Muthukrishnan [Mut05] and Cormode [CH09].

A sport of considerable theoretical interest is determining exactly how many com-
parisons are sufficient to find the median of n items. The linear-time algorithm of
Blum et al. [BFP+72] proves that c ·n comparisons suffice, but we want to know what
c is. Dor and Zwick [DZ99] proved that 2.95n comparisons suffice to find the median.
These algorithms attempt to minimize the number of element comparisons but not
the total number of operations, and hence do not lead to faster algorithms in practice.
They also hold the current best lower bound of (2+ ε) comparisons for median finding
[DZ01].

Tight combinatorial bounds for selection problems are presented in Aigner [Aig88].

An optimal algorithm for computing the mode is given by [DM80].

Related problems: Priority queues (see page 445), sorting (see page 506).
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17.4 Generating Permutations

Input description: An integer n.

Problem description: Generate (1) all, or (2) a random, or (3) the next
permutation of length n.

Discussion: A permutation describes an arrangement or ordering of items.
Many algorithmic problems seek the best way to order a set of objects, including
traveling salesman (the least-cost order to visit n cities), bandwidth (order the
vertices of a graph on a line so as to minimize the length of the longest edge),
and graph isomorphism (order the vertices of one graph so that it is identical
to another). Any algorithm that solves such a problem exactly must construct
a series of permutations along the way.

There are n! permutations of n items. This grows so quickly that you can’t
generate all permutations for n > 15, because 15! = 1, 307, 674, 368, 000. Num-
bers like these should cool the ardor of anyone excited by exhaustive search,
and help explain the importance of generating random permutations.

Fundamental to any permutation-generation algorithm is the notion of order,
the sequence in which the permutations are constructed from first to last. The
most natural generation order is lexicographic, the sequence they would appear if
they were sorted numerically. Lexicographic order for n = 3 is {1, 2, 3}, {1, 3, 2},
{2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and finally {3, 2, 1}. Although lexicographic order
is aesthetically pleasing, there is often no particular advantage to using it. For
example, when searching through a collection of files, it does not matter whether
the filenames are encountered in sorted order, so long as you eventually search
through all of them. Indeed, non-lexicographic orders lead to faster and simpler
permutation generation algorithms.

There are two different paradigms for constructing permutations: rank-
ing/unranking and incremental change methods. The latter are more efficient,
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but ranking and unranking can be applied to solve a much wider class of prob-
lems. The key is to define the functions rank and unrank on all permutations p
and integers n, m, where |p| = n and 0 ≤ m ≤ n!− 1.

• Rank(p) – What is the position of p = {p1, . . . , pn} in the given generation
order? A typical ranking function is recursive. Consider the basis case
Rank({1}) = 0 with

Rank(p) = (p1 − 1) · (|p| − 1)! +Rank(p2, . . . , p|p|)

We assume that any permutation p is an arrangement of distinct integers
1 trough |p|, so getting this right requires relabeling the elements of the
smaller permutation to reflect the deleted first element. This is why {1, 3}
magically turns into {1, 2} in the following example:

Rank({2, 1, 3}) = (2−1)·2!+Rank({1, 2}) = 2+(1−1)·1!+Rank({1}) = 2

• Unrank(m,n) – Which permutation is in position m of the n! permutations
of n items? A typical unranking function finds the number of times (n−1)!
goes into m and proceeds recursively. Unrank(2, 3) tells us that the first
element of the permutation must be “2”, because (2− 1) · (3− 1)! ≤ 2 but
(3− 1) · (3− 1)! > 2. Deleting (2− 1) · (3− 1)! from m leaves the smaller
problem Unrank(0, 2). The ranking of 0 corresponds to the total order.
The total order on the two remaining elements (since 2 has been used) is
{1, 3}, so Unrank(2, 3) = {2, 1, 3}.

What the rank and unrank functions actually do does not matter so long as
they are inverses of each other. In other words, p = Unrank(Rank(p), n) for all
permutations p. You can perform many different tasks once you have ranking
and unranking functions for permutations:

• Sequencing permutations – To determine the next permutation that occurs
in order after p, we can Rank(p), add 1, and then Unrank(p). Similarly,
the permutation right before p in order is Unrank(Rank(p)−1, |p|). Count-
ing through the integers from 0 to n!−1 and unranking them is equivalent
to generating all permutations.

• Generating random permutations – Selecting a random integer from 0 to
n!− 1 and then unranking it yields a truly random permutation.

• Keep track of a set of permutations – Suppose we are generating random
permutations, but want to act only when we encounter one we have never
generated before. We can set up a bit vector (see Section 15.5 (page 456))
with n! bits, and set bit i to 1 if permutation p=Unrank(i,n) has already
been seen. A similar technique was employed with k-subsets in the Lotto
application of Section 1.8 (page 22).
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This rank/unrank method is best suited for small values of n, since n! quickly
exceeds the capacity of machine integers. Incremental change methods work
by defining next and previous operations that transform one permutation into
another, typically by swapping two elements. The tricky part is scheduling the
sequence of swaps so that permutations do not repeat until after all n! of them
have been generated. The output picture above gives an ordering of the six
permutations of {1, 2, 3} using a single swap between successive permutations.

Incremental change algorithms for sequencing permutations are elegant but
tricky, generally so concise that they can be expressed in a dozen-line program.
See the implementation section for pointers to code. Because the incremental
change is only a single swap, these algorithms can be extremely fast—on average,
constant time independent of the size of the permutation! The secret is to
represent permutations using an n-element array to facilitate swaps. In certain
applications, only the change between permutations is important. For example,
in a brute-force program to search for the optimal TSP tour, the cost of the tour
associated with the new permutation will be that of the previous permutation,
with the addition and deletion of four edges.

Throughout this discussion, we have assumed that the items we are per-
muting are all distinguishable. However, should there be duplicates (meaning
our set is a multiset), you can save considerable time and effort by avoiding
identical permutations. For example, there are only ten distinct permutations
of {1, 1, 2, 2, 2}, instead of 120. To avoid repeats, use backtracking and generate
the permutations in lexicographic order.

Generating random permutations is an important little problem that people
often stumble across, and often botch up. The right way is to use the following
two-line, linear-time algorithm often called the Fisher-Yates shuffle. We assume
that Random[i, n] generates a random integer between i and n, inclusive:

for i = 1 to n do a[i] = i;
for i = 1 to n− 1 do swap[a[i], a[Random[i, n]]];

That this algorithm generates all permutations uniformly at random is not
obvious. If you think so, convincingly explain why the following algorithm does
not generate permutations uniformly:

for i = 1 to n do a[i] = i;
for i = 1 to n− 1 do swap[a[i], a[Random[1, n]]];

Such subtleties demonstrate why you must be very careful with random gen-
eration algorithms. Indeed, I recommend that you perform reasonably extensive
experiments with any random generator before trusting it. For example, gen-
erate 10,000 random permutations of length 4 and verify that all 24 distinct
permutations occur approximately the same number of times. If you know how
to test for statistical significance, you are in even better shape.

Implementations: The C++ Standard Template Library (STL) provides two
functions (next permutation and prev permutation) for sequencing permuta-
tions in lexicographic order. C++ routines for generating an astonishing variety
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of combinatorial objects, including permutations and cyclic permutations, are
available at http://www.jjj.de/fxt/.

The Combinatorial Object Server (http://combos.org/) developed by Frank
Ruskey of the University of Victoria is a unique resource for generating permu-
tations, subsets, partitions, graphs, and other objects. An interactive interface
enables you to specify which objects you would like returned to you. Check it
out. Implementations in C, Pascal, and Java are available for certain types of
objects.

Nijenhuis and Wilf [NW78] is a venerable but still valuable reference on gen-
erating combinatorial objects. They provide efficient Fortran implementations
of algorithms to construct random permutations and to sequence permutations
in minimum-change order. Also included are routines to extract the cycle struc-
ture of a permutation. See Section 22.1.9 (page 716) for details.

Combinatorica [PS03] provides Mathematica implementations of algorithms
that construct random permutations and sequence permutations in minimum
change and lexicographic orders. It also provides a backtracking routine to con-
struct all distinct permutations of a multiset, and supports various permutation
group operations. See Section 22.1.8 (page 716).

Notes: The best recent reference on permutation generation is Knuth [Knu11].
Sedgewick’s excellent survey on the topic is older [Sed77], but this is not a fast moving
field. Good expositions include [KS99, NW78, Rus03].

Fast permutation generation methods make only a single swap between successive
permutations. The Johnson–Trotter algorithm [Joh63, Tro62] satisfies an even stronger
condition, namely that the two elements being swapped are always adjacent. Simple
linear-time ranking and unranking functions for permutations are given by Myrvold
and Ruskey [MR01].

Markov chain generation methods construct random objects through random tran-
sitions, like swaps. Applying Θ(n log n) random swaps to the identity permutation
{1, 2, . . . , n} suffices to construct a random permutation, as per the coupon collector’s
problem analysis of Section 6.2.1 (page 180). Sinclair [Sin12] presents the theory of
Markov chain generation.

In the days before ready access to computers, books with tables of random permu-

tations [MO63] were used instead of algorithms. The swap-based random permutation

algorithm presented above was first described in this book.

Related problems: Random-number generation (see page 486), generating
subsets (see page 521), generating partitions (see page 524).

http://www.jjj.de/fxt/
http://combos.org/
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Input Output

17.5 Generating Subsets

Input description: An integer n.

Problem description: Generate (1) all, or (2) a random, or (3) the next subset
of the integers {1, . . . , n}.
Discussion: A subset describes a selection of objects, where the order among
them does not matter. Many important algorithmic problems search for the best
subset of a group of things: vertex cover seeks the smallest subset of vertices
to touch each edge in a graph, knapsack the most profitable subset of items of
bounded total size, and set packing the smallest subset of subsets that together
cover each item exactly once.

There are 2n distinct subsets of an n-element set, including the empty set
as well as the set itself. This grows exponentially, but at a considerably slower
rate than the n! permutations of n items. Indeed, a brute-force search through
all subsets of 20 elements is easily manageable, because 220 = 1,048,576. But
since 230 = 1,073,741,824, you will hit limits for slightly larger values of n.

By definition, the relative order among the elements does not distinguish
different subsets. Thus, {1, 2, 5} is the same as {2, 1, 5}. However, it is a very
good idea to maintain your subsets in a sorted or canonical order to speed up
operations such as testing whether or not two subsets are identical.

As with permutations (see Section 17.4 (page 517)), the key to subset gener-
ation problems is establishing a numerical sequence among all 2n subsets. There
are three primary alternatives:

• Lexicographic order – This means sorted order, and is often the most nat-
ural way to generate combinatorial objects. The eight subsets of {1, 2, 3}
in lexicographic order are {}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, and
{3}. But it is surprisingly difficult to generate subsets in lexicographic
order. Unless you have a compelling reason to do so, don’t bother.
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• Gray code – A particularly interesting subset sequence is minimum change
order, wherein adjacent subsets differ by the insertion or deletion of exactly
one element. Such an ordering, called a Gray code, appears in the output
picture above.

Generating subsets in Gray code order can be very fast, because there is
a nice recursive construction. Construct a Gray code of n − 1 elements
Gn−1. Reverse a second copy of Gn−1 and add n to each subset in this
copy. Then concatenate them together to create Gn. Study the output
example for clarification.

Since only one element changes between subsets, exhaustive search algo-
rithms built on Gray codes can be quite efficient. A set cover program
would only have to update the change in coverage by the addition or dele-
tion of one subset. See the implementation section below for Gray code
subset-generation programs.

• Binary counting – The simplest approach to subset-generation problems
is based on the observation that every subset S′ is defined by the items
of S that are in S′. We can represent S′ by a binary string of n bits,
where bit i is 1 iff the ith element of S is in S′. This defines a bijection
between the 2n binary strings of length n, and the 2n subsets of n items.
For n = 3, binary counting generates subsets in the following order: {},
{3}, {2}, {2,3}, {1}, {1,3}, {1,2}, {1,2,3}.
This binary representation is the key to solving all subset generation prob-
lems. To generate all subsets in order, simply count from 0 to 2n − 1. For
each integer, successively mask off each of the bits and compose a sub-
set of exactly the items corresponding to 1 bits. To generate the next or
previous subset, increment or decrement this integer by one. Unranking
a subset is exactly the masking procedure described above, while ranking
constructs the binary number with 1’s corresponding to items in S and
converts it to an integer.

To generate a random subset, you could try to generate a random integer
from 0 to 2n − 1 and unrank, although your random number generator
might round things off in a way certain subsets can never occur. Much
better is to flip a coin n times, with the ith flip deciding whether to
include element i in the subset. A coin flip can be robustly simulated by
generating a random real or large integer and testing whether it is bigger
or smaller than half its range.

Generation problems for two closely related problems arise often in practice:

• K-subsets – Instead of constructing all subsets, we may only be interested
in the subsets containing exactly k elements. There are

(
n
k

)
such subsets,

which is substantially less than 2n, particularly for small values of k.

The best way to construct all k-subsets is in lexicographic order. The
ranking function is based on the observation that there are

(
n−f
k−1

)
k-subsets



17.5. GENERATING SUBSETS 523

whose smallest element is f . Using this, we can determine the smallest
element in the mth k-subset of n items, and then proceed recursively for
subsequent elements of the subset. See the implementations below for
details.

• Strings – Generating all subsets is equivalent to generating all 2n strings of
true and false. The same basic techniques apply to generate all or random
strings on alphabets of size α, except there will be αn strings in total.

Implementations: C++ routines for generating an astonishing variety of com-
binatorial objects, including subsets and k-subsets (combinations), are available
in the combinatorics package at http://www.jjj.de/fxt/.

The Combinatorial Object Server (http://combos.org/) developed by Frank
Ruskey of the University of Victoria is a unique resource for generating permu-
tations, subsets, partitions, graphs, and other objects. An interactive interface
enables you to specify which objects you would like returned to you. Check it
out. Implementations in C, Pascal, and Java are available for certain types of
objects.

Nijenhuis and Wilf [NW78] is an excellent reference on generating combi-
natorial objects. They provide efficient Fortran implementations of algorithms
to construct random subsets, and to sequence subsets in Gray code and lexico-
graphic order. They also provide routines to construct random k-subsets and
sequence them in lexicographic order. See Section 22.1.9 (page 716) for details
on these programs.

Combinatorica [PS03] provides Mathematica implementations of algorithms
to construct random subsets and sequence subsets in Gray code, binary, and
lexicographic order. They also provide routines to construct random k-subsets
and strings, and sequence them lexicographically. See Section 22.1.8 (page 716)
for further information on Combinatorica.

Notes: The best reference on subset generation is Knuth [Knu11]. Good expositions
include [KS99, NW78, Rus03]. Wilf [Wil89] provides an update of [NW78], including
a thorough discussion of modern Gray code generation problems.

Gray codes were first developed [Gra53] to transmit digital information in a robust
manner over an analog channel. By assigning the code words in Gray code order, the
ith word differs only slightly from the (i+ 1)st, so minor fluctuations in analog signal
strength corrupt only a few bits. Gray codes have a particularly nice correspondence to
Hamiltonian cycles on the hypercube. Savage [Sav97] gives an excellent survey of Gray
codes (minimum change orderings) for a large class of combinatorial objects, including
subsets. An interesting new approach to k-subset generation based on rotating bit
strings was developed by Ruskey and Williams [RW09].

The popular puzzle Spinout®, manufactured by ThinkFun (formerly Binary Arts

Corporation), is solved using ideas from Gray codes.

Related problems: Generating permutations (see page 517), generating par-
titions (see page 524).

http://www.jjj.de/fxt/
http://combos.org/
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5 =

Input Output

17.6 Generating Partitions

Input description: An integer n.

Problem description: Generate (1) all, or (2) a random, or (3) the next
integer or set partitions of length n.

Discussion: Two different types of combinatorial objects are denoted by the
word “partition,” namely integer partitions and set partitions. They are quite
different beasts, but it is good to make both a part of your vocabulary:

• Integer partitions are multisets of non-zero integers that add up exactly
to n. For example, the seven distinct integer partitions of 5 are {5},
{4,1}, {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1}, and {1,1,1,1,1}. An interesting
application I encountered that required generating integer partitions was
a simulation of nuclear fission. When an atom is smashed, the nucleus is
broken into a set of smaller clusters. The sum of the particles in the set of
clusters must equal the original size n of the nucleus. As such, the integer
partitions of n represent all possible ways to smash an atom.

• Set partitions divide the elements {1, . . . , n} into non-empty subsets. There
are 15 distinct set partitions of n = 4: {1234}, {123,4}, {124,3}, {12,34},
{12,3,4}, {134,2}, {13,24}, {13,2,4}, {14,23}, {1,234}, {1,23,4}, {14,2,3},
{1,24,3}, {1,2,34}, and {1,2,3,4}. Algorithm problems returning set par-
titions as results include vertex/edge coloring and connected components.

Although the number of integer partitions grows exponentially with n, they
do so at a refreshingly slow rate. There are only 627 partitions of n = 20. It
is even possible to enumerate all integer partitions of n = 100, since there are
only 190,569,292 of them.
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Figure 17.1: The Ferrers diagram of a random partition of n =1,000.

The easiest way to generate integer partitions constructs them in lexico-
graphically decreasing order. The first partition is {n} itself. The general rule
is to subtract 1 from the smallest part that is > 1 and then collect all the 1’s
so as to match the new smallest part > 1. For example, the partition following
{4, 3, 3, 3, 1, 1, 1, 1} is {4, 3, 3, 2, 2, 2, 1}, because the five 1’s left after 3 − 1 = 2
becomes the smallest part are best packaged as 2,2,1. When the partition is
reduced to all 1’s, we have completed one pass through the partitions.

This algorithm is sufficiently intricate to program that you should use one of
the implementations below. In any case, test to make sure that you get exactly
627 distinct partitions for n = 20.

Generating integer partitions uniformly at random is a trickier business than
generating random permutations or subsets. This is because selecting the first
(i.e. largest) element of the partition has a dramatic effect on the number of
possible partitions that can be generated. Observe that there is only one parti-
tion of n whose largest part is 1, namely {1, 1, . . . , 1}. The number of partitions
of n with largest part at most k is given by the recurrence

Pn,k = Pn−k,k + Pn,k−1

because any such partition either contains a part of size k or it doesn’t. The
two boundary conditions are Pn,1 = 1 and Px−y,x = Px−y,x−y, for all y ≤ x.
The second condition looks funny but it is correct: note that P3,5 must be equal
to P3,3, because there are no partitions of 3 whose biggest part is 4 or 5. This
function can be used to select the largest part of your random partition with
the right probability and then, by proceeding recursively, eventually construct
the entire random partition. Implementations are cited below.

Random partitions tend to have large numbers of fairly small parts, best
visualized by a Ferrers diagram as in Figure 17.1. Each row of the diagram
corresponds to one part of the partition, sorted by size, with the magnitude of
each part represented by that many dots. Such diagrams provide a very good
way to think about integer partitions.
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One application arises in evaluating the publication record of academic re-
searchers. Research papers get cited by other research papers, and larger cita-
tion counts correspond to more important work. A scholar has an H-index of
h if they have written at least h papers each of which has received at least h
citations. The H-index corresponds to size of the central square defined by the
Ferrers diagram of an author’s citations.

Set partitions can be generated using techniques akin to integer partitions.
Each set partition is encoded as a restricted growth function, a1, . . . , an, where
a1 = 0 and ai ≤ 1 + max(a1, . . . , ai−1), for i = 2, . . . , n. Each distinct digit
identifies a subset, or block, of the partition, while the growth condition ensures
that the blocks are sorted into a canonical order based on the smallest element in
each block. For example, the restricted growth function 0, 1, 1, 2, 0, 3, 1 defines
the set partition {{1, 5}, {2, 3, 7}, {4}, {6}}.

Since there is a one-to-one equivalence between set partitions and restricted
growth functions, we can use lexicographic order on the restricted growth func-
tions to order the partitions. Indeed, the fifteen set partitions of {1, 2, 3, 4}
listed above are sequenced according to the lexicographic order of their restricted
growth function (check it out).

We can use a similar counting strategy to generate random set partitions

as we did with integer partitions. The Stirling numbers of the second kind {nk}
count the number of partitions of {1, . . . , n} with exactly k blocks. They are
computed using the recurrence

{nk} = {n − 1
k − 1}+ k{n − 1

k }

with the boundary conditions {nn} = {n1} = 1. The reader is referred to the

sections below for more details.

Implementations: C++ routines for generating an astonishing variety of com-
binatorial objects, including integer partitions and compositions, are available
in the combinatorics package at http://www.jjj.de/fxt/. Kreher and Stinson
[KS99] generate both integer and set partitions in lexicographic order, includ-
ing ranking/unranking functions. These implementations in C are available at
http://www.math.mtu.edu/~kreher/cages/Src.html.

The Combinatorial Object Server (http://combos.org/) developed by Frank
Ruskey of the University of Victoria is a unique resource for generating permu-
tations, subsets, partitions, graphs, and other objects. An interactive interface
enables you to specify which objects you would like returned to you. Check it
out. Implementations in C, Pascal, and Java are available for certain types of
objects.

Nijenhuis and Wilf [NW78] remains a valuable resource on generating combi-
natorial objects. They provide efficient Fortran implementations of algorithms
to construct random and sequential integer partitions, set partitions, composi-
tions, and Young tableaux. See Section 22.1.9 (page 716) for details.

Combinatorica [PS03] provides Mathematica implementations of algorithms
to construct random and sequential integer partitions, compositions, strings,

http://www.jjj.de/fxt/
http://www.math.mtu.edu/~kreher/cages/Src.html
http://combos.org/
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and Young tableaux, as well as to count and manipulate these objects. See
Section 22.1.8 (page 716).

Notes: The best reference on algorithms for generating both integer and set partitions
is Knuth [Knu11]. Good expositions include [KS99, NW78, Rus03, PS03]. Andrews
[And98] is the primary reference on integer partitions and related topics, with [AE04]
his more accessible introduction. Mansour [Man12] is a recent book on set partitions.

Integer and set partitions are both special cases of multiset partitions, or set par-
titions of not necessarily distinct numbers. In particular, the distinct set partitions
on the multiset {1, 1, 1, . . . , 1} correspond exactly to integer partitions. Multiset par-
titions are discussed in Knuth [Knu11].

The (long) history of combinatorial object generation is detailed by Knuth [Knu11].
Particularly interesting are connections between set partitions and a Japanese incense
burning game, and the naming of all 52 set partitions for n = 5 with distinct chapters
from the oldest novel known, The Tale of Genji.

The 2015 film The Man Who Knew Infinity, about the life of the great Indian
mathematician Ramanujan, revolved around his amazing formula to approximately
count the number of integer partitions.

Two related combinatorial objects are Young tableaux and integer compositions,
although they are less likely to emerge in applications. Generation algorithms for both
are presented in [NW78, Rus03, PS03].

Young tableaux are two-dimensional configurations of integers {1, . . . , n} where the
number of elements in each row is defined by an integer partition of n. Further, the
elements of each row and column are sorted in increasing order, and the rows are left-
justified. This notion of shape captures a wide variety of structures as special cases.
They have many interesting properties, including the existence of a bijection between
pairs of tableaux and permutations.

Compositions represent the possible assignments of n indistinguishable balls to

k distinguishable boxes. For example, we can place three balls into two boxes as

{3,0}, {2,1}, {1,2}, or {0,3}. Compositions are most easily constructed sequentially

in lexicographic order. To construct them randomly, pick a random (k − 1)-subset of

n+ k− 1 items using the algorithm of Section 17.5 (page 521), and count the number

of unselected items between the selected ones. For example, if k = 5 and n = 10, the

(5− 1) subset {1,3,7,14} of 1, . . . , (n+ k− 1) = 14 defines the composition {0,1,3,6,0},
since there are no items to the left of element 1 nor to the right of element 14.

Related problems: Generating permutations (see page 517), generating sub-
sets (see page 521).
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N = 4 
connected 
unlabeled

Input Output

17.7 Generating Graphs

Input description: Parameters describing the desired graph, including the
number of vertices n, and the number of edges m or edge probability p.

Problem description: Generate (1) all, or (2) a random, or (3) the next graph
satisfying the parameters.

Discussion: Graph generation typically arises when constructing test data
for programs. Perhaps you have two different programs that solve the same
problem, and you want to see which is faster, or make sure that they both
give the same (presumably right) answer. Another application is experimental
graph theory, verifying whether a particular property is true for all graphs. It is
much easier to believe the four-color theorem after you have demonstrated four
colorings for all planar graphs on fifteen vertices.

Many factors complicate the problem of generating graphs. First, make sure
you know exactly what type of graph you want to generate. Figure 7.2 on
page 198 illustrates several important properties of graphs. For purposes of
generation, the most important questions are:

• Do I want labeled or unlabeled graphs? – The issue here is whether the
names of the vertices matter in deciding whether two graphs are the same.
In generating labeled graphs, we seek to construct all possible labelings of
all possible graph topologies. When generating unlabeled graphs, we want
exactly one representative for each topology and ignore labelings. For ex-
ample, there are only two connected unlabeled graphs on three vertices—a
triangle and a simple path. However, there are four connected labeled
graphs on three vertices—one triangle and three 3-vertex paths, each dis-
tinguished by the name of their central vertex. In general, labeled graphs
are much easier to generate. However, you are likely to get swamped with
many isomorphic copies of the same few graphs.
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• Do I want directed or undirected graphs? – Most natural generation al-
gorithms generate undirected graphs. These can be turned into directed
graphs by flipping coins to orient the edges. Any graph can be oriented to
be directed and acyclic (i.e., a DAG) by randomly permuting the vertices
on a line and aiming each edge from left to right. With all such ideas,
careful thought must be given to decide whether you are generating all
graphs uniformly at random, and how much this matters to you.

You also must define what you mean by random. There are three primary
models of random graphs, all of which generate graphs according to different
probability distributions:

• Random edge generation – The Erdős–Rényi model is parameterized by
a given edge probability p. In this model, a coin is flipped for each pair
of vertices x and y to decide whether to add an edge (x, y). All labeled
graphs will be generated with equal probability when p = 1/2, although
smaller values of p can be used to construct sparser random graphs.

• Random edge selection – The second model is parameterized by the desired
number of edges m. It selects m distinct edges uniformly at random. One
way to do this is by drawing random (x, y)-pairs and creating an edge if
that pair is not already in the graph. An alternative approach constructs
the set of

(
n
2

)
possible edges and selects a random m-subset of them, as

discussed in Section 17.5 (page 521).

• Preferential attachment – Under a rich-get-richer model, newly created
edges are more likely to point to high-degree vertices than low-degree ones.
Consider new links (edges) being added to the graph of webpages. Under
any realistic web generation model, it is much more likely the next link
will point to Google than www.algorist.com.1 Selecting the next neighbor
with probability proportional to its degree yields graphs with power law
properties encountered in many real networks.

Which of these options best models your application? Probably none of
them. By definition, random graphs have very little concrete structure. But
graphs are used to model relationships, which are often highly structured. Ex-
periments conducted on random graphs, although interesting and easy to per-
form, often fail to capture the phenomenon that you are looking for.

An alternative to random graphs is “organic” graphs—graphs that reflect
the relationships among real-world objects. Many raw sources of relationships
are available on the web that can be turned into interesting organic graphs with
a little programming and imagination. Consider the graph defined by a set of
webpages, with any hyperlink between two pages defining an edge. Or, what
about the graph implicit in railroad, subway, or airline networks, with vertices
being stations and edges between two stations connected by direct service?

Two classes of graphs have particularly interesting generation algorithms:

1Please link to us from your homepage to correct this travesty.

http://www.algorist.com
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• Trees – Prüfer codes provide a simple way to rank and unrank labeled
trees and thus solve all the standard generation problems (see Section
17.4 (page 517)). There are exactly nn−2 labeled trees on n vertices, and
exactly that many strings of length n− 2 on the alphabet {1, 2, . . . , n}.
The key to Prüfer’s bijection is the observation that every tree has at least
two vertices of degree 1. Thus, in any labeled tree the vertex v incident
on the leaf with lowest label is well defined. We take v to be S1, the first
character in the code. We then delete the associated leaf and repeat the
procedure until only two vertices are left. This defines a unique code S for
any given labeled tree that can be used to rank the tree. To go from code
to tree, observe that the lowest-labeled leaf will be the smallest integer
missing from S, which when paired with S1 determines the first edge of
the tree. The entire tree follows by induction.

Algorithms for efficiently generating unlabeled rooted trees are discussed
in the Implementations section.

• Fixed degree sequence graphs – The degree sequence of a graph G is an
integer partition p = (p1, . . . , pn), where pi is the degree of the ith highest-
degree vertex of G. Each edge contributes to the degree of two vertices,
so p is an integer partition of 2m, where m is the number of edges.

Not all partitions correspond to degree sequences of graphs. However,
there is a recursive procedure that constructs a graph with a given degree
sequence if one exists. If a partition is realizable, the highest-degree ver-
tex v1 can be connected to the next p1 highest-degree vertices in G, or
the vertices corresponding to parts p2, . . . , pp1+1. Deleting p1 and decre-
menting p2, . . . , pp1+1 yields a smaller partition to recur on. The partition
will be realized if we terminate without ever creating negative numbers.
Since we always connect the highest-degree vertex to other high-degree
vertices, it is important to reorder the parts of the partition by size after
each iteration.

Although this construction is deterministic, a semi-random collection of
graphs realizing this degree sequence can be generated from G using edge-
flipping operations. Suppose edges (x, y) and (w, z) are in G, but (x,w)
and (y, z) are not. Exchanging these pairs of edges creates a different (not
necessarily connected) graph without changing the degrees of any vertex.

Implementations: The Stanford GraphBase [Knu94] is perhaps most use-
ful as an instance generator for constructing graphs to serve as test data for
other programs. Because of its machine-independent random-number genera-
tors, it provides a way to construct random graphs such that they can be re-
constructed elsewhere, thus making them perfect for experimental comparisons
of algorithms. See Section 22.1.7 (page 715) for additional information.

Resources for real-world networks include the Network Data Repository
(http://networkrepository.com/) and the Stanford Large Network Dataset
Collection (https://snap.stanford.edu/data/). Check them out.

http://networkrepository.com/
https://snap.stanford.edu/data/
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Combinatorica [PS03] provides Mathematica generators for such graphs as
stars, wheels, complete graphs, random graphs and trees, and graphs with a
given degree sequence. Further, it includes operations to construct more inter-
esting graphs from these, including join, product, and line graph.

The Combinatorial Object Server (http://combos.org/) developed by Frank
Ruskey of the University of Victoria provides routines for generating both free
and rooted trees.

The graph isomorphism testing program Nauty (see Section 19.9 (page 610))
includes a suite of programs for generating non-isomorphic graphs, plus special
generators for bipartite graphs, digraphs, and multigraphs. They are available at
http://users.cecs.anu.edu.au/~bdm/nauty/. Brendan McKay also collects
exhaustive catalogs of several families of graphs and trees at http://cs.anu.

edu.au/~bdm/data/. The House of Graphs https://hog.grinvin.org/ is a
carefully curated set of graphs with interesting properties, designed to break
conjectures [BCGM13].

Nijenhuis and Wilf [NW78] provide efficient Fortran routines to enumerate
all labeled trees via Prüfer codes and to construct random unlabeled rooted
trees. See Section 22.1.9 (page 716). Kreher and Stinson [KS99] generate la-
beled trees in C, with implementations available at http://www.math.mtu.edu/

~kreher/cages/Src.html.

Notes: Extensive literature exists on generating graphs uniformly at random. Sur-
veys include [Gol93, Tin90]. Fast random graph generation on GPUs is demonstrated
in [NLKB11]. Closely related to the problem of generating classes of graphs is counting
them. Harary and Palmer [HP73] survey results in graphical enumeration.

Knuth [Knu11] is the best recent reference on generating trees. The bijection
between n− 2 strings and labeled trees is due to Prüfer [Prü18].

Random graph theory is concerned with the properties of random graphs. Thresh-
old laws in random graph theory define the edge density at which properties such as
connectedness become highly likely to occur. Expositions on random graph theory
include [Bol01, FK15, JLR00].

The preferential attachment model of graphical evolution has emerged relatively
recently in the study of networks. See [Bar03, Wat04] for introductions to this exciting
field. Methods for generating graphs with prescribed degree sequences are presented
in [BD11, VL05].

An integer partition is graphic if there exists a simple graph with that degree
sequence. Erdős and Gallai [EG60] proved that a degree sequence is graphic if and
only if the sequence observes the following condition for each integer r < n:

r∑

i=1

di ≤ r(r − 1) +

n∑

i=r+1

min(r, di)

Related problems: Generating permutations (see page 517), graph isomor-
phism (see page 610).

http://combos.org/
http://users.cecs.anu.edu.au/~bdm/nauty/
http://cs.anu.edu.au/~bdm/data/
http://cs.anu.edu.au/~bdm/data/
https://hog.grinvin.org/
http://www.math.mtu.edu/~kreher/cages/Src.html
http://www.math.mtu.edu/~kreher/cages/Src.html
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December 21, 2012? 
(Gregorian)

5773 Teveth 8 (Hebrew) 
1434 Safar 7 (Islamic) 
1934 Agrahayana 30 (Indian Civil) 
13.0.0.0 (Mayan Long Count)

Input Output

17.8 Calendrical Calculations

Input description: A particular calendar date d: month, day, and year.

Problem description: Which day of the week did d fall on according to the
given calendar system?

Discussion: Business applications often need to perform calendrical calcula-
tions. Perhaps we want to display a calendar of a specified month and year.
Maybe we need to compute what day of the week or year some event occurs,
such as figuring out on which date a 180-day futures contract comes due. The
importance of correct calendrical calculations was perhaps best revealed by the
furor over the “Millennium bug”—the year 2000 crisis in legacy programs that
allocated only two digits for storing the year.

More complicated questions arise in international applications, because dif-
ferent nations and ethnic groups use different calendar systems. Some, like the
Gregorian calendar used in most of the world, are based on the Sun, while oth-
ers, like the Hebrew calendar, are lunar calendars. How would you tell today’s
date according to the Chinese or Islamic calendars?

Calendrical calculations differ from other problems in this book because
calendars are historical objects, not mathematical ones. The algorithmic issues
here revolve around the rules of the calendrical system and implementing them
correctly, rather than designing efficient computational shortcuts.

The basic approach underlying calendar systems is to start from a particular
reference date (called the epoch) and count up from there. The particular rules
for wrapping the count into months and years is what distinguishes one system
from another. Implementing a calendar requires two functions: (1) given a date,
return the integer number of days that have elapsed since the epoch, and (2)
given an integer n, return the calendar date exactly n days from epoch. These
are analogous to the ranking and unranking rules for combinatorial objects such
as permutations (see Section 17.4 (page 517)).

That the solar year is not an integer number of days long is the major source
of complications in calendar systems. To keep a calendar’s dates in sync with
the seasons, leap days must be added at both regular and irregular intervals.
One solar year is 365 days and 5:49:12 hours long, so adding a leap day every
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four years leaves an extra 10 minutes and 48 seconds unaccounted for every
year.

The original Julian calendar (from Julius Caesar) ignored these extra min-
utes, which had accumulated to ten days by 1582. Pope Gregory XIII then
proposed the Gregorian calendar used today, by deleting these ten days and
eliminating leap days in years that are multiples of 100 but not 400. Suppos-
edly, riots ensued because the masses feared their lives were being shortened by
ten days. Outside the Catholic church, resistance to change slowed the reforms.
The deletion of days did not occur in England and America until September
1752, and not until 1927 in Turkey.

The rules for most calendrical systems are sufficiently complicated and point-
less that you should lift code from a reliable place rather than attempt to write
your own. I identify suitable implementations below.

There are a variety of “impress your friends” algorithms that enable you to
compute in your head on what day of the week a particular date occurred. Such
algorithms often fail to work reliably outside the given century, and certainly
should be avoided for computer implementation.

Implementations: Readily available calendar libraries exist in both C++ and
Java. The Boost time-data library provides a reliable implementation of the
Gregorian calendar in C++. See https://www.boost.org/doc/libs/1_70_0/
doc/html/date_time.html. The class GregorianCalendar derived from the ab-
stract superclass Calendar in the package java.util implements the Gregorian
calendar in Java. Either of these will likely suffice for most applications.

Dershowitz and Reingold provide a uniform algorithmic presentation [RD18]
for a variety of different calendar systems, including the Gregorian, ISO, Chi-
nese, Hindu, Islamic, and Hebrew calendars, as well as other calendars of histor-
ical interest. Calendrical is an implementation of these calendars in Common
Lisp, Java, and Mathematica, with routines to convert dates between calendars,
day of the week computations, and the determination of secular and religious
holidays. Calendrical is likely to be the most comprehensive and reliable calen-
drical routines available. See their website at http://calendarists.com.

C and Java implementations of international calendars of unknown reliability
are readily available at GitHub (https://github.com/). Search for “Gregorian
calendar” to avoid the mass of datebook implementations.

Notes: A comprehensive discussion of calendrical computation algorithms appear in
the papers of Dershowitz and Reingold [DR90, RDC93], which have been superseded
by their book [RD18] that outlines algorithms for no less than twenty-five international
and historical calendars. Three hundred years of calendars representing tabulations
for all dates from 1900 to 2200 appear in [DR02].

Related problems: Arbitrary-precision arithmetic (see page 493), generating
permutations (see page 517).

https://www.boost.org/doc/libs/1_70_0/doc/html/date_time.html
https://www.boost.org/doc/libs/1_70_0/doc/html/date_time.html
http://calendarists.com
https://github.com/
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17.9 Job Scheduling

Input description: A directed acyclic graph G = (V,E), with vertices repre-
senting jobs, and edge (u, v) implies task u must be done before task v.

Problem description: Which schedule of tasks completes the job using the
minimum amount of time or processors?

Discussion: Devising the best schedule to satisfy a set of constraints is funda-
mental to many applications. Mapping tasks to processors is a critical aspect
of any parallel-processing system. Poor scheduling can leave many machines
sitting idle while one bottleneck task is performed. Assigning people-to-jobs,
meetings-to-rooms, or courses-to-exam periods are all scheduling problems.

Scheduling problems differ widely in the nature of the constraints that must
be satisfied and the type of schedule desired. Several other catalog problems
have connections to variants of scheduling:

• Topological sort constructs a schedule consistent with precedence con-
straints in a DAG. See Section 18.2 (page 546).

• Bipartite matching assigns jobs to workers with appropriate skills for them.
See Section 18.6 (page 562).

• Vertex/edge coloring assigns jobs to time slots such that no two interfering
jobs are assigned the same slot. See Sections 19.7 and 19.8.

• Traveling salesman identifies the most efficient delivery route to visit a
given set of locations. See Section 19.4 (page 594).

• Eulerian cycle defines the most efficient route for a snowplow or mailman
to traverse a given set of edges. See Section 18.7 (page 565).
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Here the focus is on precedence-constrained scheduling problems for directed
acyclic graphs. Suppose you have broken a big job into a number of smaller
tasks. For each task, you know how long it should take to finish. Further, for
each pair of tasks A and B you know whether it is essential that A be completed
before B. The fewer constraints we must enforce, the tighter our schedule can
be. These constraints must define a directed acyclic graph—acyclic because
a cycle in the precedence constraints represents a Catch-22 situation that can
never be resolved.

Several problems on these task networks are of interest:

• Critical path – The longest path from the start vertex to the completion
vertex defines the critical path. This is important to know, for the only
conceivable way to shorten the minimum possible completion time is to
reduce the length of a task on each critical path. The critical (longest)
path in a DAG can be determined in O(n+m) time using dynamic pro-
gramming.

• Minimum completion time – What is the fastest we can get this job com-
pleted while respecting precedence constraints, assuming that we have an
unlimited number of workers? Were there no precedence constraints, each
task could be worked on independently by its own worker, and the to-
tal time would be that of the longest single task. Were there such strict
precedence constraints that each task must follow the completion of its
immediate predecessor, the minimum completion time would be obtained
by summing up the times for each task.

The minimum completion time for a DAG can be computed in O(n+m)
time, because it is defined by the critical path. To get such a schedule, con-
sider the jobs in topological order, and start each job on a new processor
the moment its latest prerequisite completes.

• What is the tradeoff between number of workers and completion time? –
What we really are interested in is how best to complete the schedule
with our given number of workers. Unfortunately, this and most similar
problems are NP-complete.

Real scheduling applications often present constraints that may be difficult
or impossible to model using these techniques, such as keeping Joe and Bob
apart so they won’t kill each other. There are two reasonable ways to deal with
such problems. First, we can ignore such esoteric constraints until the end, and
then modify the schedule to account for them. Alternately, you can formulate
your scheduling problem in all its complexity via linear-integer programming
(see Section 16.6 (page 482)). I recommend first trying something simple to see
how it works before ramping up the complexity.

Another fundamental scheduling problem takes a set of jobs without prece-
dence constraints and assigns them to identical machines to minimize the total
elapsed time. Consider a print shop with k copying machines and a stack of jobs
to finish today. Such tasks are called job-shop scheduling, and can be modeled
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as bin packing (see Section 20.9 (page 652)). Each job is associated with the
time it will take to complete, and each machine is represented by a bin with
space equal to the number of hours in a day.

More sophisticated variations of job-shop scheduling provide each task with
allowable start and required finishing times. Effective heuristics are known,
based on sorting the tasks by size and finishing time. We refer the reader
to the references for more information. Note that these scheduling problems
become hard only when the tasks cannot be broken up onto multiple machines
or interrupted (preempted) and then rescheduled. You should exploit these
degrees of freedom if your application allows them.

Implementations: JOBSHOP is a collection of C programs for job-shop schedul-
ing created for a computational study by Applegate and Cook [AC91]. They
are available at http://www.math.uwaterloo.ca/~bico//jobshop/.

UniTime (https://www.unitime.org/ is a comprehensive educational schedul-
ing system that supports developing course/exam timetables, and scheduling
students to individual classes. It is distributed under an open source license.

LEKIN is a flexible job-shop scheduling system designed for educational
use [Pin16]. It supports single machine, parallel machines, flow-shop, flexible
flow-shop, job-shop, and flexible job-shop scheduling, and is available at http:
//www.stern.nyu.edu/om/software/lekin.

For commercial scheduling applications, ILOG CP has been reflective of
the state-of-the-art for over 20 years [LRSV18]. See https://www.ibm.com/

analytics/cplex-cp-optimizer. A restricted free version is available.

Notes: The literature on scheduling algorithms is vast. Brucker [Bru07] and Pinedo
[Pin16] provide comprehensive overviews of the field. The Handbook of Scheduling
[LA04] provides a collection of surveys on all aspects of scheduling. Real-time schedul-
ing for computing systems is treated by Buttazzo [But11].

A well-defined taxonomy covers thousands of job-shop scheduling variants, which
classifies each problem α|β|γ according to (α) the machine environment, (β) details
of processing characteristics and constraints, and (γ) the objectives to be minimized.
Surveys of results include [Bru07, CPW98, LLK83, Pin16].

Gantt charts provide visual representations of job-shop scheduling solutions, where
the x-axis represents time and rows represent distinct machines. The output figure
above illustrates a Gantt chart, where each scheduled job is represented as a horizontal
block identifying its start-time, duration, and server. Project precedence-constrained
scheduling techniques are often called PERT/CPM, for Program Evaluation and Re-
view Technique/Critical Path Method. Gantt charts and PERT/CPM appear in most
textbooks on operations research, including [Pin16].

Timetabling is a term often used in discussion of classroom and related scheduling
problems. PATAT (for Practice and Theory of Automated Timetabling) is a bi-annual
conference reporting new results in the field. See https://patatconference.org/.

Related problems: Topological sorting (see page 546), matching (see page
562), vertex coloring (see page 604), edge coloring (see page 608), bin packing
(see page 652).

http://www.math.uwaterloo.ca/~bico//jobshop/
https://www.unitime.org/
http://www.stern.nyu.edu/om/software/lekin
http://www.stern.nyu.edu/om/software/lekin
https://www.ibm.com/analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/cplex-cp-optimizer
https://patatconference.org/
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17.10 Satisfiability

Input description: A set of clauses in conjunctive normal form.

Problem description: Is there a truth assignment to the Boolean variables
such that every clause is simultaneously satisfied?

Discussion: Satisfiability (SAT) arises whenever we seek a configuration or
object that must be consistent with (i.e. satisfy) a set of logical constraints.
A representative application is in verifying that a given hardware or software
system design works correctly on all inputs. Suppose that logical formula S(X)
denotes the specified result on input variables X = x1, . . . , xn, while a different
formula C(X) denotes the Boolean logic of a circuit for computing S(X). This
circuit is correct unless there exists an X̄ such that S(X̄) �= C(X̄).

Satisfiability is the original NP-complete problem. Despite its applications
to constraint satisfaction, logic, and automatic theorem proving, it is most im-
portant theoretically as the root problem from which all other NP-completeness
proofs originate. So much engineering has gone into today’s best SAT solvers
that they represent a reasonable starting point whenever one needs to solve an
NP-complete problem exactly. That said, employing heuristics that give good
but non-optimal solutions is usually the better approach for dealing with NP-
complete problems.

Issues in satisfiability testing include:

• Is your formula the “AND of ORs” or the “OR of ANDs”? – In sat-
isfiability, the constraints are specified as a logical formula. There are
two primary ways of expressing logical formulas—conjunctive normal form
(CNF) and disjunctive normal form (DNF). In CNF formulas, we must
satisfy all clauses (“AND”), where each clause is constructed by or-ing
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literals (terms of the form vi or v̄i, the latter denoting “not vi”), like

(v1 or v̄2) and (v2 or v3)

With DNF formulas, it suffices to satisfy any single clause, because they
will be or-ed together. The formula above can be written in DNF as

(v̄1 and v̄2 and v3) or (v̄1 and v2 and v̄3) or

(v̄1 and v2 and v3) or (v1 and v̄2 and v3)

Solving DNF-satisfiability is trivial, because every DNF formula can be
satisfied unless all clauses contain both a literal and its complement (nega-
tion). But CNF-satisfiability is NP-complete. This seems paradoxical, be-
cause we can use De Morgan’s laws to convert CNF formula into equivalent
DNF formula, and vice versa. The catch is that an exponential number of
terms might be required for the translation, so that the translation cannot
be constructed in polynomial time.

• How big are your clauses? – k-SAT is a special case of satisfiability, where
each clause contains at most k literals. The problem of 1-SAT is trivial,
since we must set true every literal appearing in any clause. The problem
of 2-SAT is not so trivial, but can still be solved in linear time. This is
interesting, because certain problems can be modeled as 2-SAT using a
little cleverness. The good times end once clauses contain three literals
each (i.e., 3-SAT), for 3-SAT is NP-complete.

• Does it suffice to satisfy most of the clauses? – If you are determined to
solve a SAT problem exactly, there is not much you can do except back-
tracking algorithms like the Davis–Putnam procedure. In the worst case
2m truth assignments must be tested, but fortunately there are many ways
to prune the search. Although satisfiability is NP-complete, how hard it
is in practice depends upon the particular problem instance. Naturally
defined “random” instances are often surprisingly easy to solve, and in
fact it is non-trivial to generate instances that are truly hard.

Still, we might benefit by relaxing the problem so that the goal becomes
satisfying as many clauses as possible. Optimization techniques such as
simulated annealing can then be put to work to refine random or heuristic
solutions. Indeed, any random truth assignment to the variables will sat-
isfy each k-SAT clause with probability 1− (1/2)k, so our first attempt is
likely to satisfy most of the clauses. Finishing off the job is the hard part.
Finding an assignment that satisfies the maximum number of clauses is
NP-complete even for non-satisfiable instances.

When faced with a problem of unknown complexity, proving it NP-complete
can be an important first step. If you think your problem might be hard, skim
through Garey and Johnson [GJ79] looking for your problem. If you don’t find
it, I recommend that you put the book away and try to prove hardness from
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first principles, using the basic problems of 3-SAT, vertex cover, independent
set, integer partition, clique, and Hamiltonian cycle. Chapter 11 focuses on
strategies for proving hardness.

Implementations: Recent years have seen tremendous progress in the per-
formance of satisfiability solvers. An annual SAT competition identifies the
top performing solvers in each of several categories of instances. The source
code for all these solvers and more are available from the competition webpage
(http://www.satcompetition.org/).

SAT Live! (http://www.satlive.org/) is the most up-to-date source for
papers, programs, and test sets for satisfiability and related logic optimization
problems.

Notes: The most comprehensive overview of satisfiability testing in practice is Kautz,
et al. [KSBD07]. The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a
backtracking algorithm introduced in 1962 for solving satisfiability problems. Local
search techniques work better on certain classes of problems that are difficult for DPLL
solvers. See [BHvM09, GKSS08, KS07] for surveys of the field of satisfiability testing.

The first part of the second part of Knuth’s Volume 4 is on satisfiability algorithms,
published independently as a fascicle [Knu15]. He demonstrates a variety of fascinat-
ing applications of satisfiability (including the game of life) and careful treatment of
backtracking-based search procedures for solving them.

An algorithm for solving 3-SAT in worst-case O∗(1.4802n) appears in [DGH+02].
Efficient (but non-polynomial) algorithms for NP-complete problems are surveyed in
[Woe03].

The primary reference on NP-completeness is [GJ79], featuring a list of roughly 400
NP-complete problems. The book remains an extremely useful reference; it is perhaps
the book I reach for most often. Good expositions of Cook’s theorem [Coo71], where
satisfiability is proven hard, include [CLRS09, GJ79, KT06]. The importance of Cook’s
result became clear in Karp’s paper [Kar72], showing the hardness of more than twenty
different combinatorial problems.

A linear-time algorithm for 2-SAT appears in [APT79]. See [WW95] for an inter-
esting application of 2-SAT to map labeling. The best heuristic known approximates
maximum 2-SAT to within a factor of 1.0741 [FG95].

Related problems: Constrained optimization (see page 478), traveling sales-
man problem (see page 594).

http://www.satcompetition.org/
http://www.satlive.org/


Chapter 18

Graph Problems:
Polynomial Time

Algorithmic graph problems constitute roughly one third of the material in
this catalog. Indeed, several problems from other sections could have been
formulated equally well in terms of graphs, such as bandwidth minimization and
finite-state automata optimization. Finding the right name of a given graph-
theoretic invariant or problem is one of the primary skills of a good algorist.
Indeed, the catalog will tell you exactly how to proceed, just as soon as you
figure out your particular problem’s name.

In this section, we will deal with problems that have efficient algorithms
to solve them, with running times that grow polynomially with the size of the
graph. There is often more than one way to model a given application, so it
makes sense to look here before proceeding on to the harder formulations.

Graphs are often best understood as drawings. Many interesting graph prop-
erties follow from the nature of a type of drawing, such as planar graphs. We
also discuss algorithms for drawing graphs, trees, and planar graphs.

Many advanced graph algorithms are difficult to program, but good imple-
mentations are available if you know where to look. The best general sources
include LEDA [MN99] and the Boost Graph Library [SLL02]. However, better
special-purpose codes exist for many problems.

See Atallah [AB17], Thulasiraman [TABN16], and van Leeuwen [vL90a] for
up-to-date surveys on all areas of graph algorithms. Books of interest include:

• Sedgewick [SW11] – The graph algorithms volume of this algorithms text
provides a comprehensive but gentle introduction to the field.

• Ahuja, Magnanti, and Orlin [AMO93] – While purporting to be a book on
network flows, it covers the gamut of graph algorithms with an emphasis
on operations research. Strongly recommended.

• Even [Eve11] – A respected advanced text on graph algorithms, with a
particularly thorough treatment of planarity-testing algorithms.

541© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_18

Springer Nature Switzerland AG 2020
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18.1 Connected Components

Input description: A directed or undirected graph G.

Problem description: Identify the different pieces or components of G, where
vertices x and y are in different components when no path exists from x to y in
G.

Discussion: The connected components of a graph represent in a gross sense
the separate pieces of the graph. Two vertices are in the same component of G
if and only if there exists some path between them.

Finding connected components is at the heart of many important graph
applications. For example, consider the challenge of identifying natural clusters
among a set of items. We represent each item by a vertex, and add an edge
between each pair of items deemed “similar.” The connected components of
this graph correspond to the different classes of items.

Testing whether a graph is connected is an essential preprocessing step for
every graph algorithm. Subtle, hard-to-detect bugs often result when an algo-
rithm is run only on one component of a disconnected graph. Connectivity tests
are so quick and easy that you should always verify the integrity of your input
graph, even when you know that it just has to be connected.

Testing the connectivity of any undirected graph is a job for either depth-
first or breadth-first search. Which one you choose doesn’t really matter. Both
traversals initialize a component-number field for each vertex to 0, and then
start the search for component 1 from vertex v1. As each vertex is discovered,
the value of this field is set to the current component number. After the initial
traversal ends, the component number is incremented, and the search begins
again from the first vertex whose component-number remains 0. Properly im-
plemented using adjacency lists (as is done in Section 7.7.1 (page 218)) this runs
in O(n+m) time.
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Other notions of connectivity also arise in practice:

• What if my graph is directed? – There are two distinct notions of connected
components for directed graphs. A directed graph is strongly connected
if there is a directed path between every pair of vertices. A directed
graph is weakly connected if it would be connected when ignoring the
direction of edges. This distinction can be made clear by considering
the network of one- and two-way streets in a given city. The network is
strongly connected if it is possible to drive legally between any two places
in town. The network is weakly connected when it is possible to legally or
illegally drive between any pair of positions. The network is disconnected
if there is no possible way to drive from some a to some b.

Weakly and strongly connected components define unique partitions of the
vertices. The output figure above shows a directed graph consisting of two
weakly connected components, and five strongly connected components
(also called blocks of G).

Testing whether a directed graph is weakly connected can be done easily in
linear time. Simply turn all edges of G into undirected edges and use the
DFS-based connected components algorithm described previously. Tests
for strong connectivity are somewhat more complicated. The simplest
linear-time algorithm performs a depth-first search from any vertex v to
demonstrate that the entire graph is reachable from v. We then construct
a transpose graph G′ where we reverse all the edges of G. A traversal
of G′ from v suffices to determine whether all vertices of G can reach v.
Graph G is strongly connected iff all vertices can reach, and are reachable,
from v.

All the strongly connected components of G can be extracted in linear time
using more sophisticated DFS-based algorithms. A generalization of the
above “two-DFS” approach is deceptively easy to program, but somewhat
subtle to understand exactly why it works:

1. Perform a DFS, starting from an arbitrary vertex in G, and labeling
each vertex in order of its completion (not discovery).

2. Reverse the direction of each edge in G, yielding G′.
3. Perform a DFS of G′, starting from the highest numbered vertex in

G. If this search does not completely traverse G′, perform a new
search starting from the highest-numbered unvisited vertex.

4. Each DFS tree created in Step 3 defines a strongly connected com-
ponent.

My implementation of this two-pass algorithm appears in Section 7.10.2
(page 232). In either case, it is probably easier to start from an existing
implementation than a textbook description.

• What is the weakest point in my graph/network? – A chain is only as
strong as its weakest link. Losing one or more internal links causes a
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chain to become disconnected. The connectivity of graphs measures the
strength of a graph—how many edges or vertices must be removed to
disconnect it. Connectivity is an essential invariant for network design
and other structural problems.

Algorithmic connectivity problems are discussed in Section 18.8 (page
568). In particular, biconnected components are pieces of the graph that
result from cutting the edges incident on a single vertex. All biconnected
components can be found in linear time using DFS. See Section 7.9.2 (page
225) for an implementation of this algorithm. Vertices whose deletion
disconnects the graph belong to more than one biconnected component,
whose edges are uniquely partitioned among the components.

• Is the graph a tree? How can I find a cycle if one exists? – The problem
of cycle identification often arises, particularly with respect to directed
graphs. For example, testing if a sequence of conditions can deadlock
often reduces to cycle detection. If I am waiting for Fred, and Fred is
waiting for Mary, and Mary is waiting for me, there is a cycle and we are
all deadlocked.

For undirected graphs, the analogous problem is tree identification. A
tree is, by definition, an undirected, connected graph without any cycles.
Depth-first search can be used to test whether a graph is connected. If
the graph is connected and has n− 1 edges for n vertices, it is a tree.

Depth-first search can be used to find cycles in both directed and undi-
rected graphs. Whenever we encounter a back edge in our DFS—that is,
an edge to an ancestor vertex in the DFS tree—the back edge and the
tree together define a directed cycle. Directed graphs without cycles are
called DAGs (directed acyclic graphs). Topological sorting (see Section
18.2 (page 546)) is the fundamental operation on DAGs.

Implementations: The graph data structure implementations of Section 15.4
(page 452) all include implementations of BFS/DFS, and hence connectiv-
ity testing to at least some extent. The C++ Boost Graph Library [SLL02]
(http://www.boost.org/libs/graph/doc) provides implementations of con-
nected components and strongly connected components. LEDA (see Section
22.1.1 (page 713)) provides these plus biconnected and triconnected compo-
nents, breadth-first and depth-first search, connected components and strongly
connected components, all in C++.

With respect to Java, JUNG (http://jung.sourceforge.net/) also pro-
vides biconnected component algorithms, while JGraphT (https://jgrapht.
org/) does strongly connected components.

My (biased) preference for C language implementations of all basic graph
connectivity algorithms, including strongly connected components and bicon-
nected components, is the library associated with this book. See Section 22.1.9
(page 716) for details.

http://www.boost.org/libs/graph/doc
http://jung.sourceforge.net/
https://jgrapht.org/
https://jgrapht.org/
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Notes: Depth-first search was first used to find paths out of mazes, and dates back
to the nineteenth century [Luc91, Tar95]. Breadth-first search was first reported to
find the shortest path by Moore in 1957 [Moo59].

Hopcroft and Tarjan [HT73b, Tar72] established depth-first search as a fundamen-
tal technique for efficient graph algorithms. Expositions on depth-first and breadth-
first search appear in every book discussing graph algorithms, with [CLRS09] perhaps
the most thorough description available.

The first linear-time algorithm for strongly connected components is due to Tarjan
[Tar72], with expositions including [BvG99, Eve11, Man89]. Another algorithm—
simpler to program and slicker—for finding strongly connected components is due to
Sharir and Kosaraju. Good expositions of this algorithm appear in [AHU83, CLRS09].
Cheriyan and Mehlhorn [CM96] propose improved algorithms for certain problems on
dense graphs, including strongly connected components.

DFS is hard to parallelize. Parallel algorithms for connected components on Map-
Reduce and other models of computation are presented in [KLM+14, SRM14].

Random graphs exhibit interesting connectivity properties, such that once the

number of edges exceeds a particular (surprisingly small) threshold, the graph is likely

to contain one giant connected component and a small number of tiny components. For

example, a random graph with only n ln 2 = 0.693n edges likely contains a connected

component with n/2 vertices. By analogy, any large social network like Facebook

presumably contains one large component with almost everyone except hermits and

new users. This phenomena drives much of the notation that there are “six degrees of

separation” between any two people in the world. The birth of the large component

is covered in every book on the theory of random graphs, including [Bol01, JLR00].

Related problems: Edge-vertex connectivity (see page 568), shortest path
(see page 554).
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18.2 Topological Sorting

Input description: A directed acyclic graph G = (V,E), also known as a
partial order or poset.

Problem description: Find a linear ordering of the vertices of V such that
for each edge (i, j) ∈ E, vertex i is to the left of vertex j.

Discussion: Topological sort arises as a subproblem in most algorithms on
directed acyclic graphs. Topological sorting orders the vertices and edges of a
DAG in a simple and consistent way, and hence plays the same role for DAGs
that depth-first search does for general graphs.

Topological sort can be used to schedule jobs under precedence constraints.
Suppose we have a set of tasks to do, but certain tasks must be performed before
other ones. These precedence constraints form a directed acyclic graph, and any
topological sort (also known as a linear extension) defines an order to perform
these tasks such that each is done only after all of its constraints are satisfied.

Three important facts about topological sorting are:

1. Only DAGs can be topologically sorted, because any directed cycle pro-
vides an inherent contradiction to a linear order of tasks.

2. Every DAG can be topologically sorted, so there always is at least one
schedule for any reasonable set of precedence constraints among jobs.

3. DAGs can usually be topologically sorted in many different ways, espe-
cially when there are few constraints. Consider n unconstrained jobs. All
of the n! permutations of these jobs constitute valid topological orderings.

The conceptually simplest linear-time algorithm for topological sorting per-
forms a depth-first search of the DAG to identify the complete set of source
vertices, meaning vertices of in-degree zero. At least one such source must exist
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in any DAG. Source vertices can appear at the front of any schedule without vi-
olating any constraints. Deleting all the outgoing edges of these source vertices
will create new source vertices, which can then sit comfortably to the immedi-
ate right of the first set. We repeat until all vertices are accounted for. With
a modest amount of care using the right data structures (adjacency lists and
queues), this runs in O(n+m) time.

An alternate algorithm makes use of the observation that ordering the ver-
tices in terms of decreasing DFS finishing time yields a linear extension. An
implementation of this algorithm with an argument for correctness is given in
Section 7.10.1 (page 231).

Two special considerations with respect to topological sorting are:

• What if I need all the linear extensions, instead of just one of them? –
Sometimes we need to construct all linear extensions of a DAG (say) to
identify the best schedule according to a secondary criteria that satisfies all
precedence constraints. Beware, because the number of linear extensions
typically grows exponentially in the size of the DAG. Even the problem
of counting the number of linear extensions is NP-hard.

Algorithms for listing all linear extensions in a DAG are based on back-
tracking. They build all possible orderings from left to right, where each
one of the in-degree zero vertices is a candidate for the next vertex. The
outgoing edges from the selected vertex are deleted before moving on. An
optimal algorithm for listing (or counting) linear extensions is discussed
below.

Algorithms to construct random linear extensions start from an arbitrary
linear extension. We then repeatedly sample pairs of vertices. These
are exchanged if the resulting permutation remains a topological order-
ing. This results in a uniformly selected linear extension if given enough
random samples. See the Notes section for details.

• What if your graph is not acyclic? – When a set of constraints contains
inherent contradictions, the natural problem becomes removing the small-
est set of items that eliminates all inconsistencies. The sets of offending
jobs (vertices) or constraints (edges) whose deletion leaves a DAG are
known as a feedback vertex set or feedback arc set, respectively. They are
discussed in Section 19.11 (page 618). Unfortunately, both problems are
NP-complete.

Because the DFS-based topological sorting algorithm gets stuck as soon
as it identifies a vertex on a directed cycle, we can delete the offending
edge or vertex and continue. This quick-and-dirty heuristic will eventually
leave a DAG, but might delete more things than necessary. Section 12.4.2
(page 397) describes an approximation algorithm for this problem.

Implementations: Essentially all the graph data structure implementations
of Section 15.4 (page 452) include implementations of topological sort. This in-
cludes the Boost Graph Library [SLL02] (http://www.boost.org/libs/graph/

http://www.boost.org/libs/graph/doc
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doc) and LEDA (see Section 22.1.1 (page 713)) for C++. For Java, check out
JGraphT (https://jgrapht.org/).

The Combinatorial Object Server (http://combos.org/) provides C lan-
guage programs to generate linear extensions in both lexicographic and Gray
code orders, as well as count them. An interactive interface is also provided.

My (biased) preference for C language implementations of all basic graph al-
gorithms, including topological sorting, is the library associated with this book.
See Section 22.1.9 (page 716) for details.

Notes: Good expositions on topological sorting include [CLRS09, Man89]. No prov-
ably I/O-efficient algorithm for topological sorting of graphs in external memory is
known, but Ajwani [ACLZ11] reports his experience engineering a topological sort
for massive graphs. Brightwell and Winkler [BW91] prove that it is #P-complete to
count the number of linear extensions of a partial order, even for posets of height two
[DP18]. The complexity class #P includes NP, so any #P-complete problem must be
NP-hard.

Pruesse and Ruskey [PR86] give an algorithm that generates linear extensions of a
DAG in constant amortized time. Further, each extension differs from its predecessor
by either one or two adjacent transpositions. This algorithm can be used to count
the number of linear extensions e(G) of an n-vertex DAG G in O(n2 + e(G)). The
reverse search technique of Avis and Fukuda [AF96] can also be employed to list linear
extensions. A backtracking program to generate all linear extensions is described in
[KS74].

Huber [Hub06] gives an algorithm to sample linear extensions uniformly at random

from an arbitrary partial order in expected O(n3 lg n) time, improving the result of

[BD99].

Related problems: Sorting (see page 506), feedback edge/vertex set (see page
618).

http://www.boost.org/libs/graph/doc
http://www.boost.org/libs/graph/doc
https://jgrapht.org/
http://combos.org/
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Input Output

18.3 Minimum Spanning Tree

Input description: A graph G = (V,E) with weighted edges.

Problem description: Find a subset of edges E′ ⊂ E that define a tree of
minimum weight on V .

Discussion: The minimum spanning tree (MST) of a graph defines the cheapest
subset of edges that connects the graph in a single component. Telephone
companies are interested in minimum spanning trees, because the MST of a set
of locations defines the wiring scheme that connects the sites using as little wire
as possible. MST is the mother of all network design problems.

Minimum spanning trees prove important for several reasons:

• They can be computed quickly and easily, and create a sparse subgraph
that reflects a lot about the original graph.

• They provide a way to identify clusters in sets of points. Deleting all
long edges from a minimum spanning tree leaves connected components
that define natural clusters in the data set. For example, deleting the two
red edges from the output figure above leaves three natural clusters.

• They can be used to give approximate solutions to hard problems such as
Steiner tree and traveling salesman.

• As an educational tool, MST algorithms provide graphic evidence that
greedy algorithms sometimes produce provably optimal solutions.

Three classical algorithms efficiently construct minimum spanning trees. De-
tailed implementations of two of them (Prim’s and Kruskal’s) are given with
correctness arguments in Section 8.1 (page 244). The third somehow manages
to be less well known despite being invented first and (arguably) being both
easier to implement and more efficient. The contenders are:
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• Kruskal’s algorithm – Every vertex starts as a separate tree. These trees
are merged together by repeatedly adding the lowest cost edge that does
not create a cycle.

Kruskal(G)
Sort the edges in order of increasing weight
count = 0
while (count < n− 1) do

get next edge (v, w)
if (component (v) �= component(w))

add to T
component(v) = component(w)
count++

The “component(x)?” test can be efficiently implemented using the union–
find data structure (Section 15.5 (page 456)) to yield an O(m lgm) algo-
rithm.

• Prim’s algorithm – Starts from an arbitrary vertex v to “grow” a tree,
repeatedly finding the lowest-cost edge that links some new vertex into
this tree. During execution, we label each vertex as either in the tree, in
the fringe (meaning there exists an edge from a tree vertex), or unseen
(meaning the vertex is still more than one edge away from the tree).

Prim(G)
Select an arbitrary vertex to start
While (there are fringe vertices)

select minimum-weight edge between tree and fringe
add the selected edge and vertex to the tree
update the cost to all affected fringe vertices

This creates a spanning tree for any connected graph, since no cycle can
be introduced by adding edges between tree and fringe vertices. That
this results in a tree of minimum weight can be proven by contradiction.
Prim’s algorithm can be implemented in O(n2) time using simple data
structures.

• Boruvka’s algorithm – This rests on the observation that the lowest-weight
edge incident on every vertex must appear in the minimum spanning tree.
The union of these edges will result in a spanning forest with at most n/2
trees. Now select an edge (x, y) of lowest weight for each of tree T , such
that x ∈ T and y �∈ T . All of these edges must again appear in a minimum
spanning tree, and so again results in a spanning forest with at most half
as many trees as before:
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Boruvka(G)
Initialize spanning forest F to n single-vertex trees

While (F has more than one tree)
for each T in F , find the smallest edge from T to G− T
add all selected edges to F , thus merging pairs of trees

The number of trees are at least halved in each round, so we get the MST
after at most lg n iterations, each of which takes linear time. This gives
an O(m log n) algorithm without using any fancy data structures.

MST is only one of several spanning tree problems that arise in practice.
The following questions will help you sort your way through them:

• Are all edges of your graph of identical weight? – Every spanning tree on
n points contains exactly n− 1 edges. Thus, if your graph is unweighted,
any spanning tree must be a minimum spanning tree. Either breadth-first
or depth-first search can be used to find a rooted spanning tree in linear
time. DFS trees tend to be long and thin, while BFS trees better reflect
the distance structure of the graph.

• Should I use Prim’s or Kruskal’s algorithm? – As implemented in Section
8.1 (page 244), Prim’s algorithm runs in O(n2), while Kruskal’s algorithm
takes O(m logm) time. Prim’s algorithm is thus faster on dense graphs,
while Kruskal’s is faster on sparse graphs. That said, Prim’s algorithm
can be implemented in O(m + n lg n) time using more advanced data
structures, so a Prim’s implementation using pairing heaps would be the
fastest practical choice for both sparse and dense graphs.

• What if my input consists of points in the plane, instead of a graph? –
Geometric instances, comprising n points in d-dimensions, can be solved
by constructing the complete distance graph in O(n2) and then finding the
MST of this complete graph. But for points in two dimensions it proves
more efficient to solve the geometric version of the problem directly. First
construct the Delaunay triangulation of the points (see Sections 20.3 and
20.4), which gives a graph with O(n) edges containing all the edges of the
minimum spanning tree of the point set. Running Kruskal’s algorithm on
this sparse graph finishes the job in O(n lg n) time.

• How can I find a spanning tree that avoids vertices of high degree? –
Another common goal of spanning tree problems is to minimize the max-
imum degree, typically to minimize the fan out in an interconnection net-
work. Unfortunately, finding a spanning tree of maximum degree 2 is NP-
complete, because this is identical to the Hamiltonian path problem. But
efficient algorithms are known that can construct spanning trees whose
maximum degree is at most one more than required, which should suffice
in practice. See the references below.
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Implementations: All the graph data structure implementations of Section
15.4 (page 452) include implementations of Prim’s and/or Kruskal’s algorithms.
This includes the Boost Graph Library [SLL02] (http://www.boost.org/libs/
graph) and LEDA (see Section 22.1.1 (page 713)) for C++. JGraphT (https:
//jgrapht.org/) has an extensive graph algorithm library in Java, including
Boruvka, Kruskal, and Prims, plus other variants.

Timing experiments on minimum spanning tree algorithms produce con-
tradicting results, suggesting the stakes are really too low to matter. Pas-
cal implementations of Prim’s, Kruskal’s, and the Cheriton–Tarjan algorithm
are provided in [MS91], along with extensive empirical analysis proving that
Prim’s algorithm with the appropriate priority queue is fastest on most graphs.
Kruskal’s algorithm proved the fastest of four different MST algorithms in the
Stanford GraphBase (see Section 22.1.7 (page 715)).

Combinatorica [PS03] provides Mathematica implementations of Kruskal’s
MST algorithm and a combinatorial method to efficiently count the number of
spanning trees of a graph. See Section 22.1.8 (page 716).

My (biased) preference for C language implementations of all basic graph
algorithms, including minimum spanning trees, is the library associated with
this book. See Section 22.1.9 (page 716) for details.

Notes: The minimum spanning tree problem dates back to Boruvka’s algorithm in
1926, well before Prim’s [Pri57] and Kruskal’s [Kru56] algorithms. Prim’s algorithm
was then rediscovered by Dijkstra [Dij59]. See [GH85] for more on the interesting
history of MST algorithms. Wu and Chao [WC04] have written a monograph on
minimum spanning tree and related problems.

The fastest implementations of Prim’s and Kruskal’s algorithms use Fibonacci
heaps [FT87]. However, pairing heaps have been proposed to realize the same bounds
with less overhead. Experiments with pairing heaps are reported in [SV87]. Efficient
parallel algorithms for models like Map-Reduce are presented by Andoni [ANOY14].

A simple combination of Boruvka’s algorithm with Prim’s algorithm yields an
O(m lg lg n) algorithm. Run Borukva’s algorithm for lg lg n iterations, yielding a forest
of at most n/ lg n trees. Now create a graph G′ with one vertex representing each tree
in this forest, with the weight of the edge between trees Ti and Tj set to the lightest
edge (x, y), where x ∈ Ti and y ∈ Tj . The MST of G′ coupled with the edges selected
by Boruvka’s algorithm yields the MST of G. Prim’s algorithm (implemented with
Fibonacci heaps) will take O(m) time on this n/ lg n vertex, m edge graph.

The best theoretical bounds on finding minimum spanning trees tell a complicated
story. Karger, Klein, and Tarjan [KKT95] give a linear-time randomized algorithm
for MSTs, based again on Borukva’s algorithm. Chazelle [Cha00] give a deterministic
O(nα(m,n)) algorithm, where α(m,n) is the inverse Ackerman function. Pettie and
Ramachandran [PR02] give a provably optimal algorithm whose exact running time is
(paradoxically) unknown, but lies between Ω(n+m) and O(nα(m,n)).

A spanner S(G) of a given graphG is a subgraph that offers an effective compromise
between two competing network objectives. To be precise, S(G) must have total weight
close to the MST of G while guaranteeing that the shortest path between vertices x
and y in S(G) approaches the shortest path in the full graph G. The monograph
of Narasimhan and Smid [NS07] provides a complete, up-to-date survey on spanner
networks.

http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
https://jgrapht.org/
https://jgrapht.org/
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The O(n log n) algorithm for Euclidean MSTs is due to Shamos, and discussed in
computational geometry texts such as [dBvKOS08, PS85].

Fürer and Raghavachari [FR94] give an algorithm that constructs a spanning tree
whose maximum degree is almost minimized—indeed is at most one more than the
lowest-degree spanning tree. The situation is analogous to Vizing’s theorem for edge
coloring, which also gives an approximation algorithm with an additive factor of one. A
recent generalization [SL07] gives a polynomial-time algorithm for finding a spanning
tree of maximum degree ≤ k + 1 whose cost is no more than that of the optimal
minimum spanning tree of maximum degree ≤ k.

Minimum spanning tree algorithms have an interpretation in terms of matroids,
which are systems of subsets closed under inclusion. The maximum weighted indepen-
dent set in matroids can be found using a greedy algorithm. The connection between
greedy algorithms and matroids was established by Edmonds [Edm71]. Expositions
on the theory of matroids include [GM12, Law11, PS98].

Dynamic graph algorithms seek to maintain a graph invariant (such as the MST)
efficiently under edge insertion or deletion operations. Holm et al. [HdlT01] gives an
efficient, deterministic algorithm to maintain MSTs (and several other invariants) in
amortized polylogarithmic time per update.

Algorithms for generating spanning trees in order from minimum to maximum

weight are presented in [Gab77]. The complete set of spanning trees of an un-

weighted graph can be generated in constant amortized time. See Ruskey [Rus03]

for an overview of algorithms to generate, rank, and unrank spanning trees.

Related problems: Steiner tree (see page 614), traveling salesman (see page
594).
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Input Output

18.4 Shortest Path

Input description: An edge-weighted graph G, with vertices s and t.

Problem description: Find the shortest path from s to t in G.

Discussion: The problem of finding shortest paths in a graph has many appli-
cations, some quite surprising:

• Shortest paths often arise in transportation or communications problems,
such as finding the best route to drive between Chicago and Phoenix, or
the fastest way to direct packets across a network.

• Segmentation is the task of partitioning a digitized image into regions
containing distinct objects. Region boundaries can be thought of as paths
over the image that avoid cutting through object pixels as much as possi-
ble. This grid of pixels can be modeled as a graph, with the cost of an edge
reflecting the color transitions between neighboring pixels. The shortest
path in such a weighted graph defines a promising potential boundary
between two regions.

• Recall the dialing for documents war story of Section 8.4 (page 264),
where we sought to use some notion of grammatical constraints to iden-
tify the right word for each slot in a sentence from a set of possibili-
ties. Such tasks are common in natural language processing and speech
recognition systems. We construct a graph whose vertices correspond to
these possible word interpretations, with edges between neighboring word-
interpretations. If we set the weight of each edge to reflect the likelihood
of transition, the shortest path across this graph defines the best interpre-
tation of the sentence.
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• In an informative drawing of a graph, the “center” of the graph should
appear near the center of the page. A good definition of the graph center
is the vertex that minimizes the maximum distance to any other vertex
in the graph. Identifying this center point requires knowing the shortest
path distance between all pairs of vertices.

The primary algorithm for finding shortest paths is Dijkstra’s algorithm,
which efficiently computes the shortest path from a given starting vertex x to
all n− 1 other vertices. In each iteration, it identifies a new vertex v for which
the shortest path from x to v is known. We maintain a set of vertices S to
which we know the shortest path from x, and grow this set by one new vertex
in each iteration. In each iteration, we identify the edge (u, v) where u ∈ S and
v ∈ V − S such that

dist(x, v) = min
u∈S

(dist(x, u) + weight(u, v))

This edge (u, v) gets added to a shortest path tree, whose root is x and describes
all the shortest paths from x.

An O(n2) implementation of Dijkstra’s algorithm appears in Section 8.3.1
(page 258). Faster times can be achieved using more complicated data struc-
tures, as described below. If we just need to know the shortest path from x to
y, terminate the algorithm as soon as y enters S.

Dijkstra’s algorithm is the right choice to compute single-source shortest
path on positively weighted graphs. However, special circumstances sometimes
dictate different choices:

• Is your graph weighted or unweighted? – If your graph is unweighted, a
simple breadth-first search starting from the source vertex will find the
shortest path to all other vertices in linear time. Only when edges have
different weights will you need more sophisticated algorithms.

• Does your graph have negative cost weights? – Dijkstra’s algorithm as-
sumes that all edges have positive cost. For graphs with edges of negative
weight, you must use the more general (but less efficient) Bellman–Ford
algorithm. Graphs with negative cost cycles are an even bigger problem.
The shortest x to y path in such a graph is not defined, because we can
repeatedly detour from x to the negative cost cycle, making the total cost
arbitrarily small.

Note that adding a fixed amount of weight to make each edge positive does
not solve the problem. Dijkstra’s algorithm will then favor paths using a
small number of edges, even if those were not the shortest weighted paths
in the original graph.

• Is your input a set of geometric obstacles, instead of a graph? – Many
applications seek the shortest path between two points in a geometric
setting, such as an obstacle-filled room. The most straightforward solution
is to convert your problem into a graph of distances to feed to Dijkstra’s
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algorithm. Vertices correspond to the boundary vertices of the obstacles,
with edges defined between pairs of vertices that “see” each other.

There are more efficient geometric algorithms that compute the shortest
path directly from the arrangement of obstacles. See Section 20.14 (page
667) on motion planning for pointers to such algorithms.

• Is your graph acyclic—that is, a DAG? – Shortest paths in directed acyclic
graphs can be found in linear time. Perform a topological sort to order the
vertices such that all edges go from left to right, starting from source s.
The distance from s to itself, dist(s, s), clearly equals 0. We now process
the vertices from left to right. Observe that

dist(s, j) = min
(i,j)∈E

(dist(s, i) + weight(i, j))

since we already know the shortest path dist(s, i) for all vertices i to the
left of j. Indeed, most dynamic programming problems can be formulated
as shortest paths on specific DAGs. This same algorithm (replacing min
with max) also suffices to find the longest path in a DAG, which proves
useful in applications like scheduling (see Section 17.9 (page 534)).

• Do you need the shortest path between all pairs of points? – The naive
approach to calculate the all-pairs shortest path matrix D (where Dij is
the distance from i to j) is to run Dijkstra n times, once with each vertex
as the source. The Floyd-Warshall algorithm is a slick O(n3) dynamic
programming algorithm for all-pairs shortest path, which is faster and
easier to program than Dijkstra. It works with negative cost edges (but
not cycles), and is presented with an implementation in Section 8.3.2 (page
261). Let M denote the edge weight matrix, where Mij = ∞ if there is
no edge (i, j):

D0 = M
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

Dk
ij = min(Dk−1

ij , Dk−1
ik +Dk−1

kj )

Return Dn

The key to understanding Floyd’s algorithm is that Dk
ij denotes “the

length of the shortest path from i to j that goes through vertices 1, . . . , k
as possible intermediate vertices.” Note that O(n2) space suffices, since
we need only keep Dk and Dk−1 around at time k.

• How do I find the shortest cycle in a graph? – One application of all-
pairs shortest path is to find the shortest cycle in a graph, called its girth.
Floyd’s algorithm can be used to compute dii for 1 ≤ i ≤ n, which is the
length of the shortest way to get from vertex i to i—in other words, the
shortest cycle through i.
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This might be what you want. But the shortest cycle through x is likely
to go from x to y back to x, using the same edge twice. A simple cycle is
one that visits no edge or vertex twice. To find the shortest simple cycle,
we compute the lengths of the shortest paths from i to all other vertices,
and then explicitly check whether there is an acceptable edge from each
vertex back to i.

The problem of finding the longest cycle in a graph includes Hamiltonian
cycle as a special case (see Section 19.5), so it is NP-complete.

The all-pairs shortest path matrix can be used to compute several useful
invariants related to the center of graph G. The eccentricity of vertex v is the
shortest-path distance to the farthest vertex from v. From the eccentricity come
other graph invariants. The radius of a graph is the smallest eccentricity of any
vertex, while the center is the set of vertices whose eccentricity is the radius.
The diameter of a graph is the maximum eccentricity of any vertex.

Implementations: The highest performance shortest path codes are due to
Andrew Goldberg and his collaborators, at http://www.avglab.com/andrew/
soft.html. In particular, MLB is a C++ short path implementation for non-
negative, integer-weighted edges. See [Gol01] for details of the algorithm and
its implementation. Its running time is typically only four or five times that
of a breadth-first search, and it is capable of handling graphs with millions of
vertices. High-performance C implementations of both Dijkstra and Bellman–
Ford are also available.

All the C++ and Java graph libraries discussed in Section 15.4 (page 452)
include at least an implementation of Dijkstra’s algorithm. The C++ Boost
Graph Library [SLL02] (http://www.boost.org/libs/graph) has a particu-
larly broad collection, including Bellman–Ford’s and Johnson’s all-pairs shortest-
path algorithm. LEDA (see Section 22.1.1 (page 713)) provides good im-
plementations in C++ for all of the shortest-path algorithms we have dis-
cussed, including Dijkstra, Bellman–Ford, and Floyd’s algorithms. JGraphT
(https://jgrapht.org) provides both Dijkstra and Bellman–Ford in Java.

Shortest-path algorithms was the subject of the 9th DIMACS Implementa-
tion Challenge, held in October 2006. Implementations of efficient algorithms
for finding shortest paths were discussed. The papers, instances, and implemen-
tations are available at http://dimacs.rutgers.edu/programs/challenge/.

Notes: Good expositions on Dijkstra’s algorithm [Dij59], the Bellman–Ford al-
gorithm [Bel58, FF62], and Floyd’s all-pairs-shortest-path algorithm [Flo62] include
[CLRS09]. Nice surveys on shortest path algorithms include [MAR+17, Zwi01]. Geo-
metric shortest-path algorithms are surveyed by Mitchell [PN18].

The fastest algorithm known for single-source shortest-path is Dijkstra’s algorithm
with Fibonacci heaps, running in O(m + n log n) time [FT87]. Experimental studies
of shortest-path algorithms include [DF79, DGKK79]. However, these experiments
were done before Fibonacci heaps were developed. See [CGR99] for a more recent
study. Heuristics can be used to enhance the performance of Dijkstra’s algorithm in
practice. Holzer, et al. [HSWW05] provide a careful experimental study of how four
such heuristics interact together.

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.boost.org/libs/graph
https://jgrapht.org
http://dimacs.rutgers.edu/programs/challenge/
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Online services like Google Maps quickly find at least an approximate shortest path
between two points in enormous road networks. This problem differs somewhat from
the shortest-path problems here in that (1) preprocessing costs can be amortized over
many point-to-point queries, (2) the backbone of high-speed, long-distance highways
can reduce the path problem to identifying the best place to get on and off this
backbone, and (3) approximate or heuristic solutions suffice in practice.

The A∗-algorithm performs a best-first search for the shortest path coupled with
a lower-bound analysis to establish when the best path we have seen is indeed the
shortest-path in the graph. Goldberg, Kaplan, and Werneck [GKW06] describe an
implementation of A∗ capable of answering point-to-point queries in one millisecond on
national-scale road networks after two hours of preprocessing. Heuristics for speeding
up shortest path algorithms are analyzed in [AFGW10].

Many applications demand multiple short alternative paths, in addition to the op-
timal path. This motivates the problem of finding the k shortest paths. Variants exist
depending upon whether the paths must be simple, or can contain cycles. Eppstein
[Epp98] generates an implicit representation of these paths in O(m+n log n+k) time,
from which each path can be reconstructed in O(n) time. Hershberger et al. [HMS03]
presents a new algorithm and experimental results.

Fast algorithms for computing the girth are known for both general [IR78] and
planar graphs [Dji00].

Related problems: Network flow (see page 571), motion planning (see page
667).
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42 31 65 42 31 65

Input Output

18.5 Transitive Closure and Reduction

Input description: A directed graph G = (V,E).

Problem description: For transitive closure, construct a graph G′ with edge
(i, j) ∈ E′ iff there is a directed path from i to j in G. For transitive reduction,
construct a graph G′ with the smallest number of edges such that a directed
path from i to j exists in G′ iff there is a directed path from i to j in G.

Discussion: Transitive closure can be thought of as establishing a data struc-
ture to efficiently solve reachability queries: “Can I get to y from x?” After
constructing a transitive closure matrix M , such queries can be answered in
constant time by reporting matrix entry M [x, y].

Transitive closure arises in propagating the consequences of modified at-
tributes of a graph G. Consider the graph underlying a spreadsheet model,
whose vertices are cells with an edge from cell i to cell j iff the result of cell j
depends on cell i. When a given cell is modified, the values of all cells reach-
able from it must also be updated. The identity of these cells is revealed by the
transitive closure of G. Many database problems reduce to computing transitive
closures, for analogous reasons.

There are three basic algorithms for computing transitive closure:

• The simple algorithm performs a breadth-first or depth-first search from
each vertex, and keeps track of all vertices encountered. Doing n such
traversals gives an O(n(n + m)) algorithm, which degenerates to cubic
time when the graph is dense. This algorithm is easily implemented, runs
well on sparse graphs, and is likely the right answer for your application.

• Warshall’s algorithm constructs the transitive closure in O(n3) time, using
a slick approach identical to Floyd’s all-pairs shortest-path algorithm of
Section 18.4 (page 554). If we are not interested in the length of the
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resulting paths, we can reduce storage by retaining only one bit per matrix
element. Thus, Dk

ij = true iff j is reachable from i using only vertices
1, . . . , k as intermediates.

• Matrix multiplication can also be used to solve transitive closure. Let
M1 be the adjacency matrix of graph G. The non-zero matrix entries of
M2 = M ×M identify all length-2 paths in G. Observe that M2[i, j] =∑

x M [i, x] · M [x, j], so path (i, x, j) contributes to M2[i, j]. Thus, the
union ∪n

i M
i yields the transitive closure T . Furthermore, this union can

be computed using only O(lg n) matrix operations using the fast exponen-
tiation algorithm in Section 16.9 (page 493).

This will be faster for large enough n if using Strassen’s fast matrix multi-
plication algorithm, although I for one wouldn’t bother trying. Transitive
closure is provably as hard as matrix multiplication, so there is little hope
for a significantly faster algorithm.

The running time for all three of these methods can be substantially im-
proved on many graphs. Recall that a strongly connected component is a set of
vertices for which all pairs are mutually reachable. For example, any directed
cycle defines a strongly connected subgraph. All the vertices in any strongly
connected component must reach exactly the same subset of G. Thus, we can
reduce our problem to finding the transitive closure on a graph of strongly-
connected components, that generally has fewer edges and vertices than G.
The strongly connected components of G can be computed in linear time (see
Section 18.1 (page 542)).

Transitive reduction (also known as minimum equivalent digraph) is the in-
verse operation to transitive closure, namely reducing the number of edges while
maintaining identical reachability properties. The transitive closure of G is
identical to the transitive closure of the transitive reduction of G. Transitive
reduction is space minimization, by eliminating redundant edges from G that
do not affect reachability. It also arises in graph drawing, where it is important
to eliminate as many implied edges as possible to reduce visual clutter.

Although the transitive closure of G is uniquely defined, a graph may have
many different transitive reductions, including G itself. We seek the smallest
such reduction, but there are multiple formulations of the problem:

• A quick-and-dirty, linear-time transitive reduction algorithm identifies the
strongly connected components of G, replaces each by a simple directed
cycle, and then adds the edges bridging the different components. Al-
though this does not always yield the smallest possible reduction, it is
likely to be pretty close on many graphs.

One catch with this heuristic is that it might add edges to the transitive
reduction of G that are not in G. Depending on your application, this
may or may not be a problem.

• If we are restricted to only using edges from G in our transitive reduction,
we must abandon hope of finding the minimum possible reduction. To
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see why, consider a directed graph consisting of one strongly connected
component, where every vertex can reach every other vertex. The smallest
possible transitive reduction here will be a simple directed cycle, consisting
of exactly n edges. But this is possible if and only if G is Hamiltonian,
thus proving that finding the smallest such closure is NP-complete.

A heuristic for edge-preserving transitive reduction successively considers
each edge, deleting it if its removal does not change the transitive closure.
Implementing this efficiently means minimizing the time spent on reacha-
bility tests. Observe that directed edge (i, j) can be eliminated whenever
there is another path from i to j avoiding this edge.

• The minimum size reduction using arbitrary pairs of vertices as edges can
be found in O(n3) time. See the references below for details. However,
the quick-and-dirty heuristic described above will likely suffice for most
applications, being both faster and easier to program.

Implementations: The Boost Graph Library [SLL02] (http://www.boost.
org/libs/graph) implementations of transitive closure and reduction are par-
ticularly well engineered. LEDA (see Section 22.1.1 (page 713)) also provides
implementations of both transitive closure and reduction in C++ [MN99]. The
extensive graph algorithm library of JGraphT (https://jgrapht.org/) con-
tains Java implementations of both algorithms.

Combinatorica [PS03] provides Mathematica implementations of transitive
closure and reduction, as well as the display of partial orders requiring transitive
reduction. See Section 22.1.8 (page 716).

Notes: Van Leeuwen [vL90a] provides an excellent survey on transitive closure and
reduction. The equivalence between matrix multiplication and transitive closure was
proven by Fischer and Meyer [FM71], with expositions including [AHU74].

There is a surprising amount of more recent activity on transitive closure, much of it
captured in Nuutila [Nuu95]. Penner and Prasanna [PP06] improved the performance
of Warshall’s algorithm [War62] by roughly a factor of two through a cache-friendly
implementation.

The equivalence between transitive closure and reduction was established in [AGU72].
Empirical studies of transitive closure algorithms include [Nuu95, PP06, SD75]. Sparse
transitive reductions often contain long paths. Transitive closure spanners seek small
reductions of diameter at most k [BGJ+12].

Estimating the size of the transitive closure is important in database query opti-

mization. A linear-time algorithm for estimating the size of the closure is given by

Cohen [Coh94].

Related problems: Connected components (see page 542), shortest path (see
page 554).

http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
https://jgrapht.org/
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Input Output

18.6 Matching

Input description: A (weighted) graph G = (V,E).

Problem description: Find the largest set of edges E′ from E such that every
vertex in V is incident to at most one edge of E′.

Discussion: Suppose you manage a team of workers, each capable of performing
a distinct subset of the tasks needed to complete a job. Who should get assigned
to do what? Construct a graph with vertices representing each worker and each
task, with edges linking each worker to the tasks they can perform. Each worker
is to be assigned one task. The desired assignment is the largest possible set of
edges where no employee or job is repeated—that is, a matching.

Matching is a very powerful piece of algorithmic magic, so powerful that it is
quite surprising that optimal matchings can be found efficiently, in polynomial
time. Applications arise often once you know to look for them.

Marrying off a set of boys to a set of girls such that each couple is happy is
another example of a bipartite matching problem. Here the graph contains an
edge between any compatible boy and girl. For a synthetic biology application
[MPC+06], we needed to shuffle the characters in a string S so as to maximize
the number of characters that move. For example, aaabc can be rearranged
to bcaaa so that only the central a stays fixed. This is yet another bipartite
matching problem, where the boys represent the multiset of alphabet symbols
and the girls are the positions in the string (1 to |S|). Edges link symbols to all
the string positions that originally contained a different symbol.

This basic matching framework can be enhanced in several ways, while re-
maining essentially the same assignment problem:

• Is your graph bipartite? – Many matching problems involve bipartite
graphs, as in the classic assignment problem of boys to girls. But modern
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marriages represent a matching on a more general, non-bipartite graph.
Efficient algorithms exist for matching on general graphs, although faster
and simpler methods work for bipartite graphs.

• What if employees can be given multiple jobs? – Natural generalizations of
matching include assigning workers more than one task to do, or (equiv-
alently) seeking multiple workers for a given job. Such desires can be
modeled by replicating an employee vertex by as many times as we want
her to be matched. Indeed, we employed this trick (using multiple occur-
rences of the same letters) in the string shuffle example above.

• Is your graph weighted or unweighted? – The matching applications dis-
cussed so far are based on unweighted graphs. We have sought a maxi-
mum cardinality matching—ideally a perfect matching where every vertex
is matched to another in the matching.

But other applications augment each edge with a weight, perhaps reflect-
ing the suitability of a particular employee for a given task, or how much
person x likes person y. The problem now becomes constructing a max-
imum weight matching—that is, finding the set of independent edges of
maximum total cost.

Efficient algorithms for constructing matchings work by finding augmenting
paths in graphs, which start and end with unmatched edges. An augmenting
path P in graph G for a given (partial) matching M is a path of edges that alter-
nate (out-of-M , in-M , . . . , out-of-M). We can always enlarge the matching by
one edge given such an augmenting path, by replacing the even-numbered edges
of P from M with the odd-numbered edges of P . Berge’s theorem states that a
matching is maximum iff it does not contain any augmenting path. Therefore,
we can construct maximum-cardinality matchings by searching for augmenting
paths, and stop when none exist.

General graphs prove trickier to match than bipartite ones, because it is
possible to have augmenting paths involving odd-length cycles, where the first
and last vertices are the same. Such cycles (or blossoms) are impossible in
bipartite graphs, which by definition do not contain odd-length cycles.

The standard algorithms for bipartite matching are based on network flow,
using a simple transformation to convert a bipartite graph into an equivalent
flow graph. Indeed, an implementation of this is given in Section 8.5 (page 267).

Be warned that different approaches are needed to solve weighted matching
problems, most notably the matrix-oriented “Hungarian algorithm.”

Implementations: High-performance codes for both weighted and unweighted
bipartite matching have been developed by Andrew Goldberg and his collabo-
rators. CSA is a weighted bipartite matching code in C based on cost-scaling
network flow, developed by Goldberg and Kennedy [GK95]. BIM is a faster
unweighted bipartite matching code based on augmenting path methods, devel-
oped by Cherkassky, et al. [CGM+98]. Both are available for non-commercial
use from http://www.avglab.com/andrew/soft.html.

http://www.avglab.com/andrew/soft.html
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The First DIMACS Implementation Challenge [JM93] focused on network
flows and matching. Several instance generators and implementations for maxi-
mum weight and maximum cardinality matching were collected, and can be ob-
tained from http://dimacs.rutgers.edu/archive/Challenges/. These in-
clude a maximum-cardinality matching solver that implements Gabow’s O(n3)
algorithm and a maximum-weighted matching solver, both in C by Edward
Rothberg. This is slower but more general than his unweighted solver.

LEDA (see Section 22.1.1 (page 713)) provides efficient implementations in
C++ for both maximum-cardinality and maximum-weighted matching, on both
bipartite and general graphs. Blossom IV [CR99] is an efficient code in C for
minimum-weight perfect matching available at http://www.math.uwaterloo.
ca/~bico//software.html. An O(mnα(m,n)) implementation of maximum-
cardinality matching in general graphs (http://www.cs.arizona.edu/~kece/
Research/software.html) is due to Kececioglu and Pecqueur [KP98].

The Stanford GraphBase (see Section 22.1.7 (page 715)) contains an im-
plementation of the Hungarian algorithm for bipartite matching. To provide
readily visualized weighted bipartite graphs, Knuth uses a digitized version of
the Mona Lisa and seeks row/column disjoint pixels of maximum brightness.
Matching is also used to construct amusing “domino portraits.”

Notes: Lovász and Plummer [LP09] is the definitive reference on matching theory and
algorithms. Survey articles on matching algorithms include [Gal86]. Good expositions
on network flow algorithms for bipartite matching include [CLRS09, Eve11, Man89],
and those on the Hungarian method include [Law11, PS98]. The best algorithm for
maximum bipartite matching, due to Hopcroft and Karp [HK73], repeatedly finds the
shortest augmenting paths instead of using network flow, and runs in O(

√
nm). The

Hungarian algorithm runs in O(n(m+ n log n)) time.
Edmond’s algorithm [Edm65] for maximum-cardinality matching is of great his-

torical interest, for provoking questions on what problems can be solved in polynomial
time. Expositions on Edmond’s algorithm include [Law11, PS98, Tar83]. The best
algorithm known for general matching runs in O(

√
nm) [MV80].

Consider a matching of boys to girls containing edges (B1, G1) and (B2, G2), where
B1 and G2 prefer each other to their own spouses. In real life, these two would run off
with each other, breaking the marriages. A marriage without any such couples is said
to be stable. The theory of stable matching is presented in [GI89]. It is a surprising
fact that no matter how the boys and girls rate each other, there is always at least
one stable marriage. Further, such a marriage can be found in O(n2) time [GS62].
An important application of stable marriage occurs in the annual matching of medical
residents to hospitals.

Online matching problems arise when edge selection must take place without full
information about the graph. Such problems arise in Internet advertising, and are
ably surveyed in [M+13].

The maximum matching is equal in size to the minimum vertex cover in bipartite
graphs. This implies that both the minimum vertex cover problem and maximum
independent set problems can be solved in polynomial time on bipartite graphs.

Related problems: Network flow (see page 571). vertex cover (see page 591).

http://dimacs.rutgers.edu/archive/Challenges/
http://www.math.uwaterloo.ca/~bico//software.html
http://www.math.uwaterloo.ca/~bico//software.html
http://www.cs.arizona.edu/~kece/Research/software.html
http://www.cs.arizona.edu/~kece/Research/software.html
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Input Output

18.7 Eulerian Cycle/Chinese Postman

Input description: A graph G = (V,E).

Problem description: Find the shortest tour visiting every edge of G.

Discussion: Suppose you are charged with designing the daily routes for
garbage trucks, snow plows, or postal workers. Every road in the city must
be completely traversed at least once in all these applications, to ensure that
all deliveries or pickups can be made. For efficiency, you seek to minimize total
drive time, or (equivalently) the total distance or number of edges traversed.

Alternatively, consider a human-factors validation of telephone menu sys-
tems. Each “Press 4 for more information” option is properly interpreted as
a directed edge between two vertices in a graph. Our tester seeks the most
efficient way to walk over this graph and visit every link in the system at least
once.

Both tasks are variants of the Eulerian cycle problem, best characterized by
the puzzle that asks children to draw a given figure completely without repeating
any edges, or lifting their pencil off the paper. They seek a path or cycle through
a graph that visits each edge exactly once.

Well-known conditions exist for determining whether a graph contains an
Eulerian cycle:

• An undirected graph contains an Eulerian cycle iff it is connected, and
each vertex is of even degree.

• A directed graph contains an Eulerian cycle iff it is strongly connected,
and each vertex has the same in-degree as out-degree.

For Eulerian paths, which cover all edges but do not return to the starting
vertex, the degree conditions are weakened. An undirected connected graph
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contains an Eulerian path iff all but two vertices are of even degree. These will
serve as the start and end points of any path. Finally, a directed connected
graph contains an Eulerian path from x to y iff all vertices have the same in-
degree as out-degree, except that x has in-degree one less and y one more than
their out-degrees, respectively.

These characterizations of Eulerian graphs make it is easy to test whether
such a path/cycle exists: verify that the graph is connected using DFS or BFS,
and then count the number of odd-degree vertices. The cycle can also be explic-
itly constructed in linear time by Hierholzer’s algorithm. Use DFS to find an
arbitrary cycle in the graph. Delete this cycle and repeat, until the entire set of
edges has been partitioned into a set of edge-disjoint cycles. Because deleting a
cycle reduces the degree of each vertex by an even number, the remaining graph
will continue to satisfy the Eulerian degree-bound conditions. These cycles must
have common vertices (because the graph is connected), and so can be spliced
together in a “figure eight” at any shared vertex. By splicing all extracted cycles
together, we get a single circuit containing all of the edges.

An Eulerian cycle, if one exists, solves the motivating snowplow problem,
since any tour that visits every edge only once must have minimum length.
However, it is unlikely that your road network will satisfy the Eulerian degree
conditions. Instead, we need to solve the more general Chinese postman problem,
which minimizes the length of a cycle that traverses every edge at least once.
This minimum cycle will never visit any edge more than twice, so good tours
exist for any road network.

The optimal postman tour can be constructed by adding the appropriate
edges to the graph G to make it Eulerian. Adding a path between two odd-
degree vertices in G makes both of them even-degree, moving G closer to be-
coming an Eulerian graph.

Finding the best set of shortest paths to add to G reduces to identifying a
minimum-weight perfect matching in a special graph G′. For undirected graphs,
the vertices of G′ correspond to the odd-degree vertices of G, with the weight of
edge (i, j) defined by the length of the shortest path from i to j inG. For directed
graphs, the vertices of G′ correspond to the degree-imbalanced vertices from G.
All edges in G′ go from out-degree deficient vertices to in-degree deficient ones.
Thus, bipartite matching algorithms suffice when G is directed. An optimal
cycle can be extracted in linear time, once the graph is Eulerian.

Implementations: Several graph libraries provide implementations of Eu-
lerian cycles, but Chinese postman implementations are rarer. I recommend
the implementation of directed Chinese postman by Thimbleby [Thi03]. This
Java implementation is available at http://www.harold.thimbleby.net/cpp/
index.html. JGraphT (https://jgrapht.org) provides an implementation of
Hierholzer’s algorithm in Java.

GOBLIN (http://goblin2.sourceforge.net/) is an extensive C++ li-
brary dealing with all of the standard graph optimization problems, including
Chinese postman for both directed and undirected graphs. LEDA (see Section
22.1.1 (page 713)) provides all the tools for an efficient implementation: Eulerian

http://www.harold.thimbleby.net/cpp/index.html
http://www.harold.thimbleby.net/cpp/index.html
https://jgrapht.org
http://goblin2.sourceforge.net/
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cycles, matching, and shortest path in both bipartite and general graphs.
Combinatorica [PS03] provides Mathematica implementations of Eulerian

cycles and de Bruijn sequences. See Section 22.1.8 (page 716).

Notes: The history of graph theory began in 1736, when Euler first solved the seven
bridges of Königsberg problem. Königsberg (now Kaliningrad) is a city on the banks
of the Pregel river. In Euler’s day there were seven bridges linking the banks and two
islands, which can be modeled as a multigraph with seven edges and four vertices.
Euler sought a way to walk over each of the bridges exactly once and return home—
that is, an Eulerian cycle. Euler proved that such a tour is impossible, since all four
of the vertices had odd degrees. The bridges were destroyed in World War II. See
[BLW76] for a translation of Euler’s original paper and a history of the problem.

Corberán and Laporte [CL13] and Toth and Vigo [TV14] are recent books on
vehicle and arc routing problems, including the Chinese postman. Expositions on
linear-time algorithms for constructing Eulerian cycles [Ebe88] include [Eve11, Man89].
Fleury’s algorithm [Luc91] is a direct and elegant approach to constructing Eulerian
cycles. Start walking from any vertex, and erase any edge that has been traversed.
The only criterion in picking the next edge is that we avoid using a bridge (an edge
whose deletion disconnects the graph), until no other alternative remains.

The Euler’s tour technique is an important paradigm in parallel graph algorithms.
Many parallel graph algorithms start by finding a spanning tree and then rooting the
tree, where the rooting is done using the Euler tour technique. See parallel algorithms
texts (e.g., [J9́2]) for an exposition, and [CB04] for experience in practice. Efficient
algorithms exist to count the number of Eulerian cycles in a graph [HP73].

The problem of finding the shortest tour traversing all edges in a graph was intro-
duced by Kwan [Kwa62], hence the name Chinese postman. The bipartite matching
algorithm for solving Chinese postman is due to Edmonds and Johnson [EJ73]. It
works for both directed and undirected graphs, although the problem is NP-complete
for mixed graphs [Pap76a]. Mixed graphs contain both directed and undirected edges.
Expositions on the Chinese postman algorithm include [Law11].

A de Bruijn sequence S of span k on an alphabet Σ of size α is a circular string of
length αk containing all strings of length k as substrings of S, each exactly once. For
example, for k = 3 and Σ = {0, 1}, the circular string 00011101 contains the following
substrings in order: 000, 001, 011, 111, 110, 101, 010, 100. De Bruijn sequences can be
thought of as “safe cracker” sequences, describing the shortest sequence of dial turns
with α positions sufficient to try out all combinations of length n.

De Bruijn sequences can be constructed by building a directed graph whose vertices
represent all αn−1 strings of length n− 1, with an edge (u, v) iff u = s1s2 . . . sn−1 and
v = s2 . . . sn−1sn. Any Eulerian cycle on this graph describes a de Bruijn sequence.
Expositions on de Bruijn sequences and their construction include [Eve11, PS03].

A cute algorithm for optimizing embroidery patterns based on Eulerian cycles is

presented in [AHK+08].

Related problems: Matching (see page 562), Hamiltonian cycle (see page
598).
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X

Input Output

18.8 Edge and Vertex Connectivity

Input description: A graph G. Optionally, a pair of vertices s and t.

Problem description: What is the smallest subset of vertices (or edges) whose
deletion will disconnect G, or that will separate s from t?

Discussion: Graph connectivity arises in problems related to network reliabil-
ity. In the context of communication networks, the vertex connectivity is the
smallest number of switching stations that a terrorist must destroy in order to
separate the network—that is, prevent two undamaged stations from talking to
each other. The edge connectivity is the smallest number of wires that need
to be cut to accomplish the same objective. Either one well-placed bomb or
snipping the right pair of cables suffices to disconnect the above network.

The edge (vertex) connectivity of a graph G is the smallest number of edge
(vertex) deletions sufficient to disconnect G. There is a close relationship be-
tween these two quantities. The vertex connectivity is always less than or equal
to the edge connectivity, because deleting one vertex from each edge in a cut
set disconnects the graph. But smaller vertex subsets may be possible. The
minimum vertex degree is an upper bound for both edge and vertex connectiv-
ity, because deleting all its neighbors (or cutting the edges to all its neighbors)
disconnects a single-vertex component from the rest of the graph.

Several connectivity problems prove to be of interest:

• Is the graph already disconnected? – The simplest connectivity problem is
testing whether the graph is in fact connected. A depth-first or breadth-
first search suffices to identify all connected components in linear time,
as discussed in Section 18.1 (page 542). For directed graphs, the issue is
whether the graph is strongly connected, meaning there is a directed path
between every pair of vertices. In a weakly connected graph, there may
exist paths to nodes from which there is no way to return.

• Is there a weak link in my graph? – We say that G is biconnected if there
is no single vertex whose deletion will disconnect G. Such a weak point is
called an articulation vertex. A bridge is the analogous concept for edges,
meaning a single edge whose deletion disconnects G.
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The simplest algorithm to identify articulation vertices (or bridges) tries
deleting vertices (or edges) one by one, and then uses DFS or BFS to
test whether the resulting graph is still connected. More sophisticated
linear-time algorithms exist for both problems, based on depth-first search.
Indeed, a full implementation is given in Section 7.9.2 (page 225).

• What if I want to split the graph into equal-sized pieces? – Often we
seek a small cut that breaks the graph into roughly equal-sized pieces.
For example, suppose we want to split a big computer program into two
maintainable units. We can construct a graph whose vertices represent
subroutines. Edges can be added between any two subroutines that in-
teract, namely where one calls the other. We now seek to partition the
subroutines into roughly equal-sized sets with few pairs of interacting rou-
tines span the divide.

This is the graph partition problem, discussed in Section 19.6 (page 601).
Although the problem is NP-complete, reasonable heuristics exist.

• Are arbitrary cuts OK, or must I separate a given pair of vertices? –
There are two flavors of the general connectivity problem. One asks for
the smallest cut-set for the entire graph, the other for the smallest set
to separate s from t. Any algorithm for (s − t) connectivity can be used
n − 1 times to give an algorithm for general connectivity, since vertex v1
must end up in a different component from at least one of the other n− 1
vertices after deleting any cut set.

Edge and vertex connectivity can both be found using network-flow tech-
niques, which interpret a weighted graph as a network of pipes where each edge
has a maximum capacity. We seek to maximize the flow between two given
vertices of the graph. The maximum flow between vi and vj in G is exactly
the weight of the smallest set of edges to disconnect vi from vj . Thus, the edge
connectivity can be found by maximizing the flow between v1 and each of the
n− 1 other vertices in an unweighted graph G.

Vertex connectivity is characterized by Menger’s theorem, which states that
a graph is k-connected iff every pair of vertices is joined by at least k vertex-
disjoint paths. Network flow can again be used to perform this calculation,
because a flow of k between a pair of vertices implies k edge-disjoint paths.

To exploit Menger’s theorem, we construct a graph G′ such that any set of
edge-disjoint paths in G′ corresponds to vertex-disjoint paths in G. This is done
by replacing each vertex vi of G with two vertices vi,1 and vi,2, adding an edge
(vi,1, vi,2) between them in G′. We also replacing every edge (x, y) ∈ G by the
edges (x0, y1) and (x1, y0) in G′. Thus, two edge-disjoint paths in G′ correspond
to each vertex-disjoint path in G. As such, the maximum flow in G′ gives twice
the vertex connectivity of G.

Implementations: MINCUTLIB is a collection of high-performance codes for
several different cut algorithms, including both flow and contraction-based meth-
ods. They were implemented by Chekuri et al. as part of an excellent ex-
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perimental study of these algorithms and the heuristics needed to make them
run fast [CGK+97]. The codes are available for non-commercial use at http:

//www.avglab.com/andrew/soft.html.
Most of the graph data structure libraries of Section 18.1 (page 542) include

routines for connectivity and biconnectivity testing. The C++ Boost Graph
Library [SLL02] (http://www.boost.org/libs/graph/doc) is distinguished by
also including an implementation of edge connectivity testing.

GOBLIN (http://goblin2.sourceforge.net/) is an extensive C++ li-
brary dealing with all of the standard graph optimization problems, including
both edge and vertex connectivity. LEDA (see Section 22.1.1 (page 713)) con-
tains extensive support for both low-level connectivity testing (both biconnected
and triconnected components) and edge connectivity/minimum cut in C++.

Notes: Good expositions on the network-flow approach to edge and vertex connec-
tivity include [Eve11, PS03], and the book by Nagamouch and Ibaraki [NI08]. The
correctness of these algorithms is based on Menger’s theorem [Men27] that connec-
tivity is determined by the number of edge/vertex disjoint paths separating a pair
of vertices. The maximum-flow, minimum-cut theorem is due to Ford and Fulkerson
[FF62].

The theoretically fastest algorithms for minimum-cut/edge connectivity are based
on graph contraction, not network flows. Contracting an edge (x, y) in a graph G
merges the two incident vertices into one, removing self-loops but leaving multiedges.
Any sequence of such contractions can raise (but not lower) the minimum cut in G,
and leaves the cut unchanged if no edge of the cut is contracted. Karger gave a beau-
tiful randomized algorithm for minimum cut, observing that the minimum cut is left
unchanged with non-trivial probability over the course of any random series of dele-
tions. See Motwani and Raghavan [MR95] for an excellent treatment of randomized
algorithms, including a presentation of Karger’s algorithm.

The fastest version of Karger’s algorithm runs in (m lg3 n) expected time [Kar00].
Slightly faster deterministic algorithms are known [HRW17]. See [CGK+97, HNSS18]
for experimental comparisons of algorithms for finding minimum cuts.

Minimum-cut methods have found many applications in computer vision, includ-
ing image segmentation. Boykov and Kolmogorov [BK04] report on an experimental
evaluation of minimum-cut algorithms in this context.

A non-flow-based algorithm for edge k-connectivity in O(kn2) is due to Matula
[Mat87]. Faster k-connectivity algorithms are known for certain small values of k. All
3-connected components of a graph can be generated in linear time [HT73a], while
O(n2) suffices to test 4-connectivity [KR91].

Related problems: Connected components (see page 542), network flow (see
page 571), graph partition (see page 601).

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.boost.org/libs/graph/doc
http://goblin2.sourceforge.net/
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18.9 Network Flow

Input description: A directed graph G, where each edge e = (i, j) has a
capacity ce. A source node s and sink node t.

Problem description: What is the maximum flow you can route from s to t
while respecting the capacity constraint of each edge?

Discussion: Applications of network flow go far beyond plumbing. Finding
the most cost-effective way to ship goods between a set of factories and a set of
stores defines a network-flow problem, as do many resource-allocation problems
in communications networks.

But the real power of network flow is that many linear programming prob-
lems arising in practice can be modeled by network-flow, including several graph
problems that have been discussed in this book: bipartite matching, shortest
path, and edge/vertex connectivity. Network-flow algorithms can solve these
problems much faster than general-purpose linear programming methods.

The key to exploiting this power is recognizing that your problem can be
modeled as network flow. This requires experience and study. My recommen-
dation is that you first construct a linear programming model for your problem
and then compare it with linear programs for the two primary classes of network
flow problems: maximum flow and minimum-cost flow:

• Maximum flow – Here we seek the heaviest possible flow from s to t, given
the edge capacity constraints of G. Let xij be a variable accounting for
the flow from vertex i through directed edge (i, j). The flow through this
edge is constrained by its capacity cij , so

0 ≤ xij ≤ cij for 1 ≤ i, j ≤ n
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Furthermore, an equal flow comes in as goes out at each non-source or
non-sink vertex, so

n∑

j=1

xji −
n∑

j=1

xij = 0 for all 1 ≤ i ≤ n

We seek the assignment that maximizes the flow into sink t, namely∑n
i=1 xit.

• Minimum cost flow – Here we have an extra parameter for each edge (i, j),
namely the cost (dij) of sending one unit of flow from i to j. We also have
a targeted flow volume f we want to send from s to t at minimum total
cost. Hence, we seek the assignment that minimizes

n∑

i=1

n∑

j=1

dij · xij

subject to the edge and vertex capacity constraints of maximum flow, plus
the additional restriction that

∑n
i=1 xit = f .

Special considerations include:

• What if I have multiple sources and/or sinks? – No problem. We can
modify the network by adding a vertex to serve as a super-source that
feeds all the sources, and a super-sink that drains all the sinks.

• What if all arc capacities are identical, either 0 or 1? – Faster algorithms
exist for 0/1 network flows. See the Notes section for details.

• What if all my edge costs are identical? – Use the simpler and faster
algorithms for solving maximum flow as opposed to minimum-cost flow.
Maximum flow without edge costs arises in many applications, including
edge/vertex connectivity and bipartite matching.

• What if I have multiple types of material moving through the network? –
Every message sent through a telecommunications network has a specific
source and destination. Each destination needs to receive exactly those
calls sent to it, not an equal amount of communication from arbitrary
places. This can be modeled as a multicommodity flow problem, where
each call defines a different commodity and we seek to satisfy all demands
without exceeding the total capacity of any edge.

Linear programming will suffice for multicommodity flow if fractional
flows are permitted. Unfortunately, integral multicommodity flow is NP-
complete, even for only two commodities.

Network flow algorithms can be complicated, and significant engineering is
required to optimize performance. Excellent codes are available and described
below. The two primary classes of algorithms are:
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• Augmenting path methods – These algorithms repeatedly find a path of
positive capacity from source to sink and add it to the flow. It can be
shown that the flow through a network is optimal if and only if it contains
no augmenting path. Since each augmentation adds something to the flow,
we eventually reach the maximum. Network-flow algorithms differ in how
they select the augmenting path. If we are not careful, each augmenting
path might add only a little bit to the total flow, and so the algorithm
might take a long time to converge.

• Preflow-push methods – These algorithms push flows from one vertex to
another, initially ignoring the constraint that in-flow must equal out-flow
at each vertex. Preflow-push methods prove faster than augmenting-path
methods, essentially because multiple paths can be augmented simultane-
ously. These algorithms are the method of choice and are implemented in
the best codes described below.

Implementations: High-performance codes for both maximum flow and mini-
mum cost flow were developed by Andrew Goldberg and his collaborators. The
codes HIPR and PRF [CG94] are provided for maximum flow, with the proviso
that HIPR is recommended in most cases. For minimum-cost flow, the code of
choice is CS [Gol97]. Both are written in C and available for non-commercial
use from http://www.avglab.com/andrew/soft.html.

The C++ Boost Graph Library [SLL02] (http://www.boost.org/libs/
graph) and Java JGraphT (https://jgrapht.org) both provide implemen-
tations of several network flow algorithms.

The First DIMACS Implementation Challenge on Network Flows and Match-
ing [JM93] collected several implementations and generators for network flow,
which are accessible from http://dimacs.rutgers.edu/Challenges. These
include: (1) a preflow-push network flow implementation in C by Edward Roth-
berg, and (2) an implementation of eleven network flow variants in C, including
the older Dinic and Karzanov algorithms by Anderson and Setubal.

Notes: Excellent books on network flows and its applications include [AMO93,
Wil19], with Goldberg and Tarjan [GT14] a short but nice expository survey. The fun-
damental maximum-flow, minimum-cut theorem is due to Ford and Fulkerson [FF62].
Expositions on the hardness of multicommodity flow [Ita78] include [Eve11].

Conventional wisdom has long held that network flow should be computable in
O(nm) time, finally achieved by Orlin [Orl13]. See [AMO93] for a history of algorithms
for the problem. Empirical studies of flow algorithms include [GKK74, Gol97].

Information flows through a network can be modeled as multicommodity flows,

with the observation that replicating information at internal nodes can eliminate the

need for distinct source-to-sink paths when multiple sinks are interested in the same

information. The field of network coding [YLCZ05] uses such ideas to achieve infor-

mation flows at the theoretical limits of the max-flow, min-cut theorem.

Related problems: Linear programming (see page 482), matching (see page
562), connectivity (see page 568).

http://www.avglab.com/andrew/soft.html
http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
https://jgrapht.org
http://dimacs.rutgers.edu/Challenges


574 CHAPTER 18. GRAPH PROBLEMS: POLYNOMIAL TIME

Input Output

18.10 Drawing Graphs Nicely

Input description: A graph G.

Problem description: Draw a graph G to accurately reflect its structure.

Discussion: Graph drawing is a natural problem, yet it is inherently ill-defined.
What exactly is a nice drawing? We seek the visualization of a graph that best
shows off its structure, so the viewer can understand it. Simultaneously, we
want this drawing to look aesthetically pleasing.

Unfortunately, these are “soft” criteria for which it is impossible to design
an optimization algorithm. Indeed, there may be many different drawings of
a given graph, each of which is most appropriate in a certain context. Three
different drawings of the Petersen graph are presented on page 610. Check them
out. Which is the “right” one?

Several “hard” criteria can help assess the quality of a drawing:

• Crossings – We seek a drawing with as few pairs of crossing edges as
possible, because they are distracting.

• Area – We seek a drawing that uses as little paper as possible relative to
the shortest edge length, because it avoids cramping parts of the graph.

• Edge length – We seek a drawing that avoids long edges, because they tend
to obscure other features of the drawing.

• Angular resolution – We seek a drawing that avoids small angles between
two edges incident on a given vertex, because the resulting lines tend to
partially or fully overlap.
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• Aspect ratio –We seek a drawing whose aspect ratio (width/height) reflects
the desired output medium (typically a computer screen at 4/3) as closely
as possible, because that is the way we will ultimately view it.

Unfortunately, these goals are mutually contradictory, and the problem of find-
ing the best drawing under any non-empty subset of them is presumably NP-
complete.

Two final warnings before getting down to business. For graphs without
any inherent symmetries or structure, it is likely that no really nice drawing
exists. This is especially true for graphs with more than ten to fifteen vertices.
The sheer amount of ink needed to draw any large, dense graph will overwhelm
even a massive display. A drawing of the complete graph on 100 vertices (K100)
contains approximately 5,000 edges. On a 1,000×1,000 pixel display, this works
out to 200 pixels per edge. What can you hope to see, except a black blob in
the center of the screen?

Once all this is understood, it must be admitted that graph-drawing algo-
rithms can be quite effective and fun to play with. To help choose the right
approach, ask yourself the following questions:

• Must the edges be straight, or can I have curves and/or bends? – Straight-
line drawing algorithms are relatively simple, but have their limitations.
Orthogonal polyline drawings seem to work best to visualize complicated
graphs such as circuit designs. Orthogonal means that all lines must be
drawn either horizontal or vertical, with no intermediate slopes. Polyline
means that each graph edge is represented by a chain of straight-line
segments, connected by vertices or bends.

• Is there a natural, application-specific drawing? – If your graph represents
a network of cities and roads, you are unlikely to find a better drawing
than placing the vertices in the same position as the cities on a map. This
basic principle holds for many different applications.

• Is your graph either planar or a tree? – If so, use one of the special planar
graph or tree-drawing algorithms discussed in Sections 18.11 and 18.12.

• Is your graph directed? – Edge direction has a significant impact on the
nature of the desired drawing. When drawing directed acyclic graphs
(DAGs), it is best that all edges flow in a logical direction—either left–
right or top–down.

• How fast must your algorithm be? – Your graph drawing algorithm must
be very fast if it will be used for interactive update and display. You will be
limited to using incremental algorithms, which change the vertex positions
only in the immediate neighborhood of any edited vertex. If instead you
are printing a pretty picture for extended study, you can afford more time
for optimization.
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• Does your graph contain symmetries? – The output drawing above is
attractive because the graph contains symmetries—namely a five-way ro-
tational symmetry. The inherent symmetries in a graph can be identified
by computing its automorphisms, or self-isomorphisms. Graph isomor-
phism codes (see Section 19.9 (page 610)) can be readily used to find all
automorphisms.

For a quick-and-dirty drawing, I recommend simply spacing the vertices
evenly on a circle, and then drawing the edges as straight lines between ver-
tices. Such drawings are easy to program and fast to construct. They have the
substantial advantage that no two edges will obscure each other, since no three
vertices will be collinear. Such artifacts are hard to avoid once you allow internal
vertices into your drawing. An unexpected pleasure with circular drawings is
the symmetry they sometimes reveal, because vertices appear in the order they
were inserted into the graph. Simulated annealing can be used to permute the
circular vertex order to minimize crossings or edge length, and thus significantly
improve the drawing.

A good, general purpose graph-drawing heuristic models the graph as a sys-
tem of springs and then uses energy minimization to space the vertices. Let
adjacent vertices attract each other with a force proportional to (say) the loga-
rithm of their separation, while all non-adjacent vertices repel each other with a
force proportional to their separation distance. These weights provide incentive
for all edges to be short, while spreading the vertices apart. The behavior of
such a system can be approximated by determining the force acting on each
vertex at a particular time and then moving each vertex a small amount in
the appropriate direction. After several iterations, the system will stabilize on
a reasonable drawing. The input and output figures above demonstrate the
effectiveness of the spring embedding on a particular small graph.

If you need a polyline graph-drawing algorithm, my recommendation is that
you study the systems presented below or described in [JM12] to decide whether
one of them can do the job. You will have to do a significant amount of work
before you can hope to develop a better algorithm.

Drawing your graph opens another can of worms, namely where to place the
edge/vertex labels. We seek to place labels very close to the edges or vertices
they identify, and yet to position them such that they do not overlap each other
or other important graph features. Optimizing label placement can be shown to
be an NP-complete problem, but heuristics related to bin packing (see Section
20.9 (page 652)) can be effectively used.

Implementations: GraphViz (http://www.graphviz.org) is a popular and
well-supported graph-drawing program developed by Stephen North. It repre-
sents edges as spline curves and can construct useful drawings of quite large
and complicated graphs. It has sufficed for all of my professional graph-drawing
needs over the years.

All of the graph data structure libraries of Section 15.4 (page 452) devote
some effort to visualizing graphs. The Boost Graph Library and JGraphT both

http://www.graphviz.org
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output graphs in GraphViz’s Dot format, instead of reinventing the wheel.
VivaGraph (https://github.com/anvaka/VivaGraphJS) and Sigma (http:

//sigmajs.org/) are popular JavaScript packages for interactive display of
graphs in browsers.

Graph drawing is a problem where very good commercial products exist,
including those from Tom Sawyer Software (www.tomsawyer.com) and yFiles
(www.yworks.com). Pajek [DNMB18] is a package particularly designed for
drawing social networks, and available at http://mrvar.fdv.uni-lj.si/pajek/.
All of these have free trial or non-commercial use downloads.

Combinatorica [PS03] provides Mathematica implementations of several graph-
drawing algorithms, including circular, spring, and ranked embeddings. See
Section 22.1.8 (page 716) for further information on Combinatorica.

Notes: There exists a significant community of researchers in graph drawing, whose
annual conference (Graph Drawing and Network Visualization) has run for over 25
years. See more at http://www.graphdrawing.org/. Perusing a volume of the pro-
ceedings will provide a good view of the state-of-the-art and of what kinds of ideas
people are thinking about. The Handbook of Graph Drawing and Visualization [Tam13]
is the most comprehensive review of the field.

Two excellent books on graph-drawing algorithms are Battista et al. [BETT99]
and Kaufmann and Wagner [KW01]. A third book by Jünger and Mutzel [JM12] is
organized around systems instead of algorithms, but provides technical details about
the drawing methods each system employs. Map-labeling heuristics are described in
[BDY06, WW95].

Graph embeddings encode the structural information associated with each vertex
as a short vector, providing useful features for machine learning models. Such a two-
or three-dimensional embedding can be interpreted as vertex positions for a drawing,
although d = 128 is more typical for machine learning. Our own DeepWalk [PARS14]
is a very popular approach for constructing graph embeddings. See [CPARS18] for a
survey of this field. t-SNE [MH08] is a widely used method to project higher dimen-
sional point sets (like these embeddings) down to two dimensions for visualization.
Implementations of t-SNE are available at https://lvdmaaten.github.io/tsne/.

It is trivial to space n points evenly along the boundary of a circle. However, the

problem is considerably more difficult on the surface of a sphere. See Hardin, Sloane,

and Smith [HSS07] for extensive tables of such spherical codes for n ≤ 130.

Related problems: Drawing trees (see page 578), planarity testing (see page
581).

https://github.com/anvaka/VivaGraphJS
http://sigmajs.org/
http://sigmajs.org/
www.tomsawyer.com
www.yworks.com
http://mrvar.fdv.uni-lj.si/pajek/
http://www.graphdrawing.org/
https://lvdmaaten.github.io/tsne/
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18.11 Drawing Trees

Input description: A tree T , which is a graph without any cycles.

Problem description: Create a nice drawing of the tree T .

Discussion: Many applications require drawing pictures of trees. Tree dia-
grams are often used to display the hierarchical structure of file system directo-
ries. My attempts to Google “tree drawing software” revealed special-purpose
applications for visualizing family trees, syntax trees (sentence diagrams), and
evolutionary phylogenetic trees all in the top twenty links.

Different aesthetics are associated with each application, making it difficult
to generalize. That said, the primary issue in tree drawing is whether you are
drawing free or rooted trees:

• Rooted trees define a hierarchical order, emanating from a single source
node identified as the root. Any drawing should reflect this hierarchical
structure, plus any additional application-dependent constraints on the
order in which children should appear. For example, family trees are
rooted, with sibling nodes typically drawn from left to right in the order
of birth.

• Free trees do not encode any structure beyond their connection topology.
There is no root associated with the minimum spanning tree of a graph,
so a hierarchical drawing will be misleading. Such free trees might well
inherit their drawing from that of the full underlying graph, such as the
map of the cities whose distances define the minimum spanning tree.

Trees are always planar graphs, and hence can and should be drawn so no
two edges cross. Any of the planar drawing algorithms discussed in Section
18.12 (page 581) could be used to do so. But such algorithms are overkill,
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because there are much simpler ways of constructing planar drawings of trees.
The spring-embedding heuristics of Section 18.10 (page 574) work well on free
trees, but might be too slow for interactive applications.

The most natural tree-drawing algorithms assume rooted trees. However,
they can be used equally well with free trees, after selecting one vertex to serve
as the root of the drawing. This faux-root can be selected arbitrarily, or, even
better, by using a center vertex of the tree. A center vertex minimizes the
maximum distance to other vertices. This tree center can be identified in linear
time, by repeatedly trimming all the leaves until only the center remains.

Your two primary options for drawing rooted trees are ranked and radial
embeddings:

• Ranked embeddings – Place the root in the top center of your page, and
then partition the page into the root-degree number of top–down strips.
Deleting the root creates a set of subtrees, each of which is assigned to
its own strip. Draw each subtree recursively, by placing its new root (the
vertex adjacent to the old root) in the center of its strip a fixed distance
down from the top, with a line from old root to new root. The output
figure above is a nice ranked embedding of a balanced binary tree.

Such ranked embeddings are particularly effective to represent a hierarchy—
be it a family tree, data structure, or corporate ladder. The top–down
distance illustrates how far each node is from the root. Unfortunately,
such repeated subdivision eventually produces very narrow strips, where
many vertices get crammed into a small region of the page. Try to adjust
the width of each strip to reflect the total number of nodes it will contain,
and don’t be afraid of expanding into a neighboring region’s turf after
their shorter subtrees have been completed.

• Radial embeddings – Free trees are better drawn using a radial embedding,
where the center of the tree is placed in the center of the drawing. The
space around this center vertex is divided into angular sectors for each
subtree. Although the same problem of cramping will eventually occur,
radial embeddings make better use of space than ranked embeddings and
appear considerably more natural for free trees.

Implementations: GraphViz (http://www.graphviz.org) is a popular and
well-supported graph-drawing program developed by Stephen North. It repre-
sents edges as spline curves and can construct useful drawings of quite large
and complicated graphs. It has sufficed for all of my professional graph-drawing
needs over the years. But all of the tools discussed in Section 18.10 will do
something intelligent with trees.

Very good commercial products exist for graph/tree, including those from
Tom Sawyer Software (www.tomsawyer.com) and yFiles (www.yworks.com). Tree-
diagram oriented products include Lucid (https://www.lucidchart.com) and
Visme (https://www.visme.co/tree-diagram-maker/. All of these have free
trial or non-commercial use downloads.

http://www.graphviz.org
www.tomsawyer.com
www.yworks.com
https://www.lucidchart.com
https://www.visme.co/tree-diagram-maker/


580 CHAPTER 18. GRAPH PROBLEMS: POLYNOMIAL TIME

Combinatorica [PS03] provides Mathematica implementations of several tree-
drawing algorithms, including radial and rooted embeddings. See Section 22.1.8
(page 716) for further information on Combinatorica.

Notes: All books and surveys on graph drawing include discussions of tree-drawing
algorithms. The Handbook of Graph Drawing and Visualization [Tam13] is the most
comprehensive review of the field. Two excellent books on graph drawing algorithms
are Battista et al. [BETT99] and Kaufmann and Wagner [KW01]. A third book by
Jünger and Mutzel [JM12] is organized around systems instead of algorithms, but
provides technical detail about the drawing methods each system employs.

A comprehensive resource of tree visualization is https://treevis.net/, with
an associated survey paper [Sch11]. Treemaps are a popular method for displaying
hierarchical data where nodes are represented by rectangles, and the subtrees are
nested within their parent [JS91].

Heuristics for tree layout have been studied by several researchers, with Buchheim,
et al. [BJL06] reflective of the state of the art. Under certain aesthetic criteria, the
problem is NP-complete [SR83].

Certain tree layout algorithms arise from non-drawing applications. The van Emde
Boas layout of a binary tree offers better external memory performance than conven-
tional binary search, at a cost of greater complexity. See the survey of Arge et al.
[ABF05] for more on this and other cache-oblivious data structures.

Related problems: Drawing graphs (see page 574), planar drawings (see page
581).

https://treevis.net/
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18.12 Planarity Detection and Embedding

Input description: A graph G.

Problem description: Can G be drawn in the plane such that no two edges
cross? If so, produce such a drawing.

Discussion: Planar drawings (or embeddings) make clear the structure of a
given graph by eliminating crossing edges, which can be confused as additional
vertices. Graphs defined by road networks or printed circuit board layouts are
inherently planar, because they are completely defined by surface structures.
Other common graphs are planar by happenstance, like trees.

Planar graphs have nice properties that can be exploited to yield faster al-
gorithms for many problems. The most important fact to know is that every
planar graph is sparse. Euler’s formula shows that |E| ≤ 3|V |−6 for every non-
trivial planar graph G = (V,E). This means that every planar graph contains
a linear number of edges, and further that every planar graph contains a vertex
of degree ≤ 5. Every subgraph of a planar graph is planar, so there must always
be a sequence of low-degree vertices to delete from G, finally reducing it to the
empty graph.

To gain a better appreciation of the subtleties of planar drawings, I encour-
age the reader to construct a planar (non-crossing) embedding for the graph
K5 − e, shown on the input figure above. Don’t peek. Then construct such an
embedding where all the edges are straight. Finally, add the missing edge to
the graph and try to do the same for K5 itself.

The study of planarity has motivated much of the development of graph
theory. It must be confessed, however, that the need for planarity testing arises
relatively infrequently in applications. Most graph-drawing systems do not ex-
plicitly seek planar embeddings. “Planarity Detection” proved to be among
the least frequently hit pages of my Algorithm Repository (www.algorist.com)

http://www.algorist.com
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[Ski99]. That said, it is still very useful to know how to deal with planar graphs
when you encounter them.

It pays to distinguish the problem of planarity testing (does my graph have a
planar drawing?) from constructing planar embeddings (create such a drawing),
although both can be done in linear time. Many efficient algorithms on planar
graphs make no use of the drawing, but instead exploit the low-degree deletion
sequence described above.

Algorithms for planarity testing begin by embedding an arbitrary cycle from
the graph in the plane and then considering additional paths in G, connecting
vertices on this cycle. Whenever two such paths cross, one must be drawn
outside the cycle and one inside. When three such paths mutually cross, there
is no way to resolve the problem, so the graph cannot be planar. Linear-time
algorithms for planarity detection are based on depth-first search. But they are
sufficiently complicated that you are wise to seek an existing implementation.

Such path-crossing algorithms can be used to construct a planar embedding
by inserting the paths into the drawing one by one. Unfortunately, because they
work in an incremental manner, nothing prevents them from inserting many
vertices and edges into a small area of the drawing. Such cramping is a major
problem, because it leads to ugly drawings that are hard to understand. Better
algorithms have been devised that construct planar-grid embeddings, where each
vertex lies on a (2n − 4) × (n − 2) grid. Thus, no region can get too cramped
and no edge can get too long. Still, the resulting drawings tend not to look as
natural as one might wish.

For non-planar graphs, what is often sought is a drawing that minimizes the
number of crossings. Unfortunately, computing the crossing number of a graph
is NP-complete. Indeed, finding the crossing number for planar graphs with just
one additional edge is NP-complete [CM13]. A useful heuristic extracts a large
planar subgraph of G, embeds this subgraph, and then inserts the remaining
edges one by one to minimize the number of crossings. This won’t do much
for dense graphs, which are doomed to have many crossings, but it does work
well for graphs that are almost planar, such as road networks with overpasses
or printed circuit boards with multiple layers. Large planar subgraphs can be
found by modifying planarity-testing algorithms so they delete troublemaking
edges when encountered.

Implementations: LEDA (see Section 22.1.1 (page 713)) includes linear-time
algorithms for both planarity testing and constructing straight-line planar-grid
embeddings. Their planarity tester returns an obstructing Kuratowski subgraph
(see the Notes section) for any graph deemed non-planar, yielding concrete proof
of its non-planarity.

The Open Graph Drawing Framework (http://www.ogdf.net), presented
in [CGJ+13], is a C++ graph-drawing framework that includes several planarity
testing/embedding algorithms, including the PQ-tree algorithm of [CNAO85].
The C++ Boost Graph Library [SLL02] (http://www.boost.org/libs/graph)
also contains algorithms for planarity detection and embedding.

PIGALE (http://pigale.sourceforge.net/) is a C++ graph editor and

http://www.ogdf.net
http://www.boost.org/libs/graph
http://pigale.sourceforge.net/
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algorithm library focusing on planar graphs. It contains a variety of algorithms
for constructing planar drawings as well as efficient algorithms to test planarity
and identify an obstructing subgraph (K3,3 or K5), if one exists.

Greedy randomized adaptive search procedure (GRASP) heuristics to find
the largest planar subgraph have been implemented by Ribeiro and Resende
[RR99] as Algorithm 797 of the Collected Algorithms of the ACM (see Section
22.1.5 (page 715)).

Notes: Kuratowski [Kur30] gave the first characterization of planar graphs, namely
that they do not contain a subgraph homeomorphic to K3,3 or K5. Thus, if you are
still working on the exercise to embed K5, now is an appropriate time to give it up.
Fáry’s theorem [F4́8] states that every planar graph can be drawn in such a way that
each edge is straight.

Hopcroft and Tarjan [HT74] gave the first linear-time algorithm for drawing graphs.
Booth and Lueker [BL76] developed an alternate planarity-testing algorithm based
on PQ-trees. Simplified planarity-testing algorithms include [MM96, SH99]. Efficient
2n×n planar grid embeddings were first developed by [dFPP90]. The book by Nishizeki
and Rahman [NR04] provides a good overview of the spectrum of planar drawing
algorithms. Recent surveys on planarity detection include [Pat13, Tam13].

Outerplanar graphs are those that can be drawn such that all vertices lie on the
outer face of the drawing. These graphs can be characterized as having no subgraph
homeomorphic to K2,3, and can be recognized and embedded in linear time.

Generalizations of planarity revolve around embedding graphs in more complicated

surfaces than the plane. I encourage the reader to show that both K3,3 and K5 can

be embedded without crossings on a bagel or donut. See [GT01] for an introduction

to topological graph theory.

Related problems: Graph drawing (see page 574), drawing trees (see page
578).



Chapter 19

Graph Problems: NP-Hard

A cynical view of graph algorithms is that “everything we want to do is hard.”
Indeed, all problems in this section are provably NP-complete with the exception
of graph isomorphism—whose complexity status remains an open question. The
theory of NP-completeness demonstrates that either all NP-complete problems
have polynomial-time algorithms, or none of them do. The former prospect
is sufficiently unlikely that NP-completeness suffices to say that no efficient
algorithm exists to solve the given problem.

Still, do not abandon hope if your problem resides in this chapter. I provide
a recommended attack for every problem, be it combinatorial search, heuristics,
approximation algorithms, or algorithms for restricted instances. Hard problems
require a different methodology to work with than polynomial-time problems,
but with care can usually be dealt with successfully.

The following books will help you deal with NP-complete problems:

• Garey and Johnson [GJ79] – This is the classic reference on the theory of
NP-completeness. Most notably, it contains a concise catalog of over 400
NP-complete problems, with associated references and comments. Browse
through this catalog if you suspect your problem might be hard. This is
the book in my algorithms library that I reach for most often.

• Crescenzi and Kann [CK97] – This website (www.nada.kth.se/~viggo/
problemlist/) serves as the “Garey and Johnson” for approximation al-
gorithms.

• Williamson and Shmoys [WS11] – The most comprehensive textbook on
the theory and design of approximation algorithms.

• Vazirani [Vaz04] – A complete treatment of the theory of approximation
algorithms by a highly regarded researcher in the field.

• Gonzalez [Gon18] – This handbook contains current surveys on a variety of
techniques for dealing with hard problems, both applied and theoretical.
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Input Output

19.1 Clique

Input description: A graph G = (V,E).

Problem description: What is the largest subset S of vertices such that all
pairs are connected, that is, for all x, y ∈ S, (x, y) ∈ E?

Discussion: In high school, everybody complained about the “clique”—a group
of friends who all hung around together and seemed to dominate everything
social. Consider a graph representing the school’s social network. Vertices
correspond to people, with edges between pairs of people who are friends. Thus,
the high school clique defines a (complete subgraph) clique in this friendship
graph.

Identifying “clusters” of related objects often reduces to finding large cliques
in graphs. An interesting example arose in a program the Internal Revenue
Service (IRS) developed to detect organized tax fraud. A popular scam submits
large numbers of phony tax returns in the hopes of getting undeserved refunds.
But generating large numbers of different phony tax returns is hard work. The
IRS constructs graphs with vertices corresponding to submitted tax forms and
edges between any two forms that appear suspiciously similar. Any large clique
in this graph points to fraud.

Since every single edge in a graph represents a clique of two vertices, the
challenge lies not in finding a clique, but in finding a large clique. And it is
indeed a challenge, for finding a maximum clique is NP-complete. To make
matters worse, it is provably hard to approximate even to within a factor of
n1−ε. Theoretically, clique is about as hard as a problem in this book can get.
So what can we hope to do about it?

• Will a maximal clique suffice? – A clique is maximal if it cannot be
enlarged by adding any additional vertex. A given maximal clique might
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in fact be the largest possible clique, but it probably won’t be, and could
well be much smaller. To find a hopefully large, maximal clique, sort the
vertices from highest degree to lowest degree, put the first vertex in the
clique, and then test if subsequent vertices are adjacent to all the clique
vertices added thus far. If so, add it to enlarge the clique; if not, continue
down the list. By using a bit vector to mark which vertices are currently
in the clique, this can be done in O(n+m) time. An alternative approach
might incorporate some randomness into the vertex ordering, and accept
the largest maximal clique you find after a number of trials.

• What if I will settle for a large, dense subgraph? – Insisting on cliques
to define clusters in a graph can be risky, because a single missing edge
will eliminate a vertex from consideration. Instead, we should seek large
dense subgraphs—subsets of vertices that contain large numbers of edges
between them. Cliques are, by definition, the densest subgraphs possible.

The largest set of vertices whose induced subgraph has vertex degree ≥ k
can be found with a simple linear-time algorithm. Delete all the vertices
whose degree is less than k. This may reduce the degree of other vertices
below k, so they will also have to be deleted. Repeating this process until
all remaining vertices have degree ≥ k constructs the largest high-degree
subgraph. This algorithm can be implemented in O(n+m) time by using
adjacency lists and the constant-width priority queue of Section 15.2 (page
445).

• What if the graph is planar? – Planar graphs cannot have cliques of a
size larger than four, or else they cease to be planar. Since each edge
defines a clique of size 2, the only interesting cases are cliques of three and
four vertices. Efficient algorithms to find such small cliques consider the
vertices from lowest to highest degree. Every planar graph must contain a
vertex v of degree at most 5 (see Section 18.12 (page 581)), which has only
a constant-sized neighborhood to check exhaustively for the largest clique
containing v. We then delete this vertex to leave a smaller planar graph,
which contains a different low-degree vertex. Repeat this check-and-delete
process until the graph is empty.

If you really need to find the largest clique in a graph, an exhaustive search
via backtracking provides the only real solution. We search through all k-subsets
of the vertices, pruning a subset as soon as it contains a vertex that is not
adjacent to all the rest. A simple upper bound on the size of the maximum
clique in G is the highest vertex degree plus 1. A better upper bound comes
from sorting the vertices in order of decreasing degree. Let j be the largest index
such that degree of vertex vj is at least j − 1. The largest clique in the graph
contains no more than j vertices, since no vertex of degree less than (j− 1) can
appear in a clique of size j. To speed our search, first delete all such low degree
vertices from G.

Heuristics for finding large cliques based on randomized techniques, such as
simulated annealing, are likely to work reasonably well.
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Implementations: Cliquer is a set of C routines for finding cliques in arbi-
trary weighted graphs by Patric Östergard. It uses an exact branch-and-bound
algorithm, and is available at http://users.tkk.fi/~pat/cliquer.html.

Programs for finding cliques and independent sets were sought for the Sec-
ond DIMACS Implementation Challenge [JT96]. Programs and data from
the challenge can be obtained from http://dimacs.rutgers.edu/archive/

Challenges/. dfmax.c implements a simple-minded branch-and-bound algo-
rithm similar to [CP90]. dmclique.c uses a “semi-exhaustive greedy” scheme
for finding large independent sets from [JAMS91].

Kreher and Stinson [KS99] provide branch-and-bound programs in C for
finding the maximum clique using a variety of lower-bounds, available at http:
//www.math.mtu.edu/~kreher/cages/Src.html.

GOBLIN (http://goblin2.sourceforge.net/) employs branch-and-bound
algorithms to find large cliques. They claim to work with graphs as large as 150
to 200 vertices.

Notes: Bomze, et al. [BBPP99] and Wu, et al. [WH15] give comprehensive surveys
on the problem of finding maximum cliques. Particularly interesting is the work from
the operations research community on branch-and-bound algorithms for finding cliques
effectively. More recent experimental results are reported in [JS01].

The proof that clique is NP-complete is due to Karp [Kar72]. His reduction (given
in Section 11.3.3 (page 366)) established clique, vertex cover, and independent set
as very closely related problems, so heuristics and programs that solve one of them
effectively should also produce reasonable solutions for the other two.

The densest subgraph problem seeks the subset of vertices whose induced subgraph
has the highest average vertex degree. A clique of k vertices is clearly the densest
possible subgraph of its size, but larger, less complete subgraphs may achieve higher
average degree. This problem is NP-complete, but simple heuristics based on re-
peatedly deleting the lowest-degree vertex achieve reasonable approximation ratios
[AITT00]. See [GKT05] for an interesting application of densest subgraph, namely
detecting link spam on the web.

That clique cannot be approximated to within a factor of n1/2−ε unless P = NP

(and n1−ε under weaker assumptions) was shown by [Has82]. Picking any single vertex

as a clique gives an n-factor approximation to max clique. These hardness results show

that no polynomial-time approximation algorithm can do much better than this trivial

heuristic.

Related problems: Independent set (see page 589), vertex cover (see page
591).

http://users.tkk.fi/~pat/cliquer.html
http://dimacs.rutgers.edu/archive/Challenges/
http://dimacs.rutgers.edu/archive/Challenges/
http://www.math.mtu.edu/~kreher/cages/Src.html
http://www.math.mtu.edu/~kreher/cages/Src.html
http://goblin2.sourceforge.net/
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Input Output

19.2 Independent Set

Input description: A graph G = (V,E).

Problem description: What is the largest subset S of vertices of V such that
there is no edge (x, y) ∈ E where x ∈ S and y ∈ S?

Discussion: The need to find large independent sets arises in facility disper-
sion problems, where we seek a set of mutually separated locations. To ensure
that no two locations of our new “McAlgorithm” franchise service are so close
as to compete with each other, we can create a graph where the vertices repre-
sent possible locations, and add edges between any two locations deemed close
enough to interfere. The maximum independent set on this graph defines the
largest set of franchise locations we can sell without cannibalizing sales.

Independent sets (also known as stable sets) avoid conflicts between elements,
and hence often arise in coding theory and scheduling problems. For instance,
we can define a graph whose vertices represent the set of possible code words,
and add edges between any two code words sufficiently similar to be confused
due to noise. The maximum independent set of this graph defines the highest
capacity code for the given communication channel.

Independent set is closely related to two other NP-complete problems:

• Clique – A clique is a subset of pairwise connected vertices, while an
independent set is a subset of pairwise non-connected vertices. The com-
plement of G = (V,E) is a graph G′ = (V,E′) where (i, j) ∈ E′ iff (i, j)
is not in E. The complement replaces each edge by a non-edge and vice
versa. The maximum independent set in G is exactly the maximum clique
in G′, so the two problems are algorithmically identical. The algorithms
and implementations in Section 19.1 (page 586) can thus be used to find
the independent set of G′.
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• Vertex coloring – The vertex coloring of a graph G = (V,E) is a partition
of V into a k sets (colors), where no two vertices of the same color can
have an edge between them. Each color class defines an independent set.
Many independent set applications are really coloring problems.

Indeed, one heuristic to find a large independent set is to use any vertex
coloring algorithm/heuristic, and take the largest color class. One conse-
quence of this observation is that all graphs with small chromatic numbers
(such as planar and bipartite graphs) must have large independent sets.

The simplest reasonable heuristic is to find the lowest-degree vertex, add
it to the independent set, and then delete it and all vertices adjacent to it.
Repeating this process until the graph is empty gives a maximal independent
set, in that it can’t be made larger by just adding vertices. Using randomization
or perhaps some degree of exhaustive search might result in somewhat larger
independent sets.

The independent set problem is in some sense dual to graph matching. The
former asks for a large set of vertices with no edge in common, while the latter
asks for a large set of edges with no vertex in common. This suggests trying to
rephrase your problem as an efficiently computable matching problem instead
of maximum independent set, which is NP-complete.

The maximum independent set of a tree can be found in linear time by (1)
stripping off the leaf nodes, (2) adding them to the independent set, (3) deleting
all adjacent nodes, and then (4) repeating the first step on the resulting trees
until it is empty.

Implementations: Any program for computing the maximum clique in a graph
can find maximum independent sets by just complementing the input graph.
Therefore, I refer the reader to the clique-finding programs of Section 19.1 (page
586).

GOBLIN (http://goblin2.sourceforge.net/) implements a branch-and-
bound algorithm for finding independent sets (called stable sets in the manual).

Greedy randomized adaptive search (GRASP) heuristics for independent
set have been implemented by Resende, et al. [RFS98] as Algorithm 787 of the
Collected Algorithms of the ACM (see Section 22.1.5 (page 715)).

Notes: That independent set is NP-complete was shown by Karp [Kar72]. It remains
NP-complete for planar cubic graphs [GJ79]. Independent set can be solved efficiently
for bipartite graphs [Law11]. This is not trivial—indeed the larger of the “part” of a
bipartite graph is not necessarily its maximum independent set.

Finding maximal independent sets is a challenging problem in parallel and dis-

tributed models of computation, because concurrent additions might well have edges

between them. See [BFS12, Gha16] for representative results.

Related problems: Clique (see page 586), vertex coloring (see page 604),
vertex cover (see page 591).

http://goblin2.sourceforge.net/
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Input Output

19.3 Vertex Cover

Input description: A graph G = (V,E).

Problem description: What is the smallest subset C ⊆ V such that every
edge (x, y) ∈ E contains at least one vertex of C?

Discussion: Vertex cover is a special case of the more general set cover problem,
which takes as input an arbitrary collection of subsets S = (S1, . . . , Sn) over the
universal set U = {1, . . . ,m}. We seek the smallest cover C of subsets from
S whose union is U . Set cover often arises in applications associated with
buying things sold in fixed lots or assortments. See Section 21.1 (page 678) for
a discussion of set cover.

To turn vertex cover into a set cover problem, let universal set U represent
the set E of edges from G, and define Si to be the set of edges incident on vertex
i. Selecting subset Si in the set cover problem is equivalent to selecting vertex
i in the vertex cover problem. A set of vertices defines a vertex cover in graph
G iff the corresponding subsets of edges define a set cover in this particular
instance. Vertex cover instances are simpler than general set cover, because
each edge can appear in only two different subsets. Vertex cover is a relative
lightweight among NP-complete problems, and can be solved more effectively
than general set cover.

Vertex cover and independent set are very closely related problems. Since
every edge in E is (by definition) incident on a vertex in any cover S, there
cannot be an edge whose endpoints are both in in V − S. Thus, V − S must
be an independent set. Since minimizing S is the same as maximizing V − S,
the problems are equivalent, and any independent set solver can be applied to
vertex cover as well. Having two ways of looking at your problem can be helpful,
since one may appear easier in a given context.

The simplest heuristic for vertex cover selects the vertex with highest degree,
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adds it to the cover, deletes all adjacent edges, and then repeats until the graph
is empty. With the right data structures, this can be done in linear time, and
“usually” produces a decent cover. But in the worst case this cover might be lg n
times larger than the optimal cover, on particularly challenging input graphs.

Fortunately, we can always find a vertex cover whose size is at most twice as
large as optimal. Find a maximal matching M in the graph—a set of edges that
share no vertex in common, and that cannot be enlarged by adding edges. Such
a maximal matching can be constructed incrementally, by picking an arbitrary
edge e = (x, y) in the graph, deleting the two vertices x and y, and repeating
until the graph is out of edges.

Taking both of the vertices for each edge in this maximal matching gives us
a vertex cover. Why is this a cover? Because every edge gets deleted when it is
a neighbor to a cover vertex. Why must this cover be at most twice as large as
the minimum cover? Because any vertex cover must contain at least one of the
two vertices in each matching edge, just to cover the edges of M .

This heuristic can be tweaked to perform somewhat better in practice, if not
in theory. We can select the matching edges so as to “kill off” as many other
edges as possible. By starting from the smallest maximal matching we can find,
we will minimize the number of pairs of vertices in the vertex cover. Also, some
of the vertices from M may not be needed for the cover because all of their
incident edges were covered using other matching vertices. We can identify and
delete these redundant vertices by making a second pass through our cover.

The vertex cover problem seeks to cover all edges using few vertices. Two
other important problems have similar-sounding objectives:

• Cover all vertices using few vertices – The dominating set problem seeks
the smallest set of vertices D such that every vertex in V −D is adjacent
to at least one vertex in the dominating set D. Every vertex cover of
a connected graph is also a dominating set, but dominating sets can be
much smaller. Any single vertex represents the minimum dominating set
of complete graph Kn, while n− 1 vertices are needed for a vertex cover.
Dominating sets tend to arise in communications problems, because they
represent the hubs or broadcast centers sufficient to communicate with all
sites/users.

Dominating set problems can also be expressed as instances of set cover
(see Section 21.1 (page 678)). Each vertex vi defines the subset consisting
of all vertices it is adjacent to, plus itself. The greedy set cover heuristic
running on this instance yields a Θ(lg n) approximation to the optimal
dominating set.

• Cover all vertices using few edges – The edge cover problem seeks the
smallest set of edges such that each vertex is included in one of the edges.
Edge cover can be solved efficiently by finding a maximum cardinality
matching (see Section 18.6 (page 562)), and then selecting arbitrary edges
to account for the unmatched vertices. It is curious that the dual problems
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of edge cover and vertex cover have such different fates: one NP-complete
and the other polynomial.

Implementations: Any program for computing the maximum clique in a graph
can be applied to vertex cover by complementing the input graph and selecting
the vertices that do not appear in the clique. Therefore, I encourage the reader
to check out the clique-finding programs of Section 19.1 (page 586).

JGraphT (https://jgrapht.org) is a Java graph library that contains
greedy and 2-approximate heuristics for vertex cover.

Notes: Karp [Kar72] first proved that vertex-cover is NP-complete. A diverse set
of heuristics yield 2-approximation algorithms for vertex cover, including randomized
rounding. Good expositions on these 2-approximation algorithms include [CLRS09,
Pas97, Vaz04, WS11]. The example that the greedy algorithm can be as bad as lg n
times optimal is due to [Joh74] and presented in [PS98]. Experimental studies of vertex
cover heuristics include [ACL12, GMPV06, GW97, RHG07].

Whether there exists a better than 2-factor approximation for vertex cover has
long been one of the major open problems in approximation algorithms. Knot and
Regev [KR08] prove no (2 − ε)-approximation exists for vertex cover, assuming the
unique games conjecture. Dinur and Safra [DS05] proved there does not exist a better
than 1.36-factor approximation algorithm, assuming P �= NP .

The primary reference on dominating sets is the monograph of Haynes et al.
[HHS98]. Heuristics for the connected dominating set problem are presented in [GK98].
Dominating set cannot be approximated to better than the Ω(lg n) factor [CK97] of
set cover.

Related problems: Independent set (see page 589), set cover (see page 678).

https://jgrapht.org
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Input Output

19.4 Traveling Salesman Problem

Input description: A weighted graph G.

Problem description: Find the cycle of minimum cost, visiting each vertex
of G exactly once.

Discussion: The traveling salesman problem (TSP) is the most notorious NP-
complete problem. This is a function of its general usefulness, and the ease with
which it can be explained to the public at large. Imagine a salesperson planning
a car trip to visit a set of cities. What is the shortest route that will visit all of
them and return home, thus minimizing his or her total driving?

The traveling salesman problem arises in many transportation and routing
problems. Optimizing tool paths for manufacturing equipment is a TSP. For
example, consider a robot arm assigned to solder all the connections on a printed
circuit board. The shortest tour that visits each solder point exactly once defines
the most efficient route for the robot.

Several issues arise in solving TSPs:

• Is the graph unweighted? – If the graph is unweighted, or is a complete
graph where all the edges have one of two possible cost values (long or
short), this problem reduces to finding a Hamiltonian cycle. See Section
19.5 (page 598) for a discussion.

• Does your input satisfy the triangle inequality? – Our sense of how proper
distance measures behave is captured by the triangle inequality, which
states that d(i, j) ≤ d(i, k) + d(k, j) for all vertices i, j, k ∈ V . Geomet-
ric distances always satisfy the triangle inequality, because the shortest
distance between two points is as the crow flies. Commercial air fares do
not satisfy the triangle inequality, which is why it is so hard to find the
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cheapest airfare between two points. TSP heuristics work much better on
sensible graphs that do obey the triangle inequality.

• Are you given n points as input or a weighted graph? – Geometric in-
stances are often easier to work with than a graph representation, because
all the pairs of points define a complete graph. Thus, there is never an
issue of finding a feasible tour. We can also save space by computing these
distances on demand, thus eliminating the need to store an n×n distance
matrix. Geometric instances inherently satisfy the triangle inequality, so
we can exploit performance guarantees from certain heuristics. Finally, we
can take advantage of geometric data structures like kd-trees to quickly
identify close unvisited sites.

• Can you visit a vertex more than once? – The restriction that the tour
not revisit any vertex is irrelevant in many applications. In air travel,
the cheapest way to visit all cities might repeatedly visit an airport hub.
Note that this issue never arises when the input observes the triangle
inequality.

TSP with repeated vertices is easily solved by using any conventional TSP
code on a new cost matrix D, where D(i, j) is the shortest path distance
from i to j. This matrix satisfies the triangle inequality, and can be
constructed by solving an all-pairs shortest path (see Section 18.4 (page
554)).

• Is your distance function symmetric? – A distance function is asymmetric
when there exists x, y such that d(x, y) �= d(y, x). The asymmetric trav-
eling salesman problem (ATSP) is much harder to solve in practice than
symmetric (STSP) instances, so try to avoid such pathological distance
functions. Be aware that there is a reduction converting ATSP instances
to symmetric instances containing twice as many vertices [GP07]. This
can be useful, because symmetric solvers are so much better.

• How important is it to find the optimal tour? – Heuristic solutions will
suffice for most applications. There are two different approaches if you
insist on solving your TSP to optimality, however. Cutting plane methods
model the problem as an integer program, then solve the linear program-
ming relaxation of it. Additional constraints designed to force integrality
are then added if the optimal solution is not at an integer point. Branch-
and-bound algorithms perform a combinatorial search while maintaining
careful upper and lower bounds on the cost of a tour. In the hands of
professionals, problems with thousands of vertices can be solved. Maybe
you can too, if you use the best solver available.

Almost any flavor of TSP is going to be NP-complete, so the right way to
proceed is with heuristics. These typically come within a few percent of the
optimal solution, which is close enough for engineering work. Literally dozens
of heuristics have been proposed for TSP, so the situation can be confusing.
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Empirical results in the literature are sometimes contradictory. However, we
recommend choosing from among the following heuristics:

• Minimum spanning trees – Start by finding the minimum spanning tree
of the sites, and then do a depth-first search of the resulting tree. In
the course of DFS, we walk over each of the n − 1 edges exactly twice:
once going down to discover a new vertex, and once going up when we
backtrack. Now define a tour by ordering the vertices based on when they
were discovered. The resulting tour is at most twice the length of the
optimal TSP tour, if the graph obeys the triangle inequality. In practice,
it is usually better, typically 15% to 20% over optimal. The running time
of computing the minimum spanning tree for points in the plane is only
O(n lg n) (see Section 18.3 (page 549)).

• Incremental insertion methods – A different class of heuristics starts from
a single vertex, and then inserts new points into this partial tour one at a
time until the tour is complete. The version of this heuristic that seems
to work best is furthest point insertion: of all remaining points, insert the
point v into a partial tour T such that

max
v∈V

|T |
min
i=1

(d(v, vi) + d(v, vi+1))

The “min” ensures that we insert the vertex in the position that adds the
smallest amount of distance to the tour, while the “max” ensures that
we pick the worst such vertex first. This seems to work well because it
“roughs out” a partial tour first before filling in details. Such tours are
typically only 5% to 10% longer than optimal.

• K-optimal tours – More powerful are the Kernighan–Lin or k-opt heuris-
tics. The method applies local refinements to an initially arbitrary tour
in the hopes of improving it. In particular, we delete a subset of k edges
from the tour so that the k remaining subchains can be rewired to form a
new, hopefully improved, tour. A tour is k-optimal when no subset of k
edges can be deleted and rewired to reduce the cost. Two-opting a tour is
a fast and effective way to improve any other heuristic. Experiments sug-
gest that 3-optimal tours are usually within a few percent of optimal cost.
For k > 3, the computation time increases considerably faster than the
solution quality. Simulated annealing provides an alternate mechanism to
employ edge flips to improve heuristic tours.

Implementations: Concorde is a program for the symmetric traveling sales-
man problem and related network optimization problems, written in ANSI C.
This record-setting program by Applegate, Bixby, Chvatal, and Cook [ABCC07]
has obtained the optimal solutions to at least 106 of TSPLIB’s 110 instances;
the largest of which has 85,900 cities. Concorde is available for academic re-
search use from http://www.math.uwaterloo.ca/tsp. It is the clear choice

http://www.math.uwaterloo.ca/tsp
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among available TSP codes. Their website features very interesting material on
the history and applications of TSP.

Lodi and Punnen [LP07] put together an excellent survey of available soft-
ware for solving TSP. Current links to all programs mentioned are maintained
at http://or.deis.unibo.it/research_pages/tspsoft.html.

TSPLIB [Rei91] provides the standard collection of hard instances of TSPs
that arise in practice. The best-supported version of TSPLIB is available from
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

Notes: The book by Applegate et al. [ABCC07] documents the techniques they
used in their record-setting TSP solvers, as well as the theory and history behind the
problem. Cook also wrote a popular book on TSP [Coo11]. Gutin and Punnen [GP07]
now offer the best reference on all aspects and variations of the traveling salesman
problem, displacing an older but beloved book by Lawler et al. [LLKS85].

Experimental results on heuristic methods for solving large TSPs include [Ben92a,
Rei94, WCL+14]. Typically, it is possible to get within a few percent of optimal with
such methods.

The Christofides heuristic [Chr76] is an improvement over the minimum spanning
tree heuristic and guarantees a tour whose cost is at most 3/2 times optimal on Eu-
clidean graphs. It runs in O(n3), where the bottleneck is the time it takes to find a
minimum-weight perfect matching (see Section 18.6 (page 562)). An exciting recent
result yields a constant-factor approximation for the more general case of asymmetric
TSP [STV17]. The minimum spanning tree heuristic is due to [RSL77].

Polynomial-time approximation schemes for Euclidean TSP have been developed
by Arora [Aro98] and Mitchell [Mit99], which offer 1 + ε factor approximations in
polynomial time for any ε > 0. They are of great theoretical interest, although any
practical consequences remain to be determined.

The history of progress on optimal TSP solutions is inspiring. In 1954, Dantzig,
Fulkerson, and Johnson solved a symmetric TSP instance of 42 US cities [DFJ54]. In
1980, Padberg and Hong solved an instance on 318 vertices [PH80]. Applegate et al.
[ABCC07] have solved problems that are almost 300 times larger than this. Some
of this increase is due to improved hardware, but most is due to better algorithms.
The rate of growth demonstrates that exact solutions to NP-complete problems can
be obtained for surprisingly large instances if the stakes are high enough.

For sets of n points in convex position in the plane, the minimum TSP tour is
described by its convex hull (see Section 20.2 (page 626)), which can be computed in
O(n lg n) time. Other easy special cases of TSP are known.

Related problems: Hamiltonian cycle (see page 598), minimum spanning tree
(see page 549), convex hull (see page 626).

http://or.deis.unibo.it/research_pages/tspsoft.html
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Input Output

19.5 Hamiltonian Cycle

Input description: A graph G = (V,E).

Problem description: Find a tour of the vertices using only edges from G,
such that each vertex is visited exactly once.

Discussion: Hamiltonian cycle or path in a graph G is a special case of the
traveling salesman problem on a graph G′—where each edge in G has distance
1 in G′ and non-edge vertex pairs are separated by a greater distance. Such a
weighted graph has a TSP tour of cost n in G′ iff G is Hamiltonian.

Hamiltonian cycles are fundamental structures in graph theory, and a useful
way to model a diverse set of phenomena. Sections 17.4–17.6 detail algorithms
for generating combinatorial objects like permutations, subsets, and partitions.
Minimum change orders (aka Gray codes) are the most efficient way of construct-
ing such objects, and can naturally be thought of as defining a Hamiltonian cycle
on the appropriate graph.

Closely related is the problem of finding the longest path or cycle in a graph.
In precedence-constrained scheduling problems, where directed edge (x, y) im-
plies job x must be completed before job y, the longest path defines the critical
path that determines the shortest possible time to complete all the jobs. In
signal analysis of circuits, the length of the longest path/cycle defines the time
it takes the circuit to settle into a stable state after a perturbation.

The problems of finding longest cycles and paths are both NP-complete,
even on very restrictive classes of unweighted graphs. There are several possible
lines of attack, however:

• Is there a serious penalty for visiting vertices more than once? – Refor-
mulating the Hamiltonian cycle problem as minimizing the total number
of vertices visited on a complete tour turns it into an optimization prob-
lem, instead of an existential one. This allows possibilities for heuristics
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and approximation algorithms. Finding a spanning tree of the graph and
doing a depth-first search, as discussed in Section 19.4 (page 594), yields a
tour with at most 2n vertices. Using repeated random trials or simulated
annealing might bring the size of this down considerably.

• Am I seeking the longest path in a directed acyclic graph (DAG)? – The
problem of finding the longest path in a DAG can be solved in linear time
using dynamic programming. Conveniently, the algorithm for finding the
shortest path in a DAG presented in Section 18.4 (page 554) does the job
if we replace min with max. DAGs are the most interesting case of the
longest-path problem for which efficient algorithms exist.

• Is my graph dense? – Sufficiently dense graphs always contain Hamiltonian
cycles. Further, the cycles implied by such sufficiency conditions can be
efficiently constructed. In particular, any graph where all vertices have
degree at least n/2 must be Hamiltonian. Stronger sufficient conditions
also hold, as discussed in the Notes section.

• Are you visiting all the vertices or all the edges? – Verify that you really
have a vertex-tour problem and not an edge-tour problem. With a little
cleverness, it is sometimes possible to reformulate a Hamiltonian cycle
problem in terms of Eulerian cycles, which instead visits every edge in
a graph. Perhaps the most famous such instance is the problem of con-
structing de Bruijn sequences, discussed in Section 18.7 (page 565). The
win here is that fast algorithms exist for finding Eulerian cycles and many
related variants, while the Hamiltonian cycle problem is NP-complete.

If you really must know whether your graph is Hamiltonian, backtracking
with pruning is your only possible solution. First check whether your graph
is biconnected (see Section 18.8 (page 568)). If not, the graph has an artic-
ulation vertex whose deletion will disconnect the graph, and hence cannot be
Hamiltonian.

Implementations: The reduction described above (weight 1 for an edge and
2 for a non-edge) turns Hamiltonian cycle into a symmetric TSP problem that
obeys the triangle inequality. I therefore refer the reader to the TSP solvers
discussed in Section 19.4 (page 594). Foremost among them is Concorde, a
program for the symmetric traveling salesman problem and related network
optimization problems, written in ANSI C. Concorde is available for academic
research use from http://www.math.uwaterloo.ca/tsp/concorde. It is the
clear choice among available TSP codes.

An effective program for solving Hamiltonian cycle problems resulted from
the masters thesis of Vandegriend [Van98]. Both the code and the thesis are
available from https://webdocs.cs.ualberta.ca/~joe/Theses/vandegriend.

html.
Lodi and Punnen [LP07] put together an excellent survey of available TSP

software, including the special case of Hamiltonian cycle. Links to the programs

http://www.math.uwaterloo.ca/tsp/concorde
https://webdocs.cs.ualberta.ca/~joe/Theses/vandegriend.html
https://webdocs.cs.ualberta.ca/~joe/Theses/vandegriend.html
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are maintained at http://or.deis.unibo.it/research_pages/tspsoft.html.
Nijenhuis and Wilf [NW78] provide an efficient routine to enumerate all Hamil-
tonian cycles of a graph by backtracking. See Section 22.1.9 (page 716).

The football program of the Stanford GraphBase (see Section 22.1.7 (page
715)) uses a stratified greedy algorithm to solve the asymmetric longest-path
problem. The goal is to derive a chain of football scores to establish the superi-
ority of one football team over another. After all, if Virginia beat Illinois by 30
points, and Illinois beat Stony Brook by 14 points, then by transitivity Virginia
would beat Stony Brook by 44 points if they played, right? We seek the longest
simple path in a graph, where the weight of edge (x, y) denotes the number of
points by which x beat y.

Notes: Hamiltonian cycles first arose in Euler’s study of the knight’s tour problem,
although they were popularized by Hamilton’s “Around the World” game in 1839.
See [ABCC07, Coo11, GP07, LLKS85] for comprehensive references on the traveling
salesman problem, including discussions on Hamiltonian cycle.

Finding long paths in graphs is very difficult. Although fast algorithms exist to
find paths of length Θ(log n) in Hamiltonian graphs [KMR97], it is hard to find even
a polynomial-factor approximation [BHK04]. Most good texts in graph theory review
sufficiency conditions for graphs to be Hamiltonian. My favorite is West [Wes00].

Techniques for solving optimization problems in the laboratory using biological

processes have attracted considerable attention. In the original application of these

“biocomputing” techniques, Adleman [Adl94] solved a seven-vertex instance of the

directed Hamiltonian path problem. Unfortunately, this approach requires an expo-

nential number of molecules, and Avogadro’s number implies that such experiments

are inconceivable for graphs beyond n ≈ 70.

Related problems: Eulerian cycle (see page 565), traveling salesman (see page
594).

http://or.deis.unibo.it/research_pages/tspsoft.html
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Input Output

19.6 Graph Partition

Input description: A (weighted) graph G = (V,E) and integers k and m.

Problem description: Partition the vertices into m roughly equal-sized sub-
sets such that the total cost of edges spanning the subsets is at most k.

Discussion: Graph partitioning arises in many divide-and-conquer algorithms,
which gain their efficiency by breaking problems into equal-sized pieces whose
respective solutions can be combined into a single whole. Minimizing the edges
cut in this partition usually simplifies the task of merging.

Graph partition also arises when clustering vertices into logical components.
If edges link “similar” pairs of objects, the clusters remaining after partition
should reflect coherent groupings. Large graphs are often partitioned into
reasonable-sized pieces to improve data locality, or make less cluttered drawings.

Finally, graph partition is a critical step in many parallel algorithms. Con-
sider the finite element method, which is used to compute the physical properties
(such as stress and heat transfer) of geometric models. Parallelizing such calcu-
lations requires partitioning the models into equal-sized pieces whose interface
is small. This is a graph-partitioning problem, since the topology of geometric
models are usually represented by graphs.

Several different flavors of graph partitioning arise, depending on the desired
objective function:

• Minimum cut set – The smallest set of edges to cut so as to disconnect
a graph can be efficiently found using network flow or randomized algo-
rithms. See Section 18.8 (page 568) for more on connectivity algorithms.
This smallest cutset might split off only a single vertex, leaving the result-
ing partition very unbalanced in size.
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Figure 19.1: The maximum cut of a bipartite graph cuts all the edges.

• Graph partition – A better partition criterion seeks a small cut that par-
titions the vertices into roughly equal-sized pieces. Unfortunately, this
version is NP-complete. Fortunately, heuristics work well in practice.

Certain types of graphs always have small separators that partition the
vertices into balanced pieces. Every tree contains at least one vertex v
whose deletion (or equivalently, the deletion of all edges adjacent to v)
partitions it so that no component contains more than half of the original
n vertices. These components are not necessarily connected: consider the
separating vertex of a star-shaped tree. Such a separating vertex can be
found in linear time using depth first-search.

Each planar graph has a set of O(
√
n) vertices whose deletion leaves no

component with more than 2n/3 vertices. Such separators provide a useful
way to decompose geometric models, which are often defined by planar
graphs.

• Maximum cut – Given an electronic circuit specified by a graph, the max-
imum cut defines the largest amount of data communication that can
simultaneously occur in the circuit. The highest speed communications
channel should thus span the vertex partition defined by the maximum
cut, as shown above. Finding this maximum cut is NP-complete [Kar72],
however heuristics similar to those of graph partitioning work well.

The basic approach for dealing with graph partitioning or maximum cut
problems constructs an initial partition of the vertices (either randomly or ac-
cording to some problem-specific strategy), and then sweeps through each vertex
v, determining whether the cut improves if we move v over to the other side
of the partition. The decision whether to move v can be made in time propor-
tional to its degree, by identifying which side contains more of v’s neighbors.
Of course, the best side for v may change after its neighbors jump, so multiple
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iterations are needed before the process converges on a local optimum. Even so,
such a local optimum might be arbitrarily far away from the global maximum
cut if we are unlucky.

There are many variations of this basic procedure, by changing the order we
test the vertices in or moving clusters of vertices simultaneously. Using some
form of randomization, particularly simulated annealing, is almost certain to be
a good idea. When more than two components are desired, this partitioning
heuristic can be applied recursively.

Spectral partitioning methods use sophisticated linear algebra techniques to
obtain a good partitioning. The eigenvectors associated with the smallest non-
zero eigenvalues of the Laplacian matrix of graph G provide excellent features
to partition it into highly connected pieces. Spectral methods tend to do a good
job of identifying the general shape of a partition, but the results can be cleaned
up using local optimization.

Implementations: A very popular code for graph partitioning is METIS
(http://glaros.dtc.umn.edu/gkhome/views/metis), which has successfully
partitioned graphs with over 1,000,000 vertices. Available versions include one
variant designed to run on parallel machines and another suitable for partition-
ing hypergraphs.

Scotch (http://www.labri.fr/perso/pelegrin/scotch/) is another well-
respected code to consider. Chaco is a widely used graph partitioning code
designed to partition graphs for parallel computing applications. It employs sev-
eral different partitioning algorithms, including both Kernighan–Lin and spec-
tral methods. Chaco is available at https://cfwebprod.sandia.gov/cfdocs/
CompResearch/templates/insert/softwre.cfm?sw=36.

The Tenth DIMACS Challenge (https://www.cc.gatech.edu/dimacs10/)
revolved around the related problems of graph partitioning and graph clustering.
Results of the competition are reported in [BMSW13].

Notes: Recent surveys of graph partitioning algorithms include [BS13, BMS+16].
The fundamental local improvement heuristics for graph partitioning are the Kernighan–
Lin [KL70] and Fiduccia–Mattheyses [FM82] methods. Spectral methods for graph
partitioning are discussed in [Chu97, PSL90]. Empirical results on graph partitioning
heuristics include [BG95, LR93].

The planar separator theorem and an efficient algorithm for finding such a sepa-
rator are due to Lipton and Tarjan [LT79, LT80]. For experiences in implementing
planar separator algorithms, see [ADGM07, HPS+05].

Any random vertex partition will expect to cut half of the edges in the graph, be-

cause the probability that the two vertices defining an edge end up on different sides

of the partition is 1/2. Goemans and Williamson [GW95] gave an 0.878-factor approx-

imation algorithm for maximum cut, based on semi-definite programming techniques.

Tighter analysis of this algorithm was followed by Karloff [Kar96].

Related problems: Edge/vertex connectivity (see page 568), network flow
(see page 571).

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.labri.fr/perso/pelegrin/scotch/
https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/softwre.cfm?sw=36
https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/softwre.cfm?sw=36
https://www.cc.gatech.edu/dimacs10/
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Input Output

19.7 Vertex Coloring

Input description: A graph G = (V,E).

Problem description: Color the vertices of V using the minimum number of
colors such that for all (i, j) ∈ E, vertices i and j have different colors.

Discussion: Vertex coloring arises in scheduling and clustering applications.
Register allocation in compiler optimization is the canonical application of col-
oring. Each variable in a given program fragment has a range of times during
which its value must be kept intact: in particular, after it is initialized and be-
fore its final use. Any two variables whose life spans intersect cannot be placed
in the same register. Construct a graph where each vertex corresponds to a
variable, with an edge between any two vertices whose variable life spans inter-
sect. If we color the vertices of this graph, we ensure that no variables assigned
the same color will clash. Thus, they all can be assigned to the same register.

Of course, conflicts will never occur if each vertex is colored using a distinct
color. But computers have a limited number of registers, so we seek a coloring
using the fewest colors. The smallest number of colors sufficient to vertex color
a graph is called its chromatic number.

Several special cases of interest arise in practice:

• Can I color the graph using only two colors? – An important special case
is testing whether a graph is bipartite, meaning it can be colored using just
two different colors. Bipartite graphs arise naturally in such applications
as mapping workers to possible jobs. Fast, simple algorithms exist for
problems such as matching (see Section 18.6 (page 562)) when restricted
to bipartite graphs.
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It is easy to test whether a graph G is bipartite. Color the first vertex blue,
and then do a depth-first search of the graph. Whenever we discover a
new, uncolored vertex, we must color it opposite of its parent because using
the same color would cause a clash. If we ever find an edge (x, y) where
both x and y have been colored identically, then G cannot be bipartite.
Otherwise, the final coloring will be a two-coloring, constructed in O(n+
m) time. An implementation of this algorithm is given in Section 7.7.2
(page 219).

• Is the graph planar, or are all vertices of low degree? – The famous four-
color theorem states that every planar graph can be vertex colored using at
most four distinct colors. Efficient algorithms to four-color planar graphs
are known, although it is NP-complete to decide whether a given planar
graph is three-colorable.

But there is a very simple algorithm that will vertex color any planar
graph using at most six colors. Every planar graph contains a vertex of
degree at most five. Delete this vertex v, and recursively color the rest of
the graph. Because v has at most five neighbors, it can always be colored
using one of the six colors that does not appear as a neighbor. This works
because deleting a vertex from a planar graph leaves a planar graph, so it
must also have a low-degree vertex to delete. The same idea can be used
to color any graph of maximum degree Δ using at most Δ + 1 colors, in
O(nΔ) time.

• Is this an edge-coloring problem? – Certain vertex coloring problems can
be modeled as edge coloring, where we seek to color the edges of a graph
G such that edges get different colors if they share a vertex in common.
The payoff is that there is an efficient algorithm that always returns a
near-optimal edge coloring. Algorithms for edge coloring are the focus of
Section 19.8 (page 608).

Computing the chromatic number of a graph is NP-complete. If you need
an exact solution you must resort to backtracking, which can be surprisingly
effective in coloring certain random graphs. It remains hard to compute a good
approximation to the optimal coloring, so expect no guarantees.

Incremental methods prove to be the heuristic of choice for vertex coloring.
As in the previously mentioned algorithm for planar graphs, vertices are colored
sequentially, with the colors chosen in response to colors already assigned in the
vertex’s neighborhood. These methods vary in how the next vertex is selected
and how it is assigned a color. Experience suggests inserting the vertices in
non-increasing order of degree, because high-degree vertices have more color
constraints and so are most likely to require an additional color if inserted late.
Brèlaz’s heuristic [Brè79] dynamically selects the uncolored vertex of highest
color degree (i.e., adjacent to the most different colors), and colors it with the
lowest-numbered unused color.

Incremental methods can be further improved by using color interchange.
Taking a properly colored graph and exchanging two of the colors (say, painting
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the red vertices blue and the blue vertices red) leaves a proper vertex coloring.
Now suppose we take a properly colored graph and delete all but the red and blue
vertices. We can repaint one or more of the resulting connected components,
again leaving a proper coloring. After such a recoloring, some vertex v previously
adjacent to both red and blue vertices might now be only adjacent to blue
vertices, thus freeing v to be colored red.

Color interchange is a win in terms of producing better colorings, at a cost of
increased time and implementation complexity. Implementations are described
below. Simulated annealing algorithms that incorporate color interchange to
move from state to state can be even more effective.

Implementations: Graph coloring has been blessed with two useful web re-
sources. Culberson’s graph coloring page, http://webdocs.cs.ualberta.ca/

~joe/Coloring/, provides an extensive bibliography and programs to gener-
ate and solve hard graph coloring instances. Michael Trick’s page, https:

//mat.tepper.cmu.edu/COLOR/color.html, provides a nice overview of graph-
coloring applications, an annotated bibliography, and a collection of over seventy
graph-coloring instances arising in applications such as register allocation and
printed circuit board testing. Both include a C language implementation of the
DSATUR coloring algorithm.

Programs for the closely related problems of finding cliques and vertex col-
oring graphs were sought for at the Second DIMACS Implementation Challenge
[JT96], held in October 1993. Programs and data from the challenge are acces-
sible from http://dimacs.rutgers.edu/Challenges.

The C++ Boost Graph Library [SLL02] (http://www.boost.org/libs/
graph) and Java JGraphT (https://jgrapht.org) both provide implemen-
tations of several vertex coloring heuristics. GOBLIN (goblin2.sourceforge.net)
implements a branch-and-bound algorithm for vertex coloring.

Nijenhuis and Wilf [NW78] provide an efficient Fortran implementation of
chromatic polynomials and vertex coloring by backtracking. See Section 22.1.9
(page 716). Combinatorica [PS03] provides Mathematica implementations of
bipartite graph testing, heuristic colorings, chromatic polynomials, and vertex
coloring by backtracking. See Section 22.1.8 (page 716).

Notes: Recent survey articles on graph coloring include [GHHP13, MT10]. An old
but excellent source on vertex coloring heuristics is Syslo et al. [SDK83], which includes
experimental results. Classical heuristics for vertex coloring include [Brè79, MMI72,
Tur88]. See [GH06, HDD03] for more results.

Wilf [Wil84] proved that backtracking to test whether a random graph has chro-
matic number k runs in constant time, dependent on k but independent of n. This
is less impressive than it seems, because only a vanishingly small fraction of such
graphs are indeed k-colorable. A number of provably efficient (but still exponential)
algorithms for vertex coloring are known. See [Woe03] for a survey.

Paschos [Pas03] reviews what is known about provably good approximation algo-
rithms for vertex coloring. On one hand, it is provably hard to approximate within
a polynomial factor [BGS95]. On the other hand, heuristics offer some non-trivial
guarantees in terms of various parameters, such as Wigderson’s [Wig83] factor of

http://webdocs.cs.ualberta.ca/~joe/Coloring/
http://webdocs.cs.ualberta.ca/~joe/Coloring/
https://mat.tepper.cmu.edu/COLOR/color.html
https://mat.tepper.cmu.edu/COLOR/color.html
http://dimacs.rutgers.edu/Challenges
http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
https://jgrapht.org
http://goblin2.sourceforge.net/
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n1−1/(χ(G)−1) approximation algorithm, where χ(G) is the chromatic number of G.
Brook’s theorem states that the chromatic number χ(G) ≤ Δ(G)+1, where Δ(G)

is the maximum degree of a vertex of G. Equality holds only for odd-length cycles
(which have chromatic number 3) and complete graphs.

The four-color problem is the most famous problem in the history of graph theory,

first posed in 1852 and finally settled in 1976 by Appel and Haken using a proof involv-

ing extensive computation. Every planar graph can be five-colored using a variation

of the color interchange heuristic. Despite the four-color theorem, it is NP-complete

to test whether a particular planar graph requires four colors or if three suffice. See

[SK86] for an exposition on the history of the four-color problem and the proof. An

efficient algorithm to four-color a graph is presented in [RSST96], which more recently

has been formally verified [Gon08].

Related problems: Independent set (see page 589), edge coloring (see page
608).
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Input Output

19.8 Edge Coloring

Input description: A graph G = (V,E).

Problem description: What is the smallest set of colors needed to color the
edges of G such that no two edges of the same color share a common vertex?

Discussion: Edge coloring arises in scheduling applications, typically associ-
ated with minimizing the number of non-interfering rounds needed to complete
a given set of tasks. For example, consider a situation where we must schedule a
set of two-person interviews, where each interview takes one hour. The meetings
could all be scheduled at distinct times to avoid possible conflicts, but it is less
wasteful to hold non-conflicting events simultaneously. We construct a graph G
whose vertices are people, and whose edges represent the pairs of people who
must meet. An edge coloring of G defines the schedule, with the color classes
representing the different time periods in the schedule, so that all meetings of
the same color happen simultaneously.

The National Football League solves such an edge-coloring problem to make
up its schedule each season. The pairs of teams who must play each other are
determined by the records of the previous season. Assigning these pairs to weeks
of the season is an edge-coloring problem, complicated by secondary constraints
like spacing out rematches and ensuring there is a good game every Monday
night.

The minimum number of colors needed to edge color a graph is called its
edge-chromatic number or sometimes chromatic index. Even-length cycles can
be edge-colored with two colors, while odd-length cycles have an edge-chromatic
number of 3.

Edge coloring has a better (if less famous) theorem associated with it than
vertex coloring. Vizing’s theorem states that any graph with a maximum vertex
degree of Δ can be edge colored using at most Δ + 1 colors. To put this in
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perspective, note that any edge coloring must have at least Δ colors, because
all the edges incident on any vertex must be distinct colors. This is a very tight
bound.

The proof of Vizing’s theorem is constructive, meaning it can be turned into
an O(nmΔ) algorithm to find an edge-coloring with Δ + 1 colors. Deciding
whether we can get away using one less color than this is NP-complete, so it
hardly seems worth the effort to try. An implementation of Vizing’s theorem is
described below.

Edge-coloring on graphG can be converted to the problem of finding a vertex
coloring on the line graph L(G), which has a vertex of L(G) for each edge of G
and an edge of L(G) iff the two edges of G share a common vertex. Line graphs
can be constructed in time linear to their size, and then any vertex-coloring
code can be employed to color them. That said, it would be disappointing to
go the vertex coloring route. Vizing’s theorem is our reward for for discovering
that we in fact have an edge-coloring problem.

Implementations: The C++ Boost Graph Library [SLL02] (http://www.
boost.org/libs/graph) has an implementation of Misra and Gries’ construc-
tive proof of Vizing’s theorem, which runs in O(nm) time. GOBLIN (http:
//goblin2.sourceforge.net/) implements a branch-and-bound algorithm for
edge coloring.

See Section 19.7 (page 604) for a larger collection of vertex-coloring codes
and heuristics, which can be applied to the line graph of your target graph.

Notes: Stiebitz et al. [SSTF12] is a recent book on edge coloring. Graph-theoretic
results on edge coloring are surveyed in [FW77, GT94]. Vizing [Viz64] and Gupta
[Gup66] independently proved that any graph can be edge colored using at most Δ+1
colors. Misra and Gries give a simple constructive proof of this result [MG92]. Despite
these tight bounds, it is NP-complete to compute the edge-chromatic number [Hol81].
Bipartite graphs can be edge-colored in polynomial time [Sch98].

Whitney, in introducing line graphs [Whi32], showed that any two connected

graphs with isomorphic line graphs are isomorphic, with the exception of K3 and

K1,3. It is an interesting exercise to show that the line graph of an Eulerian graph is

both Eulerian and Hamiltonian, while the line graph of a Hamiltonian graph is always

Hamiltonian.

Related problems: Vertex coloring (see page 604), scheduling (see page 534).

http://www.boost.org/libs/graph
http://www.boost.org/libs/graph
http://goblin2.sourceforge.net/
http://goblin2.sourceforge.net/
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Input Output

19.9 Graph Isomorphism

Input description: Two graphs, G and H.

Problem description: Find a mapping f from the vertices of G to the vertices
ofH such thatG andH are identical, that is, (x, y) is an edge ofG iff (f(x), f(y))
is an edge of H.

Discussion: Isomorphism is the problem of testing whether two graphs are
really the same. Suppose we are given a collection of graphs, and must perform
an expensive operation on each of them. If we can identify which of the graphs
are duplicates, we can discard the copies to avoid redundant work.

Many pattern recognition problems can be mapped to graph or subgraph
isomorphism. For example, the structure of chemical compounds are naturally
described by labeled graphs, with each atom represented by a vertex. Identifying
all molecules in a structure database containing a particular functional group is
an instance of subgraph isomorphism testing.

What exactly is meant when we say that two graphs are the same? Two
labeled graphs G = (Vg, Eg) and H = (Vh, Eh) are identical when (x, y) ∈ Eg

iff (x, y) ∈ Eh. In identical graphs, vi in G corresponds to vi in H. The more
challenging isomorphism problem seeks to find a mapping from the vertices of
G to H such that they are identical. The problem of finding this mapping is
sometimes called graph matching.

Identifying symmetries is another important application of graph isomor-
phism. A mapping of a graph to itself is called an automorphism, and the
collection of automorphisms (the automorphism group) provides a great deal of
information about symmetries in the graph. For example, the complete graph
Kn has n! automorphisms (because any mapping will do), while an arbitrary
random graph is likely to only have one, because G is always identical to itself.
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Several variations of graph isomorphism arise in practice:

• Is graph G contained in graph H? – Instead of testing equality, we are
often interested in knowing whether a small pattern graph G is a subgraph
of H. Such problems as clique, independent set, and Hamiltonian cycle
are important special cases of subgraph isomorphism.

There are two distinct graph-theoretic notions of “contained in.” Subgraph
isomorphism asks whether there is a subset of edges and vertices of H that
is isomorphic to a smaller graph G. Induced subgraph isomorphism asks
whether there is a subset of vertices of H whose deletion leaves a subgraph
isomorphic to a smaller graph G. For induced subgraph isomorphism, (1)
all edges of G must be present in H, and (2) no non-edges of G can
be present in H. Clique happens to be an instance of both subgraph
isomorphism problems, while Hamiltonian cycle is only an example of
vanilla subgraph isomorphism.

Be aware of this distinction in your application. Subgraph isomorphism
problems tend to be much harder than graph isomorphism, while induced
subgraph problems tend to be even harder than subgraph isomorphism.
Some flavor of backtracking is your only viable approach.

• Are your graphs labeled or unlabeled? – In many applications, vertices or
edges of the graphs are labeled with attributes that must be respected when
determining isomorphisms. For example, when comparing two bipartite
graphs, each with “worker” and “job” vertices, any mapping that equated
a job with a worker would make no sense.

Labels and related constraints can be factored into any backtracking al-
gorithm. Further, such constraints can significantly speed up the search,
by creating opportunities for pruning whenever two vertex labels do not
match up.

• Are you testing whether two trees are isomorphic? – Faster algorithms
exist for special cases of graph isomorphism, including trees and planar
graphs. Tree isomorphism is a problem that often arises in language pat-
tern matching and parsing applications. A parse tree describes the struc-
ture of a text, so two parse trees T1 and T2 will be isomorphic when the
underlying pair of texts have the same structure.

Efficient algorithms for tree isomorphism work inward toward the center,
starting from the leaves of both trees. Each vertex in T1 is assigned a
label representing the set of vertices in T2 that might possibly be mapped
to it, based on the constraints of labels and vertex degrees. For example,
all the leaves in T1 are potentially equivalent to all leaves of T2. Working
inward, we can partition the next level vertices in T1 into classes based on
how many leafs with matching labels they are adjacent to. Any mismatch
means T1 �= T2, while completing the process partitions the vertices into
equivalence classes defining all isomorphisms. See the references below for
more details.
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• How many graphs do you have? – Many data mining applications search
for all instances of a particular pattern graph in a big database of graphs,
like the chemical structure mapping application described above. Such
databases typically contain a large number of relatively small graphs. This
puts an onus on indexing the graph database by small substructures (say
five to ten vertices each), and doing expensive isomorphism tests only
against those containing the same substructures as the query graph.

No polynomial-time algorithm is known for graph isomorphism, but neither
is it known to be NP-complete. Along with integer factorization (see Section
16.8 (page 490)), it is one of the few important algorithmic problems whose
rough computational complexity is still not known. The conventional wisdom
is that isomorphism lies somewhere between P and NP-complete, assuming P
�= NP.

Although no worst-case polynomial-time algorithm is known, testing iso-
morphism is usually not very hard in practice. The basic algorithm backtracks
through all of the n! possible relabelings of the vertices of H with the names of
vertices of G, and then tests whether the graphs are identical. Of course, we
prune the search at a given prefix as soon as we detect any mismatch between
edges whose vertices are both in the prefix.

But the real key to efficient isomorphism testing is preprocessing the vertices
into “equivalence classes,” partitioning them into sets such that two vertices
in different sets cannot possibly be mapped to each other. The vertices in
each equivalence class must share the same value of every invariant that is
independent of labeling. Possibilities include:

• Vertex degree – Two vertices of different degrees can never be identical, or
mapped to each other. This simple partition can be a big win, but won’t
do much for regular (equal degree) graphs.

• Shortest path distance – The all-pairs shortest path matrix (see Section
18.4 (page 554)) defines a multiset of n − 1 distances representing the
distances between v and each of the other vertices. Two vertices belong
in the same equivalence class only if defining identical distance multisets.

• Counting length-k paths – Taking the kth power of the adjacency matrix of
G yields a matrix Gk[i, j] that counts the number of (non-simple) length-
k paths from i to j. For each vertex v and each k, this matrix defines
a multiset of path-counts, which can be used for partitioning as with
distances above.

By using these invariants, you should be able to partition the vertices of most
graphs into a large number of small equivalence classes. Finishing the job off
with backtracking will then be short work. Each vertex gets assigned the name of
its equivalence class as a label, so we can treat it as a labeled matching problem.
It is harder to detect isomorphisms between highly symmetric graphs than with
random graphs, because of the reduced effectiveness of these equivalence-class
partitioning heuristics.
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Implementations: The best isomorphism testing program is nauty (No AU-
Tomorphisms, Yes?)—a set of very efficient C language procedures for determin-
ing the automorphism group of a vertex-colored graph. Nauty also produces a
canonical labeling of the graph, to assist in isomorphism testing. It can test
most graphs with fewer than a hundred vertices in well under a second. Nauty
is available at http://pallini.di.uniroma1.it/. The theory behind nauty

and an affiliate program Traces are described in [McK81, MP14].
Valiente [Val02] has made available the implementations of graph/subgraph

isomorphism algorithms for both trees and graphs in his book. These C++
implementations run on top of LEDA (see Section 22.1.1 (page 713)), and are
available at http://www.lsi.upc.edu/~valiente/algorithm/.

Kreher and Stinson [KS99] compute isomorphisms of graphs in addition
to more general group-theoretic operations. These implementations in C are
available at http://www.math.mtu.edu/~kreher/cages/Src.html.

Notes: Graph isomorphism is an important problem in computational complexity
theory because of its rare open complexity status. The feel-good algorithm story
of 2015 was Lazlo Babai’s announcement of a quasi-polynomial (subexponential but
super-polynomial) time algorithm for graph isomorphism after a 40-year quest [Bab16].

Monographs on isomorphism detection include [Hof82, KST93]. Valiente [Val02]
focuses on algorithms for tree and subgraph isomorphism. Kreher and Stinson [KS99]
take a more group-theoretic approach to isomorphism testing. Graph mining systems
and algorithms are surveyed in [CH06]. See [FSV01] for performance comparisons
between different graph and subgraph isomorphism algorithms.

Polynomial-time algorithms are known for planar graph isomorphism [HW74] and
for graphs where the maximum vertex degree is bounded by a constant [Luk80]. The
all-pairs shortest path heuristic is due to [SD76], although there exist non-isomorphic
graphs that realize the exact same set of distances [BH90]. A linear-time tree isomor-
phism algorithm for both labeled and unlabeled trees is presented in [AHU74].

A problem is said to be isomorphism-complete if it is provably as hard as isomor-
phism. Bipartite graph isomorphism testing is isomorphism-complete, because any
graph can be made bipartite by replacing each edge by two edges connected with a
new vertex. The original graphs are isomorphic iff the transformed graphs are.

Related problems: Shortest path (see page 554), string matching (see page
685).

http://pallini.di.uniroma1.it/
http://www.lsi.upc.edu/~valiente/algorithm/
http://www.math.mtu.edu/~kreher/cages/Src.html
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Input Output

19.10 Steiner Tree

Input description: A graph G = (V,E) and specified subset of vertices T ⊆ V .
Or set of geometric points T .

Problem description: Find the smallest tree connecting the vertices of T .

Discussion: Steiner trees arise in network design problems, because the mini-
mum Steiner tree describes how to connect a given set of sites using the smallest
amount of wire. Analogous problems occur when designing networks of water
pipes, heating ducts, or communication devices. Typical Steiner tree problems
in electronic circuit design require connecting a set of sites to (say) ground under
constraints such as material cost and signal propagation delay.

The Steiner tree problem is distinguished from the minimum spanning tree
problem in graphs (see Section 18.3 (page 549)) when T �= V , so we must select
which intermediate connection points to use to minimize the cost of the tree.
In geometric Steiner tree, the hard part of the problem is defining the positions
of the new points we add to shorten the connections. Issues in Steiner tree
construction include:

• How many points must you connect? – The Steiner tree of just a pair of
vertices is the shortest path between them (see Section 18.4 (page 554)).
The Steiner tree of all n vertices, when T = V , reduces to finding the
minimum spanning tree (MST) of G. The general minimum Steiner tree
problem is NP-hard despite these special cases, and remains so under a
broad range of restrictions.

• Is the input a set of geometric points? – The geometric version of Steiner
tree works on a set of points as input, typically in the plane, and seeks the
lowest weight tree connecting the points. The set of possible intermediate
points is not given as part of the input but must be deduced from the set
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of points. These Steiner points must satisfy several geometric properties,
which can be used to reduce the set of candidates down to a finite number.
For example, every Steiner point will have a degree of exactly 3 in a
minimum Steiner tree, and the angles formed between any two of these
edges must be exactly 120 degrees.

• Are there constraints on the edges we define? – In many wiring problems,
all the edges are restricted to being either horizontal or vertical. This
geometric version is called the rectilinear Steiner problem. A different set
of angular and degree conditions apply for rectilinear Steiner trees than for
Euclidean trees. In particular, all angles must be multiples of 90 degrees,
and each vertex has degree at most 4.

• Do I really need an optimal tree? – Certain Steiner tree applications justify
investing large amounts of computation to find the best possible Steiner
tree. Perhaps our circuit design will be replicated millions of times, or the
trenches to hold our pipes cost thousands of dollars per meter to dig. We
should then use an exhaustive search technique such as backtracking or
branch-and-bound to design the optimal tree.

There are many opportunities for pruning search based on geometric and
graph-theoretic constraints. But Steiner tree remains a hard problem.
I recommend experimenting with the implementations described below
before attempting your own.

• What is the meaning of the Steiner vertices? – A very special type of
Steiner tree arises in classification and evolution. Phylogenic trees illus-
trate the relative similarity between different objects or species. Each
object represents (typically) a leaf/terminal vertex of the tree, with inter-
mediate vertices representing branching points between classes of objects.
For example, an evolutionary tree might have leaf nodes of human, dog,
snake, and lizard, and internal nodes corresponding to taxa (animal, mam-
mal, reptile). A tree rooted at animal with dog and human classified under
mammal implies that humans are closer to dogs than to snakes.

Many phylogenic tree construction algorithms have been developed that
differ in what data they attempt to model, and their desired optimiza-
tion criterion. Each combination of reconstruction algorithm and distance
measure is likely to give a different tree, so identifying the “right” method
for any given application is somewhat a question of faith. A reasonable
procedure is to acquire a standard package of implementations, discussed
below, and then see what happens to your data under all of them.

Fortunately, there is a good, efficient heuristic for finding Steiner trees that
works well on all versions of the problem. Construct a graph modeling your
input, setting the weight of edge (i, j) equal to the distance from point i to point
j. The minimum spanning tree of this graph is guaranteed a good approximation
for both Euclidean and rectilinear Steiner trees.
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The worst case for the minimum spanning tree approximation of the Eu-
clidean Steiner tree is three points forming an equilateral triangle. Any span-
ning tree will contain two of the sides (for a length of 2), whereas the minimum
Steiner tree will connect the three points using an interior point, for a total
length of

√
3. This ratio of

√
3/2 ≈ 0.866 is always achieved, and the minimum

spanning tree is usually within a few percent of the optimal Steiner tree in prac-
tice. For rectilinear Steiner trees, the optimal/minimum spanning tree ratio is
always ≥ 2/3 ≈ 0.667.

For geometric instances, any suboptimal tree can be refined by inserting a
Steiner point whenever the edges incident on a vertex form an angle of less than
120 degrees. Inserting these points and locally readjusting the tree edges can
move the solution a little closer towards the optimum. Similar optimizations
are possible for rectilinear spanning trees.

Note that we are only interested here in the subtree connecting the terminal
vertices. We can trim the minimum spanning tree to retain only the tree edges
that lie on the (unique) path between a pair of terminal nodes. The complete
set of these can be found in O(n) time by deleting any leaf that is not a terminal
node, and then recurring.

An alternative heuristic for graphs is based on finding shortest paths. Start
with a tree consisting of the shortest path between two terminals. For each
remaining terminal t, find the shortest path to a vertex in the tree and add this
path to connect t. The quality of this heuristic depends upon the insertion order
of the terminals, but something simple and fairly effective is likely to result.

Implementations: GeoSteiner is a package for solving both Euclidean and
rectilinear Steiner tree problems in the plane by Warme et al. [JWWZ18]. It
also solves the related problem of minimum spanning trees in hypergraphs,
and claims to have solved problems as large as 10,000 points to optimality. It
is available from http://www.geosteiner.com/. This is almost certainly the
best code for geometric Steiner tree instances.

Steiner tree algorithms were the subject of the 11th DIMACS Implementa-
tion Challenge, held in December 2014. Implementations of efficient algorithms
for finding shortest paths were discussed. The papers, instances, and implemen-
tations are available at http://dimacs.rutgers.edu/programs/challenge/.

FLUTE (http://home.eng.iastate.edu/~cnchu/flute.html) computes
rectilinear Steiner trees, emphasizing speed. It contains a user-defined pa-
rameter to control the tradeoff between solution quality and run time. GOB-
LIN (http://goblin2.sourceforge.net/) includes both heuristics and search
methods for finding Steiner trees in graphs.

The programs PHYLIP (http://evolution.genetics.washington.edu/
phylip.html) and PAUP (https://paup.phylosolutions.com/) are widely
used packages for inferring phylogenic trees. Both contain more than twenty
different algorithms for constructing phylogenic trees from data. Although many
of them are designed to work with molecular sequence data, several general
methods accept arbitrary distance matrices as input.

http://www.geosteiner.com/
http://dimacs.rutgers.edu/programs/challenge/
http://home.eng.iastate.edu/~cnchu/flute.html
http://goblin2.sourceforge.net/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
https://paup.phylosolutions.com/
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Notes: Monographs on the Steiner tree problem include Hwang, Richards, and Win-
ter [HRW92] and Prömel and Steger [PS02]. Du et al. [DSR00] is a collection of
surveys on all aspects of Steiner trees. Empirical results on Steiner tree heuristics
include [BC19, SFG82, Vos92].

The Euclidean Steiner problem dates back to Fermat, who asked how to find a point
p in the plane minimizing the sum of the distances to three given points. This was
solved by Torricelli before 1640. Steiner was apparently one of several mathematicians
who worked on the general problem for n points, and was mistakenly credited with
originating the problem. An interesting, more detailed history appears in [HRW92].

Gilbert and Pollak [GP68] first conjectured that the ratio of the length of the
minimum Steiner tree over the minimum spanning tree is always ≥ √

3/2 ≈ 0.866.
After twenty years of active research, the Gilbert–Pollak ratio was finally proven by
Du and Hwang [DH92]. The Euclidean minimum spanning tree for n points in the
plane can be constructed in O(n lg n) time [PS85].

Arora [Aro98] gave a polynomial-time approximation scheme (PTAS) for Steiner
trees in k-dimensional Euclidean space. A 1.55-factor approximation for Steiner trees
on graphs is due to Robins and Zelikovsky [RZ05].

The hardness of Steiner tree for Euclidean and rectilinear metrics was established in
[GGJ77, GJ77]. Euclidean Steiner tree is not known to be in NP, because of numerical
issues in exactly representing the positions of Steiner points.

Analogies can be drawn between minimum Steiner trees and minimum energy

configurations in certain physical systems. The case that such analog systems—

including the behavior of soap films over wire frames—“solve” the Steiner tree problem

is discussed in [DKR10]. Slime molds are also pretty good at building Steiner trees

[LSZ+15].

Related problems: Minimum spanning tree (see page 549), shortest path (see
page 554).
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Input Output

19.11 Feedback Edge/Vertex Set

Input description: A (directed) graph G = (V,E).

Problem description: What is the smallest set of edges E′ or vertices V ′

whose deletion leaves an acyclic graph?

Discussion: Feedback set problems arise because many things are easier to do
on directed acyclic graphs (DAGs) than general digraphs. Consider the problem
of scheduling jobs with precedence constraints, stating that job A must come
before job B. When all constraints are consistent, the resulting graph is a DAG,
and topological sort (see Section 18.2 (page 546)) can order the jobs/vertices to
respect them. But no such schedule can exist when there are cyclic constraints,
such as A before B, B before C, and C before A.

The feedback set identifies a small number of constraints that can be dropped
to permit a valid schedule. In the feedback edge (or arc) set problem, we drop
individual precedence constraints. In the feedback vertex set problem, we drop
entire jobs and all constraints associated with them.

Similar considerations are involved in eliminating race conditions from elec-
tronic circuits. This explains why the problem is called “feedback” set. It is
also more sensibly known as the maximum acyclic subgraph problem.

One final application has to do with ranking tournaments. Suppose we want
to order the skills of players at some two-player game, such as chess or tennis.
We can construct a directed graph with an arc from x to y whenever x beats
y in a game. The higher-ranked player should usually beat the lower-ranked
player, although upsets do occur. A natural rank ordering is the topological
sort resulting after deleting the minimum set of feedback edges (upsets) from
the graph.

Issues in feedback set problems include:
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• Do any constraints have to be dropped? – No changes are needed if the
graph is already a DAG, which can be determined via topological sort.
One approach to finding a feedback set modifies the topological sorting
algorithm to delete whatever edge or vertex is causing the trouble when-
ever a contradiction is found. Feedback edge set and feedback vertex set
are both NP-complete on directed graphs, so heuristic solutions might be
much larger than optimal.

• How can I find a good feedback edge set? – An effective linear-time heuristic
constructs a vertex ordering and then deletes any arc going in the wrong
direction. At least half the arcs must go either left–to–right or right–to–
left for any vertex order, so take the smaller partition as your feedback
set.

But what is the right vertex order to start with? A good heuristic is to
sort the vertices in terms of edge imbalance, namely in-degree minus out-
degree. An incremental insertion approach starts by picking an arbitrary
vertex v. Any vertex x defined by an in-going edge (x, v) will be placed to
the left of v. Any x defined by out-going edge (v, x) will analogously be
placed to the right of v. We can now recur on the left and right subsets
to complete the vertex order.

• How can I find a good feedback vertex set? – The heuristics above yield
vertex orders defining (hopefully) few back edges. We seek a small set of
vertices that together cover these backedges. This is exactly the vertex
cover problem, heuristics for which are discussed in Section 19.3 (page
591).

• How do I break all cycles in an undirected graph? – The problem of finding
feedback sets in undirected graphs is quite different from digraphs. Trees
are undirected graphs without cycles, and every tree on n vertices contains
exactly n−1 edges. Thus, the smallest feedback edge set of any undirected
graph G is |E| − (n− c), where c is the number of connected components
of G. The back edges encountered during a depth-first search of G qualify
as a minimum feedback edge set.

The feedback vertex set problem remains NP-complete for undirected
graphs, however. A reasonable heuristic uses breadth-first search to iden-
tify the shortest cycle in G. Delete one of the vertices in this cycle from
G, or all of them if you want a guarantee, and repeat by finding the
shortest remaining cycle. This find-and-delete procedure is employed un-
til the graph is acyclic. The optimal feedback vertex set must contain at
least one vertex from each of these vertex-disjoint cycles, so the average
deleted-cycle length determines just how good our approximation is.

It may pay to refine any of these heuristic solutions using randomization
or simulated annealing. To move between states, we can modify the vertex
permutation by swapping pairs in order or insert/delete vertices to/from the
candidate feedback set.
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Implementations: Greedy randomized adaptive search procedure (GRASP)
heuristics for both feedback vertex and feedback edge set problems have been
implemented by Festa, et al. [FPR01] as Algorithm 815 of the Collected Algo-
rithms of the ACM (see Section 22.1.5 (page 715)).

An exact solver for feedback vertex set https://github.com/wata-orz/fvs
by Iwata and Imanishi [Iwa16] won first place in the Parameterized Algo-
rithms and Computational Experiments Challenge (https://pacechallenge.
wordpress.com/track-b-feedback-vertex-set/).

GOBLIN (http://goblin2.sourceforge.net) includes an approximation
heuristic for minimum feedback arc set.

The econ order program of the Stanford GraphBase (see Section 22.1.7 (page
715)) permutes the rows and columns of a matrix so as to minimize the sum of
the numbers below the main diagonal. Using an adjacency matrix as the input
and deleting all edges below the main diagonal leaves an acyclic graph.

Notes: See [FPR99] for a survey on the feedback set problem. Expositions of the
proof that feedback minimization is hard [Kar72] include [AHU74, Eve11]. Both feed-
back vertex and edge set remain hard even if no vertex has in-degree or out-degree
greater than two [GJ79].

Bafna, et al. [BBF99] gives a 2-factor approximation for feedback vertex set in
undirected graphs. Feedback edge sets in directed graphs can be approximated to
within a factor of O(log n log log n) [ENSS98]. Heuristics for ranking tournaments are
discussed in [LMM+18]. Experiments with heuristics are reported in [Koe05].

Fixed-parameter tractable algorithms are polynomial in the input size n and ex-
ponential in the solution size k, say O(k!n). Such an algorithm would be linear so long
as k is a constant. Feedback vertex set can be solved with such an algorithm [CCL15].
The book by Downey and Fellows [DF12] offers the best overview of fixed-parameter
complexity.

I will confess that I use a feedback edge set approach to grading semester projects
in my enormous graduate data science course, where I can’t grade all the papers.
Teaching assistants and students can generally be trusted to make a binary judgment
as to whether paper x is better or worse than paper y. After getting a large number
of such judgment pairs, I use a feedback edge set algorithm to remove the smallest
number of conflicting judgments, then order the papers using topological sort to assign
grades.

An interesting application of feedback arc set to economics is presented in [Knu94].

For each pair A,B of sectors of the economy, we are given how much money flows

from A to B. We seek to order the sectors to determine which sectors are primarily

producers to other sectors, and which deliver primarily to consumers.

Related problems: Bandwidth reduction (see page 470), topological sorting
(see page 546), scheduling (see page 534).

https://github.com/wata-orz/fvs
https://pacechallenge.wordpress.com/track-b-feedback-vertex-set/
https://pacechallenge.wordpress.com/track-b-feedback-vertex-set/
http://goblin2.sourceforge.net


Chapter 20

Computational Geometry

Computational geometry is the algorithmic study of geometric problems. Its
emergence coincided with application areas such as computer graphics, computer-
aided design/manufacturing, and scientific computing, all of which need geomet-
ric computing.

Good books on computational geometry include:

• de Berg, et al. [dBvKOS08] – The “three Mark’s” book is the best general
introduction to the theory of computational geometry and its fundamental
algorithms.

• O’Rourke [O’R01] – This is the best practical introduction to compu-
tational geometry. The emphasis is on careful and correct implementa-
tion of geometric algorithms. C and Java code are available from https:

//cs.smith.edu/~orourke/books/compgeom.html.

• Preparata and Shamos [PS85] – Although somewhat out of date, this book
remains a good general introduction to computational geometry, stressing
algorithms for convex hulls, Voronoi diagrams, and intersection detection.

• Goodman, O’Rourke, and Toth [TOG18] – This recent collection of survey
articles provides a detailed overview of what is known in almost every
subfield of discrete and computational geometry.

The leading conference in computational geometry is the ACM Symposium
on Computational Geometry, held annually in late May or early June. There
is a growing body of implementations of geometric algorithms. We point out
specific implementations where applicable in the catalog, but the reader should
definitely be aware of CGAL (Computational Geometry Algorithms Library)—a
comprehensive library of geometric algorithms in C++ produced as a result of a
joint European project. Anyone with a serious interest in geometric computing
should check it out at http://www.cgal.org/.

621© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
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Springer Nature Switzerland AG 2020

https://cs.smith.edu/~orourke/books/compgeom.html
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Input Output

20.1 Robust Geometric Primitives

Input description: A point p and line segment l, or two segments l1, l2.

Problem description: Does p lie on, over, or under l? Does l1 intersect l2?

Discussion: Implementing basic geometric primitives is a task fraught with
peril. Even simple things like returning the intersection point of two lines are
more complicated than you may think. What should be returned when two
lines are parallel, meaning they don’t intersect at all? What if the lines are
identical, so the intersection “point” is the entire line? What if one of the
lines is horizontal, so that in the course of solving equations for the intersection
point you will divide by zero? What if the two lines are almost parallel, so
that the intersection point is so far from the origin that it causes arithmetic
overflows? These issues become even more complicated for intersecting line
segments, because additional cases arise that must be watched for and treated
separately.

If you are new to implementing geometric algorithms, I suggest that you
see O’Rourke’s Computational Geometry in C [O’R01] for practical advice and
complete implementations of basic geometric algorithms and data structures. It
will help you avoid many headaches if you follow in his footsteps.

There are two different issues at work here: geometric degeneracy and numer-
ical stability. Degeneracy refers to annoying special cases that must be treated
in substantially different ways, such as when two lines intersect at more or less
than a single point. There are three approaches to dealing with degeneracy:

• Ignore it – Make an operating assumption that your program will work
correctly only when no three points are collinear, no three lines meet at a
point, no intersections happen at the endpoints of line segments, and so
on. This is probably the most common approach, and what I recommend
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for short-term projects where you can live with frequent crashes. The
drawback is that interesting data often comes from points sampled on a
grid, which tends to be highly degenerate.

• Fake it – Randomly or symbolically perturb your data so that it becomes
non-degenerate. By moving each of your points a small amount in a
random direction, you can break many of the existing degeneracies in the
data, hopefully without creating too many new problems. This probably
should be the first thing to try once you determine that your program is
crashing too often. A problem with random perturbation is that it can
change the shape of your data in subtle ways, which may be intolerable for
your application. There also exist techniques to “symbolically” perturb
your data to remove degeneracies in a consistent manner, but these require
serious study to apply correctly.

• Deal with it – Geometric applications can be made more robust by writing
special code to handle each special case that arises. This can work well if
done with care from the beginning, but not so well if kludges are added
whenever the system crashes. Expect to expend significant effort if you
are determined to do it right.

Geometric computations often involve floating-point arithmetic, which leads
to problems with overflows and numerical precision. There are three basic ap-
proaches to the issue of numerical stability:

• Integer arithmetic – By forcing all points of interest to lie on a fixed-
size integer grid, you can perform exact comparisons to test whether any
two points are equal or two line segments intersect. The cost is that the
intersection point of two lines may not be exactly representable as a grid
point. This is likely to be the simplest and best method, if you can get
away with it.

• Double-precision reals – By using double-precision floating point numbers,
you can reduce the occurrence of numerical errors. Your best bet might
be to keep all data as single-precision reals, and then use double precision
for intermediate computations.

• Arbitrary precision arithmetic – This is certain to be correct, but also
to be slow. Careful analysis can minimize the need for high-precision
arithmetic and thus the performance penalty. Still, you should expect
high-precision arithmetic to be several orders of magnitude slower than
standard floating-point arithmetic.

The best technique to produce robust geometric software is to build your
applications around a small set of geometric primitives that handle as much of
the low-level geometry as possible. These primitives include:
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• Area of a triangle – The area A(t) of a triangle t = (a, b, c) is indeed
half the base times the height, but computing the length of the base and
altitude is messy work with trigonometric functions. Much better is to
use the determinant formula for twice the area:

2 ·A(t) =

∣∣∣∣∣∣

ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣
= axby − aybx + aycx − axcy + bxcy − cxby

This formula generalizes to compute d! times the volume of a simplex in d
dimensions. Thus, 3! = 6 times the volume of a tetrahedron t = (a, b, c, d)
in three dimensions is

6 ·A(t) =

∣∣∣∣∣∣∣∣

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣∣∣∣∣∣∣∣

These formulae give signed volumes and hence can be negative, so take
the absolute value first. See Section 16.4 (page 475) for how to compute
determinants.

The conceptually simplest way to compute the area of a polygon (or poly-
hedron) is to triangulate it and then sum up the area of each triangle.
Implementations of a slicker algorithm that avoids triangulation are pre-
sented in [O’R01, SR03].

• Above–below–on test – Does a given point c lie above, below, or on a given
line l? A clean way to deal with this is to represent l as a directed line
that passes through point a before point b, and ask whether c lies to the
left or right of the directed line l.

This primitive can be implemented using the sign of the triangle area as
computed above. If the area of t(a, b, c) > 0, then c lies to the left of
ab. If the area of t(a, b, c) = 0, then c lies on ab. Finally, if the area of
t(a, b, c) < 0, then c lies to the right of ab. This generalizes naturally to
three dimensions, where the sign of the area denotes whether d lies above
or below the oriented plane (a, b, c).

• Line segment intersection – This above–below primitive can also be used
to test whether a line intersects a line segment. It does iff one endpoint
of the segment is to the left of the line and the other is to the right.
Segment–segment intersection is similar, and I refer you to implementa-
tions described below. The question of whether two segments intersect if
they only share an endpoint is representative of the problems with degen-
eracy.
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• In-circle test – Does point d lie inside or outside the circle defined by
points a, b, and c in the plane? This primitive occurs in all Delaunay
triangulation algorithms, and can be used as a robust way to do distance
comparisons. Assuming that a, b, c are labeled in counterclockwise order
around the circle, compute the determinant

incircle(a, b, c, d) =

∣∣∣∣∣∣∣∣

ax ay a2x + a2y 1
bx by b2x + b2y 1
cx cy c2x + c2y 1
dx dy d2x + d2y 1

∣∣∣∣∣∣∣∣

In-circle will return 0 if all four points are cocircular, a positive value if d
is inside the circle, and negative value if d is outside.

Check out the implementations below before you build your own.

Implementations: CGAL (www.cgal.org) and LEDA (see Section 22.1.1
(page 713)) both provide very complete sets of geometric primitives for pla-
nar geometry written in C++. LEDA is easier to learn and to work with, but
CGAL is more comprehensive and freely available. Check them out if you are
starting a significant geometric application, before you try to write your own.

O’Rourke [O’R01] provides implementations in C of most of the primi-
tives discussed in this section. See http://cs.smith.edu/~jorourke/books/

CompGeom/CompGeom.html. These primitives were implemented primarily for
exposition rather than production use, but they should be reliable and appro-
priate for modest applications.

The Core Library (see http://cs.nyu.edu/exact/) provides an API, which
supports the Exact Geometric Computation (EGC) approach to numerically
robust algorithms. With small changes, any C/C++ program can use it to
readily support three levels of accuracy: machine-precision, arbitrary-precision,
and guaranteed.

Shewchuk’s [She97] robust implementation of basic geometric primitives in
C++ is available at http://www.cs.cmu.edu/~quake/robust.html.

Notes: O’Rourke [O’R01] provides an implementation-oriented introduction to com-
putational geometry that stresses robust geometric primitives. It is recommended
reading. LEDA [MN99] provides another excellent role model.

Yap [SY18] gives an excellent survey on techniques for achieving robust geometric

computation, including an available book draft [MY07]. Kettner, et al. [KMP+04]

provides graphic evidence of the troubles that can arise when employing real arithmetic

in geometric algorithms for convex hull. Controlled perturbation [MOS11] is a more

recent approach for robust computation. Shewchuk [She97] and Fortune and van Wyk

[FvW93] present careful studies on the costs of using arbitrary-precision arithmetic for

geometric computation. By being careful about when to use it, reasonable efficiency

can be maintained while achieving complete robustness.

Related problems: Intersection detection (see page 648), maintaining ar-
rangements (see page 671).

www.cgal.org
http://cs.smith.edu/~jorourke/books/CompGeom/CompGeom.html
http://cs.smith.edu/~jorourke/books/CompGeom/CompGeom.html
http://cs.nyu.edu/exact/
http://www.cs.cmu.edu/~quake/robust.html
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Input Output

20.2 Convex Hull

Input description: A set S of n points in d-dimensional space.

Problem description: Find the smallest convex polygon (or polyhedron) con-
taining all the points of S.

Discussion: Convex hull is the most important elementary problem in com-
putational geometry, just as sorting is the most important elementary problem
in combinatorial algorithms. It arises because constructing the hull captures a
rough idea of the shape or extent of a data set.

Convex hull serves as a preprocessing step to many geometric algorithms. For
example, consider the problem of finding the diameter of a set of points, meaning
the pair of points that lie a maximum distance apart. The diameter must be
between two points on the convex hull. The O(n lg n) algorithm for computing
diameter first constructs the convex hull, and then for each hull vertex finds
which other hull vertex lies farthest from it. The “rotating-calipers” method
can be used to move efficiently from one-diametrically opposed hull vertex pair
to the next by always proceeding in a clockwise fashion around the hull.

There are almost as many convex hull algorithms as sorting algorithms.
Answer the following questions to help choose between them:

• How many dimensions are you working with? – Convex hulls are fast to
compute in two and even three dimensions. But certain assumptions valid
in lower dimensions break down as the dimensionality increases. For exam-
ple, any n-vertex polygon in two dimensions has exactly n edges. However,
the relationship between the numbers of faces and vertices becomes more
complicated even in three dimensions. A cube has eight vertices and six
faces, while an octahedron has eight faces and six vertices. This has impli-
cations for the data structures that represent hulls—are you just looking
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for the hull points or do you need the defining polyhedron? Be aware of
these complications of high-dimensional spaces if your problem takes you
there.

Simple O(n log n) convex-hull algorithms are available for the important
special cases of two and three dimensions, but in higher dimensions things
get more complicated. Gift-wrapping is the basic approach to construct
higher-dimensional convex hulls. Observe that a three-dimensional con-
vex polyhedron is composed of two-dimensional faces, or facets, that are
connected by one-dimensional lines or edges. Each edge joins exactly two
facets together. Gift-wrapping starts by finding an initial facet associ-
ated with the lowest vertex, and then conducting a breadth-first search
from this facet to discover new, additional facets. Each edge e defining
the boundary of a facet must be shared with another facet. By iterating
through all n points, we can identify which point defines the next facet
with e. We “wrap” the points one facet at a time, like bending wrapping
paper around an edge until it hits the first point.

The key to efficiency is making sure that each edge is explored only once.
Implemented properly in d dimensions, gift-wrapping takes O(nφd−1 +
φd−2 lg φd−2), where φd−1 is the number of facets and φd−2 is the number
of edges in the convex hull. This can be as bad as O(n�d/2�+1) when the
convex hull is very complex. Use one of the codes described below rather
than roll your own.

• Is your data given as vertices or half-spaces? – The problem of finding
the intersection of a set of n half-spaces in d dimensions (each containing
the origin) is dual to that of computing convex hulls of n points in d
dimensions. Thus, the same basic algorithm suffices for both problems.
The necessary duality transformation is discussed in Section 20.15 (page
671). The problem of half-plane intersection differs from convex hull when
no interior point is given, because infeasible instances arise where the
intersection of the half-planes is empty.

• How many points are likely to be on the hull? – If your point set was
generated “randomly,” it is likely that most points lie within the interior
of the hull. Planar convex-hull programs can be made more efficient in
practice using the observation that the left-most, right-most, top-most,
and bottom-most points must all be on the convex hull. This usually
gives a set of either three or four distinct hull points, defining a triangle or
quadrilateral. Any point inside this region cannot be on the convex hull,
and so can be discarded in a linear sweep through the points. Ideally,
only a few points will then remain to run through the full convex-hull
algorithm.

This trick can also be applied beyond two dimensions, although it loses
effectiveness as the dimension increases.
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• How do I find the shape of my point set? – Although convex hulls provide
a gross measure of shape, any details associated with the concavities are
lost. The convex hull of the “m” from the example input would be indis-
tinguishable from the convex hull of “w.” Alpha-shapes are a more general
structure that can be parameterized so as to retain arbitrarily large con-
cavities. Implementations and references on alpha-shapes are included
below.

The Graham scan is the most popular convex-hull algorithm in the plane.
It starts with one point p known to be on the convex hull, say the point with
the lowest x-coordinate, and then sorts the rest of the points in angular order
around p. Starting from a partial hull consisting of p and the point with the
smallest angle, we proceed counterclockwise adding points. If the angle formed
by the new point and the last hull edge is less than 180 degrees, we insert this
new point to the hull. If the angle formed by the new point and the last “hull”
edge is greater than 180 degrees, then a chain of vertices starting from the last
hull edge must be deleted to maintain convexity. The total time is O(n lg n),
because the bottleneck is the cost of sorting the points around p.

This Graham scan procedure can also be used to construct a non-self-
intersecting (or simple) polygon passing through all the points. Sort the points
around v, but instead of testing angles, connect the points in angular order.
This gives a polygon without self-intersection, although it typically has many
ugly skinny protrusions.

The gift-wrapping algorithm becomes especially simple in two dimensions,
since each “facet” becomes an edge, each “edge” becomes a vertex of the poly-
gon, and the “breadth-first search” simply walks around the hull in a clockwise
or counterclockwise order. The two-dimensional gift-wrapping (or Jarvis march)
algorithm runs in O(nh) time, where h is the number of vertices on the convex
hull. I recommend sticking with Graham scan unless you know in advance that
there are only a few vertices on the hull.

Implementations: The CGAL library (www.cgal.org) offers C++ implemen-
tations of an extensive variety of convex-hull algorithms for two, three, and
arbitrary numbers of dimensions. Alternate C++ implementations of planar
convex hulls include LEDA (see Section 22.1.1 (page 713)).

Qhull [BDH97] is a popular low-dimensional, convex-hull code, optimized
for two to about eight dimensions. It is written in C and can also construct
Delaunay triangulations, Voronoi vertices, furthest-site Voronoi vertices, and
half-space intersections. Qhull has been widely used in scientific applications
and has a well-maintained homepage at http://www.qhull.org/.

O’Rourke [O’R01] provides a robust implementation of the Graham scan
in two dimensions and an O(n2) implementation of an incremental algorithm
for convex hulls in three dimensions. C and Java implementations are both
available. See Section 22.1.9 (page 717).

Ken Clarkson’s higher-dimensional convex-hull code Hull also does alpha-
shapes, and is available at http://www.netlib.org/voronoi/hull.html.

www.cgal.org
http://www.qhull.org/
http://www.netlib.org/voronoi/hull.html
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Different codes are needed for enumerating the vertices of intersecting half-
spaces in higher dimensions. Avis’ lrs (http://cgm.cs.mcgill.ca/~avis/C/
lrs.html) is an arithmetically robust ANSI C implementation of the Avis–
Fukuda reverse search algorithm for vertex enumeration/convex-hull problems.
Since the polyhedron is implicitly traversed but not explicitly stored in memory,
even problems with very large output sizes can sometimes be solved.

Notes: Planar convex hull plays the same role in computational geometry that sort-
ing does in algorithm design. Like sorting, convex hull is a fundamental problem
where many different algorithmic approaches lead to interesting or optimal algorithms.
Quickhull and mergehull are examples of hull algorithms inspired by sorting algorithms
[PS85]. A simple construction involving points on a parabola presented in Section
11.2.4 (page 360) reduces sorting to convex hull, so the information-theoretic lower
bound for sorting implies that planar convex hull requires Ω(n lg n) time to compute.
A stronger lower bound is established in [Yao81].

Good expositions of the Graham scan algorithm [Gra72] and the Jarvis march
[Jar73] include [dBvKOS08, CLRS09, O’R01, PS85]. The optimal planar convex-hull
algorithm [KS86] takes O(n lg h) time, where h is the number of hull vertices, and cap-
tures the best performance of both Graham scan and gift wrapping. Planar convex
hull can be efficiently computed in-place, meaning without requiring additional mem-
ory in [BIK+04]. Seidel [Sei18] provides an excellent survey of convex hull algorithms
and variants, particularly for higher dimensions.

Topology is the study of shape. Edelsbrunner and Harar [EH10] provide an in-
troduction to computational topology. Alpha-hulls, presented in [EKS83], provide a
useful notion of the shape of a point set. A generalization to three dimensions, with
an implementation, is presented in [EM94].

Reverse-search algorithms for constructing convex hulls are effective in higher di-
mensions [AF96]. Through a clever lifting-map construction [ES86], the problem of
building Voronoi diagrams in d-dimensions can be reduced to constructing convex hulls
in (d+ 1)-dimensions. See Section 20.4 (page 634) for more details.

Dynamic algorithms for convex-hull maintenance are data structures that permit

inserting and deleting arbitrary points while always representing the current convex

hull. Jacob and Brodal [JB19] reduced the cost of such operations to logarithmic

amortized time.

Related problems: Sorting (see page 506), Voronoi diagrams (see page 634).

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
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Input Output

20.3 Triangulation

Input description: A set of points, a polygon, or a polyhedron.

Problem description: Partition the interior of the point set or polyhedron
into triangles.

Discussion: A good first step in working with complicated geometric objects
is to break them into simple geometric objects. This makes triangulation a fun-
damental problem in computational geometry, because the simplest geometric
objects are triangles in two dimensions. Classical applications of triangulation
include finite element analysis and computer graphics.

One interesting application of triangulation is surface interpolation. Suppose
that we have sampled the height of a mountain at a number of (x, y, z) points.
How can we estimate the height z′ at any point q = (x′, y′) in the plane?
We can project the sampled points on the plane, and then triangulate them.
This triangulation partitions the plane into triangles, so we can estimate height
by interpolating between the heights (z-coordinates) of the three points of the
triangle that contain q. Furthermore, this triangulation and the associated
height values define a mountain surface suitable for graphics rendering.

A triangulation in the plane is constructed by adding non-intersecting chords
between the vertices until no more such chords can be added. Specific issues
arising in triangulation include:

• Are you triangulating a point set or a polygon? – Often we are given a set
of points to triangulate, as in the surface interpolation problem discussed
above. This requires first constructing the convex hull of the point set and
then carving up the interior into triangles.

The simplest such O(n lg n) algorithm first sorts the points by x-coordinate.
It then inserts them from left to right as per the convex-hull algorithm
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of page 111, building the triangulation by adding a chord to each point
newly cut off from the hull.

• Does the shape of the triangles in your triangulation matter? – There
are usually many different ways to partition your input into triangles.
Consider a set of n points in convex position in the plane. The simplest
way to triangulate them would be to add fan-shaped diagonals from the
first point to all n − 1 other points. But this has the tendency to create
skinny triangles.

Many applications seek to avoid skinny triangles, or equivalently, mini-
mize small angles in the triangulation. The Delaunay triangulation of a
point set maximizes the minimum angle over all possible triangulations.
This isn’t exactly what we are looking for, but it is pretty close, and the
Delaunay triangulation has enough other interesting properties to make
it the quality triangulation of choice. Further, it can be constructed in
O(n lg n) time, using implementations described below.

• How can I improve the shape of a given triangulation? – Each internal
edge of any triangulation is shared between two triangles. The four vertices
defining these two triangles form either (a) a convex quadrilateral, or (b)
a triangle with a triangular bite taken out of it. The beauty of the convex
case is that exchanging the internal edge with a chord linking the other
two vertices yields a different triangulation.

This gives us a local “edge-flip” operation for changing and possibly im-
proving a given triangulation. Indeed, a Delaunay triangulation can be
constructed from any initial triangulation by removing skinny triangles
until no locally improving exchange remains.

• What dimension are we working in? – Three-dimensional problems are
usually harder than two-dimensional problems. The three-dimensional
generalization of triangulation involves partitioning the space into four-
vertex tetrahedra by adding non-intersecting faces. One important dif-
ficulty is that there is no way to tetrahedralize the interior of certain
polyhedra without adding extra vertices. Furthermore, it is NP-complete
to decide whether such a tetrahedralization exists, so we should not feel
afraid to add extra vertices to simplify our problem.

• What constraints does the input have? – When we are triangulating a
polygon or polyhedra, we can only add chords that do not intersect any of
the boundary facets. In general, we may have a set of additional obstacles
or constraints that cannot be intersected by inserted chords. The best such
triangulation is the constrained Delaunay triangulation. Implementations
are described below.

• Are you allowed to add extra points, or move input vertices? – When the
shape of the triangles does matter, it might pay to strategically add a
small number of extra “Steiner” points to the data set to facilitate the
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construction of a triangulation (say) with no small angles. As discussed
above, you must add Steiner points to triangulate certain polyhedra.

To triangulate a convex polygon in linear time, just pick an arbitrary starting
vertex v and insert chords from v to each other vertex in the polygon to form a
fan. Only because the polygon is convex can we be confident that no boundary
edges of the polygon will be intersected by these chords. The simplest algorithm
for general polygon triangulation tests each of the O(n2) possible chords, and
only inserts those that do not intersect a boundary edge or previously inserted
chord. There are practical algorithms that run in O(n lg n) time and theoret-
ically interesting algorithms that run in linear time. See the Implementations
and Notes sections for details.

Implementations: Triangle, by Jonathan Shewchuk, is an award-winning C
language code that generates Delaunay triangulations, constrained Delaunay
triangulations (forced to have certain edges), and quality-conforming Delaunay
triangulations (which avoid small angles by inserting extra points). It has been
widely used for finite element analysis and is fast and robust. Triangle is the
first thing I would try if I needed a two-dimensional triangulation code. It is
available at http://www.cs.cmu.edu/~quake/triangle.html.

Fortune’s Sweep2 is a widely used two-dimensional code for Voronoi diagrams
and Delaunay triangulations, written in C. This code may be simpler to work
with, if all you need is the Delaunay triangulation of points in the plane. It
is based on Fortune’s sweep line algorithm [For87] for Voronoi diagrams and is
available from Netlib (see Section 22.1.4 (page 714)) at https://www.netlib.
org/voronoi/.

TetGen (http://wias-berlin.de/software/tetgen/) appears to be the
software of choice to tetrahedralize three-dimensional polyhedra [Si15]. Both the
CGAL (www.cgal.org) and LEDA (see Section 22.1.1 (page 713)) libraries offer
C++ implementations of an extensive variety of triangulation algorithms for two
and three dimensions, including both constrained and furthest site Delaunay
triangulations.

Higher-dimensional Delaunay triangulations are a special case of higher-
dimensional convex hulls. Qhull [BDH97] is a popular low-dimensional con-
vex hull code, for two to about eight dimensions. It is written in C and can
also construct Delaunay triangulations, Voronoi vertices, furthest-site Voronoi
vertices, and half-space intersections. Qhull has been widely used in scientific
applications and has a well-maintained homepage at http://www.qhull.org/.
Another choice is Ken Clarkson’s higher-dimensional convex-hull code, Hull,
available at https://www.netlib.org/voronoi/hull.html.

Notes: Chazelle [Cha91] gave a linear-time algorithm for triangulating a simple
polygon, which was an important theoretical result because triangulation served as the
bottleneck for many other geometrical algorithms. Chazelle’s algorithm is sufficiently
hopeless to implement that it qualifies more as an existence proof, but a simpler
randomized algorithm is known [AGR01]. The first O(n lg n) algorithm for polygon
triangulation was given by [GJPT78]. An O(n lg lg n) algorithm by Tarjan and van

http://www.cs.cmu.edu/~quake/triangle.html
https://www.netlib.org/voronoi/
https://www.netlib.org/voronoi/
http://wias-berlin.de/software/tetgen/
www.cgal.org
http://www.qhull.org/
https://www.netlib.org/voronoi/hull.html
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Wyk [TW88] followed before Chazelle’s result. Bern et al. [BSA18] gives a survey on
polygon and point-set triangulation.

Books on Delaunay triangulations and quality mesh generation include [AKL13,
SDC16]. The International Meshing Roundtable is an annual conference for people
interested in mesh and grid generation. Excellent surveys on mesh generation include
[Ber02, Ede06].

Linear-time algorithms for triangulating monotone polygons have been long known
[GJPT78], and are the basis of algorithms for triangulating simple polygons. A polygon
is monotone when there exists a direction d such that any line with slope d intersects
the polygon in at most two points.

A well-studied class of optimal triangulations seeks to minimize the total length
of the chords used. The computational complexity of constructing this minimum
weight triangulation was resolved when Rote [MR06] proved it NP-complete. Interest
has thus shifted to provably good approximation algorithms [RW18]. The minimum
weight triangulation of a convex polygon can be found in O(n3) time using dynamic
programming.

Related problems: Voronoi diagrams (see page 634), polygon partitioning
(see page 658).
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Input Output

20.4 Voronoi Diagrams

Input description: A set S of points p1, . . . , pn.

Problem description: Decompose space into regions such that all points in
the region around pi are closer to pi than to any other point in S.

Discussion: Voronoi diagrams represent the region of influence around each
of a given set of sites S. If these sites represent the locations of McDonald’s
restaurants, the Voronoi diagram V (S) partitions space into cells around each
restaurant. For each person living in a particular cell, the defining McDonald’s
represents the closest place to get a Big Mac.

Voronoi diagrams have a surprising variety of applications:

• Nearest-neighbor search – Finding the nearest neighbor of query point q
from a fixed set of points S is simply a matter of determining which cell
in V (S) contains q. See Section 20.5 (page 637) for more details.

• Facility location – Suppose McDonald’s wants to open another restaurant.
To minimize interference with existing McDonald’s, it should be located as
far away from the closest restaurant as possible. This location is always at
a vertex of the Voronoi diagram, and hence can be found in a linear-time
search through the Voronoi vertices.

• Largest empty circle – Suppose you seek a large, contiguous, undeveloped
piece of land on which to build a factory. The same condition used to
select McDonald’s locations is appropriate for other undesirable facilities,
namely that they get located as far as possible from any relevant sites of
interest. A Voronoi vertex defines the center of the largest empty circle
among the points.

• Path planning – If the sites of S are the centers of obstacles we seek to
avoid, the edges of the Voronoi diagram V (S) define the possible channels
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that maximize the distance to the obstacles. The “safest” path among the
obstacles will thus stick to the edges of the Voronoi diagram.

• Quality triangulations – When triangulating a set of points, we often seek
nice, fat triangles that avoid small angles and skinny triangles. The Delau-
nay triangulation maximizes the minimum angle over all triangulations,
and can be constructed as the dual of the Voronoi diagram. See Section
20.3 (page 630) for details.

Each edge of a Voronoi diagram is a segment of the perpendicular bisector
of the line segment formed by the two points in S, because this is the line that
partitions the plane between the points. The conceptually simplest method to
build a Voronoi diagram is by randomized incremental construction. To add a
new site p to the diagram, locate the cell that contains it and add perpendicular
bisectors separating p from all sites defining impacted regions. If the sites are
inserted in random order, it is likely that only a few regions will be impacted
on each insertion.

However, the method of choice is Fortune’s sweep line algorithm, especially
since robust implementations of it are readily available. The algorithm works
by projecting the set of sites in the plane into a set of cones in three dimensions,
such that the Voronoi diagram is defined by projecting the cones back onto the
plane. Advantages of Fortune’s algorithm include that (a) it runs in optimal
Θ(n log n) time, (b) it is reasonable to implement, and (c) we need not store the
entire diagram as we sweep over it.

There is an interesting relationship between convex hulls in d + 1 dimen-
sions and Delaunay triangulations (or equivalently Voronoi diagrams) in d-
dimensions. After projecting each site in Ed to Ed+1,

(x1, x2, . . . , xd) −→ (x1, x2, . . . , xd,

d∑

i=1

x2
i )

then taking the convex hull of this (d + 1)-dimensional point set, and finally
projecting back into d dimensions, we obtain the Delaunay triangulation. De-
tails are given in the Notes section, but this provides the best way to con-
struct Voronoi diagrams in higher dimensions. Programs that compute higher-
dimensional convex hulls are presented in Section 20.2 (page 626).

Several important variations of standard Voronoi diagrams arise in practice:

• Non-Euclidean distance metrics – Recall that Voronoi diagrams decom-
pose space into regions of influence around each given site. We have as-
sumed that Euclidean distance measures influence, but this is not always
appropriate. The time it takes to drive to McDonald’s depends upon
where the major roads are. Efficient algorithms are known for construct-
ing Voronoi diagrams under a variety of different metrics.

• Power diagrams – These structures decompose space into regions of influ-
ence around the sites, where the sites are no longer constrained to have all
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the same power. Imagine a map of radio stations broadcasting at a given
frequency. The region of influence around a station depends both on the
power of its transmitter and the position/power of its neighbors.

• Kth-order and furthest-site diagrams – The idea of decomposing space into
regions sharing some property can be taken beyond closest-point Voronoi
diagrams. All points within a single cell of the kth-order Voronoi diagram
share the same set of k nearest neighbors in S. In furthest-site diagrams,
any point within a particular region shares the same furthest point in S.
Point location (see Section 20.7 (page 644)) on these structures permits
fast retrieval of the appropriate points.

Implementations: Fortune’s Sweep2 is a widely used two-dimensional code for
Voronoi diagrams and Delaunay triangulations, written in C. This code is simple
to work with if all you need is the Voronoi diagram. It is based on Fortune’s
sweep line algorithm [For87] for Voronoi diagrams and is available from Netlib
(see Section 22.1.4 (page 714)) at https://www.netlib.org/voronoi/.

Both the CGAL (www.cgal.org) and LEDA (see Section 22.1.1 (page 713))
libraries offer C++ implementations of a variety of Voronoi diagram and De-
launay triangulation algorithms in two and three dimensions.

Higher-dimensional and furthest-site Voronoi diagrams can be constructed
as a special case of higher-dimensional convex hulls. Qhull [BDH97] is a popu-
lar low-dimensional convex-hull code, useful for two to about eight dimensions.
It is written in C and can also construct Delaunay triangulations, Voronoi ver-
tices, furthest-site Voronoi vertices, and half-space intersections. Qhull has been
widely used in scientific applications and has a well-maintained homepage at
http://www.qhull.org/. Another choice is Ken Clarkson’s convex-hull code,
Hull, available at https://www.netlib.org/voronoi/hull.html.

Notes: Voronoi diagrams were studied by Dirichlet in 1850 and are sometimes re-
ferred to as Dirichlet tessellations. They are named after G. Voronoi, who discussed
them in a 1908 paper. In mathematics, concepts get named after the last person to
discover them.

Two books [AKL13, OBSC00] offer a complete treatment of Voronoi diagrams and
their applications. Fortune [For18] provides an excellent survey on Voronoi diagrams
and associated variants such as power diagrams. The first O(n lg n) algorithm for
constructing Voronoi diagrams was based on divide and conquer and is due to Shamos
and Hoey [SH75]. Good expositions of both Fortune’s sweeping algorithm [For87] and
the relationship between Delaunay triangulations and (d+1)-dimensional convex hulls
[ES86] include [dBvKOS08, O’R01].

In a kth-order Voronoi diagram, we partition the plane such that each point in a
region is closest to the same set of k sites. Using the algorithm of [ES86], the complete
set of kth-order Voronoi diagrams can be constructed in O(n3) time. By performing a
point location on this structure, the k nearest neighbors of a query point can be found
in O(k + lg n). Expositions on kth-order Voronoi diagrams include [O’R01, PS85].

Related problems: Nearest-neighbor search (see page 637), point location
(see page 644), triangulation (see page 630).

https://www.netlib.org/voronoi/
www.cgal.org
http://www.qhull.org/
https://www.netlib.org/voronoi/hull.html
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q q

Input Output

20.5 Nearest-Neighbor Search

Input description: A set S of n points in d dimensions, and query point q.

Problem description: Which point in S is closest to q?

Discussion: The need to quickly find the nearest neighbor of a query point
arises in many geometric applications. The classic example involves designing
a system to dispatch emergency vehicles to the scene of a fire. As soon as the
dispatcher learns the location of the fire, he or she uses a map to identify the
firehouse closest to this point so as to minimize transportation delays. This
situation occurs in any application mapping customers to service providers.

A nearest-neighbor search is also important in classification. Suppose we
are given a collection of numerical data about people (say age, height, weight,
years of education, and income level) each of whom has been labeled as either
Democrat or Republican. We seek a classifier to predict which way a new voter
is likely to vote. Every person in our data set can be represented by a party-
labeled point in d-dimensional space. A simple voter classifier can be built by
assigning the new point the same party affiliation as its nearest neighbor.

Such nearest-neighbor classifiers are widely used, often in high-dimensional
spaces. The vector-quantization method of image compression partitions an
image into 8 × 8 pixel regions. This method uses a predetermined library of
several thousand 8 × 8 pixel tiles and replaces each image region by the most
similar library tile. The most similar tile is the point in 64-dimensional space
that is closest to the image region in question. Compression is achieved by
reporting the 12-bit identifier of the closest library tile instead of the full 64
pixels, at the cost of some minor loss of image fidelity.

Issues arising in nearest-neighbor search include:

• How many points are you searching? – When your data set contains only
a small number of points (say n ≤ 100), or if only a few queries are
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ever destined to be performed, the simple approach is best. Compare
the query point q against each of the n data points. Only when fast
queries are needed on large numbers of points does it pay to consider
more sophisticated methods.

• How many dimensions are you working in? – Nearest-neighbor search
gets progressively harder as the dimensionality increases. The kd-tree
data structure, presented in Section 15.6 (page 460), does a very good job
in moderate-dimensional spaces. But by twenty dimensions, kd-tree search
degenerates to almost a linear search through the data points. Searches
in high-dimensional spaces become hard because a sphere of radius r,
representing all the points with distance ≤ r from the center, progressively
fills up less volume relative to a cube as the dimensionality increases. Thus,
any data structure based on partitioning points into enclosing volumes
becomes progressively less effective. Balltrees are a data structure based
on spheres, which works better in higher dimensions.

In two dimensions, Voronoi diagrams (see Section 20.4 (page 634)) pro-
vide an efficient data structure for nearest-neighbor queries. The Voronoi
diagram of a point set decomposes the plane into regions such that the
cell containing data point p consists of all points that are closer to p than
to any other point in S. Finding the nearest neighbor of query point q re-
duces to identifying which Voronoi diagram cell contains q, and reporting
the data point associated with it. Although Voronoi diagrams can be built
in higher dimensions, their size rapidly grows to the point of unusability.

• Do you really need the exact nearest neighbor? – Finding the absolute
nearest neighbor of a point in a very high-dimensional space is hard work.
Indeed, you probably won’t do better than a linear (brute force) search.
But there are algorithms/heuristics that can give you a reasonably close
neighbor of your query point fairly quickly.

One important technique is dimension reduction. Projections exist that
map any set of n points in d-dimensions into a d′ = O(lg n/ε2)-dimensional
space such that distance to the nearest neighbor in the low-dimensional
space is within (1+ε) times that of the actual nearest neighbor. Projecting
the points onto d′ random hyperplanes will reliably do the trick.

Another idea is adding randomness when you search your data structure.
A kd-tree can be efficiently searched for the cell containing the query
point q—a cell whose boundary points are good candidates to be close
neighbors. Now suppose we search for a point q′, which is a small random
perturbation of q. It should land in a different but nearby cell, one of
whose boundary points might prove to be an even closer neighbor of q.
Repeating such random queries gives us a way to productively use exactly
as much computing time as we are willing to spend to improve the answer.

• Is your data set static or dynamic? – Will there be occasional insertions
or deletions of new data points in your application? If these are very
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rare events, it might pay to rebuild your data structure from scratch each
time. But if they are frequent, select a version of the kd-tree that supports
insertions and deletions.

The nearest-neighbor graph on a set S of n points links each vertex to its
nearest neighbor. This graph is a subgraph of the Delaunay triangulation, and so
can be computed in O(n log n). This is quite a bargain, since it takes Θ(n log n)
time just to discover the closest pair of points in S.

As a lower bound, the closest-pair problem in one dimension reduces to
sorting. We only need to check the minimum gap between n− 1 adjacent pairs
after sorting, because the closest pair corresponds to two numbers that lie next
to each other. The limiting case occurs when the closest pair lie zero distance
apart, meaning that the elements are not unique.

Implementations: ANN is a C++ library for both exact and approximate
nearest-neighbor searching in arbitrarily high dimensions. It performs well for
searches over hundreds of thousands of points in up to about twenty dimensions.
It supports all lp distance norms, including Euclidean and Manhattan distance,
and is available at http://www.cs.umd.edu/~mount/ANN/. It is the first code
I would turn to for nearest-neighbor search.

Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with
Python bindings created by Spotify, and made available at https://github.

com/spotify/annoy. It is based on random projection trees, and designed to
support parallel processes sharing the same data. My students swear by the
sklearn.neighbors.BallTree implementation for nearest-neighbor search in
Python.

Samet’s spatial index demos (http://donar.umiacs.umd.edu/quadtree/)
provide a series of Java applets illustrating many variants of kd-trees, in asso-
ciation with [Sam06]. KDTREE 2 contains C++ and Fortran 95 implementa-
tions of kd-trees for efficient nearest-neighbor search in many dimensions. See
http://arxiv.org/abs/physics/0408067.

Section 20.4 (page 634) gives a complete collection of Voronoi diagram im-
plementations. In particular, CGAL (www.cgal.org) and LEDA (see Section
22.1.1 (page 713)) provide Voronoi diagrams in C++, plus planar point location
to make effective use of them for nearest-neighbor search.

Notes: Approximate nearest-neighbor search in high dimensions has been a very
active area of research for the past twenty years, with recent results providing a gen-
eral framework for a broad class of distance metrics [ANN+18]. Andoni and Indyk
[AI08, AIR18] ably survey recent results in approximate nearest-neighbor search in
high dimensions based on locality sensitive hashing and random projection methods.
Both theoretical and empirical results [BM01, ML14, WSSJ14] indicate that these
methods preserve distances quite nicely.

The theoretical guarantees underlying Arya and Mount’s approximate nearest-
neighbor code ANN [AM93, AMN+98] are somewhat different. A sparse weighted
graph structure is built from the data set, and the nearest neighbor is found by start-
ing at a random point and greedily walking towards the query point in the graph.
The closest point found over several random trials is declared the winner. Similar

http://www.cs.umd.edu/~mount/ANN/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
sklearn.neighbors.BallTree
http://donar.umiacs.umd.edu/quadtree/
http://arxiv.org/abs/physics/0408067
www.cgal.org
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data structures hold promise for other problems in high-dimensional spaces. Nearest-
neighbor search was a subject of the Fifth DIMACS challenge, as reported in [GJM02].

Samet [Sam06] is the best reference on kd-trees and other spatial data structures.
All major (and many minor) variants are developed in substantial detail. A shorter
survey [Sam05] is also available. The technique of using random perturbations of the
query point is due to [Pan06].

Good expositions on finding the closest pair of points in the plane [BS76] include
[CLRS09, Man89]. These algorithms use a divide-and-conquer approach instead of
just selecting from the Delaunay triangulation.

Related problems: Kd-trees (see page 460), Voronoi diagrams (see page 634),
range search (see page 641).
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Input Output

20.6 Range Search

Input description: A set S of n points in d dimensions, and a query region
Q.

Problem description: Which points in S lie within Q?

Discussion: Range search problems arise in database and geographic informa-
tion system (GIS) applications. Data objects with d numerical fields, say people
described by their height, weight, and income, can be modeled as points in d-
dimensional space. A range query asks for all points (or the number of points) in
a given region of space. For example, asking for all people with income between
$0 and $20,000, height between 6 and 7 feet, and weight between 50 and 150
lbs., defines a box containing people whose wallet and body are both thin.

The difficulty of range search depends on several factors:

• How many range queries will you perform? – The simplest approach to
range search tests each of the n points against the query polygon Q. This
works just fine when the number of queries are small. Algorithms to test
whether a point is within a given polygon are presented in Section 20.7
(page 644).

• What is the shape of your query polygon? – The easiest regions to query
against are axis-parallel rectangles, because the inside–outside test reduces
to testing whether each coordinate lies within a prescribed range. The
output figure above illustrates such an orthogonal range query.

When querying against a non-convex polygon, it pays to partition the
polygon into convex pieces or (even better) triangles, and then query the
point set against each piece. This works because it is fast to test whether
a point lies inside a convex polygon. Algorithms for such convex decom-
positions are discussed in Section 20.11 (page 658).
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• How many dimensions? – A general approach to range queries builds a
kd-tree on the point set, as discussed in Section 15.6 (page 460). A depth-
first traversal of the kd-tree is performed for the query, with each tree node
expanded only if its associated rectangle intersects the query region. The
entire tree might get traversed for sufficiently large or misaligned query
regions, but kd-trees generally lead to an efficient solution. Algorithms
with better worst-case performance are known in two dimensions, but kd-
trees should work just fine in the plane. In higher dimensions, they provide
the only viable solution to the problem.

• Is your point set static, or might there be insertions/deletions? – A clever
practical approach to range search and many other geometric searching
problems is based on Delaunay triangulations. Delaunay triangulation
edges connect each point p to nearby points, including its nearest neighbor.
To perform a range query, we start by using planar point location (see
Section 20.7 (page 644)) to quickly identify a triangle within the region of
interest. We then do a depth-first search around a vertex of this triangle,
pruning the search whenever it visits a point too distant to have interesting
undiscovered neighbors. This should be efficient, because the total number
of points visited should be roughly proportional to the number within the
query region.

One nice thing about this approach is that it is relatively easy to employ
“edge-flip” operations to fix up a Delaunay triangulation following a point
insertion or deletion. See Section 20.3 (page 630) for more details.

• Can I just count the number of points in a region, or must I identify
them? – It often suffices to count the number of points in a region instead
of actually returning them. Harkening back to our introductory example,
we may want to know whether there are more thin/poor people or rich/fat
ones. The need to find the densest or emptiest region in space often arises,
and this can be solved using counting range queries.

A nice data structure for efficiently answering such aggregate range queries
is based on the dominance ordering of the point set. A point x is said to
dominate point y if y lies both below and to the left of x. Let D(p)
be a function that counts the number of points in S that are dominated
by p. The number of points m in the orthogonal rectangle defined by
xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax is given by:

m = D(xmax, ymax)−D(xmax, ymin)−D(xmin, ymax) +D(xmin, ymin)

The last additive term corrects for the points for the lower left-hand
corner that have been subtracted away twice.

We can partition the space into n2 rectangles by drawing a horizontal and
vertical line through each of the n points. The set of dominated points
will be identical for each point within any rectangle, so the dominance
count of the lower left-hand corner of each rectangle can be precomputed,
stored, and reported for any query point within it. Range queries reduce
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to binary search and thus take O(lg n) time. This data structure takes
quadratic space, which is expensive, but the same idea can be adapted to
kd-trees to create a more space-efficient search structure.

Implementations: Both CGAL (www.cgal.org) and LEDA (see Section 22.1.1
(page 713)) use a dynamic Delaunay triangulation data structure to support
circular, triangular, and orthogonal range queries. Both libraries also provide
implementations of range tree data structures, which support orthogonal range
queries in O(k+ lg2 n) time where n is the complexity of the subdivision and k
is the number of points in the rectangular region.

ANN is a C++ library for both exact and approximate nearest-neighbor
searching in arbitrarily high dimensions. It performs well for searches over
hundreds of thousands of points in up to about twenty dimensions. It supports
fixed-radius, nearest-neighbor queries over all lp distance norms, which can be
used to approximate circular and orthogonal range queries under the l2 and l1
norms, respectively. ANN is available at https://www.cs.umd.edu/~mount/

ANN/.
Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with

Python bindings created by Spotify, and made available at https://github.

com/spotify/annoy. It is based on random projection trees, and designed to
support parallel processes sharing the same data. Nearest-neighbor search is
closely connected to circular range search, since the largest empty circle around
a point defines its nearest neighbor.

Notes: Good expositions on data structures with worst-case O(lg n+k) performance
for orthogonal-range searching [Wil85] and kd-trees include [dBvKOS08, PS85]. The
worst-case performance of kd-trees can be very bad: [LW77] describes an instance
in two dimensions requiring O(

√
n) time to report that a rectangle is empty. Faster

range search and counting structures are available under the word RAMmodel [CLP11,
CW16]. Sun and Blelloch [SB19] present experimental results for both sequential and
parallel algorithms for range search.

The problem becomes considerably more difficult for non-orthogonal range queries,

where the query region is not an axis-aligned rectangle. For half-plane intersection

queries, O(lg n) time and linear space suffice [CGL85]. For range searching with sim-

plex query regions (such as a triangle in the plane), lower bounds preclude efficient

worst-case data structures. See Agrawal [Aga18] for a survey and discussion.

Related problems: Kd-trees (see page 460), point location (see page 644).

www.cgal.org
https://www.cs.umd.edu/~mount/ANN/
https://www.cs.umd.edu/~mount/ANN/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
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q?

Input Output

20.7 Point Location

Input description: A decomposition of the plane into polygonal regions, and
a query point q.

Problem description: Which region contains the query point q?

Discussion: Point location is often needed as an ingredient to solve larger geo-
metric problems. In a typical police dispatch system, the city will be partitioned
into different precincts or districts. Given a map of such regions and a query
point (the crime scene), the system must identify which region contains the
point. This is exactly the problem of planar point location. Variations include:

• Is the query point inside or outside of polygon P? – The simplest version
of point location involves only two regions, inside-P and outside-P , and
asks which contains a given query point. For polygons with many narrow
spirals, this can be surprisingly difficult to tell by inspection. The secret
to doing it both by eye or machine is to draw a ray starting from the
query point and ending beyond the furthest extent of the polygon. Count
the number of times the ray crosses an edge of P . The query point will
lie within the polygon iff this number is odd. Whether to count the ray
passing through a vertex instead of an edge is evident from context, be-
cause we care about how many times we cross the boundary of P . Testing
each of the n edges for intersection against the query ray takes O(n) time.
Faster algorithms for convex polygons are based on binary search, and
take O(lg n) time.

• How many queries will be performed? – We could perform this inside-
polygon test separately on each region in a given planar subdivision, but
this will be wasteful if many such queries will be performed. It is much
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better to construct a grid-like or tree-like data structure on top of our sub-
division to get us near the correct region quickly. Such search structures
are discussed in more detail below.

• How complicated are the regions of your subdivision? – More sophisticated
inside–outside tests are required when the regions of your subdivision are
not convex polygons. But by triangulating all polygonal regions first,
each inside–outside test reduces to testing whether a point is in a triangle.
Such tests can be made particularly fast and simple, at the minor cost
of recording the region name associated with each triangle. An added
benefit is that the smaller your regions are, the better grid-like or tree-like
superstructures are likely to perform. Care should be taken to avoid long
skinny triangles, as discussed in Section 20.3 (page 630).

• How regularly sized and spaced are your regions? – When all resulting
triangles are roughly the same size and shape, the simplest point location
method imposes a regularly spaced k × k grid of horizontal and vertical
lines over the entire subdivision. For each of the k2 rectangular regions,
we maintain a list of all the regions that are at least partially contained
within the rectangle. Performing a point location query in such a grid file
involves a binary search or hash table lookup to identify which rectangle
contains query point q, and then searching each region in the associated
list to identify the right one.

Such grid files can perform very well, provided that each triangular re-
gion overlaps relatively few rectangles (thus minimizing storage space)
and each rectangle overlaps only a few triangles (thus minimizing search
time). How well it performs depends on the regularity of your subdivision.
Some flexibility can be achieved by spacing the horizontal lines irregularly,
depending upon where the regions actually lie. The slab method, discussed
below, is a variation on this idea that guarantees efficient point location
at the cost of quadratic space.

• How many dimensions will you be working in? – In three or more dimen-
sions, some flavor of kd-tree will almost certainly be the point location
method of choice. They may even be the right answer for planar subdivi-
sions that are too irregular for grid files.

Kd-trees, described in Section 15.6 (page 460), decompose space into a
hierarchy of rectangular boxes. At each node in the tree, the current box
is split into a small number of smaller boxes: typically 2, 4, or 2d for
dimension d. Each leaf box is labeled with the small set of regions at least
partially contained in the box. The point location search starts at the
root of the tree and traverses down through the child whose box contains
the query point q. When the search hits a leaf, we test all relevant regions
to see which one contains q. As with grid files, we hope that each leaf
contains a small number of regions, and that each region does not cut
across too many leaf cells.
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• Am I close to the right cell? – Walking is a simple point–location technique
that might even work well beyond two dimensions. Start from an arbitrary
point p in an arbitrary cell, hopefully near to the query point q. Construct
the ray from p to q, and identify which face of the cell this hits (a so-
called ray-shooting query). Such queries take constant time in triangulated
arrangements.

Proceeding to the neighboring cell through this face gets us one step closer
to the target. The expected path length will be O(n1/d) for sufficiently
regular d-dimensional arrangements, although linear in the worst case.

The simplest algorithm that guarantees O(lg n) worst-case access is the slab
method, which draws horizontal lines through each vertex, thus defining n + 1
“slabs” between the lines. The horizontal slab containing query point q can be
found by doing a binary search on the y-coordinate of q. The region containing
q within the right slab can be identified by doing a second binary search on
the edges that cross the slab. The catch is that a binary search tree must be
maintained for each slab, for a worst-case of O(n2) space. A more space-efficient
approach based on building a hierarchy of triangulations over the regions also
achieves O(lg n) search, and is discussed in the Notes section.

Point location methods that are efficient in the worst case tend to require
a lot of memory, or are complicated to implement. I identify implementations
of such methods below, which are worth experimenting with. But I generally
recommend kd-trees for point location applications.

Implementations: Both CGAL (www.cgal.org) and LEDA (see Section 22.1.1
(page 713)) provide excellent support for maintaining planar subdivisions in
C++. CGAL favors a jump-and-walk strategy, although a worst-case logarith-
mic search is also provided. LEDA implements O(lg n) expected-time point
location, using partially persistent search trees.

ANN is a C++ library for both exact and approximate nearest-neighbor
searching in arbitrarily high dimensions. It can be used to quickly identify a
nearby cell boundary point to begin walking from. Check it out at https:

//www.cs.umd.edu/~mount/ANN/.
Arrange is a package for maintaining arrangements of polygons in either

the plane or on the sphere. Polygons may be degenerate, and hence represent
arrangements of lines. A randomized incremental construction algorithm is
used, and efficient point location on the arrangement is supported. Arrange is
written in C by Michael Goldwasser and is available from http://euler.slu.

edu/~goldwasser/publications/.
Routines (in C) to test whether a point lies in a simple polygon have been

provided by [O’R01, SR03].

Notes: Snoeyink [Sno18] gives an excellent survey of the state of the art in point
location, both theoretical and practical. Thorough treatments of deterministic planar-
point location data structures are provided by [dBvKOS08, PS85].

Tamassia and Vismara [TV01] use planar point location as a case study of geo-
metric algorithm engineering, in Java. An experimental study of algorithms for planar

www.cgal.org
https://www.cs.umd.edu/~mount/ANN/
https://www.cs.umd.edu/~mount/ANN/
http://euler.slu.edu/~goldwasser/publications/
http://euler.slu.edu/~goldwasser/publications/
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point location is described in [EKA84]. The winner was a bucketing technique akin to
the grid file. Performance of the CGAL point location implementation is reported in
[HH09, HKH12].

Kirkpatrick’s elegant triangle refinement method [Kir83] builds a hierarchy of tri-
angulations above the actual planar subdivision, such that each triangle on a given
level intersects only a constant number of triangles on the following level. Each trian-
gulation is a fraction of the size of the subsequent one, so the total space is linear by
summing up a geometric series. Furthermore, the height of the hierarchy is O(lg n),
ensuring fast query times. An alternative algorithm realizing the same time bounds is
[EGS86]. The slab method described above is due to [DL76] and is presented in [PS85].
Expositions on the inside-outside test for simple polygons include [O’R01, PS85, SR03].

More recently, there has been interest in dynamic data structures for point lo-

cation, which support fast incremental updates of the planar subdivision (such as

insertions and deletions of edges and vertices) as well as fast point location. Chiang

and Tamassia’s [CT92] survey is an appropriate place to begin, with updated refer-

ences in [Sno18]. The best current methods approach logarithmic search and update

times [CN18].

Related problems: Kd-trees (see page 460), Voronoi diagrams (see page 634),
nearest-neighbor search (see page 637).
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Input Output

20.8 Intersection Detection

Input description: A set S of lines and line segments l1, . . . , ln, or a pair of
polygons or polyhedra P1 and P2.

Problem description: Which pairs of line segments intersect each other?
What is the intersection of P1 and P2?

Discussion: Intersection detection is a fundamental geometric primitive with
many applications. Picture the virtual-reality simulation of an architectural
model for a building. Any illusion of reality vanishes the instant the virtual
person walks through a virtual wall. To enforce such physical constraints, any
such intersection between polyhedral models must be immediately detected, and
the operator notified or constrained.

Another application arises in design rule checking for integrated circuit lay-
out. A minor design defect resulting in two crossing metal strips could short out
the chip. But such errors can be detected before fabrication, using programs
that find all intersections between line segments.

Issues arising in intersection detection include:

• Do you want to compute the intersection or just report it? –We distinguish
between intersection detection and computing the actual intersection. Just
detecting that an intersection exists can be a substantially easier problem,
and often suffices. For the virtual reality application, it might not matter
exactly where we hit the wall—just the fact that we hit it.

• Are you intersecting lines or line segments? – The big difference here
is that any two lines with different slopes will intersect at exactly one
point. All the points of intersections can thus be found in O(n2) time,
by comparing each pair of lines. Constructing the arrangement of the
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lines provides more information than just the intersection points, and is
discussed in Section 20.15 (page 671).

Finding all the intersections between n line segments proves considerably
more challenging. Even the basic primitive of testing whether two line
segments intersect is not as trivial, as discussed in Section 20.1 (page
622). We can explicitly test each line segment pair, and thus find all
intersections in O(n2) time. But faster algorithms exist when there are
only a few intersection points.

• How many intersection points do you expect? – In integrated circuit
design-rule checking, we expect the set of line segments to have few if
any intersections. What we seek is an algorithm whose running time is
output sensitive, taking time proportional to the number of intersection
points.

Such output-sensitive algorithms exist for line segment intersection. The
fastest algorithm takes O(n lg n+ k) time, where k is the number of inter-
sections. These algorithms are based on the planar sweep line approach.

• Can you see point x from point y? – Visibility queries ask whether vertex
x has an unobstructed view of vertex y in a room full of obstacles. This can
be phrased as a line-segment intersection problem: Does the line segment
from x to y intersect any obstacle? Such visibility problems arise in robot
motion planning (see Section 20.14) and in hidden-surface elimination for
computer graphics.

• Are the intersecting objects convex? – Better intersection algorithms exist
when the line segments form the boundaries of polygons. The critical
issue is whether the polygons are convex. Intersecting a convex n-gon
with a convex m-gon can be done in O(n+m) time, using the sweep line
algorithm discussed below. This is possible because the intersection of
two convex polygons always forms a convex polygon with at most n+m
vertices.

However, non-convex polygons are not so well behaved. Consider the
intersection of two “combs” generalizing the Picasso-like frontispiece to
this section. As shown, the intersection of non-convex polygons may be
disconnected and have quadratic size in the worst case.

Intersecting polyhedra is more complicated than polygons, because two
polyhedra can intersect even when no edges do. Consider the example of
a needle piercing the interior of a face. In general, however, similar issues
arise for both polygons and polyhedra.

• Do the objects move? – In the walk-through application just described,
the room and the objects in it do not change between one scene and the
next. But the person moves, and so we must do repeated analysis of the
same fixed geometry.
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One common technique is to approximate the objects in a scene by simpler
objects that enclose them, such as boxes. Whenever two enclosing boxes
intersect, then the underlying objects might intersect, and so further work
is necessary to decide the issue. But it is much more efficient to test
whether simple boxes intersect than more complicated objects, so we win
when collisions are rare. Many variations on this theme are possible,
but this idea leads to large performance improvements for complicated
environments.

Planar sweep algorithms can be used to efficiently compute the intersections
among a set of line segments, or the intersection/union of two polygons. These
algorithms keep track of interesting changes as we sweep a vertical line from left
to right over the data. At its left-most position, the line intersects nothing, but
we encounter a series of events as it moves to the right:

• Insertion – The left-most point of a line segment may be encountered,
which now becomes available to intersect some other line segment.

• Deletion – The right-most point of a line segment is encountered, which
means that we have completely swept over the segment. It can thus be
safely deleted, and removed from any further consideration.

• Intersection – If we maintain the active line segments that intersect the
sweep line as sorted from top to bottom, the next intersection always
occurs between neighboring line segments. Following this intersection,
these two line segments swap their relative order.

Keeping track of what is going on requires two data structures. The future
is maintained by an event queue: a priority queue ordered by the x-coordinate
of all possible future events of interest: insertion, deletion, and intersection.
See Section 15.2 (page 445) for priority queue implementations. The present
is represented by the horizon—an ordered list of line segments intersecting the
current position of the sweep line. The horizon can be maintained using any
dictionary data structure, such as a balanced tree.

To compute the intersection or union of polygons, we modify the processing
of the three basic event types. This sweep line algorithm becomes quite simple
for pairs of convex polygons, because (1) at most four polygon edges intersect
the sweep line, so no horizon data structure is needed, and (2) no event-queue
sorting is needed, because we can start from the left-most vertex of each polygon
and proceed to the right following the polygonal ordering. The details are more
complex for general polygon intersection, but the sweep line approach described
above still gets the job done.

Implementations: Both LEDA (see Section 22.1.1 (page 713)) and CGAL
(www.cgal.org) offer extensive support for line segment and polygonal inter-
section. In particular, they provide a C++ implementation of the Bentley–
Ottmann sweep line algorithm [BO79], finding all k intersection points between
n line segments in the plane in O((n+ k) lg n) time.

www.cgal.org
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O’Rourke [O’R01] provides a robust program in C to compute the intersec-
tion of two convex polygons. See Section 22.1.9 (page 717).

Finding the mutual intersection of a collection of half-spaces is a special
case of the convex hull problem. Qhull [BDH97] is convex hull code of choice for
general dimensions. Qhull has been widely used in scientific applications and
has a well-maintained homepage at https://www.qhull.org/.

Notes: Mount [Mou18] is an excellent survey of algorithms for computing intersec-
tions of geometric objects such as line segments, polygons, and polyhedra. Books with
chapters discussing such problems include [dBvKOS08, CLRS09, PS85]. Preparata
and Shamos [PS85] provide a good exposition on the special case of finding intersec-
tions and unions of axis-oriented rectangles—a problem that arises often in integrated
circuit design.

An optimal O(n lg n+k) algorithm for computing line segment intersections is due
to Chazelle and Edelsbrunner [CE92]. Simpler, randomized algorithms achieving the
same time bound are presented by Mulmuley [Mul94].

Lin et al. [LMK18] survey techniques and software for collision detection. Weller
[Wel13] provides a book-length treatment of recent data structures, emphasizing col-
lision detection for haptic feedback. Deformable models, whose shapes change over
time, represent another challenge for collision detection [BEB12]. Identifying road
junctions from GPS or image data is an interesting intersection detection problem,
detailed in [FK10].

Related problems: Maintaining arrangements (see page 671), motion plan-
ning (see page 667).

https://www.qhull.org/
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20.9 Bin Packing

Input description: A set of n items with sizes d1, . . . , dn. A set of m bins
with capacities c1, . . . , cm.

Problem description: Store all the items using the fewest number of bins.

Discussion: Bin packing arises in many packaging and manufacturing prob-
lems. Suppose that you are manufacturing widgets cut from sheet metal or
pants cut from cloth. To minimize cost and waste, we seek to lay out the parts
to use as few fixed-size metal sheets or bolts of cloth as possible. Placing each
part on a given sheet, in the best location, is a bin-packing variant called the
cutting stock problem. After our widgets have been successfully manufactured,
we face another bin-packing problem—how best to fit the boxes onto trucks so
as to minimize the number of vehicles needed to ship everything.

Even the most elementary-sounding bin-packing problems are NP-complete;
see the discussion of integer partition in Section 16.10 (page 497). Thus, we
are doomed to think in terms of heuristics, instead of worst-case optimal algo-
rithms. Fortunately, relatively simple heuristics tend to work well on most bin-
packing problems. Further, many applications have peculiar, problem-specific
constraints that would frustrate sophisticated algorithms for bin packing. The
following factors will affect the choice of heuristic:

• What are the shapes and sizes of the objects? – The character of a bin-
packing problem depends greatly on the shapes of the objects to be packed.
Solving a standard jigsaw puzzle has a much different flavor than pack-
ing squares into a rectangular box. In one-dimensional bin packing, each
object’s size is given simply as an integer. This is equivalent to packing
boxes of equal width into a chimney of that width, and makes it a special
case of the knapsack problem of Section 16.10 (page 497).
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When all the boxes are of identical size and shape, repeatedly filling each
row gives a reasonable, but not necessarily optimal, packing. Consider
trying to fill a 3 × 3 square with 2 × 1 bricks. You can only pack three
bricks using one orientation, while four bricks fit using two.

• Are there constraints on the orientation and placement of objects? – Many
shipping boxes are labeled “this side up” (imposing an orientation on the
box) or “do not stack” (requiring them to sit on top of any box pile).
Respecting these constraints restricts our flexibility in packing, and hence
increases the number of trucks needed to send out certain shipments. Most
shippers solve this problem by ignoring the labels. Indeed, your task will
be simpler if you don’t have to worry about the consequences of them.

• Is the problem on-line or off-line? – Do we know the complete set of
objects to pack at the beginning of the job (an off-line problem)? Or will
we get them one at a time and greedily deal with them as they arrive (an
on-line problem)? This difference is important, because we can do a better
job packing when we can take a global view and plan ahead. For example,
we can arrange the objects in an order that will facilitate efficient packing,
perhaps by sorting them from biggest to smallest.

The standard off-line heuristics for bin packing order the objects by size or
shape and then insert them into bins. Typical insertion rules are (1) select the
first or left-most bin the object fits in, (2) select the bin with the most room,
(3) select the bin that provides the tightest fit, or (4) select a random bin.

Analytical and empirical results suggest that first-fit decreasing is the best
heuristic. Sort the objects in decreasing order of size, so that the biggest object
is first and the smallest last. Insert each object one by one into the first bin
that has room for it. If no bin has room, we must start another bin. In the
case of one-dimensional bin packing, this can never require more than 22% more
bins than necessary, and usually does much better. First-fit decreasing has an
intuitive appeal to it, for we pack the bulky objects first and hope that little
objects can fill up the remaining cracks.

First-fit decreasing is easily implemented in O(n lg n+ bn) time, where b ≤
min(n,m) is the number of bins actually used. Simply do a linear sweep through
the bins to check for space on each insertion. A faster O(n lg n) implementation
is possible by using a binary tree to keep track of the space remaining in each
bin.

We can fiddle with the insertion order in such a scheme to deal with problem-
specific constraints. For example, it is reasonable to take “do not stack” boxes
last (perhaps after artificially lowering the height of the bins to leave some room
up top to work with) and to place fixed-orientation boxes at the beginning (so
we can use the extra flexibility later to stick boxes on top).

Packing boxes is much easier than packing arbitrary geometric shapes, enough
so that one general technique packs each part into its own box, and then packs
the boxes. Finding an enclosing rectangle for a polygonal part is easy; just find
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the upper, lower, left, and right tangents in a given orientation. Finding the ori-
entation that minimizes the area (or volume) of such a box is more difficult, but
can be done in both two and three dimensions [O’R85]. See the Implementations
section for a fast approximation to minimum enclosing box.

In the case of non-convex parts, considerable useful space can be wasted in
the holes created by placing each part in a box. One solution is to find the
maximum empty rectangle within each boxed part and use this to contain other
parts if it is sufficiently large. More advanced solutions are discussed below.

Implementations: BPPLIB (http://or.dei.unibo.it/library/bpplib) is
an extensive collection of bin-packing resources, including codes, sample prob-
lems, and references [DIM18]. This should be your first stop if you are interested
in bin packing or cutting stock problems.

Martello and Toth’s collection of Fortran implementations of algorithms for
a variety of knapsack problem variants are available at http://www.or.deis.
unibo.it/kp.html. An electronic copy of [MT90a] has also been generously
made available. David Pisinger maintains a well-organized collection of C-
language codes for knapsack problems and related variants like bin packing and
container loading. These are available at http://www.diku.dk/~pisinger/

codes.html.
A first step towards packing arbitrary shapes packs each in its own mini-

mum volume box. For a code to find an approximation to the optimal pack-
ing, see https://sarielhp.org/research/papers/00/diameter/diam_prog.
html. This algorithm runs in near-linear time [BH01].

Notes: See [CJCG+13, CKPT17, DIM16, WHS07] for surveys of the extensive lit-
erature on bin packing and the cutting stock problem. Keller, Pferschy, and Psinger
[KPP04] is a solid reference on the knapsack problem and variants. Experimental
results on bin-packing heuristics include [BJLM83, MT87].

Efficient algorithms are known for finding the largest empty rectangle in a polygon
[DMR97] and point set [CDL86].

Sphere packing is an important and well-studied special case of bin packing,
with applications to error-correcting codes. Particularly notorious was the “Kepler
conjecture”—the problem of establishing the densest packing of unit spheres in three
dimensions. This conjecture was finally settled by Hales and Ferguson in 1998; see
[Szp03] for an exposition. Conway and Sloane [CS93] is the best reference on sphere
packing and related problems.

Milenkovic has worked extensively on two-dimensional bin-packing problems for

the apparel industry, minimizing the amount of material needed to manufacture pants

and other clothing. Reports of this work include [DM97, Mil97].

Related problems: Knapsack problem (see page 497), set packing (see page
682).

http://or.dei.unibo.it/library/bpplib
http://www.or.deis.unibo.it/kp.html
http://www.or.deis.unibo.it/kp.html
http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
https://sarielhp.org/research/papers/00/diameter/diam_prog.html
https://sarielhp.org/research/papers/00/diameter/diam_prog.html
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Input Output

20.10 Medial-Axis Transform

Input description: A polygon or polyhedron P .

Problem description: Find the skeleton of P , the set of points that have
more than one closest point on the boundary of P

Discussion: The medial-axis transformation is useful in thinning a polygon,
or equivalently finding its skeleton. The goal is to extract a simple, robust
representation of the shape of the polygon. The thinned versions of letters like
‘A’ and ‘B’ capture the essence of their shape, and are largely unaffected by
changing the thickness of strokes, or adding font-dependent flourishes such as
serifs. The skeleton also represents the center of the given shape, a property
that leads to other applications, like shape reconstruction and motion planning.

The medial-axis transformation of a polygon is always a tree, making it fairly
easy to use dynamic programming to measure the “edit distance” between the
skeleton of a known model and the skeleton of an unknown object. Whenever
the two skeletons are similar enough, we can classify the unknown object as an
instance of our model. This technique has proven useful in computer vision and
in optical character recognition. The skeleton of a polygon with holes (like the
letters A and B) is not a tree but an embedded planar graph, yet it remains
fairly easy to work with.

There are two distinct approaches to computing medial-axis transforms, de-
pending upon whether your input is a geometric point set or a pixel image:

• Geometric data – Recall that the Voronoi diagram of a point set S (see
Section 20.4 (page 634)) decomposes the plane into regions around each
point si ∈ S such that all points within the region around si are closer
to si than to any other site in S. Similarly, the Voronoi diagram of a
set of line segments L decomposes the plane into regions around each line
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segment li ∈ L such that all points within the region around li are closer
to li than to any other site in L.

Polygons are defined by line segments, such that each segment li shares
a vertex with neighboring segment li+1. The medial-axis transform of a
polygon P is simply the portion of the line-segment Voronoi diagram that
lies within P . Any line-segment Voronoi diagram code thus suffices to do
polygon thinning.

The straight skeleton is a structure related to the medial-axis transform
of a polygon, except that the bisectors are equidistant to the supporting
lines of its defining edges. The straight skeleton, medial-axis transform,
and Voronoi diagram are all identical for convex polygons. But in general,
skeleton bisectors may not be located in the center of the polygon. The
straight skeleton is quite similar to a proper medial-axis transform, but
is easier to compute. In particular, all edges in a straight skeleton are
polygonal. See the Notes section for references with more details on how
to compute it.

• Image data – Digitized images can be interpreted as points sitting at the
lattice points on an integer grid. Thus, we could extract a polygonal
description from boundaries in an image and feed it to the geometric
algorithms just described. However, the internal vertices of the skeleton
will most likely not lie at grid/pixel points. Geometric approaches to
image processing problems often flounder, because images are pixel based
and not continuous.

A direct pixel-based approach for constructing a skeleton implements the
“brush fire” view of thinning. Imagine a fire burning along all edges of the
polygon, racing inward at a constant speed. The skeleton is marked by all
points where two or more fires meet. The resulting algorithm traverses all
the boundary pixels of the object, identifies those vertices as being in the
skeleton, deletes the rest of the boundary, and repeats. This algorithm
terminates when all pixels are extreme, leaving an object only one or two
pixels thick. When implemented properly, this takes time linear in the
number of pixels in the image.

Algorithms that explicitly manipulate pixels tend to be easy to implement,
because they avoid complicated data structures. However, the geometry
doesn’t work out exactly right in such pixel-based approaches. For exam-
ple, the skeleton of a polygon is no longer always a tree, or even necessarily
connected. Further, the points in the skeleton will be close to but not quite
equidistant to two boundary edges. Because you are trying to do contin-
uous geometry in a discrete world, there is no way to solve the problem
completely. You just have to live with it.

Implementations: CGAL (www.cgal.org) includes a package for computing
the straight skeleton of a polygon P . Associated with it are routines for con-

www.cgal.org
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structing offset contours defining the polygonal regions within P whose points
are at least distance d from the boundary.

VRONI [Hel01] is a robust and efficient program for computing Voronoi di-
agrams of line segments, points, and arcs in the plane. It can readily compute
medial-axis transforms of polygons, because it can construct Voronoi diagrams
of arbitrary line segments. VRONI has been tested on thousands of synthetic
and real-world data sets, some with over a million vertices. For more informa-
tion, see http://www.cosy.sbg.ac.at/~held/projects/vroni/vroni.html.
Other programs for constructing Voronoi diagrams are discussed in Section 20.4
(page 634).

Programs that reconstruct or interpolate point clouds often are based on
medial-axis transforms. Cocone (http://www.cse.ohio-state.edu/~tamaldey/
cocone.html) constructs an approximate medial-axis transform of the polyhe-
dral surface it interpolates from points in E3. See [Dey06] for the theory behind
Cocone. Powercrust [ACK01a, ACK01b] constructs a discrete approximation to
the medial-axis transform, and then reconstructs the surface from this trans-
form. When the point samples are sufficiently dense, the algorithm is guaranteed
to produce a geometrically and topologically correct approximation to the sur-
face. It is available at https://web.cs.ucdavis.edu/~amenta/powercrust.

html.

Notes: The book by Siddiqi and Pizer [SP08] offers a comprehensive treatment
of medial representations and algorithms. Surveys of thinning approaches in im-
age processing and computer graphics, include [LLS92, Ogn93, SBdB16, TDS+16].
The medial-axis transformation was introduced for shape similarity studies in biology
[Blu67]. Computational topology is an emerging field for the formal analysis of shape:
see the book by Edelsbrunner and Harer [EH10]. Good expositions on the medial-axis
transform include [dBvKOS08, O’R01, Pav82].

The medial-axis of a polygon can be computed in O(n lg n) time for arbitrary
n-gons [Lee82], although linear-time algorithms exist for convex polygons [AGSS89].
An O(n lg n) algorithm for constructing medial-axis transforms in curved regions was
given by Kirkpatrick [Kir79].

Straight skeletons were introduced in [AAAG95], with a subquadratic algorithm
due to [EE99]. See [LD03] for an interesting application of straight skeletons to defining
the roof structures in virtual building models. The input and output figures above
were inspired by [dMPF09].

Related problems: Voronoi diagrams (see page 634), Minkowski sum (see
page 674).

http://www.cosy.sbg.ac.at/~held/projects/vroni/vroni.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
https://web.cs.ucdavis.edu/~amenta/powercrust.html
https://web.cs.ucdavis.edu/~amenta/powercrust.html
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Input Output

20.11 Polygon Partitioning

Input description: A polygon or polyhedron P .

Problem description: Partition P into a small number of simple (typically
convex) pieces.

Discussion: Partitioning is an important pre-processing step for many geo-
metric algorithms, because geometric problems tend to be simpler on convex
objects than on non-convex ones. It is often easier to work with a number of
convex pieces than with a single non-convex polygon.

Carving a nation into states or counties or districts is a classical problem in
polygon partitioning. Typically we seek to balance the population or area of
each region, but shape also matters. Gerrymandering is the fine art of drawing
districts for the electoral advantage of your particular political party, districts
that often assume very complicated shapes to ensure they include all the “right”
voters. To prevent the most egregious violations, the law demands that districts
be as compact as possible, ideally nicely shaped into convex regions.

Several flavors of polygon partitioning arise, depending upon the particular
application:

• Should all the pieces be triangles? – Triangulation is the mother of all poly-
gon partitioning problems, where we partition the interior of the polygon
completely into triangles. Triangles are convex and have only three sides,
making them the most elementary possible polygon.

Every triangulation of an n-vertex polygon contains exactly n − 2 trian-
gles. Thus, triangulation cannot be the answer if we seek a small number
of convex pieces. A “nice” triangulation is judged by the shape of the
triangles, not the count. See Section 20.3 (page 630) for an introduction
to triangulation.
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• Do I want to cover or partition my polygon? – Partitioning a polygon
means completely dividing the interior into non-overlapping pieces. Cov-
ering a polygon means that our decomposition is permitted to contain
mutually overlapping pieces. Both prove useful in different situations.
When decomposing a complicated query polygon for a range search (Sec-
tion 20.6 (page 641)), we seek a partitioning, so that each point we locate
occurs in exactly one piece. But when decomposing a polygon for graphics
rendering, a covering suffices, since there is no difficulty with painting a
given region twice—provided we use the same color on all regions. We
will concentrate here on partitioning, since it is simpler to do right, and
any application needing a covering will accept a partitioning. The only
drawback is that partitions can be larger than coverings.

• Am I allowed to add extra vertices? – A final issue is whether we are
allowed to add Steiner vertices to the polygon, either by splitting edges
or adding interior points. Otherwise, we are restricted to adding chords
between two existing vertices. But adding well-placed vertices may en-
able us to reduce the number of pieces, at the cost of more complicated
algorithms and perhaps messier results.

The Hertel–Mehlhorn heuristic for convex decomposition using diagonals is
simple and efficient. It starts from an arbitrary triangulation of the polygon, and
then deletes any chord that leaves only convex pieces. A chord deletion results
in a non-convex piece only when it creates an internal angle that is greater than
180 degrees. The decision of whether such an angle will result can be made
locally from the chords and edges surrounding the deleted chord, in constant
time. The result always contains at most four times the minimum number of
convex pieces.

I recommend using this heuristic unless it is critical for you to absolutely
minimize the number of pieces. By experimenting with different triangulations
and various deletion orders, you may be able to obtain somewhat better decom-
positions.

Dynamic programming can be employed to find the absolute minimum num-
ber of diagonals used in a polygon decomposition into convex regions. The
simplest implementation, which maintains the number of pieces for all O(n2)
subpolygons split by a chord, runs in O(n4). Faster algorithms use fancier data
structures, running in O(n + r2 min(r2, n)) time, where r is the number of re-
flex vertices. An O(n3) algorithm that further reduces the number of pieces by
adding interior vertices is cited below, although it is complex and presumably
difficult to implement.

An alternate decomposition problem partitions polygons into monotone pieces.
The vertices of a y-monotone polygon can be divided into two chains such that
any horizontal line intersects either chain at most once.

Implementations: Many triangulation codes start by finding a trapezoidal or
monotone decomposition of polygons. Further, a triangulation is a simple form
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of convex decomposition. Check out the codes in Section 20.3 (page 630) as a
starting point.

CGAL (www.cgal.org) contains a polygon-partitioning library that includes
(1) the Hertel–Mehlhorn heuristic for partitioning a polygon into convex pieces,
(2) finding an optimal convex partitioning using the O(n4) dynamic program-
ming algorithm, and (3) an O(n log n) sweep-line heuristic for partitioning into
monotone polygons.

A triangulation code of particular relevance here is GEOMPACK—a suite
of Fortran 77 and C++ codes for two- and three-dimensional triangulation and
convex decomposition problems, available at http://people.math.sc.edu/

Burkardt/cpp_src/geompack/geompack.html. In particular, it does both De-
launay triangulation and convex decompositions of polygonal and polyhedral
regions, as well as arbitrary-dimensional Delaunay triangulations.

Notes: Survey articles on polygon partitioning include [Kei00, OST18]. Keil and Sack
[KS85] give an excellent overview of what is known about partitioning and covering
polygons. Expositions on the Hertel–Mehlhorn heuristic [HM83] include [O’R01]. The
O(n+ r2 min(r2, n)) dynamic programming algorithm for minimum convex decompo-
sition using diagonals is due to Keil and Snoeyink [KS02]. The O(r3 + n) algorithm
minimizing the number of convex pieces with Steiner points appears in [CD85]. Amato
et al. [GALL13, LA06] provide an efficient heuristic for decomposing polygons with
holes into “almost convex” polygons in O(nr) time, with later work generalizing this
to polyhedra.

Art gallery problems are an interesting topic related to polygon covering, where

we seek to position the minimum number of guards in a given polygon such that

every point in the interior of the polygon is watched by at least one guard. This

corresponds to covering the polygon with a minimum number of star-shaped polygons.

O’Rourke [O’R87] is a beautiful book that presents the art gallery problem and its

many variations. Although sadly out of print, it is available at http://cs.smith.edu/

~jorourke/books/ArtGalleryTheorems. The art gallery problem is not obviously in

NP because of its dependence on non-integer arithmetic, but hard under an appropriate

model of computation [AAM18]. Recent computational results on constructing optimal

guard sets are reported in [KBFS12].

Related problems: Triangulation (see page 630), set cover (see page 678).

www.cgal.org
http://people.math.sc.edu/Burkardt/cpp_src/geompack/geompack.html
http://people.math.sc.edu/Burkardt/cpp_src/geompack/geompack.html
http://cs.smith.edu/~jorourke/books/ArtGalleryTheorems
http://cs.smith.edu/~jorourke/books/ArtGalleryTheorems
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20.12 Simplifying Polygons

Input description: A polygon or polyhedron p, with n vertices.

Problem description: Find a polygon or polyhedron p′ containing only n′

vertices, such that the shape of p′ is as close as possible to p.

Discussion: Polygon simplification has two primary applications. The first
involves cleaning up a noisy representation of a shape, perhaps obtained by
scanning a picture of an object. Simplifying the boundary can remove the noise,
and reconstruct the original object. The second involves data compression,
where we seek to reduce detail on a large and complicated object: yet leave it
looking essentially the same. This can be a big win in computer graphics, where
the smaller model might be significantly faster to render.

Several issues arise in shape simplification:

• Do you want the convex hull? – The simplest simplification is the convex
hull of the object’s vertices. The convex hull (see Section 20.2 (page 626))
removes all internal concavities from the polygon. If you are simplifying
a robot model for motion planning, this is almost certainly a good thing.
But using the convex hull would be disastrous in an OCR system, because
the concavities of characters provide most of the interesting features. An
“X” would be identical to an “I”, since both hulls are boxes. Also, taking
the convex hull of a convex polygon can do nothing to simplify it further.

• Am I allowed to insert points, or just delete them? – The typical goal of
simplification is to represent the object as well as possible using a given
number of vertices. The simplest approaches do local modifications to
the boundary in order to reduce the vertex count. For example, if three
consecutive vertices form a small-area triangle or define an extremely large
angle, the center vertex can be deleted and replaced with an edge without
severely distorting the polygon.
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Methods that only delete vertices quickly melt shapes into unrecognizabil-
ity, however. More robust heuristics move vertices around to cover up the
gaps that are created by deletions. Such “split-and-merge” heuristics can
do a decent job, although nothing is guaranteed. Better results are likely
by using the Douglas–Peucker algorithm, described below.

• Must the resulting polygon be intersection-free? – A serious drawback of
incremental procedures is that they fail to ensure simple polygons, mean-
ing they are without self-intersections. Such “simplified” polygons may
have ugly artifacts that cause problems for subsequent routines. If sim-
plicity is important, explicitly test all the line segments of your polygon
for pairwise intersections, as discussed in Section 20.8 (page 648).

An approach to polygon simplification that guarantees a simple approx-
imation involves computing minimum-link paths. The link distance of
a path between points s and t is the number of straight segments on the
path. An as-the-crow-flies path has a link distance of one, while in general
the link distance is one more than the number of turns on the path. The
link distance between points s and t in a scene with obstacles is defined
by the minimum-link distance over all paths from s to t.

This link distance approach “fattens” the boundary of the polygon by
some acceptable error window ε (see Section 20.16 (page 674)) in order
to construct a channel around the polygon. The minimum-link cycle in
this channel represents the simplest polygon that never deviates from the
original boundary by more than ε. An easy-to-compute approximation
to link distance reduces it to breadth-first search, by placing a discrete
set of possible turn points within the channel and connecting each pair of
mutually visible points by an edge.

• Are you given an image to clean up, instead of a polygon to simplify? –
The conventional approach to remove noise from a digital image is to take
the Fourier transform of the image, filter out the high-frequency elements,
and then take the inverse transform to recreate the image. See Section
16.11 (page 501) for details on the fast Fourier transform.

The Douglas–Peucker algorithm for shape simplification starts with a sim-
ple approximation and then refines it, instead of starting with a complicated
polygon and trying to simplify it. Start by selecting two vertices v1 and v2 of
polygon P , and propose the degenerate polygon v1, v2, v1 as a simple approxi-
mation P ′. Now scan through each of the vertices of P , and select the one that
is farthest from the corresponding edge of the polygon P ′. Inserting this vertex
adds the triangle to P ′ to minimize the maximum deviation from P . Points
can be inserted until satisfactory results are achieved. This takes O(kn) time
to insert k points when |P | = n.

Simplification becomes considerably more difficult in three dimensions. In-
deed, it is NP-complete to find the minimum-size surface separating two polyhe-
dra. Higher-dimensional analogies of the planar algorithms discussed here can
be used to heuristically simplify polyhedra. See the Notes section.
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Implementations: The Douglas–Peucker algorithm is readily implemented.
For a C implementation with efficient worst-case performance [HS94], see https:
//www.codeproject.com/Articles/1711/A-C-implementation-of-Douglas-

Peucker-Line-Approxi.
QSlim is a quadric-based simplification algorithm that can produce high-

quality approximations of triangulated surfaces quite rapidly. It is available at
http://mgarland.org/software/qslim.html.

Yet another approach to polygonal simplification is based on simplifying and
expanding the medial-axis transform of the polygon. The medial-axis trans-
form (see Section 20.10 (page 655)) produces a skeleton of the polygon, which
can be trimmed before inverting the transform to yield a simpler polygon. Co-
cone (http://www.cse.ohio-state.edu/~tamaldey/cocone.html) constructs
an approximate medial-axis transform of the polyhedral surface it interpolates
from points in E3. See [Dey06] for the theory behind Cocone. Powercrust
[ACK01a, ACK01b] constructs a discrete approximation to the medial-axis
transform, and then reconstructs the surface from this transform. When the
point samples are sufficiently dense, the algorithm is guaranteed to produce
a geometrically and topologically correct approximation to the surface. It is
available at https://web.cs.ucdavis.edu/~amenta/powercrust.html.

CGAL (www.cgal.org) provides support for polyline simplification, as well
as the most extreme polygon/polyhedral reduction, finding the smallest enclos-
ing circle/sphere.

Notes: The Douglas–Peucker incremental refinement algorithm [DP73] is the basis for
most shape simplification schemes, with faster implementations due to [HS94, HS98].
Generalizations include nested polygonal subdivisions [DDS09, XWW11] and area-
preserving simplification [BMRS16]. The link distance approach to polygon simplifi-
cation is presented in [GHMS93]. Shape simplification problems become considerably
more complex in three dimensions. Even finding the minimum-vertex convex poly-
hedron lying between two nested convex polyhedra is NP-complete [DJ92], although
approximation algorithms are known [MS95b].

Heckbert and Garland [HG97] survey algorithms for shape simplification. Shape
simplification using medial-axis transformations (see Section 20.10) are presented in
[TH03].

Testing whether a polygon is simple can be performed in linear time, at least in

theory, as a consequence of Chazelle’s linear-time triangulation algorithm [Cha91].

Related problems: Thinning (see page 655), convex hull (see page 626).

https://www.codeproject.com/Articles/1711/A-C-implementation-of-Douglas-Peucker-Line-Approxi
https://www.codeproject.com/Articles/1711/A-C-implementation-of-Douglas-Peucker-Line-Approxi
https://www.codeproject.com/Articles/1711/A-C-implementation-of-Douglas-Peucker-Line-Approxi
http://mgarland.org/software/qslim.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
https://web.cs.ucdavis.edu/~amenta/powercrust.html
www.cgal.org
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20.13 Shape Similarity

Input description: Two polygonal shapes, P1 and P2.

Problem description: How similar are P1 and P2?

Discussion: Shape similarity is a problem that underlies much of pattern recog-
nition. Consider a system for optical character recognition (OCR). We are given
a library of shape models representing letters, and unknown shapes obtained by
scanning a page. We seek to identify the unknown shapes by matching each of
them to the most similar shape model.

Shape similarity is an inherently ill-defined problem, because what “similar”
means is application dependent. Thus, no single algorithmic approach can solve
all shape matching problems. Whatever method you select, expect to spend a
large chunk of time tweaking it to achieve maximum performance.

Among your possible approaches are:

• Hamming distance – Suppose that your two polygons have been prop-
erly registered, meaning overlaid one on top of the other. The Ham-
ming distance measures the area of symmetric difference between the two
polygons—in other words, the area lying within one polygon but not both
of them. When two polygons are identical and properly aligned, the Ham-
ming distance is zero. If the polygons differ only in a little noise at the
boundary, then the Hamming distance of properly aligned polygons will
be small.

Computing the area of the symmetric difference reduces to finding the
intersection or union of two polygons (discussed in Section 20.8 (page 648))
and then computing areas (discussed in Section 20.1). But the difficult
problem is finding the right alignment of the two polygons. This overlay
problem is simplified in applications such as OCR, because the characters
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are inherently aligned within lines on the page and are not free to rotate.
Efficient algorithms to optimize the overlap of convex polygons without
rotation are cited below. Simple but reasonably effective heuristics are
based on identifying reference landmarks on each polygon (such as the
centroid, bounding box, or extremal vertices) and then matching a subset
of these landmarks to define the alignment.

Hamming distance is particularly simple and efficient to compute on bit-
mapped images, since after alignment all we do is sum the differences
of the corresponding pixels. Although Hamming distance makes sense
conceptually and can be simple to implement, it captures only a crude
notion of shape and is likely to be ineffective in many applications.

• Hausdorff distance – An alternative similarity measure (post-registration)
is Hausdorff distance, which identifies the point on P1 that is the maximum
distance from P2 and returns this distance. The Hausdorff distance is not
symmetrical, for the tip of a long but thin protrusion from P1 can imply a
large Hausdorff distance P1 to P2, even though every point on P2 is close
to some point on P1. A fattening of the entire boundary of one of the
models (as is liable to happen with boundary noise) by a small amount
may substantially increase the Hamming distance yet have little effect on
the Hausdorff distance.

Which is better, Hamming or Hausdorff? It depends upon your applica-
tion. As with Hamming distance, computing the right alignment between
the polygons can be difficult and time-consuming.

• Comparing Skeletons – A more powerful approach to shape similarity uses
thinning (see Section 20.10 (page 655)) to extract a tree-like skeleton for
each object. This skeleton captures many aspects of the original shape.
The problem now reduces to comparing the shape of two such skeletons,
using such features as the topology of the tree and the lengths/slopes of
the edges. This comparison can be modeled as some form of subgraph
isomorphism (see Section 19.9 (page 610)), with edges allowed to match
whenever their lengths and slopes are sufficiently similar.

• Machine learning techniques – A final approach for pattern recognition
problems uses machine learning-based techniques such as logistic regres-
sion, support vector machines, or deep neural networks. The progress here
has been staggering in recent years in applications like face recognition,
which works reliably despite differences in pose, orientation, and lighting
between template and target images. Such problems feel much harder
than the rigid shape similarity discussed earlier in this section.

Machine learning proves successful when you have a lot of data to train
on and no problem-specific ideas of what to do with it. Typically, you
first identify a set of easily computed features of the shape, such as area,
number of sides, and number of holes—although deep learning methods
eliminate the need to do such feature engineering. A black-box program
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then takes your training data and produces a classification function, which
accepts as input your feature vector and returns a measure of what the
shape is, or how close it is to a particular shape.

How good are the resulting classifiers? It depends upon the application.
Machine learning methods usually take a fair amount of tweaking and
tuning to realize their full potential. One problem is interpretability. If you
don’t know how or why black-box classifiers are making their decisions, you
can’t know when they will fail. An interesting case was a system built for
the military to distinguish between images of cars and tanks. It performed
very well on test images but disastrously in the field. Eventually, someone
realized that the car images had been filmed on a sunnier day than the
tanks, and the program was classifying solely on the presence of clouds in
the background of the image!

Implementations: The computational geometry library CGAL (https://
www.cgal.org/) contains a variety of routines associated with shape detec-
tion and matching, including Hausdorff distance computations. An alternate
distance metric between polygons can be based on its angle-turning function
[ACH+91]. An implementation in C of this turning function metric by Eugene
K. Ressler is provided at www.algorist.com.

Several excellent support vector machine classifiers are available. These in-
clude Python’s scikit-learn (https://scikit-learn.org/, SVM light (http:
//svmlight.joachims.org/) and the widely used and well-supported LIBSVM
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Notes: Veltkamp [Vel01] is an excellent survey on shape matching from a computa-
tional geometry perspective. See also the survey by Alt and Guibas [AG00]. General
books on pattern classification algorithms include [Che15, DHS00, JD88]. A recent
survey of geometric approaches to face recognition is presented in [SBW17]. Goodfel-
low [GBC16] is the primary reference on deep learning.

The optimal alignment of n and m-vertex convex polygons subject to translation
(but not rotation) can be computed in O((n +m) log(n +m)) time [dBDK+98]. An
approximation of the optimal overlap under translation and rotation is due to Ahn, et
al. [ACP+07].

A linear-time algorithm for computing the Hausdorff distance between two convex

polygons is given in Atallah [Ata83], with algorithms for the general case reported in

[HK90].

Related problems: Graph isomorphism (see page 610), thinning (see page
655).

https://www.cgal.org/
https://www.cgal.org/
http://www.algorist.com
https://scikit-learn.org/
http://svmlight.joachims.org/
http://svmlight.joachims.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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20.14 Motion Planning

Input description: A polygonal-shaped robot starting at position s in a room
containing polygonal obstacles, and a goal position t.

Problem description: Find the shortest route taking s to t without intersect-
ing any obstacles.

Discussion: That motion planning is a complex problem is obvious to anyone
who has tried to move a large piece of furniture into a small apartment. Plotting
paths for mobile robots is the canonical motion-planning application. It also
arises in systems for molecular docking. Many drugs are small molecules that
act by binding to a given target model. Identifying which binding sites are
accessible to a candidate drug is clearly an instance of motion planning.

Finally, motion planning provides a tool for computer animation and virtual
reality. Given the set of object models and where they appear in scenes s1 and
s2, a motion planning algorithm can construct a short sequence of intermediate
motions to transform s1 to s2. These motions can fill in the intermediate scenes
between s1 and s2, with such scene interpolation greatly reducing the workload
on the animator.

Many factors govern the complexity of motion-planning problems:

• Is your robot a point? – For point robots, motion planning reduces to
finding the shortest path from s to t around the obstacles. This problem
is known as geometric shortest path. The most readily implementable
approach constructs the visibility graph of the polygonal obstacles, plus
the points s and t. This visibility graph contains a node for each obstacle
vertex, and an edge between two obstacle vertices iff they “see” each other
without being blocked by some obstacle edge.

This visibility graph can be constructed by testing each of the
(
n
2

)
vertex-

pair edge candidates for intersection against each of the n obstacle edges,
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although faster algorithms are known. Assign each edge of this visibility
graph with weight equal to its length. Then the shortest path from s to
t can be found using Dijkstra’s shortest-path algorithm (see Section 18.4
(page 554)) in time bounded by what is required to construct the visibility
graph.

• What motions can your robot perform? – Motion planning becomes con-
siderably more difficult when the robot becomes a polygon instead of a
point. Now all of the corridors that we use must be wide enough to permit
the robot to pass through.

The algorithmic complexity depends upon the number of degrees of free-
dom that the robot can use to move. Is it free to rotate as well as to
translate? Does the robot have links that are free to bend or to rotate
independently, as in an arm with a hand? Each degree of freedom cor-
responds to a dimension in the search space of possible configurations.
Additional freedom makes it more likely that a short path exists from
start to goal, although it also makes it harder to find this path.

• Can you simplify the shape of your robot? – Motion planning algorithms
tend to be complex and time-consuming. Anything you can do to simplify
your environment is a win. In particular, consider replacing your robot
in an enclosing disk. Any start-to-goal path for this disk defines such a
path for the robot inside of it. Furthermore, since any orientation of a
disk is equivalent to any other orientation, rotation provides no help in
finding a path. All movements can thus be limited to the simpler case of
translation.

• Are motions limited to translation only? – When rotation is not allowed,
the expanded obstacles approach can be used to reduce the problem of
polygonal motion planning to the previously resolved case of a point robot.
Pick a reference point on the robot, and replace each obstacle by its
Minkowski sum with the robot polygon (see Section 20.16 (page 674)).
This creates a larger, fatter obstacle, defined by the shadow traced as
the robot walks a loop around the object while maintaining contact with
it. Finding a path from the initial reference position to the goal amidst
these fattened obstacles defines a legal path for the polygonal robot in the
original environment.

• Are the obstacles known in advance? – We have assumed that the robot
starts out with a map of its environment. But this can’t be true (say) in
applications where the obstacles move. There are two strategies for solving
motion planning problems without a map. The first approach explores
the environment, building a map of what has been seen, and then uses
this map to plan a path to the goal. A simpler strategy proceeds like a
sightless man with a compass. Walk in the direction towards the goal until
progress is blocked by an obstacle, and then trace out a path along the
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obstacle until the robot is again free to proceed directly towards the goal.
Unfortunately, this will fail in environments of sufficient complexity.

The most practical approach to general motion planning involves randomly
sampling the configuration space of the robot. The configuration space defines
the set of legal positions for the robot, using one dimension for each degree of
freedom. A planar robot capable of translation and rotation has three degrees
of freedom, namely the x- and y-coordinates of a reference point on the robot
and the angle θ relative to this point. Certain points in this space represent
legal positions, while others intersect obstacles.

Construct a set of legal configuration-space points by random sampling.
For each pair of points p1 and p2, decide whether there exists a direct, non-
intersecting path between them. This defines a graph with vertices for each
legal point and edges for each traversable pair. Motion planning now reduces to
finding a direct path from the initial/final positions to one or more vertices in
the graph, and then solving a shortest-path problem from initial to final points.

There are many ways to enhance this basic technique, such as adding addi-
tional vertices to regions of particular interest. Building a road map provides a
nice, clean approach to solve problems that would otherwise get very messy.

Implementations: State-of-the-art sampling-based motion planning algorithms
are available from the Open Motion Planning Library (https://ompl.kavrakilab.
org/) with hooks to integrate collision checking and visualization. This should
presumably be your first stop in any robot or other motion planning project.
OMPL is described in [ŞMK12].

The Motion Planning Toolkit (MPK) is a C++ library and toolkit for de-
veloping single- and multi-robot motion planners. It includes SBL, a fast single-
query probabilistic roadmap path planner, and is available at http://robotics.
stanford.edu/~mitul/mpk/.

The computational geometry library CGAL (www.cgal.org) contains many
algorithms related to motion planning including visibility graph construction
and Minkowski sums. O’Rourke [O’R01] gives a toy implementation of an al-
gorithm to plot motion for a two-jointed robot arm in the plane. See Section
22.1.9 (page 717).

Notes: Latombe’s book [Lat91] describes practical approaches to motion planning,
including the random sampling method described above. Two other worthy books on
motion planning are freely available: by LaValle [LaV06] (http://planning.cs.uiuc.
edu/) and Laumond [Lau98] (https://www.laas.fr/~jpl/book.html) respectively.

Motion planning was originally studied by Schwartz and Sharir as the “piano
mover’s problem.” Their solution constructs the complete free space of robot positions
that do not intersect obstacles, and then finds the shortest path within the proper
connected component. These free space descriptions are very complicated, involving
arrangements of higher-degree algebraic surfaces. The fundamental papers on the
piano mover’s problem appear in [HSS87], with more recent surveys including [KF11,
MLL16, PČY+16, HSS18].

The best general result for this free-space approach to motion planning is due
to Canny [Can87], who showed that any problem with d degrees of freedom can be

https://ompl.kavrakilab.org/
https://ompl.kavrakilab.org/
http://robotics.stanford.edu/~mitul/mpk/
http://robotics.stanford.edu/~mitul/mpk/
www.cgal.org
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/
https://www.laas.fr/~jpl/book.html
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solved in O(nd lg n), although faster algorithms exist for special cases of the general
motion planning problem. The expanded obstacle approach to motion planning is
due to Lozano-Perez and Wesley [LPW79]. The heuristic, sightless man’s approach to
motion planning discussed above has been studied by Lumelski [LS87].

The time complexity of algorithms based on the free-space approach to motion
planning depends intimately on the combinatorial complexity of the arrangement of
surfaces defining the free space. Algorithms for maintaining arrangements are pre-
sented in Section 20.15 (page 671). Davenport–Schinzel sequences often arise in the
analysis of such arrangements. Sharir and Agarwal [SA95] provide a comprehensive
treatment of Davenport–Schinzel sequences and their relevance to motion planning.

The visibility graph of n line segments with E pairs of visible vertices can be
constructed in O(n lg n+ E) time [GM91, PV96], which is optimal. Hershberger and
Suri [HS99] have an O(n lg n) algorithm for finding shortest paths for point-robots
with polygonal obstacles. Chew [Che85] provides an O(n2 lg n) for finding shortest
paths for a disk-robot in such a scene.

Related problems: Shortest path (see page 554), Minkowski sum (see page
674).
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20.15 Maintaining Line Arrangements

Input description: A set of lines l1, . . . , ln.

Problem description: What is the decomposition of the plane defined by
l1, . . . , ln?

Discussion: A fundamental problem in computational geometry is explicitly
constructing the regions formed by the intersections of a set of n lines. Many
problems reduce to constructing and analyzing such an arrangement of a specific
set of lines. Examples include:

• Degeneracy testing – Given a set of n lines in the plane, do any three
lines pass through the same point? Brute-force testing of all triples takes
O(n3) time. Instead, we can construct the arrangement of the lines and
walk over each vertex to explicitly count its degree, all in quadratic time.

• Satisfying the maximum number of linear constraints – Suppose that we
are given a set of n linear constraints, each of the form y ≤ aix + bi.
Which point in the plane satisfies the largest number of them? Construct
the arrangement of the lines. All points in any region or cell of this
arrangement will satisfy exactly the same set of constraints, so we only
need to test one point per cell to find the global maximum.

Thinking of geometric problems in terms of features in an arrangement can
be very useful in formulating algorithms. Unfortunately, it must be admitted
that arrangements are not as popular in practice as might be supposed. Pri-
marily, this is because of the depth of understanding necessary to apply them
correctly. The computational geometry library CGAL provides a general and
robust implementation that justifies the effort to figure this out. Issues arising
in arrangements include:
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• What is the right way to construct a line arrangement? – Algorithms for
constructing arrangements are incremental. Begin with an arrangement
of one or two lines. Subsequent lines get inserted into the arrangement
one at a time, yielding larger and larger arrangements. To insert a new
line, we start from the left-most cell containing the line and walk over the
arrangement to the right. We move from cell to neighboring cell, splitting
each into two pieces using the new line.

• How big will your arrangement be? – A geometric fact called the zone
theorem implies that the kth line inserted cuts through k cells of the
arrangement, and further that O(k) total edges form the boundary of
these cells. This means that we can scan through each edge of every cell
we encounter on our insertion walk, confident that only linear total work
will be performed inserting the line into the arrangement. The total time
to insert all n lines in constructing the full arrangement is thus O(n2).

• What do you want to do with your arrangement? – Given an arrangement
and a query point q, we often want to identify which cell of the arrange-
ment contains q. This is the problem of point location, discussed in Section
20.7 (page 644). Given an arrangement of lines or line segments, we are
often interested in computing all points of intersection of the lines. The
problem of intersection detection is discussed in Section 20.8 (page 648).

• Does your input consist of points instead of lines? – Although lines and
points seem to be different geometric objects, appearances can be mis-
leading. Through the magic of duality transformations, we can turn line
L into point p and vice versa:

L : y = 2ax− b ↔ p : (a, b)

Duality is important because we can now apply line arrangements to point
problems, often with surprising results.

For example, suppose we are given a set of n points, and we want to know
whether any three of them all lie on the same line. This sounds similar to
the degeneracy testing problem discussed above. But in fact it is exactly
the same, only with the role of points and lines exchanged. We can dualize
our points into lines as above, construct the arrangement, and then search
for a vertex with three lines passing through it. The dual of this vertex
defines the line on which the three initial vertices lie.

It often becomes useful to traverse each face of an existing arrangement ex-
actly once. Such traversals are called sweep line algorithms, and are discussed
in some detail in Section 20.8 (page 648). The basic procedure sorts the inter-
section points by x-coordinate and then walks from left to right while keeping
track of all we have seen.

Implementations: CGAL (www.cgal.org) provides a generic and robust pack-
age for arrangements of curves (not just lines) in the plane. This should be the

www.cgal.org
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starting point for any serious project using arrangements. A recent book by
Fogel et al. [FHW12] on CGAL arrangements provides the best starting point.

A robust code for constructing and topologically sweeping an arrangement in
C++ is provided at https://www.cs.tufts.edu/research/geometry/other/
sweep/. An extension of topological sweep to deal with the visibility complex of
a collection of pairwise disjoint convex planar sets has been provided in CGAL.

Arrange is a package for maintaining arrangements of polygons in either
the plane or on the sphere. Polygons may be degenerate, and hence represent
arrangements of lines. A randomized incremental construction algorithm is
used, and efficient point location on the arrangement is supported. Arrange is
written in C by Michael Goldwasser and is available from http://euler.slu.

edu/~goldwasser/publications/.

Notes: Edelsbrunner [Ede87] provides a comprehensive treatment of the combinato-
rial theory of arrangements, plus algorithms on arrangements with applications. It is
an essential reference for anyone seriously interested in the subject. Recent surveys of
combinatorial and algorithmic results include [AS00, HS18]. Good expositions on con-
structing arrangements include [dBvKOS08, O’R01]. Implementation issues related to
arrangements as implemented in CGAL are discussed in [FWH04, HH00].

Arrangements generalize naturally beyond two dimensions. Instead of lines, the
space decomposition is defined by planes (or beyond three dimensions, hyperplanes).
The zone theorem states that any arrangement of n d-dimensional hyperplanes has to-
tal complexity O(nd), and any single hyperplane intersects cells of complexity O(nd−1).
This provides the justification for incremental construction algorithms for arrange-
ments. Walking around the boundary of each cell to find the next cell that the hy-
perplane intersects takes time proportional to the number of cells created by inserting
the hyperplane.

The history of the zone theorem has become somewhat muddled, because the
original proofs were later found to be wrong in higher dimensions. See [ESS93] for
a discussion and a correct proof. The theory of Davenport–Schinzel sequences is
intimately tied into the study of arrangements, which is presented in [SA95].

The naive algorithm for sweeping an arrangement of lines sorts the n2 inter-

section points by x-coordinate and hence requires O(n2 lg n) time. The topological

sweep [EG89, EG91] eliminates the need to sort, and so traverses the arrangement

in quadratic time. This algorithm is readily implementable and can be applied to

speed up many sweep-line algorithms. See [RSS02] for a robust implementation with

experimental results.

Related problems: Intersection detection (see page 648), point location (see
page 644).

https://www.cs.tufts.edu/research/geometry/other/sweep/
https://www.cs.tufts.edu/research/geometry/other/sweep/
http://euler.slu.edu/~goldwasser/publications/
http://euler.slu.edu/~goldwasser/publications/
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Input Output

20.16 Minkowski Sum

Input description: Point sets or polygons A and B, containing n and m
vertices respectively.

Problem description: What is the convolution of A and B, that is, the
Minkowski sum A+B = {x+ y | x ∈ A, y ∈ B}?
Discussion: Minkowski sums are useful geometric operations that fatten up
objects in appropriate ways. For example, a popular approach to motion plan-
ning for polygonal robots in a room with polygonal obstacles (see Section 20.14
(page 667)) fattens each obstacle by taking the Minkowski sum of them with
the shape of the robot. This reduces the problem to the more easily solved
case of point robots. Another application is in shape simplification (see Section
20.12 (page 661)). Here we fatten the boundary of an object to create a channel
around it, and then let the minimum link path lying within this channel define
the simplified shape. Finally, convolving an irregular object with a small circle
will smooth out the boundary by eliminating minor nicks and cuts.

The definition of a Minkowski sum assumes that the polygons A and B have
been positioned on a coordinate system:

A+B = {x+ y | x ∈ A, y ∈ B}

where x + y is the vector sum of two points. Thinking of this in terms of
translation, the Minkowski sum is the union of all translations of A by a point
defined within B. Issues arising in computing Minkowski sums include:

• Are your objects rasterized images or explicit polygons? – The definition of
Minkowski summation suggests a simple algorithm if A and B are raster-
ized images. Initialize a sufficiently large matrix of pixels by determining
the size of the convolution of the bounding boxes of A and B. For each pair
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of points in A and B, sum up their coordinates and darken the appropri-
ate pixel. These algorithms get more complicated if an explicit polygonal
representation of the Minkowski sum is needed.

• Do you want to fatten your object by a fixed amount? – The most common
fattening operation expands a model M by a given tolerance t, known as
offsetting. As shown in the figures above, this is accomplished by comput-
ing the Minkowski sum of M with a disk of radius t. The basic algorithms
still work, although the offset is not a polygon. Its boundary is instead
composed of circular arcs and line segments.

• Are your objects convex? – The complexity of computing Minkowski sums
depends in a serious way on the shape of the polygons. When both A
and B are convex, the Minkowski sum can be found in O(n + m) time
by tracing the boundary of one polygon with another. If one of them is
non-convex, the size of the sum (the number of vertices or edges) can be
as large as Θ(nm). Even worse is when both A and B are not convex,
where the size can be as large as Θ(n2m2). Minkowski sums of non-convex
polygons are often ugly in a majestic sort of way, with holes created or
destroyed in surprising fashion.

A straightforward approach to computing the Minkowski sum is based on
triangulation and union. First triangulate both polygons, and then compute the
Minkowski sum of each triangle of A against every triangle of B. The sum of
a triangle against another triangle is an easy-to-compute special case of convex
polygons, discussed below. The union of these O(nm) convex polygons will be
A + B. Algorithms for computing the union of polygons are based on plane
sweep, as discussed in Section 20.8 (page 648).

Computing the Minkowski sum of two convex polygons is easier than the
general case, because the sum will always be convex. For convex polygons
it is easiest to slide A along the boundary of B and compute the sum edge
by edge. Partitioning each polygon into a small number of convex pieces (see
Section 20.11 (page 658)), and then unioning the Minkowski sum for each pair of
pieces, will usually prove more efficient than working with two fully triangulated
polygons.

Implementations: The CGAL (www.cgal.org) Minkowski sum package pro-
vides an efficient and robust code to find the Minkowski sums of two arbitrary
polygons, as well as compute both exact and approximate offsets.

An implementation for computing the Minkowski sums of two convex poly-
hedra in three dimensions is described in [FH06] and available at https://www.
cs.tau.ac.il/~efif/CD/.

Notes: Good expositions on algorithms for Minkowski sums include [dBvKOS08,
O’R01]. The fastest algorithms for various cases of Minkowski sums include [KOS91,
Sha87].

The practical efficiency of Minkowski sum in the general case depends upon how
the polygons are decomposed into convex pieces. The optimal solution is not neces-

www.cgal.org
https://www.cs.tau.ac.il/~efif/CD/
https://www.cs.tau.ac.il/~efif/CD/
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sarily the partition with the fewest number of convex pieces. Agarwal et al. [AFH02]
provide a thorough study of decomposition methods for Minkowski sum. Baram et al.
[BFH+18] show how to speed up Minkowski sums of polygons with holes through an
observation that sufficiently small holes do not affect the shape of the sum.

The combinatorial complexity of the Minkowski sum of two convex polyhedra in
three dimensions is completely resolved in [FHW07]. An implementation of Minkowski
sum for such polyhedra is described in [FH06].

Related problems: Thinning (see page 655), motion planning (see page 667),
simplifying polygons (see page 661).



Chapter 21

Set and String Problems

Sets and strings both represent collections of objects—the difference is whether
order matters. Sets are groups of symbols whose order is assumed to carry
no significance, while strings are defined by the sequence or arrangement of
symbols.

The assumption of a fixed order makes it possible to solve string problems
much more efficiently than set problems, through techniques such as dynamic
programming and advanced data structures like suffix trees. The interest in and
importance of large-scale string processing algorithms have been increasing due
to bioinformatics, social media, and other text-processing applications. Good
books on string algorithms include:

• Gusfield [Gus97] – To my taste, this remains the best introduction to string
algorithms. It contains a thorough discussion on suffix trees, with clear
and innovative formulations of classical exact string matching algorithms.

• Crochemore, Hancart, and Lecroq [CHL07] – A comprehensive treatment
of string algorithms, written by a true leader in the field. Translated from
the French, but clear and accessible.

• Navarro and Raffinot [NR07] – A concise but practical and implementation-
oriented treatment of pattern-matching algorithms, with particularly thor-
ough treatment of bit-parallel approaches.

• Crochemore and Rytter [CR03] – A survey of specialized topics in string
algorithmics emphasizing theory.

Theoreticians working in string algorithmics sometimes refer to their field
as stringology. The annual Combinatorial Pattern Matching (CPM) conference
is the primary venue devoted to both practical and theoretical aspects of string
algorithmics and related areas.
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Input Output

21.1 Set Cover

Input description: A collection of subsets S = {S1, . . . , Sm} of the universal
set U = {1, . . . , n}.
Problem description: What is the smallest subset T of S whose union equals
the universal set, that is,

∪|T |
i=1Ti = U ?

Discussion: Set cover arises when you try to efficiently acquire items that
have been packaged in a fixed set of lots. You seek a collection with at least one
representative of each item type, while buying as few lots as possible. Finding
a set cover is easy, because you can always buy one of every possible lot. But
identifying a small set cover lets you do the same job for less money. Set
cover provides a natural formulation of the Lotto ticket optimization problem
discussed in Section 1.8 (page 22). There we seek to buy the smallest number
of tickets needed to cover all of a given set of combinations.

Boolean logic minimization is another interesting application of set cover.
We are given a specific Boolean function on k variables, which specifies the
output of 0 or 1 for all 2k possible input vectors. We seek the simplest circuit
that exactly implements this function. One approach is to find a disjunctive
normal form (DNF) formula on the variables and their complements, such as
x1x̄2+ x̄1x̄2. We could build one “and” term for each 1 in the input vector, and
then “or” them all together. But we can save by factoring out common subsets
of variables. Given a set of feasible “and” terms, each of which covers a subset
of the vectors we need, we seek to “or” together the smallest number of terms
that realize the function. This is exactly the set cover problem.

There are several types of set cover problems you should be aware of:



21.1. SET COVER 679

• Are you allowed to cover elements more than once? – The distinction here
is between set cover and set packing, which will be discussed in Section 21.2
(page 682). If you can, take advantage of the freedom to cover elements
multiple times because it usually results in a smaller covering.

• Are your sets derived from the edges or vertices of a graph? – Set cover
is a very general problem, and includes several useful graph problems as
special cases. Suppose instead that you seek the smallest set of edges in
a graph that will cover each vertex exactly once. You are really looking
for a perfect matching in the graph (see Section 18.6 (page 562)). Now
suppose instead that you seek the smallest set of vertices that cover each
edge at least once. This is the vertex cover problem, discussed in Section
19.3 (page 591).

It is instructive to see how to model vertex cover as an instance of set
cover. Let the universal set U correspond to the set of edges {e1, . . . , em}.
Construct n subsets, with Si consisting of the edges incident on vertex vi.
Although vertex cover is a special case of set cover, you should take advan-
tage of the superior heuristics that exist for the more restricted problem.

• Do your subsets contain only two elements each? – You are in luck if all
of your subsets have at most two elements each. This special case can be
solved efficiently to optimality because it reduces to finding a maximum
matching in a graph. Unfortunately, the problem becomes NP-complete
as soon as your subsets have three elements each.

• Do you want to cover elements with sets, or sets with elements? – In
the hitting set problem, we seek a small number of items that together
represent each subset in a given population. Hitting set is illustrated in
Figure 21.1. The input is identical to set cover, but instead we seek the
smallest subset of elements T ⊂ U such that each subset Si contains at
least one element of T . Thus, Si ∩ T �= ∅ for all 1 ≤ i ≤ m. Suppose we
seek a small Congress containing at least one representative of each de-
mographic group. Individuals have multiple identities and thus represent
several groups at one time: I am simultaneously male, Jewish, left-handed,
and a baby boomer. If each group is defined by a specified subset of peo-
ple, the minimum hitting set gives the smallest possible politically correct
Congress.

Hitting set is dual to set cover, meaning that it is exactly the same problem
in disguise. Replace each element of U by a set of the names of the subsets
that contain it. Now S and U have exchanged roles, for we seek a set of
subsets from U to cover all the elements of S. This is exactly set cover, so
we can use any set cover code to solve hitting set problems after performing
this simple translation. See Figure 21.1 for an example.

Set cover is at least as hard as vertex cover, so it is also NP-complete. In
fact, it is somewhat harder. Approximation algorithms do no worse than twice
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Figure 21.1: A hitting set instance optimally solved by selecting elements 1 and
3, or 2 and 3 (on left). This dual set cover instance of this problem is optimally
solved by selecting subsets 1 and 3, or 2 and 3 (on right).

optimal for vertex cover, but the best approximation algorithm for set cover is
Θ(lg n) times optimal.

Greedy is the most natural and effective heuristic for set cover. Begin by
selecting the largest subset for the cover, and then delete all its elements from
the universal set. We add the subset containing the largest number of remaining
uncovered elements repeatedly until all are covered. This heuristic always gives
a set cover using at most lnn times as many sets as optimal. In practice it
usually does a lot better.

The simplest implementation of the greedy heuristic sweeps through the
entire input instance of m subsets for each greedy step. However, by using such
data structures as linked lists and a bounded-height priority queue (see Section
15.2 (page 445)), the greedy heuristic can be implemented in O(S) time, where
S = ∪m

i=1|Si| is the size of the input representation.
It pays to check whether there exist elements that occur in only a few

subsets—ideally just one. If so, we should select the biggest subset contain-
ing such an element at the very beginning. We must eventually take such a
subset, and this will carry along additional elements we might otherwise pay
extra to cover if we wait.

Simulated annealing techniques on top of such greedy heuristics is likely to
produce somewhat better set covers. Backtracking can be used to guarantee
you an optimal solution, but it is often not worth the computational expense.

An often more powerful approach rests on the integer linear programming
(ILP) formulation of set cover. Let the 0/1 integer variable si denote whether
subset Si is selected for a given cover. Each universal set element x ∈ U defines
a constraint based on all subsets Si that contain x, namely:

∑

x∈Si

si ≥ 1

This ensures that x will be covered by at least one selected subset. The minimum
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set cover satisfies all of these constraints while minimizing
∑

i si. This integer
program can be easily generalized to weighted set cover (allowing non-uniform
costs for different subsets. Relaxing this to a linear program (allowing 0 ≤ si ≤ 1
instead of constricting each variable to be either 0 or 1) permits efficient and
effective heuristics using rounding techniques.

Implementations: Both the greedy heuristic and the integer linear program-
ming formulation above are sufficiently simple in their respective worlds that
one has to implement them from scratch.

Pascal implementations of an exhaustive search algorithm for set packing,
as well as heuristics for set cover, appear in [SDK83]. See Section 22.1.9 (page
717).

SYMPHONY is a mixed-integer linear programming solver that includes
a set partitioning solver. It is available at https://github.com/coin-or/

SYMPHONY.

Notes: An old but classic survey article on set cover is [BP76], with more recent
approximation and complexity analysis surveyed in [Pas97]. See [CFT99, CFT00] for
extensive computational studies of integer programming-based set cover heuristics and
exact algorithms. An excellent exposition on algorithms and reduction rules for set
cover is presented in [SDK83].

Good expositions of the greedy heuristic for set cover include [CLRS09, Hoc96].
An example demonstrating that the greedy heuristic for set cover can be as bad as
lg n is presented in [Joh74, PS98]. This is not a defect of the heuristic. Indeed, it
is provably hard to approximate set cover to within an approximation factor better
than (1−o(1)) lnn [Fei98]. Better results are possible for restricted set cover problems
arising from geometric instances, like finding the smallest number of points to stab a
given set of circles [AP14, MR10].

Knuth’s volume 4A [Knu11] contains a fascinating discussion of Boolean logic
optimization reminiscent of set cover.

Related problems: Matching (see page 562), vertex cover (see page 591), set
packing (see page 682).

https://github.com/coin-or/SYMPHONY
https://github.com/coin-or/SYMPHONY
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Input Output

21.2 Set Packing

Input description: A set of subsets S = {S1, . . . , Sm} of the universal set
U = {1, . . . , n}.
Problem description: Select a small collection of mutually disjoint subsets
from S whose union is the universal set.

Discussion: Set packing problems arise in applications where we have strong
constraints on what is an allowable partition. The key feature of packing prob-
lems (as opposed to covering problems) is that no elements can be covered by
more than one selected subset.

Some flavor of this is captured by the independent set problem in graphs,
discussed in Section 19.2 (page 589). There we seek a large subset of vertices
from graph G such that each edge is adjacent to at most one of the selected
vertices. To model this as set packing, let the universal set consist of all edges
of G, and subset Si consist of all edges incident on vertex vi. Finally, define an
additional singleton set for each edge. Any set packing defines a set of vertices
with no edge in common—in other words, an independent set. The singleton
sets are used to pick up any edges not covered by the selected vertices.

Scheduling airline flight crews is another application of set packing. Each
airplane in the fleet needs to have a crew assigned to it, consisting of a pilot,
copilot, and navigator. There are constraints on the composition of possible
crews, based on their training to fly different types of aircraft, personality con-
flicts, and work schedules. Given all possible crew and plane combinations, each
represented by a subset of items, we need an assignment such that each plane
and each person is in exactly one chosen combination. After all, the same per-
son cannot be on two different planes simultaneously, and every plane needs a
crew. We need a perfect packing given the subset constraints.
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We use set packing here to represent several different problems on sets, all
of which are NP-complete:

• Must every element appear in exactly one selected subset? – In the exact
cover problem, we seek a collection of subsets such that each element is
covered exactly once. The airplane scheduling problem above has the
flavor of exact covering, since every plane and crew has to be employed.

Unfortunately, exact cover puts us in the same situation as the Hamilto-
nian cycle on graphs. If we really must cover all the elements exactly once,
and this existential problem is NP-complete, then all we can do is expo-
nential search. The cost will be prohibitive unless we happen to stumble
upon a solution quickly.

• Does each element have its own singleton set? – Things will be far better
if we can be content with a partial solution, say by including each element
of U as a singleton subset of S. Thus, we can expand any set packing into
an exact cover by mopping up the unpacked elements of U with singleton
sets. Now our problem is reduced to finding a minimum-cardinality set
packing, which can be attacked via heuristics.

• What is the penalty for covering elements twice? – In set cover (see Section
21.1 (page 678)), there is no penalty for elements existing in many selected
subsets. But in exact cover, any such violation is forbidden. For many
applications, the truth lies somewhere in between. Such problems can be
approached by charging the greedy heuristic more to select a subset that
contains previously covered elements.

The right heuristics for set packing are greedy, and similar to those of set
cover (see Section 21.1 (page 678)). If we seek a packing with few sets, then
we repeatedly select the largest remaining subset, delete all subsets from S
that clash with it, and repeat. As usual, augmenting this approach with some
exhaustive search or randomization (in the form of simulated annealing) is likely
to yield better packings at the cost of additional computation.

A more powerful approach rests on an integer programming formulation akin
to that of set cover. Let the integer 0/1 variable si denote whether subset Si is
selected for a given cover. Each universal set element x ∈ U defines a constraint
based on all subsets Si that contain x, namely:

∑

x∈Si

si = 1

This ensures that x is covered by exactly one selected subset. Minimizing or
maximizing

∑
i si while respecting these constraints enables us to modulate the

desired number of sets in the cover.

Implementations: Since set cover is a more popular and more tractable prob-
lem than set packing, it might be easier to find an appropriate implementation
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to solve the cover problem. Such implementations discussed in Section 21.1
(page 678) should be readily modifiable to support certain packing constraints.

Pascal implementations of an exhaustive search algorithm for set packing,
as well as heuristics for set cover, appear in [SDK83]. See Section 22.1.9 (page
717) for details on FTP-ing these codes.

SYMPHONY is a mixed-integer linear programming solver that includes
a set partitioning solver. It is available at https://github.com/coin-or/

SYMPHONY.

Notes: Survey articles on set packing include [BP76, HP09, Pas97]. A local search
heuristic for set packing is presented in [SW13]. Fixed-parameter tractable [FKN+08]
and online [EHM+12] versions of set packing have also been studied. Bidding strate-
gies for combinatorial auctions typically reduce to solving set-packing problems, as
described in [dVV03].

Set-packing relaxations for integer programs are presented in [BW00]. An excellent

exposition on algorithms and reduction rules for set packing is presented in [SDK83],

including the airplane scheduling application discussed previously.

Related problems: Independent set (see page 589), set cover (see page 678).

https://github.com/coin-or/SYMPHONY
https://github.com/coin-or/SYMPHONY
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“I often repeat repeat myself, 
I often repeat repeat. 
I often repeat repeat myself, 
I often repeat repeat.” repeat? 
— Jack Prelutsky, A Pizza the Size of the Sun 

“I often repeat repeat myself, 
I often repeat repeat. 
I often repeat repeat myself, 
I often repeat repeat.”  
— Jack Prelutsky, A Pizza the Size of the Sun 

Input Output

21.3 String Matching

Input description: A text string t of length n. A pattern p of length m.

Problem description: Find an/all instances of pattern p in the text.

Discussion: String matching arises in almost all text processing applications.
Every text editor contains a mechanism to search the current document for
arbitrary strings. Pattern matching programming languages like Python derive
much of their power from their built-in string matching primitives, making it
easy to fashion programs that filter and modify text. Spell checkers scan an
input text for words appearing in the dictionary and reject any strings that do
not match.

String matching is a fundamental algorithmic problem that remains sur-
prisingly active. Several issues arise in identifying the right string matching
algorithm for a given application:

• Are your search patterns and/or texts short? – If your strings are short
and your queries infrequent, the simple O(mn)-time search algorithm will
suffice. For all possible starting positions 1 ≤ i ≤ n−m+1, it tests whether
the m characters starting from the ith position of the text are identical
to the pattern. An implementation of this algorithm (in C) appears in
Section 2.5.3 (page 43).

For very short patterns (say m ≤ 10), you can’t hope to beat this simple
algorithm by much, so you shouldn’t try. Further, we expect much better
than O(mn) behavior for typical strings, because we advance the pattern
the instant we observe a text/pattern mismatch. Indeed, the trivial algo-
rithm usually runs in linear time. But the worst case certainly can occur,
as with pattern p = am and text t = (am−1b)n/m.

• What about longer texts and patterns? – String matching can in fact be
performed in worst-case linear time. Observe that we need not begin
the search from scratch after finding a character mismatch, because the
pattern prefix and text must exactly match prior to the point of mismatch.
Given a partial match ending at position i, we jump ahead to the first
character position in the pattern/text that provides new information about
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the text in position i + 1. The Knuth–Morris–Pratt (KMP) algorithm
preprocesses the search pattern to construct such a jump table efficiently.
The details are tricky to get correct, but the resulting algorithm is quite
short.

• Do I expect to find the pattern, or not? – The Boyer–Moore algorithm
matches the pattern against the text from right to left, and hence can
avoid looking at large chunks of text on a mismatch. Suppose the pattern
is abracadabra, and the eleventh character of the text is x. This pattern
cannot possibly match from any of the first eleven starting positions of
the text, and so the next necessary position to test is the twenty-second
character. If we get very lucky, only n/m characters need ever be tested.
The Boyer–Moore algorithm involves two sets of jump tables in the case
of a mismatch: one based on the pattern matched so far, the other on the
text character seen in the mismatch.

Although somewhat more complicated than Knuth–Morris–Pratt, this is
worthwhile in practice for patterns of length m > 10, unless the pattern
is expected to occur many times in the text. Boyer–Moore’s worst-case
performance is O(n+ rm), where r is the number of occurrences of p in t.

• Will you perform multiple queries on the same text? – Suppose you are
building a program to repeatedly search a particular text database, such
as the Bible. Since the text remains fixed, it pays to build a data structure
to speed up search queries. The suffix tree and suffix array data structures,
discussed in Section 15.3 (page 448), are the right tools for the job.

• Will you search many texts using the same patterns? – Suppose you are
building a program to screen out dirty words from a text stream. Here, the
set of patterns remains stable, while the search texts are free to change.
We may need to find all occurrences of any of k different patterns, where
k can be quite large.

Performing a linear-time scan for each pattern yields an O(k(m+n)) algo-
rithm. But if k is large, a better solution builds a single finite automaton
that recognizes all of these patterns and returns to the appropriate start
state on any character mismatch. The Aho–Corasick algorithm builds
such an automaton in linear time. Space savings can be achieved by op-
timizing the pattern recognition automaton, as discussed in Section 21.7
(page 702). This approach was used in the original version of fgrep.

Sometimes multiple patterns are specified not as a list of strings, but
concisely as a regular expression. For example, the regular expression
a(a + b + c)∗a matches any string on (a, b, c) that begins and ends with
a distinct a. The best way to test whether an input string is recognized
by a regular expression R constructs the finite automaton equivalent to
R and then simulates this machine on the string. Again, see Section 21.7
(page 702) for details on constructing automata from regular expressions.
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When the patterns get specified by context-free grammars instead of reg-
ular expressions, the problem becomes one of parsing, discussed in Section
10.8 (page 337).

• What if our text or pattern contains a spelling error? – The algorithms
discussed here work only for exact string matching. If you must allow some
tolerance for spelling errors, your problem becomes approximate string
matching, which is thoroughly discussed in Section 21.4 (page 688).

Implementations: Strmat is a collection of C programs implementing ex-
act pattern matching algorithms in association with [Gus97], including sev-
eral variants of the KMP and Boyer–Moore algorithms. It is available at
https://www.cs.ucdavis.edu/~gusfield/strmat.html.

Several versions of the general regular expression pattern matcher (grep) are
readily available. GNU grep found at https://directory.fsf.org/project/
grep/, and uses a fast lazy-state deterministic matcher hybridized with a Boyer–
Moore search for fixed strings.

The Boost string algorithms library provides C++ routines for basic op-
erations on strings, including search. See http://www.boost.org/doc/html/

string_algo.html.

Notes: All books on string algorithms contain thorough discussions of exact string
matching, including [CHL07, NR07, Gus97]. Good expositions on the Boyer–Moore
[BM77] and Knuth-Morris-Pratt algorithms [KMP77] include [BvG99, CLRS09, Man89].
The history of string matching algorithms is somewhat checkered because several pub-
lished proofs were incorrect or incomplete. See [Gus97] for clarification.

Aho [Aho90] provides a good survey on algorithms for pattern matching in strings,
particularly for regular expression patterns. The Aho–Corasick algorithm for multiple
patterns is described in [AC75].

Empirical comparisons of string matching algorithms include [DB86, Hor80, Lec95,
dVS82, YLDF16]. Which algorithm performs best depends upon the properties of the
strings and the size of the alphabet. For long patterns and texts, I recommend that
you use the best implementation of Boyer–Moore that you can find. String matching
algorithms for GPUs are considered in [LLCC12].

The Rabin–Karp algorithm [KR87] uses a hash function to perform string matching

in linear expected time. Its worst-case time remains quadratic, and its performance in

practice appears somewhat worse than the character comparison methods described

above. This algorithm is presented in Section 6.7 (page 188).

Related problems: Suffix trees (see page 448), approximate string matching
(see page 688).

https://www.cs.ucdavis.edu/~gusfield/strmat.html
https://directory.fsf.org/project/grep/
https://directory.fsf.org/project/grep/
http://www.boost.org/doc/html/string_algo.html
http://www.boost.org/doc/html/string_algo.html
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misplaced 
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Input Output

21.4 Approximate String Matching

Input description: A text string t and a pattern string p.

Problem description: What is the minimum-cost way to transform t to p
using insertions, deletions, and substitutions?

Discussion: Approximate string matching is important because we live in an
error-prone world. Spelling correction programs must identify the closest match
for any text string not found in a dictionary. Efficient sequence similarity (ho-
mology) searches on large databases of DNA sequences have revolutionized the
study of molecular biology. Suppose you are interested in a particular human
gene, and discover that it is similar to a particular gene in rats. Likely this new
gene does for people what it does for rats, with any differences being the result
of genetic mutations during evolution.

I once encountered approximate string matching when evaluating the per-
formance of an optical character-recognition system. We needed to compare the
answers produced by our system on a test document with the correct results. To
improve our system, we had to identify which letters were getting misidentified.
The solution was to do an alignment between the two texts. This same principle
is used in file difference programs, which identify the lines that have changed
between two versions of a file.

When no changes are permitted, our problem reduces to exact string match-
ing, which is discussed in Section 21.3 (page 685). Here, the discussion is re-
stricted to the problem of matching with errors.

Dynamic programming provides the basic approach to approximate string
matching. Let D[i, j] denote the cost of editing the first i characters of the
pattern string p into the first j characters of the text t. We must do something
with the tail characters pi and tj . Our only options are matching/substituting
one for the other, deleting pi, or inserting a match for tj . Thus, D[i, j] is the
minimum of the costs of these possibilities:

• If pi = tj then D[i− 1, j − 1] else D[i− 1, j − 1] + substitution cost.

• D[i− 1, j] + deletion cost of pi.
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• D[i, j − 1] + deletion cost of tj .

A general implementation in C and more complete discussion appears in
Section 10.2 (page 314). Several issues remain before we can make full use of
this recurrence:

• Do I match the pattern against the full text, or against a substring? –
The boundary condition of this recurrence is what distinguishes between
algorithms for string matching and substring matching. Suppose we seek
to align the full pattern against the full text. Then the cost of D[i, 0]
must be that of deleting the first i characters of the pattern, so D[i, 0] = i.
Similarly, D[0, j] = j.

But now suppose that the pattern can occur anywhere within the text.
The proper cost of D[0, j] becomes 0, since there should be no penalty for
starting the alignment in the jth position of the text. The cost of D[i, 0]
remains i, because the only way to match the first i pattern characters
with nothing is to delete them all. The cost of the best substring pattern
match against the text will be given by minn

k=1 D[m, k].

• How should I select the substitution and insertion/deletion costs? – The
edit distance algorithm can use different costs for insertion, deletion, and
substitution for specific pairs of characters. What costs are most appro-
priate depends on what you plan to do with the alignment.

The default choice charges the same for each insertion, deletion, or sub-
stitution. Charging a substitution cost of more than insertion + deletion
ensures that substitutions will never get performed, because it will always
be cheaper to just edit both characters out of their strings. With only in-
sertion and deletion to work with, the problem reduces to longest common
subsequence, discussed in Section 21.8 (page 706). It often pays to tweak
the edit distance costs and study the resulting alignments so you can find
the best parameters for the job.

• How do I find the actual alignment of the strings? – The recurrence above
only yields the cost of the optimal string/pattern alignment, not the se-
quence of editing operations that achieve it. To obtain such a transcript,
we can work backwards from the cell D[m,n] in the complete cost matrix
D. We had to come from either D[m − 1, n] (pattern deletion/text in-
sertion), D[m,n− 1] (text deletion/pattern insertion), or D[m− 1, n− 1]
(substitution/match). The chosen option can be reconstructed from these
costs and the given characters pm and tn. By repeatedly moving back-
wards to the previous cell, we can reconstruct the entire alignment. Again,
an implementation in C appears in Section 10.2 (page 314).

• What if the two strings are very similar to each other? – The dynamic
programming algorithm above fills out an m × n matrix to compute edit
distance. But to seek an alignment involving a combination of at most
d insertions, deletions, and substitutions, we need only traverse the band
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of O(dn) cells within a distance d of the central diagonal. If no low-cost
alignment exists within this band, then no low-cost alignment can exist in
the full cost matrix.

• Is your pattern short or long? – A recent approach to string matching
exploits the fact that modern computers can do operations on 64-bit words
in a single gulp. This is long enough to hold eight 8-bit ASCII characters,
providing motivation to design bit-parallel algorithms that do more than
one comparison with each operation.

The basic idea is quite clever. Construct a bit-mask Bα for each letter
α of the alphabet, such that ith-bit Bα[i] = 1 iff the ith character of the
pattern is α. Now suppose you have a match bit-vector Mj for position
j in the text string, such that Mj [i] = 1 iff the first i bits of the pattern
exactly match the (j − i+1)st through jth character of the text. We can
find all the bits of Mj+1 using just two operations by (1) shifting Mj one
bit to the right, and then (2) doing a bitwise AND with Bα, where α is
the character in position j + 1 of the text.

The agrep program, discussed below, uses such a bit-parallel algorithm
generalized to approximate matching. Such algorithms are easy to pro-
gram and many times faster than dynamic programming.

• How do I minimize the required storage? – The quadratic space needed
to store the dynamic programming table usually presents a more serious
obstacle than its running time. Fortunately, only O(min(m,n)) space is
needed to compute D[m,n]. We only need to maintain two active rows (or
columns) of the matrix to compute the optimal cost. The entire matrix is
required only to reconstruct the actual sequence alignment.

But we can use Hirschberg’s clever recursive algorithm to efficiently re-
cover the optimal alignment in linear space. During the first pass of the
linear-space algorithm above to compute D[m,n], we can identify which
middle-element cell D[m/2, x] was used to optimize D[m,n]. This reduces
our problem to finding the best paths from D[1, 1] to D[m/2, x] and from
D[m/2, x] to D[m/2, n]. Both of these can be solved recursively. Each
round removes half of the matrix elements of the previous round from
consideration, so the total time remains O(mn). This linear-space algo-
rithm proves to be a big win in practice on long strings.

• Should I score long runs of insertions/deletions differently? – Many string
matching applications look kindly upon alignments where insertions or
deletions (indels) get bunched in a small number of runs or gaps. Deleting
a paragraph from a document should presumably cost less than a similar
number of scattered single-character edits, because the word represents a
single (albeit substantial) modification.

String matching with gap penalties provides a way to properly account for
such changes. Typically, we assign a cost of A + Bt for each indel of t
consecutive characters, where A is the cost of starting the gap and B is



21.4. APPROXIMATE STRING MATCHING 691

the per-character deletion cost. If A is large relative to B, the alignment
has an incentive to create relatively few runs of deletions.

String matching under such affine gap penalties can be done in the same
quadratic time as regular edit distance. We use separate recurrences E
and F to encode the cost of being in insertion or deletion gap mode re-
spectively, so we only pay the cost of initiating the gap once:

V (i, j) = max(E(i, j), F (i, j), G(i, j))

G(i, j) = V (i− 1, j − 1) +match(i, j)

E(i, j) = max(E(i, j − 1), V (i, j − 1)−A)−B

F (i, j) = max(F (i− 1, j), V (i− 1, j)−A)−B

With a constant amount of work per cell, this algorithm takes O(mn)
time, same as without gap costs.

• Does similarity mean strings that sound alike? – Other models of ap-
proximate pattern matching become appropriate in certain applications.
Particularly interesting is Soundex, a hashing scheme that attempts to pair
up English words that sound alike. This can be useful in testing whether
two names that have been spelled differently are likely to be the same. For
example, my last name has been spelled “Skina,” “Skinnia,” “Schiena,”
and occasionally “Skiena.” All of these hash to the same Soundex code,
S25.

Soundex drops vowels and silent letters, removes doubled letters, and then
assigns the remaining letters numbers from the following classes: BFPV
gets a 1, CGJKQSXZ gets a 2, DT gets a 3, L gets a 4, MN gets a 5,
and R gets a 6. The characters HWY are not assigned a digit. The
code starts with the first letter of the name and contains at most three
digits. Although this sounds fairly hokey, experience shows that it works
reasonably well. Experience indeed: Soundex has been used since the
1920’s.

Implementations: Several excellent software tools are available for approxi-
mate pattern matching. Manber and Wu’s agrep [WM92a, WM92b] (approx-
imate general regular expression pattern matcher) is a tool supporting text
search with spelling errors. The current version is available at http://www.

tgries.de/agrep/. Navarro’s nrgrep [Nav01b] combines bit-parallelism and fil-
tration, resulting in running times that are more constant than agrep, although
not always faster. It is available at https://www.dcc.uchile.cl/~gnavarro/
software/.

TRE is a general regular-expression matching library for exact and approx-
imate matching, which is more general than agrep. The worst-case complexity
is O(nm2), where m is the list of the regular expressions involved. TRE is
available at https://github.com/laurikari/tre/.

http://www.tgries.de/agrep/
http://www.tgries.de/agrep/
https://www.dcc.uchile.cl/~gnavarro/software/
https://www.dcc.uchile.cl/~gnavarro/software/
https://github.com/laurikari/tre/
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Wikipedia gives programs for computing edit (Levenshtein) distance in a
dizzying array of languages (including Ada, C++, Emacs Lisp, JavaScript, Java,
PHP, Python, Ruby VB, and C#) Check it out at https://en.wikibooks.org/
wiki/Algorithm_implementation/Strings/Levenshtein_distance.

Notes: There have been many recent advances in approximate string matching, par-
ticularly in bit-parallel algorithms. Navarro and Raffinot [NR07] is the best reference
on these techniques, which are also treated in other books on string algorithmics
[CHL07, Gus97]. String matching with gap penalties is particularly well treated in
[Gus97].

The basic dynamic programming alignment algorithm is attributed to [WF74],
although it is apparently folklore. The wide range of applications for approximate
string matching was made apparent in Sankoff and Kruskal’s book [SK99], which
remains a useful historical reference. Surveys on approximate pattern matching include
[HD80, Nav01a]. Expositions of Hirschberg’s linear-space algorithm [Hir75] include
[CR03, Gus97].

Masek and Paterson [MP80] compute the edit distance between m- and n-length
strings in time O(mn/ log(min{m,n})) for constant-sized alphabets, using ideas from
the four Russians algorithm for Boolean matrix multiplication [ADKF70]. A recent
hardness result by Backurs and Indyk [BI15] shows that edit distance cannot be
computed in O(n2−ε) time without violating the strong exponential time hypothesis
(SETH). Another recent breakthrough are subquadratic algorithms that approximate
edit distance to within a constant factor [CDG+18].

The shortest-path formulation leads to a variety of algorithms that are good when
the edit distance is small, including an O(n lg n+ d2) algorithm due to Myers [Mye86]
and an O(dn) algorithm due to Landau and Vishkin [LV88]. Longest increasing sub-
sequence can be done in O(n lg n) time [HS77], as presented in [Man89].

Bit-parallel algorithms for approximate matching include Myers’s [Mye99b] al-
gorithm for approximate matching in O(mn/w) time, where w is the number of
bits in the computer word. Experimental studies of bit-parallel algorithms include
[FN04, HFN05, NR00].

Soundex was invented and patented by M. K. Odell and R. C. Russell. Expositions
on Soundex include [BR95, Knu98]. Metaphone is a modern attempt to improve on
Soundex [BR95, Par90]. See [LMS06] for an application of such phonetic hashing
techniques to the problem entity name unification.

Related problems: String matching (see page 685), longest common substring
(see page 706).

https://en.wikibooks.org/wiki/Algorithm_implementation/Strings/Levenshtein_distance
https://en.wikibooks.org/wiki/Algorithm_implementation/Strings/Levenshtein_distance
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Fourscore and seven years ago our father brought forth on this 
continent a new nation conceived in Liberty and dedicated to this 
proposition that all men are created equal. Now we are engaged in a 
great civil war testing whether that nation or any nation so conceived 
and so dedicated can long endure. We are met on a great battlefield 
of that war. We have come to dedicate a portion of that field as a 
final resting place for those who here gave their lives that the nation 
might live. It is altogether fitting and we can not consecrate we can 
not hallow this ground. The brave men living and dead who struggled 
here have consecrated it for above our poor power to add or detract. 
The world will title note nor long remember what we say here but it 
can never forget what they did here. It is for us the living here have 
thus far so nobly advanced. It is rather for us to be here dedicated to 
the great task remaining before us that from these honored dead we 
take increased devotion to that cause for which they here gave the 
last full measure of devotion that we here highly resolve that these 
dead shall not have died in vain that this nation under God shall 
have a new birth of freedom and that government of the people by 
the people for the people shall not perish from the earth.

Fourscore and seven years ago our father brought 
forth on this continent a new nation conceived in 
Liberty and dedicated to this proposition that all men 
are created equal. Now we are engaged in a great civil 
war testing whether that nation or any nation so 
conceived and so dedicated can long endure. We are 
met on a great battlefield of that war. We have come 
to dedicate a portion of that field as a final resting 
place for those who here gave their lives that the 
nation might live. It is altogether fitting and we can 
not consecrate we can not hallow this ground. The 
brave men living and dead who struggled here have 
consecrated it for above our poor power to add or 
detract. The world will title note nor long remember 
what we say here but it can never forget what they 
did here. It is for us the living here have thus far so 
nobly advanced. It is rather for us to be here 
dedicated to the great task remaining before us that 
from these honored dead we take increased devotion 
to that cause for which they here gave the last full 
measure of devotion that we here highly resolve that 
these dead shall not have died in vain that this nation 
under God shall have a new birth of freedom and that 
government of the people by the people for the people 
shall not perish from the earth.

Input Output

21.5 Text Compression

Input description: A text string S.

Problem description: Create a shorter text string S′ such that S can be
correctly reconstructed from S′.

Discussion: Secondary storage devices quickly fill up on most computer sys-
tems, even though their capacity seems to double every year. Decreasing storage
prices only increases interest in data compression, because there is more data
to compress than ever before. Data compression is the algorithmic problem of
finding a space-efficient encoding for a given data file. The rise of computer
networks provides a new mission for data compression, that of increasing the
effective bandwidth by reducing the number of bits before transmission.

People seem to like inventing ad hoc data-compression methods for their par-
ticular application. Sometimes these outperform general methods, but usually
they don’t. Several issues arise in selecting the right compression algorithm:

• Must we recover the exact input text after compression? – Lossy vs. loss-
less encoding is the primary issue in data compression. Document stor-
age applications demand lossless encodings, because users become quite
disturbed when their data files are silently altered. Fidelity is not the
same concern in image or video compression, because small perturba-
tions are imperceptible to the viewer. Significantly greater compression
ratios can be obtained using lossy compression, which is why most im-
age/video/audio compression algorithms exploit this freedom.

• Can I simplify my data before I compress it? – The most effective way to
free space on a disk is to delete the files you don’t need. Likewise, any
preprocessing you can do to reduce the information content of a file pays
off later in better compression. Can we eliminate redundant white space
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from the file? Might the document be converted entirely to uppercase
characters, or have formatting information removed?

A particularly interesting simplification results from applying the Burrows–
Wheeler transform to the input string. This transform sorts all n cyclic
shifts of the n character input, and then reports the last character of each
shift. As an example, the cyclic shifts of abab are abab, baba, abab, and
baba. After sorting, these become abab, abab, baba, and baba. Reading the
last character of each of these strings yields the transform result: bbaa.

Provided the last character of the input string is unique (an end-of-string
symbol), this transform is perfectly invertible to the original input! The
Burrows–Wheeler string is typically 10–15% more compressible than the
original text, because repeated words turn into blocks of repeated charac-
ters. Further, this transform can be computed in linear time.

• Does it matter whether the algorithm is patented? – Certain data compres-
sion algorithms have been patented—most notoriously the LZW variation
of the Lempel–Ziv algorithm discussed below. Mercifully, this patent has
now expired, as has the one covering JPEG. Typically there are unre-
stricted variations of any compression algorithm that perform about as
well as the patented variant, but problems arise if a patented algorithm
sneaks into a popular standard.

• How do I compress image data – The simplest lossless compression algo-
rithm for image data is run-length coding. Here we replace runs of identical
pixel values with a single instance of the pixel and an integer giving the
length of the run. This works well on binary images with large contiguous
regions of similar pixels, like scanned text. But it performs badly on im-
ages with many quantization levels and random noise. Correctly selecting
(1) the number of bits to allocate to the count field, and (2) the right
traversal order to reduce a two-dimensional image into a stream of pixels,
has a surprisingly important impact on compression.

For serious audio/image/video compression applications, I recommend
that you use a popular lossy coding method and not fool around with
implementing it yourself. JPEG is the standard high-performance image
compression method, while MPEG is designed to exploit the frame-to-
frame coherence of video.

• Must compression run in real time? – Fast decompression is often more
important than fast compression. A YouTube video is compressed only
once, but decompressed every time someone plays it. In contrast, an
operating system that increases effective disk capacity by automatically
compressing files will need a symmetric algorithm with fast compression
times.

Literally dozens of text compression algorithms are available, but they can
be classified into two distinct groups. Static algorithms, such as Huffman codes,
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build a single coding table by analyzing the entire document. Adaptive algo-
rithms, such as Lempel–Ziv, build a coding table on the fly that adapts to the
local character distribution of the document. Adaptive algorithms usually prove
to be the right answer for most problems, but both are interesting:

• Huffman codes – Huffman codes replace each alphabet symbol by a variable-
length code string. Using eight bits-per-symbol to encode English text
is wasteful, because certain characters (such as “e”) occur far more fre-
quently than others (such as “q”). Huffman codes assign “e” a short code
word, and “q” a longer one to compress the text.

Huffman codes can be constructed using a greedy algorithm. Sort the sym-
bols in increasing order by frequency. We merge the two least-frequently
used symbols x and y into a new symbol xy, whose frequency is the sum
of its two child symbols. Replacing x and y by xy leaves a smaller set of
symbols. We now repeat this operation n− 1 times until all symbols have
been merged together. These merging operations define a rooted binary
tree, with the original alphabet symbols as leaves. The left or right choices
on the root-to-leaf path define the bits of the binary code word for each
symbol. Priority queues can efficiently maintain the symbols by frequency
during construction, yielding Huffman codes in O(n lg n) time.

Huffman codes are popular but have three disadvantages. Two passes must
be made over the document on encoding, first to build the coding table,
and then to actually encode the text. The coding table must be explicitly
stored with the document to decode it, which eats into any space savings
on short documents. Finally, Huffman codes only exploit non-uniform
symbol distributions, while adaptive algorithms can recognize the higher-
order redundancies such as in 0101010101. . . .

• Lempel–Ziv algorithms – Lempel–Ziv algorithms (including the popular
LZW variant) compress text by building a coding table on the fly as we
read the document. The coding table changes as we move through the
text. A clever protocol ensures that the encoder and decoder both work
with the exact same code table, so no information is lost.

Lempel–Ziv algorithms build coding tables of frequent substrings, which
can get arbitrarily long. They can thus exploit often-used syllables, words,
and phrases to build better encodings. They adapt to local changes in the
text distribution, which is important because many documents exhibit
significant locality of reference.

The amazing thing about Lempel–Ziv is how robust it is on different types
of data. It is quite difficult to beat it by using your own application-specific
compression algorithm. My recommendation is not to try. If you can
eliminate application-specific redundancies using a simple preprocessing
step, go ahead and do it. But don’t waste much time fooling around. You
are unlikely to get significantly better text compression than with gzip or
some other popular program, and you might well do worse.
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Implementations: Perhaps the most popular text compression program is
gzip, which implements a public domain variation of the Lempel–Ziv algorithm.
It is distributed under the GNU software license and can be obtained from
https://www.gzip.org.

There is a natural tradeoff between compression ratio and compression time.
Another choice is bzip2, which uses the Burrows–Wheeler transform. It produces
tighter encodings than gzip at somewhat greater cost in running time. Going
to the extreme, certain compression algorithms devote enormous run times to
squeeze every bit out of a file. Representative programs of this genre are col-
lected at http://mattmahoney.net/dc/. Personally, I believe that there is a
special place in hell for people who send me files compressed by weird encoders.
I always delete such messages, and demand that they resend me a gzip file.

Notes: Many books on data compression are available. Recent and comprehensive
books include Sayood [Say17] and Salomon [Sal06], with [SM10] an authoritative ref-
erence. Also recommended is the older text by Bell, Cleary, and Witten [BCW90].
Surveys on text compression algorithms include [CL98, KA10].

Good expositions on Huffman codes [Huf52] include [AHU83, CLRS09]. The
Lempel–Ziv algorithm and variants are described in [Wel84, ZL78]. The Burrows–
Wheeler transform was introduced in [BW94].

The annual IEEE Data Compression Conference (https://www.cs.brandeis.edu/

~dcc/) is the primary research venue in this field. This is a mature technical area

where most current work is shooting for fairly marginal improvements, particularly in

the case of text compression. More encouragingly, I note that the conference is held

annually at a world-class ski resort in Utah.

Related problems: Shortest common superstring (see page 709), cryptogra-
phy (see page 697).

https://www.gzip.org
http://mattmahoney.net/dc/
https://www.cs.brandeis.edu/~dcc/
https://www.cs.brandeis.edu/~dcc/
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The magic words are 
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Input Output

21.6 Cryptography

Input description: A plaintext message T or encrypted text E, and key k.

Problem description: Encode T using k giving E, or decode E giving T .

Discussion: Cryptography has grown wildly more important as computer net-
works increasingly make confidential documents more vulnerable to prying eyes.
Cryptography increases security by making messages difficult to read if they fall
into the wrong hands. Although the discipline of cryptography is at least two
thousand years old, its algorithmic and mathematical foundations have only
recently solidified to the point where provably secure cryptosystems can be en-
visioned.

Cryptographic ideas and applications go far beyond the tasks of “encryption”
and “decryption.” The field now includes mathematical constructs such as
cryptographic hashes, digital signatures, and useful primitive protocols that
provide associated security assurances.

There are three classes of cryptosystems everyone should be aware of:

• Caesar shifts – The oldest ciphers involve mapping each character of the
alphabet to a different letter. The weakest such ciphers rotate the alphabet
by some fixed number of characters (say 13), and thus have only 26 possible
keys. Better is to use an arbitrary permutation of the letters, giving 26!
possible keys. Even so, such systems can be easily attacked by counting
the frequency of each symbol and exploiting the fact that “e” occurs more
often than “z.” While there are variants that will make this more difficult
to break, none will be as secure as AES or RSA.

• Block shuffle ciphers – This class of algorithms repeatedly shuffles the bits
of your text as governed by the key. The classic example of such a cipher
is the Data Encryption Standard (DES). Although approved as a Federal
Information Processing Standard in 1976, DES was officially withdrawn as
a federal standard in 2005, replaced by the stronger Advanced Encryption
Standard (AES). A simple variant called triple DES permits an effective
key length of 112 bits by using three rounds of DES with two 56-bit keys.
But it, too, became vulnerable with time, and as of 2018 is depreciated,
with usage disallowed after 2023.
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But 256-bit AES is still considered very secure. AES libraries are available
for all major programming languages, including C/C++, Java, JavaScript,
and Python, and form the basis for security in WhatsApp, Facebook Mes-
senger, and many other systems.

• Public key cryptography – If you fear bad guys reading your messages, you
should also be afraid to tell anyone else the key you need to decrypt them.
Public key systems use different keys to encode and decode messages.
Since the encoding key is of no help in decoding, it can be made public
at no risk to security. This solution to the key distribution problem is
literally its key to success.

RSA is the classic example of a public key cryptosystem, named after its
inventors Rivest, Shamir, and Adelman. The security of RSA is based on
the relative computational complexities of factoring and primality test-
ing (see Section 16.8 (page 490)). Encoding is (relatively) fast because
it relies on primality testing to construct the key, while the hardness of
decryption follows from that of factoring—an assumption rapidly being
threatened by advances in quantum computing. As of this writing, the
largest integer incontrovertibly factored using Shor’s algorithm on a quan-
tum computer appears to be 15, so this is not an imminent threat. But it
does bear watching.

RSA is slow relative to other cryptosystems—roughly 100 to 1,000 times
slower than AES. Still, it earns its salt by making public keys possible.

The critical issue in selecting a cryptosystem is identifying your paranoia
level. Who are you trying to stop from reading your stuff: your grandmother,
local thieves, the Mafia, or the NSA (National Security Agency)? If you
can use an accepted implementation of AES or RSA, you should feel pretty
safe against anybody, at least for now. Increasing computer power lays waste
to cryptosystems surprisingly quickly, as discussed above. Be sure to use the
longest possible keys and keep abreast of algorithmic developments if you are
planning a long-term storage of sensitive material.

That said, I will confess that I use DES to encrypt my final exam each
semester. It proved more than sufficient the time an ambitious student broke
into my office looking for it. The story would have been different had the
NSA been trying to crack it, but it is important to understand that the most
serious security holes are human, not algorithmic. Ensuring that your password
is long enough, hard to guess, and not written down is far more important than
obsessing about the encryption algorithm.

Most symmetric key encryption mechanisms are harder to crack than public
key ones for the same key size. This means one can get away with much shorter
key lengths for symmetric key than for public key encryption. NIST and RSA
Labs both provide schedules of recommended key sizes for secure encryption,
and as of this writing they recommend 256-bit symmetric keys as equivalent to
15,360-bit asymmetric keys. This difference helps explain why symmetric key
algorithms are typically orders of magnitude faster than public key algorithms.



21.6. CRYPTOGRAPHY 699

Simple ciphers like the Caesar shift are fun and easy to program. For this
reason, it is healthy to use them for applications needing only a casual level of
security (such as hiding the punchlines of jokes). Since they are easy to break,
they should never be used for serious security applications.

Another thing you should never do is try to develop your own novel cryp-
tosystem. The security of AES and RSA is accepted because these systems have
survived many years of public scrutiny. In this time, many other cryptosystems
have been proposed, proven vulnerable to attack, and then abandoned. This is
not a field for amateurs. If you are charged with implementing a cryptosystem,
carefully study a respected program such as PGP to see how they handle issues
such as key selection and key distribution. Any cryptosystem is as strong as its
weakest link.

Certain other problems related to cryptography arise often in practice:

• How can I validate the integrity of data against random corruption? –
There is often a need to validate that transmitted data is identical to that
which has been received. One solution has the receiver transmit the data
back to the source, so the original sender can confirm that the two texts are
identical. This fails when inverse errors are made in retransmission, but a
more serious problem is that such a scheme cuts your available bandwidth
in half.

A more efficient method uses a checksum, a hash of the long text down
to a large integer. We then transmit the checksum along with the text.
The checksum can be recomputed from the text on the receiving end, and
bells set off if the computed checksum is not identical to what was received.
The simplest checksum scheme just adds up the byte or character values
and takes the sum modulo of some constant, say 28 = 256. But an error
transposing two or more characters would go undetected under such a
scheme, because addition is commutative.

Cyclic-redundancy check (CRC) – The CRC provides a more powerful
method to compute checksums, that is used in most communications sys-
tems and internally in computers to validate disk drive transfers. These
codes compute the remainder in the ratio of two polynomials, the numer-
ator of which is a function of the input text. The design of these polyno-
mials involves considerable mathematical sophistication, but ensures that
all reasonable errors are detected.

• How can I validate the integrity of data against deliberate corruption? –
CRC is good at detecting random errors, but not malicious changes to a
document. Cryptographic hash functions such as MD5 and SHA-256 are
easy to compute for a given document, but hard to invert. This means
that for a particular hash code value x, it is hard to construct a document
d such that H(d) = x. The property makes them valuable for digital
signatures and other applications.

• How can I prove that a file has not been changed? – If I send you a contract
in electronic form, what is to stop you from editing the file and then
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claiming that your version is what we had agreed to? I need a way to prove
that any modification to a document is fraudulent. Digital signatures are
a cryptographic way for me to stamp my document as genuine, and play
an important role in maintaining the integrity of the blockchain associated
with cryptocurrencies like Bitcoin.

I can compute a checksum for any given file, and then encrypt this check-
sum using my own private key. I send you the file and the encrypted
checksum. Sure, you can edit the file, but to fool the judge you must
also edit the encrypted checksum such that it can be decrypted to yield
the correct checksum. Designing a file that yields the same checksum be-
comes an insurmountable problem. For full security, we need a trusted
third party to authenticate the timestamp and associate the private key
with me.

• How can I restrict access to copyrighted material? – An important ap-
plication for cryptography is digital rights management for audio and
video. A key issue here is speed of decryption, so it can keep up with
data transmission or retrieval in real time. Such stream ciphers usually
involve efficiently generating a stream of pseudorandom bits, say using
a shift-register generator. The exclusive-or of these bits with the data
stream gives the encrypted sequence, with the original data recovered by
exclusive-oring the result with the same stream of pseudorandom bits.

High-speed cryptosystems have proven to be relatively easy to break. The
state-of-the-art solution to this problem involves erecting laws like the
Digital Millennium Copyright Act, which makes it illegal to try to break
them.

Implementations: Nettle is a comprehensive low-level cryptographic library
in C. Cryptographic hash functions include MD5 and SHA-256. Block ciphers
include DES, AES, and some more recently developed codes. An implemen-
tation of RSA is also provided. Nettle is available at https://www.lysator.

liu.se/~nisse/nettle/. See http://csrc.nist.gov/groups/ST/toolkit

for related cryptographic resources provided by NIST.
Crypto++ is a large C++ class library of cryptographic schemes, including

all that I have mentioned here. It is available at https://www.cryptopp.com/.
Many popular open source utilities employ serious cryptography, and serve

as good models of current practice. GnuPG, an open source version of PGP, is
available at https://www.gnupg.org/. OpenSSL, for authenticating access to
computer systems, is available at https://www.openssl.org/.

The Boost CRC Library provides multiple implementations of cyclic redun-
dancy check algorithms. It is available at https://www.boost.org/libs/crc/.

Notes: The Handbook of Applied Cryptography [MOV96] provides technical surveys
of all aspects of cryptography, and has been generously made available online at http:
//www.cacr.math.uwaterloo.ca/hac/. Schneier [Sch15] provides a thorough overview
of different cryptographic algorithms, with [FS03] as perhaps a better introduction.

https://www.lysator.liu.se/~nisse/nettle/
https://www.lysator.liu.se/~nisse/nettle/
http://csrc.nist.gov/groups/ST/toolkit
https://www.cryptopp.com/
https://www.gnupg.org/
https://www.openssl.org/
https://www.boost.org/libs/crc/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
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Kahn [Kah67] presents the fascinating history of cryptography from ancient times to
1967 and is particularly noteworthy in light of the secretive nature of the subject.

Expositions on the RSA algorithm [RSA78] include [CLRS09]. The RSA Lab-
oratories home page http://www.rsa.com/rsalabs/ is very informative. Quantum
technologies lead to new secure encryption methods [BB14], and also new ways to
break what we already have. Post-quantum cryptography is an area of active research
[CJL+16].

Of course, the National Security Agency is the place to go to learn the real state
of the art in cryptography. The history of DES is well presented in Schneier [Sch15].
Particularly controversial was the decision by the NSA to limit key length to 56 bits.

MD5 [Riv92] is the hashing function used by PGP to compute digital signatures.
Expositions include [Sch15, Sta06]. Problems with the security of MD5 have been
exposed [WY05]. The SHA family of hash functions appears more secure, particularly
SHA-256 and SHA-512.

Related problems: Factoring and primality testing (see page 490), text com-
pression (see page 693)).

http://www.rsa.com/rsalabs/
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21.7 Finite State Machine Minimization

Input description: A deterministic finite automaton M .

Problem description: Create the smallest deterministic finite automaton M ′

such that M ′ behaves identically to M .

Discussion: Finite state machines are very useful for specifying and recognizing
patterns. Modern programming languages such as Java and Python provide
built-in support for regular expressions, a particularly natural way of defining
automata. Control systems and compilers often use finite state machines to
encode the current state and possible actions/transitions. Minimizing the size
of these automata reduces both the storage and execution costs of dealing with
such machines.

Finite state machines are defined by directed graphs. Each vertex represents
a state, and each character-labeled edge defines a transition from one state
to another on receipt of the given symbol. The automata shown analyzes a
sequence of coin tosses, with dark states signifying that an even number of
heads have been observed. Such automata can be represented using any graph
data structure (see Section 15.4 (page 452)), or by an n× |Σ| transition matrix
M where |Σ| is the size of the symbol alphabet of the automata. Here M [i, j]
reports the state transitioned to from state i on receipt of symbol j.

Finite state machines are often used to specify search patterns in the guise of
regular expressions, which are patterns formed by and-ing, or-ing, and looping
over smaller regular expressions. For example, the regular expression a(a+ b+
c)∗a matches any string on (a, b, c) that begins and ends with distinct as. The
best way to test whether a string s is recognized by a given regular expression
R constructs the finite automaton equivalent to R, and then simulates this
machine on S. See Section 21.3 (page 685) for alternative approaches to string
matching.
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We consider three different problems on finite automata:

• Minimizing deterministic finite state machines – Transition matrices for
finite automata can become prohibitively large for sophisticated machines,
thus fueling the need for tighter encodings. The most direct approach is
to eliminate redundant states in the automaton. As the example above
shows, automata of widely varying sizes can compute the same function.

Algorithms to minimize the number of states in a deterministic finite au-
tomaton (DFA) appear in any book on automata theory. The basic ap-
proach partitions the states into gross equivalence classes, and then refines
the partition. Initially, the states are partitioned into accepting, rejecting,
and non-terminal classes. The transitions from each node now branch to
a given class on a given symbol. Whenever two states s, t from the same
class C branch to elements of different classes, then C must be partitioned
into two subclasses, one containing s, the other containing t.

This algorithm makes a sweep through all the classes looking for a new
partition, and repeats the process from scratch if it finds one. This yields
an O(n2) algorithm for constant-sized alphabets, because at most n − 1
sweeps need ever be performed. The final equivalence classes correspond to
the states in the minimum automaton. In fact, a more efficient O(n log n)
algorithm is known. Implementations are cited below.

• Constructing deterministic machines from non-deterministic machines –
DFAs are simple to work with, because the machine is always in exactly
one state at any given time. Non-deterministic finite automata (NFAs)
can be in multiple states at a time, so their current “state” represents a
subset of the possible machine states.

In fact, any NFA can be mechanically converted to an equivalent DFA,
which can then be minimized as above. However, converting an NFA
to a DFA might cause an exponential blowup in the number of states,
which might perversely get eliminated when minimizing the DFA. This
exponential blowup makes most NFA minimization problems PSPACE-
hard, which is even worse than NP-complete.

The proofs of equivalence between NFAs, DFAs, and regular expressions
are elementary enough to be covered in undergraduate automata theory
classes. However, they are surprisingly nasty to code. Implementations
are discussed below.

• Constructing machines from regular expressions – There are two approaches
for translating a regular expression to an equivalent finite automaton.
NFAs are easier to construct than deterministic automata, but less effi-
cient to simulate.

The non-deterministic construction uses ε-moves, which are optional tran-
sitions that require no input to fire. On reaching a state with an ε-move,
we must assume that the machine is in both states. It is straightforward to
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construct an automaton using ε-moves, from a depth-first traversal of the
parse tree of the regular expression. This machine will have O(m) states,
if m is the length of the regular expression. Simulating this machine on
a string of length n takes O(mn) time, since we need to consider each
state/prefix pair only once.

The deterministic construction starts with the parse tree for the regular
expression, observing that each leaf represents an alphabet symbol in the
pattern. After recognizing a prefix of the text, we can be left in some
subset of these possible positions, which would correspond to a state in
the finite automaton. The derivatives method builds up this automaton
state-by-state as it is needed. Some regular expressions of length m require
O(2m) states in any DFA implementing them, such as (a+ b)∗a(a+ b)(a+
b) . . . (a + b). There is no way to avoid this exponential space blowup.
Fortunately it takes linear time to simulate an input string on any DFA,
regardless of the size of the automaton.

Implementations: Grail+ is a C++ package for symbolic computation with
finite automata and regular expressions. Grail enables one to convert between
different machine representations and to minimize automata. It can handle large
machines defined on large alphabets. All code and documentation are accessible
from http://www.csit.upei.ca/~ccampeanu/Grail/, as well as pointers to a
variety of other automaton packages.

The OpenFst Library (http://www.openfst.org/) is a library for con-
structing, combining, optimizing, and searching weighted finite state transducers
(FSTs), which are generalizations of finite state machines where output sym-
bols do not necessary match input symbols. Minimization and conversions to
deterministic machines are provided.

JFLAP (Java Formal Languages and Automata Package) is a package of
graphical tools for learning the basic concepts of automata theory. Included
are functions to convert between DFAs, NFAs, and regular expressions, and
minimize the resulting automata. High-level automata are also supported, in-
cluding context-free languages and Turing machines. JFLAP is available at
http://www.jflap.org/. A related book [RF06] is also available.

Notes: Aho [Aho90] provides a good survey on algorithms for pattern matching,
with a particularly clear exposition for regular expression patterns. The technique for
regular expression pattern matching with ε-moves is due to Thompson [Tho68]. Other
expositions on finite automaton pattern matching include [AHU74]. Expositions on
finite automata and the theory of computation include [HK11, HMU06, Sip05]. The
major annual meeting of interest in this field is the Conference on Implementations
and Applications of Automata (CIAA).

Hopcroft [Hop71] gave an optimal O(n lg n) algorithm for minimizing the number
of states in DFAs. The derivatives method of constructing a finite state machine from
a regular expression is due to Brzozowski [Brz64] and has been expanded upon in
[BS86]. Expositions on the derivatives method includes Conway [Con71]. Recent work
on the incremental construction and optimization of automata includes [Wat03]. The

http://www.csit.upei.ca/~ccampeanu/Grail/
http://www.openfst.org/
http://www.jflap.org/
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problems of compressing a DFA to a minimum NFA [JR93] and testing the equivalence
of two non-deterministic finite state machines [SM73] are both PSPACE-complete.

The inefficiencies of algorithmic approaches for regular expression pattern match-

ing have been exploited for denial-of-service attacks on websites. If public-facing code

contains a regular expression requiring superlinear computation (in the worst case), an

attacker can overload machines by supplying pathological input that takes excessive

time to parse. See [DCSL18] for a discussion of such attacks.

Related problems: Satisfiability (see page 537). string matching (see page
685).
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21.8 Longest Common Substring/Subsequence

Input description: A set S of strings S1, . . . , Sn.

Problem description: What is the longest string S′ such that all the charac-
ters of S′ appear as a substring or subsequence of each Si, 1 ≤ i ≤ n?

Discussion: Longest common substring/subsequence (LCS) arises whenever
we search for similarities across multiple texts. A particularly important ap-
plication concerns finding a consensus among biological sequences. The genes
for building proteins evolve with time, but the regions critical for function must
remain intact in order for them to work correctly. The longest common subse-
quence of a gene in different species provides insight into what has been con-
served over time.

The longest common subsequence problem for two strings is a special case of
edit distance (see Section 21.4 (page 688)), when substitutions are forbidden and
exact character match, insert, and delete are the only allowable edit operations.
Under these conditions, the edit distance between P and T is n+m−2|lcs(P, T )|,
because we can delete the missing characters from P to the lcs(P, T ) and then
insert the missing characters from T to transform P to T .

Issues arising in LCS include:

• Are you looking for a common substring? – When detecting plagiarism,
we seek to find the longest phrase shared between two or more docu-
ments. Since phrases are strings of consecutive characters, here we want
the longest common substring between the texts.

The longest common substring of a set of strings can be identified in
linear time, as discussed in Section 15.3 (page 448). The trick is to build
a suffix tree containing all the strings, label each leaf with the input string
it represents, and then do a depth-first traversal to identify the deepest
node with descendants from each input string.

• Are you looking for a common scattered subsequence? – For the rest of this
section we restrict attention to finding common scattered subsequences.
This algorithm is a special case of the dynamic programming edit-distance
computation. Indeed, an implementation is given on page 323.
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Let M [i, j] denote the number of characters in the longest common sub-
sequence of S[1], . . . , S[i] and T [1], . . . , T [j]. When S[i] �= T [j], the last
pair of characters cannot match, so M [i, j] = max(M [i, j−1],M [i−1, j]).
But if S[i] = T [j], we also have the option to select this character for our
substring, so M [i, j] = max(M [i− 1, j − 1] + 1,M [i− 1, j],M [i, j − 1]).

This recurrence computes the length of the longest common subsequence in
O(nm) time. We can reconstruct the actual sequence by walking backward
from M [n,m] to establish which characters were matched along the way.

• What if the strings are permutations? – Permutations are strings with-
out repeating characters. Two permutations define n pairs of matching
characters, and so the above algorithm runs in O(n lg n) time. A particu-
larly important case occurs in finding the longest increasing subsequence
of a numerical sequence p. Sorting the elements of p in increasing order
yields a sequence s. The longest common subsequence of p and s gives the
longest increasing subsequence.

• What if there are relatively few sets of matching characters? – There is a
faster algorithm when strings do not contain too many copies of the same
character, like the permutations above. Let r be the number of pairs of
positions (i, j) such that Si = Tj . In this technique, each of the r pairs
defines a point in the plane.

The complete set of such points can be found in O(n+m+ r) time using
bucketing techniques. We create a bucket for each alphabet symbol c and
each string (S or T ), then partition the positions of each character of the
string into the appropriate bucket. We then create a point (s, t) from
every pair s ∈ Sc and t ∈ Tc in the buckets Sc and Tc.

A common subsequence describes a monotonically non-decreasing path
through these points, meaning all moves on this path are up and to the
right. The longest such path can be found in O((n + r) lg n) time. We
sort the points in order of increasing x-coordinate, breaking ties in favor
of increasing y-coordinate. We insert points in this order, and maintain
the minimum terminal y-coordinate of any path going through exactly k
points, for 1 ≤ k ≤ n. Each new point (px, py) changes exactly one of
these paths, either identifying a new longest subsequence or reducing the
y-coordinate of the shortest path whose endpoint lies above py.

• What if we have more than two strings to align? – The basic dynamic pro-
gramming algorithm can be generalized to k strings, taking O(2knk) time,
where n is the length of the longest string. This algorithm is exponential
in the number of strings k, and so it becomes expensive for more than a
few strings. This problem is NP-complete, so no better exact algorithm is
destined to come along soon.

Many heuristics have been proposed for multiple sequence alignment.
They often start by computing the pairwise alignment for each pair of
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strings. One approach replaces the two most similar sequences with a sin-
gle merged sequence, and repeats until all alignments have been merged
into one. The catch is that two strings often have many different align-
ments of optimal cost. The “right” alignment to pick depends upon the
subsequent sequences to merge, and hence unknowable to the heuristic.

Implementations: Several programs are available for multiple sequence align-
ment of DNA/protein sequence data. ClustalW [THG94] is a popular and well-
regarded program for multiple alignment of protein sequences. It is available
at https://www.ebi.ac.uk/Tools/msa/. Another respectable option is the
MSA package for multiple sequence alignment [GKS95], which is available at
https://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/msa.html.

Any of the dynamic programming-based approximate string matching pro-
grams of Section 21.4 (page 688) can be used to find the longest common sub-
sequence of two strings.

Combinatorica [PS03] provides a Mathematica implementation of an algo-
rithm to construct the longest increasing subsequence of a permutation. This
algorithm is based on Young tableaux rather than dynamic programming. See
Section 22.1.8 (page 716).

Notes: Surveys of algorithmic results on longest common subsequence (LCS) prob-
lems include [BHR00, GBY91]. The algorithm for the case where all the characters
in each sequence are distinct or infrequent is due to Hunt and Szymanski [HS77], but
recently improved [IR09]. Expositions include [Aho90, Man89]. There has been a
surprising amount of recent work on this problem, including efficient bit-parallel al-
gorithms for LCS [CIPR01]. Masek and Paterson [MP80] solve the longest common
subsequence problem in O(mn/ log(min{m,n})) for constant-sized alphabets, using
the four Russians technique. No strongly subquadratic algorithm is possible without
refuting the strong exponential time hypothesis [ABW15, BK18].

Construct two random n-character strings on an alphabet of size α. What is the
expected length of their LCS? This problem has been extensively studied, with an
excellent survey by Dancik [Dan94].

Multiple sequence alignment for computational biology is a large field, with the
books of Gusfield [Gus97] and Compeau and Pevzner [CP18] serving as excellent in-
troductions. See [Not02] for a more recent survey. The hardness of multiple sequence
alignment follows from that of shortest common subsequence for large sets of strings
[Mai78].

We motivated the problem of longest common substring with the application of
plagiarism detection. See [SWA03] for the interesting details of how to implement a
plagiarism detector for computer programs.

Related problems: Approximate string matching (see page 688), shortest
common superstring (see page 709).

https://www.ebi.ac.uk/Tools/msa/
https://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/msa.html
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21.9 Shortest Common Superstring

Input description: A set of strings S = {S1, . . . , Sm}.
Problem description: Find the shortest string S′ that contains each string
Si as a substring of S′.

Discussion: Shortest common superstring/supersequence (SCS) arises in a va-
riety of applications. A casino gambling addict once asked me how to reconstruct
the pattern of symbols on the wheels of a slot machine. With every spin, the
wheel turns to a random position, displaying the selected symbol as well as
the symbols immediately before/after it. Given enough observations of the slot
machine, the symbol order for each wheel can be determined as the shortest
common (circular) superstring of the observed symbol triples.

A more important application of shortest common superstring is data/matrix
compression. Suppose we are given a sparse n × m matrix M , meaning that
most elements are zero. We can partition each row into m/k runs of k elements,
and construct the shortest common superstring S′ of all these runs. We can
now represent the matrix by the superstring, plus an n×m/k array of pointers
denoting where each run starts in S′. Any particular element M [i, j] can still
be accessed in constant time, but there will be substantial space savings when
|S| � mn.

Perhaps the most compelling application is in DNA sequence assembly. Ma-
chines readily sequence fragments of 100 to 1,000 base pairs, or characters of
DNA. But the real interest is in sequencing large molecules. Large-scale “shot-
gun” sequencing clones many copies of the target molecule, breaks them ran-
domly into fragments, sequences the fragments, and then proposes the shortest
superstring as the correct sequence.

Finding a superstring of a set of strings is not difficult, since we can simply
concatenate them together. Finding the shortest such string is what’s problem-
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atic. Indeed, shortest common superstring is NP-complete for all reasonable
classes of strings.

Finding the shortest common superstring can be reduced to the traveling
salesman problem (see Section 19.4 (page 594)). Create a directed overlap graph
G, where vertex vi represents string Si. Assign edge (vi, vj) weight equal to the
length of Si minus the overlap of Sj with Si. Thus, w(vi, vj) = 1 for Si = abc
and Sj = bcd. The minimum weight path visiting all the vertices defines the
shortest common superstring. These edge weights are not symmetric: note that
w(vj , vi) = 3 for the example above. Unfortunately, asymmetric TSP problems
are much harder to solve in practice than symmetric instances.

The greedy heuristic provides the standard approach to approximating short-
est common superstring. Identify which pair of strings have the maximum
overlap. Replace them by the merged string, and repeat until only one string
remains. This heuristic can be implemented in linear time. The seemingly most
time-consuming part is in building the overlap graph. The brute-force approach
to finding the maximum overlap of two length-l strings takes O(l2) time for each
of O(n2) string pairs. But a faster construction is made possible by suffix trees
(see Section 15.3 (page 448)). Build a tree containing all suffixes of all strings
from S. String Si overlaps with Sj iff a suffix of Si matches the prefix of Sj—an
event defined by a vertex of the suffix tree. Traversing these vertices in order of
distance from the root defines the appropriate merging order.

How well does the greedy heuristic perform? It can certainly be fooled into
creating a superstring that is twice as long as optimal. The optimal merging
order for strings c(ab)k, (ba)k, and (ab)kc is left to right. But greedy starts by
merging the first and third string, leaving the middle one no overlap possibility.
The greedy superstring can never be worse than 3.5 times optimal, and usually
will be much better in practice.

Building superstrings becomes difficult when the input contains both positive
strings (each of which must be a substring of the superstring) and negative
strings (each of which is forbidden to appear in the final result). Deciding
whether any such consistent string exists is NP-complete, unless you are allowed
to add an extra character to the alphabet to use as a spacer.

Implementations: Several high-performance programs for DNA sequence as-
sembly are available. Such programs correct for sequencing errors, so the final
result is not necessarily a superstring of the input reads. At the very least, they
will serve as excellent models if you really need a short proper superstring.

CAP3 (Contig Assembly Program) [HM99] and PCAP [HWA+03] are the
latest in a series of assemblers by Xiaoqiu Huang and his collaborators, which
are available from http://seq.cs.iastate.edu/. They have been used on
mammalian scale assembly projects involving hundreds of millions of bases.

The Celera assembler that sequenced the human genome is now available as
open source. See https://sourceforge.net/projects/wgs-assembler/.

Notes: The shortest common superstring (SCS) problem and its application to DNA
shotgun assembly are ably surveyed in [MKT07, Mye99a, SP15]. Kececioglu and
Myers [KM95] report on an algorithm for this more general version of shortest common

http://seq.cs.iastate.edu/
https://sourceforge.net/projects/wgs-assembler/
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superstring, where the strings are assumed to have character substitution errors. Their
paper is recommended reading to anyone interested in fragment assembly.

Blum et al. [BJL+94] gave the first constant-factor approximation algorithms for
shortest common superstring, using a variation of the greedy heuristic. More recent
research has beaten this constant down to 2.367 [Muc13, Pal14], progress towards the
expected factor-2 result. The best approximation ratio so far proven for the standard
greedy heuristic is 3.5 [KS05a]. Fast implementations of such heuristics are described
in [Gus94].

Experiments on shortest common superstring heuristics are reported in [RBT04],
which suggest that greedy heuristics typically produce solutions within 1.4% of optimal
for a reasonable class of inputs. Experiments with genetic algorithm approaches are
reported in [ZS04]. Analytical results [YZ99] demonstrate very little compression on
the SCS of random sequences, largely because the expected overlap length of any two
random strings is small.

Related problems: Suffix trees (see page 448), text compression (see page
693).



Chapter 22

Algorithmic Resources

This chapter briefly describes resources that the working algorithm designer
should be familiar with. Although some of this information has appeared else-
where in the catalog, we collect the most important pointers here for general
reference.

22.1 Algorithm Libraries

A good algorithm designer does not reinvent the wheel, and a good programmer
does not rewrite code that other people have written. Picasso put it best: “Good
artists borrow. Great artists steal.”

But a word of caution about stealing. Many of the codes described in this
book have been made available only for research or educational use. Commercial
use may require a licensing arrangement with the author. I urge you to respect
this. Licensing terms from academic institutions are usually quite modest. The
recognition that industry is using a particular code is important to the authors,
often more important than the money involved. Do the right thing and get
a license. Information about terms or whom to contact is usually available
embedded within the documentation, or available at the source’s website.

Although many of the systems described here may be available by accessing
the algorithm repository, www.algorist.com I strongly encourage you to get
them from the original sites. First, the version on the original site is much
more likely to be up-to-date. Second, there are often extra supporting files and
documentation that may be of interest to you. Finally, many authors monitor
the downloads of their codes, and so you deny them a well-earned thrill if you
don’t take them from the original site.

22.1.1 LEDA

LEDA, for Library of Efficient Data types and Algorithms, is perhaps the best
single resource available to support combinatorial computing. LEDA was origi-
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nally developed by a group at the Max Planck Institut in Saarbrücken, Germany.
LEDA is unique because of (1) the algorithmic sophistication of its developers,
and (2) the level of continuity and resources invested in the project.

What LEDA offers is a complete collection of well-implemented C++ data
structures and types. Particularly useful is the graph type, which supports all
basic operations in an intelligent way. A useful library of graph algorithms
is included, which illustrates how cleanly and concisely these algorithms can
be implemented using the LEDA data types. Good implementations of the
most important data structures supporting dictionaries and priority queues are
provided. For more, see the book [MN99].

LEDA is exclusively available from Algorithmic Solutions Software GmbH
(https://www.algorithmic-solutions.com/). This ensures professional-quality
support, and new releases appear often. A free edition contains all the basic
data structures, including dictionaries, priority queues, graphs, and numerical
types. No source code or advanced algorithms are provided with the free edi-
tion. But the licensing fees for the full library are not outlandish, and free trial
downloads are available. Check it out.

22.1.2 CGAL

The Computational Geometry Algorithms Library or CGAL provides efficient
and reliable geometric algorithms in C++. It is very comprehensive, offering
a rich variety of triangulations, Voronoi diagrams, operations on polygons and
polyhedra, line/curve arrangements, alpha-shapes, convex-hull algorithms, and
geometric search structures. Many work in three dimensions and beyond.

CGAL (https://www.cgal.org) should be the first place to go for serious
geometric computing. CGAL is distributed under a dual-license scheme. It can
be used together with open source software free of charge, but using CGAL in
other contexts requires obtaining a commercial license.

22.1.3 Boost Graph Library

Boost (www.boost.org) provides a well-regarded collection of free peer-reviewed
portable C++ source libraries, encouraging both commercial and non-commercial
use.

The Boost Graph Library [SLL02] (http://www.boost.org/libs/graph/
doc) is perhaps most relevant for the readers of this book. Implementations of
adjacency lists, matrices, and edge lists are included, along with a reasonable
library of basic graph algorithms. Its interface and components are generic in the
same sense as the C++ Standard Template Library (STL). Other Boost libraries
of interest include string/text processing and math/numeric computation.

22.1.4 Netlib

Netlib (https://netlib.org/) is an online repository of mathematical software
that contains a large number of interesting codes, tables, and papers. Netlib

https://www.algorithmic-solutions.com/
https://www.cgal.org
www.boost.org
http://www.boost.org/libs/graph/doc
http://www.boost.org/libs/graph/doc
https://netlib.org/
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is important because of its breadth and ease of access. Whenever you need a
specialized piece of mathematical software, you should look here first.

The Guide to Available Mathematical Software (GAMS), is an indexing
service for Netlib and other related software repositories that can help you find
what you want. Check it out at https://gams.nist.gov. GAMS is a service
of the National Institute of Standards and Technology (NIST).

22.1.5 Collected Algorithms of the ACM

An early mechanism for the distribution of useful algorithm implementations
was the Collected Algorithms of the ACM (CALGO). It first appeared in Com-
munications of the ACM in 1960, covering such famous algorithms as Floyd’s
linear-time build heap algorithm. More recently, it has been the province of the
ACM Transactions on Mathematical Software. Each algorithm/implementation
is described in a brief journal article, with the implementation validated and
collected. These implementations are maintained at https://www.acm.org/

calgo/ and at Netlib.
Almost 1,000 algorithms have appeared to date. Most of the codes are in

Fortran and are relevant to numerical computing, although several interesting
combinatorial algorithms have slithered their way into CALGO. Since the im-
plementations have been refereed, they are presumably more reliable than most
comparable software.

22.1.6 GitHub and SourceForge

With over 28 million public repositories, the software development platform
GitHub (https://github.com) is the largest host of source code in the world.
A GitHub search should be your second stop when seeking implementations of
algorithms: go there immediately after you check the relevant catalog entry in
this book. All interesting recent codes are likely to be found there, including
over a dozen of the systems referred to in the catalog.

SourceForge (http://sourceforge.net/) is an older open source software
development website, with over 160,000 registered projects. There is still a lot
of good stuff to be found, including graph libraries such as JUNG and JGraphT,
optimization engines such as lpsolve and JGAP, and much more.

22.1.7 The Stanford GraphBase

The Stanford GraphBase is an interesting program for several reasons. First, it
was composed as a “literate program,” meaning that it was written to be read.
If anybody’s programs deserve to be read, it is Knuth’s, and [Knu94] contains
the full source code of the system.

The GraphBase contains implementations of several important combinato-
rial algorithms, including matching, minimum spanning trees, and Voronoi di-
agrams, as well as specialized topics like constructing expander graphs and
generating combinatorial objects. Finally, it contains programs for several

https://gams.nist.gov
https://www.acm.org/calgo/
https://www.acm.org/calgo/
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recreational problems, including constructing word ladders (flour–floor–flood–
blood–brood–broad–bread) and establishing dominance relations among foot-
ball teams. Check it out at http://www-cs-faculty.stanford.edu/~knuth/
sgb.html.

Although the GraphBase is fun to play with, it is not really suited for build-
ing general applications on top of. The GraphBase is perhaps most useful as
an instance generator for constructing a wide variety of graphs to serve as test
data.

22.1.8 Combinatorica

Combinatorica [PS03] is a collection of over 450 algorithms for combinatorics
and graph theory written in Mathematica. Combinatorica has been widely used
for both research and education.

Although (in my totally unbiased opinion) Combinatorica is more compre-
hensive and better integrated than other libraries of combinatorial algorithms,
it is also the slowest such system available. Combinatorica is best for finding
quick solutions to small problems, and (if you can read Mathematica code) as
a terse exposition of algorithms for translation into other languages.

Check out http://www.combinatorica.com for the latest release and asso-
ciated resources. As graphs have become more important, much of its function-
ality has migrated into Mathematica itself. It is also included with the standard
Mathematica distribution in Packages/DiscreteMath/Combinatorica.m.

22.1.9 Programs from Books

Several books on algorithms include working implementations of the algorithms
in a real programming language. Although these implementations are intended
primarily for exposition, they can also be useful for computation. Since they
are typically small and clean, they can prove the right foundation for simple
applications.

The most useful codes of this genre are described below. Most are available
from the algorithm repository, www.algorist.com.

• Programming Challenges – If you like the C code that appeared in the
first half of the text, you should check out the programs I wrote for the
book Programming Challenges [SR03]. Perhaps most useful are additional
examples of dynamic programming, computational geometry routines like
convex hull, and a bignum integer arithmetic package. This algorithm
library is available at:

https://www.cs.stonybrook.edu/~skiena/392/programs/, and

https://github.com/SkienaBooks/Algorithm-Design-Manual-Programs.

• Combinatorial Algorithms for Computers and Calculators – Nijenhuis and
Wilf [NW78] specializes in algorithms for constructing basic combinatorial
objects such as permutations, subsets, and partitions. Such algorithms

http://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://www.combinatorica.com
http://www.algorist.com
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are often very short, but they are hard to locate and usually surprisingly
subtle. Fortran routines for all of the algorithms are provided, as well
as a discussion of the theory behind each of them. Both random and
sequential generation algorithms are provided. Descriptions of more recent
algorithms for several problems, without code, are provided in [Wil89].

These programs are now available from the algorithm repository website.
I tracked them down from Neil Sloane, who had them on a magnetic tape,
while the original authors did not!

• Computational Geometry in C – O’Rourke [O’R01] is perhaps the best
practical introduction to computational geometry, because of its careful
and correct C language implementations of all the main algorithms of
computational geometry. Fundamental geometric primitives, convex hulls,
triangulations, Voronoi diagrams, and motion planning are all included.
Although they were implemented primarily for exposition rather than pro-
duction use, they should be quite reliable. The codes are available from
http://cs.smith.edu/~jorourke/code.html.

• Algorithms in C++ – Sedgewick’s popular algorithms text [Sed98, SW11]
comes in several different language editions, including C, C++, and Java.
This book distinguishes itself through its use of algorithm animation and
in its broad topic coverage, including numerical, string, and geometric
algorithms. Code from the Java edition is available from https://algs4.

cs.princeton.edu/.

• Discrete Optimization Algorithms in Pascal – This collection of 28 pro-
grams for solving discrete optimization problems appears in the book by
Syslo, Deo, and Kowalik [SDK83]. The package includes programs for
integer and linear programming, the knapsack and set cover problems,
traveling salesman, vertex coloring, and scheduling, as well as standard
network optimization problems. They have been made available from the
algorithm repository at www.algorist.com.

22.2 Data Sources

It is often important to have interesting data to feed your algorithms, to serve as
test data to ensure correctness or to compare different algorithms for raw speed.
Finding good test data can be surprisingly difficult. Here are some pointers:

• Stanford Network Analysis Project (SNAP) – This resource couples a gen-
eral purpose network analysis library that scales to hundreds of millions
of nodes with a nice collection of real-world graphs drawn from social net-
works, citation networks, and communications networks. All are available
from https://snap.stanford.edu/.

http://cs.smith.edu/~jorourke/code.html
https://algs4.cs.princeton.edu/
https://algs4.cs.princeton.edu/
http://www.algorist.com
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• TSPLIB – This well-respected library of test instances for the traveling
salesman problem [Rei91] provides the standard collection of hard in-
stances of TSPs. TSPLIB instances are large, real-world graphs, derived
from applications such as circuit boards and networks, and are available
from http://www.math.uwaterloo.ca/tsp/data.

• Stanford GraphBase – As discussed in Section 22.1.7, this suite of programs
by Knuth provides portable generators for a wide variety of graphs. These
include graphs arising from distance matrices, arts, and literature, as well
as graphs of more theoretical interest.

22.3 Online Bibliographic Resources

The web is a fantastic resource for people interested in algorithms. What follows
is a selective list of the resources that I use most often. All should be in the
tool chest of every algorist:

• Google Scholar – This free resource (https://scholar.google.com/) re-
stricts web searches to things that look like academic papers, making it a
sounder search for serious information than a general web search. Partic-
ularly useful is the ability to see which papers cite a given paper. This lets
you update an old reference to see what has happened since publication,
and helps to judge the significance of a particular article.

• ACM Digital Library – This collection of bibliographic references provides
links to essentially every technical paper ever published in computer sci-
ence. Check out what is available at https://portal.acm.org/.

• Arxiv – This preprint server with over 1.6 million papers is where re-
searchers disseminate results before they are formally published—at which
time they are out of date. This is the place to go to find the latest research
on any topic discussed in this book. Check it out at https://arxiv.org/.

22.4 Professional Consulting Services

Algorist Technologies (http://www.algorist.com) is a consulting firm that
provides its clients with short-term, expert help in algorithm design and imple-
mentation. Typically, an Algorist consultant is called in for one to three days
worth of intensive discussion and analysis with the client’s own development
staff. Algorist has built an impressive record of performance improvements
with several companies and applications. Email info@algorist.com for more in-
formation on our services.

Algorist Technologies
215 West 92nd St. Suite 1F

New York, NY 10025

http://www.math.uwaterloo.ca/tsp/data
https://scholar.google.com/
https://portal.acm.org/
https://arxiv.org/
http://www.algorist.com
mailto:info@algorist.com
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biconnected graphs, 474, 568, 599
Big Oh notation, 34, 62
bijection, 522
bin packing, 652
bin packing – applications, 536, 576
bin packing – knapsack problem,

499
bin packing – related problems,

500, 536
binary heap, 446
binary representation – subsets,

522
binary search, 49, 148, 510
binary search – applications, 450,

707
binary search – counting

occurrences, 149
binary search – one-sided, 149, 512
binary search tree, 81, 443, 446,

646
binary search tree - applications, 83
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binary search tree – computational
experience, 100

binomial coefficients, 312
biocomputing, 600
biology, 99
bipartite graph, 267, 604
bipartite graph recognition, 219
bipartite incidence structures, 453
bipartite matching, 267, 447, 483,

562, 604
bipartite matching – applications,

275, 534
birthday paradox, 184
bisection method, 150
bit representation of graphs, 455
bit vector, 454, 457, 507, 518
bit vector – applications, 24, 490
Bitcoin, 700
blackmail graph, 263
blind man’s algorithm, 669
block – set partition, 526
blossoms, 563
board evaluation function, 480
bookshelves, 333
Boolean logic minimization, 591,

678
Boolean matrix multiplication, 474
Boost graph library, 207
borrowing, 494
Boruvka’s algorithm, 552
boss’s delight, 6
bottleneck spanning tree, 254
boundaries, 19
boundary conditions, dynamic

programming, 322
bounded-height priority queue, 446
bounding boxes, 650
Boyer–Moore algorithm, 686
brainstorming, 429
branch and bound search, 299
branch-and-bound search, 588, 595,

615
breadth-first search, 221, 542, 551,

555
breadth-first search (BFS), 214

breadth-first search – applications,
471

bridge, 568
bridge edge, 229
bridges of Königsberg, 567
Brook’s theorem, 607
brush fire, 656
brute-force search, 486
bubblesort, 506
bucket sort, 507
bucketing techniques, 136, 442, 647
bucketing techniques – graphics,

275
budget, fixed, 497
built-in random number generator,

487
buying fixed lots, 678

C language, 491, 503, 557, 563,
570, 573, 588, 606, 613,
628, 632, 636, 646, 651,
673, 710

C sorting library, 114
C++, 439, 444, 447, 454, 458, 544,

548, 552, 557, 564, 567,
570, 582, 625, 639, 643,
646, 650

C++ templates, 714
cache, 31
cache-oblivious algorithms, 443
Caesar shifts, 697
calendrical calculations, 532
call graph, 569
canonical order, 456, 521, 677
canonicalization, 97
canonically labeled graphs, 613
CAP3, 710
Carmichael numbers, 492
cars and tanks, 666
cartoons, 19
casino analysis, 33
casino poker, 486
catalog website, 438
Catch-22 situation, 535
caveat, 438
center vertex, 555, 557, 579
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CGAL, 621, 650, 714
chain of matrices, 473
chaining, 93
characters, 19
checksum, 699
chess program, 478, 514
chessboard coverage, 296
Chinese calendar, 532
Chinese postman problem, 565
Chinese remainder theorem, 495
Christofides heuristic, 597
chromatic index, 608
chromatic number, 604
chromatic polynomials, 606
cipher, 697
circle, 488
circuit analysis, 467
circuit board assembly, 5
circuit board placement –

simulated annealing, 411
circuit layout, 470
circuit testing, 281
circular embeddings, 576
classification, 615
classification – nearest-neighbor,

637
clauses, 538
clique, 586
clique – definition, 366
clique – hardness proof, 366
clique – related problems, 590
clock, 487
closest point, 637
closest-pair heuristic, 7
closest-pair problem, 110, 639
closure, 559
clothing – manufacturing, 654
cloudy days, 666
cluster, 18
cluster identification, 542, 549
clustered access, 512
clustering, 256, 437, 586
co-NP, 492
co-planar points, 475
coding theory, 589
cofactor method, 476

coin flip, 522
collapsing dense subgraphs, 601
Collected Algorithms of the ACM,

499, 715
collection, 18
color interchange, 605
coloring graphs, 604
combinatorial generation, 527
combinatorial generation

algorithms, 717
combinatorial geometry, 672
combinatorial problems, 505
Combinatorica, 455, 505, 520, 523,

527, 531, 552, 561, 567,
580, 606, 708, 716

commercial implementations, 483
committee, 18
committee – congressional, 453
common substrings, 706
communication in circuits, 602
communications networks, 554, 571
compaction, 693
comparison function, 115
comparisons – minimizing, 516
compiler, 487
compiler construction, 702
compiler optimization, 342, 604
compiler optimization –

performance, 56
complement, 452
complement graph, 589
completion time – minimum, 535
complex numbers, 425
complexity classes, 492
composite integer, 490
compositions, 527
compression, 693
compression – image, 501
computational biology, 99
computational complexity, 612
computational geometry, 621
computational number theory, 492,

496
computer algebra system, 479, 493
computer graphics, 472
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computer graphics – applications,
90

computer graphics – rendering, 661
computer vision, 655
concatenation – string, 710
concavities, 628
concavity elimination, 661
conditional probability, 174, 175
configuration space, 669
configurations, 19
conjugate gradient methods, 480
conjunctive normal form (CNF),

538
connected component, 218, 225
connected components, 219, 457,

524, 542
connected components – related

problems, 561, 570
connectivity, 225, 544, 568
consensus sequences, 706
consistent schedule, 534
constrained Delaunay

triangulation, 631
constrained optimization, 478, 484,

485, 539
constraint elimination, 618
consulting services, 432, 718
container, 75, 457
context-free grammars, 687
Contig Assembly Program, 710
control systems – minimization,

702
convex decomposition, 641, 658
convex hull, 111, 626, 635
convex hull – related problems,

597, 663
convex polygons, 675
convex polygons – intersection, 649
convex region, 483
convolution – polygon, 675
convolution – sequences, 501
cookbook, 438
cooling schedules, 407
coordinate transformations, 472
copying a graph, 212
corporate ladder, 579

correctness – algorithm, 4
correlation function, 502
counterexample construction, 8
counting edges and vertices, 212
counting Eulerian cycles, 567
counting integer partitions, 525
counting linear extensions, 547
counting matchings, 476
counting paths, 473, 612
counting set partitions, 526
counting spanning trees, 553
covering polygons with convex

pieces, 659
covering set elements, 678
Cramer’s rule, 476
CRC, 699
critical path method, 536
crossing number, 582
crossings, 574
cryptography, 697
cryptography – keys, 486
cryptography – related problems,

492, 496, 696
CS, 573
CSA, 563, 570
cubic regions, 461
curve fitting, 484
cut set, 569, 601
Cuthill–McKee algorithm, 471
cutting plane methods, 483, 595
cutting stock problem, 652
CWEB, 716
cycle – shortest, 556
cycle breaking, 619
cycle detection, 222, 544
cycle in graph, 199
cycle length, 488
cycle structure of permutations,

520
cyclic-redundancy check (CRC),

699

DAG, 200, 231, 397
DAG – longest path in, 599
DAG – shortest path in, 556
data compression, 327
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Data Encryption Standard (DES),
697

data filtering, 514
data records, 18
data structures, 69, 439
data transmission, 693
data validation, 699
database algorithms, 685
database application, 641
database query optimization, 561
Davenport–Schinzel sequences,

459, 670, 673
Davis-Putnam procedure, 538
day of the week calculation, 532
de Bruijn sequence, 567, 599
De Morgan’s laws, 538
deadlock, 544
debugging graph algorithms, 542
debugging parallel programs, 160
debugging randomized algorithms,

487
debugging tools, 578
decimal arithmetic, 494
decompose space, 460
decomposing polygons, 630
deconvolution, 501
decrease-key, 447
decreasing subsequence, 323
decryption, 697
defenestrate, 511
degeneracy, 622
degeneracy testing, 671
degenerate configuration, 475
degenerate system of equations,

467
degree sequence, 530
degree, vertex, 202, 612
degrees of freedom, 668
Delaunay triangulation, 631, 635,

639
Delaunay triangulation –

applications, 551
deletion from binary search tree, 85
deletions – text, 688
deliveries and pickups, 565
delivery routing, 534

Democrat/Republican
identification, 637

dense graphs, 202, 452, 599
dense subgraph, 587
densest sphere packing, 654
depth-first search, 224, 230, 449,

452, 542, 546, 551, 559,
568, 599

depth-first search – applications,
394, 566, 582, 596, 605,
706

depth-first search – backtracking,
282

dequeue, 76
derangement, 194, 303
derivatives – automata, 704
derivatives – calculus, 479
DES, 697
descendant, 18
design process, 429
design rule checking, 648
determinant, 467
determinant – related problems,

469
determinants and permanents, 475
deterministic finite automata

(DFA), 702
DFA, 702
DFS, 224
diameter of a graph, 557
diameter of a point set, 626
dictionaries – related problems,

509, 513
dictionary, 76, 440, 445, 457
dictionary – applications, 92
dictionary – related problems, 447
dictionary – searching, 510
diff – how it works, 688
digital geometry, 656
digital signatures, 700
digitized images, 554
Dijkstra’s algorithm, 258, 302, 555,

557
DIMACS, 444, 463
DIMACS Implementation

Challenge, 564, 573, 588,
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606
Dinic’s algorithm, 573
directed acyclic graph (DAG), 200,

535, 546, 618
directed cycle, 546
directed graph, 198, 201
directed graphs – automata, 702
directory file structures, 578
disclaimer, 438
discrete event simulation, 486
discrete Fourier transform, 501, 502
discrete mathematics software, 716
discussion section, 437
disjoint paths, 569
disjoint set union, 459
disjoint subsets, 457
disjunctive normal form (DNF),

538, 678
disk access, 443
disk drives, 693, 699
dispatching emergency vehicles,

637, 644
dispersion problems, 589
distance graph, 595
distance metrics, 257
distinguishable elements, 519
distribution sort, 136, 507
divide and conquer, 129, 147, 495,

502, 601
division, 490, 493
DNA, 99
DNA sequence comparisons, 706
DNA sequencing, 275, 414, 709
dominance orderings, 18, 642
DOS file names, 275
double-precision arithmetic, 465,

493, 623
Douglas–Puecker algorithm, 662
drawing graphs – related problems,

580
drawing graphs nicely, 574
drawing puzzles, 565
drawing trees, 578
drawing trees – related problems,

577, 583
driving time minimization, 594

drug discovery, 667
DSATUR, 606
dual graph, 90, 211
duality, 501, 627
duality transformations, 672
duplicate elimination, 442
duplicate elimination – graphs, 610
duplicate elimination –

permutations, 518
duplicate keys, 506
dynamic convex hulls, 629
dynamic data structures, 639, 647
dynamic graph algorithms, 455
dynamic programming, 307, 474,

498, 556, 599, 633, 706
dynamic programming –

applications, 659, 688
dynamic programming –

initialization, 689
dynamic programming – shortest

paths, 267
dynamic programming – space

efficiency, 324
dynamic programming traceback,

319

eccentricity of a graph, 557
economics – applications to, 620
edge, 198
edge and vertex connectivity, 568
edge chromatic number, 608
edge coloring, 605, 608
edge coloring – applications, 534
edge coloring – related problems,

536, 607
edge connectivity, 229
edge cover, 592, 679
edge disjoint paths, 569
edge flipping operation, 530
edge labeled graphs, 702
edge length, 574
edge tour, 599
edge/vertex connectivity – related

problems, 545, 573, 603
edit distance, 314, 706
Edmond’s algorithm, 564
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efficiency of algorithms, 4
electrical circuits, 197
electrical engineers, 501
electronic circuit analysis, 467
element uniqueness problem, 110,

516
elimination ordering, 581
ellipsoid algorithm, 485
elliptic-curve method, 492
embedded graph, 200
embeddings – planar, 581
empirical results, 561, 606
empirical results – heuristics, 617
empirical results – string matching,

687
employees to jobs – matching, 562
empty circle – largest, 634
empty rectangle, 654
enclosing boxes, 650
enclosing disk, 668
enclosing rectangle, 654
encryption, 697
energy function, 478
energy minimization, 576, 617
English language, 12, 511
English to French, 512
enqueue, 76
epsilon-moves, 703
equilateral triangle, 616
equivalence classes, 612
equivalence classes – automata

states, 703
Erdős-Gallai conditions, 531
Erdős-Rényi graphs, 529
error, 465
estimating closure sizes, 561
ethnic groups in Congress, 679
Euclid’s algorithm, 496
Euclidean minimum spanning tree,

596
Euclidean traveling salesman, 393
Euler’s formula, 581
Eulerian cycle, 565
Eulerian cycle – applications, 534
Eulerian cycle – line graphs, 609

Eulerian cycle – related problems,
600

Eulerian path, 565
evaluation function, 478
even-degree vertices, 566
even-length cycles, 563
event, 173
event queue, 650
evolutionary tree, 615
exact cover problem, 683
exact string matching, 688
exam scheduling, 608
exercises, 27, 59, 103, 140, 166,

193, 235, 276, 303, 345,
383, 426

exhaustive search, 24, 517
exhaustive search – application, 8
exhaustive search – empirical

results, 597
exhaustive search – subsets, 521
expanded obstacles approach, 668
expander graphs, 716
expected time, 33
expected value, 173
expected-time, linear, 515
experiment, 172
experimental analysis – set cover,

681
experimental graph theory, 528
explicit graph, 200
exponential time, 316
exponential-time algorithms, 281,

585
exponentiation, 50, 495
external memory, 512
external-memory sorting, 506, 507

facets, 627
facility location, 589, 634
factorial function, 153
factoring, 423
factoring and primality testing, 490
factoring and primality testing –

related problems, 496, 701
factory location, 634
family tree, 18, 578
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fan out minimization for networks,
551

Fary’s theorem, 583
fast Fourier transform (FFT), 502
fat cells, 461
fattening polygons, 674
feature sets, 666
Federal Sentencing Guidelines, 51
feedback edge/vertex set, 547, 618
feedback edge/vertex set – related

problems, 548
Fermat, 617
Fermat’s theorem, 491
Ferrer’s diagram, 525
FFT, 422, 496, 502
FFTPACK, 503
fgrep, 686
Fibonacci heap, 447, 552, 557
Fibonacci numbers, 153, 308
FIFO, 75
FIFO queue, 215
file difference comparison, 688
file layout, 470
filtering outlying elements, 514
filtering signals, 501
final examination, 698
financial constraints, 497
find operation, 458
finite automata, 702
finite automata minimization, 686
finite element analysis, 632
finite state machine minimization,

702
firehouse, 637
first-fit – decreasing, 653
first-in, first-out (FIFO), 75
fixed degree sequence graphs, 530
fixed-parameter tractability, 620
flat-earth model, 32
Fleury’s algorithm, 567
flight crew scheduling, 682
flight ticket pricing, 125
floating-point arithmetic, 623
Floyd’s algorithm, 262, 556, 557,

559
football program, 600

football scheduling, 608
Ford-Fulkerson algorithm, 270
Fortran, 465, 469, 471, 473, 476,

499, 503, 520, 526, 531,
606, 654, 660, 715, 717

Fortune’s algorithm, 635
four Russians algorithm, 474, 692,

708
four-color problem, 528, 607
Fourier transform, 422
Fourier transform – applications,

662
Fourier transform – multiplication,

495
Fourier transform – related

problems, 663
fragment ordering, 275
fraud – tax, 586
free space, 670
free trees, 578
freedom to hang yourself, 429
frequency distribution, 110
frequency domain, 501
friendship graph, 201, 586
function interpolation, 630
furniture moving, 667
furthest-point insertion heuristic,

596
furthest-site diagrams, 636
future events, 445

game-tree search, 510
game-tree search – parallel, 160
games directory, 490
GAMS, 481, 715
gaps between primes, 491
garbage trucks, 565
Gates, William, 514
Gaussian distribution, 488, 502
Gaussian elimination, 467, 470
Genbank searching, 688
generating graphs, 528
generating partitions, 524
generating partitions – related

problems, 459, 520, 523
generating permutations, 517
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generating permutations – related
problems, 489, 523, 527,
531, 533

generating subsets, 521
generating subsets – applications,

23
generating subsets – related

problems, 459, 489, 520,
527

genetic algorithms, 417, 481
geographic information systems

(GIS), 641
geometric data structure, 98
geometric degeneracy, 622
geometric primitives – related

problems, 477
geometric shortest path, 555, 667
geometric spanning tree, 551
geometric Steiner tree, 614
geometric traveling salesman

problem, 5
geometric TSP, 595
GEOMPACK, 660
gerrymandering, 658
Gibbs–Poole–Stockmeyer

algorithm, 471
gift-wrapping algorithm, 627
Gilbert and Pollak conjecture, 617
girth, 556
global optimization, 478
Graham scan, 628
Grail, 704
graph, 197
graph algorithms, 197, 446
graph algorithms – bandwidth

problem, 470
graph complement, 452
graph data structures, 98, 243, 452
graph data structures –

applications, 702
graph data structures – Boost, 207
graph data structures – LEDA,

207, 714
graph databases, 453
graph density, 452

graph drawing – related problems,
583

graph drawings – clutter, 560
graph embedding, 453
graph isomorphism, 517, 531, 610
graph isomorphism – related

problems, 531, 666
graph partition, 454, 569, 601
graph partition – related problems,

570
graph theory, 197
graph theory packages, 716
graph traversal, 212
GraphBase, 454, 530, 552, 564,

600, 620, 716
graphic partitions, 531
graphical enumeration, 531
graphs, 18
Gray code, 522, 523
greatest common divisor (gcd),

359, 423, 493
greedy heuristic, 91, 245, 343, 499,

590, 680, 683
greedy heuristic – Huffman codes,

695
greedy heuristic – minimum

spanning trees, 549
Gregorian calendar, 533
grid embeddings, 582
grid file, 645
grid search, 480
Grinch, The, 140
group – automorphism, 610
Grover’s algorithm, 420, 513
growth rates, 37
guarantees – importance of, 390
guarding art galleries, 660
Guide to Available Mathematical

Software, 715
gzip, 695

H-index, 526
hackerrank, 30, 67, 107, 146, 169,

195, 242, 280, 306, 353,
388, 428

had-sex-with graph, 201



INDEX 779

half-space intersection, 627
Hamiltonian cycle, 474, 561, 594,

598
Hamiltonian cycle – applications,

534
Hamiltonian cycle – counting, 477
Hamiltonian cycle – hardness

proof, 362
Hamiltonian cycle – hypercube,

523
Hamiltonian cycle – line graphs,

609
Hamiltonian cycle – related

problems, 567, 597
Hamiltonian path, 551
Hamiltonian path – applications,

90
Hamming distance, 664
hardness of approximation, 586
hardware arithmetic, 494
hardware design applications, 702
hardware implementation, 503
hash function, 442
hash tables, 93, 442
hash tables – computational

experience, 100
hash tables – size, 490
Hausdorff distance, 665
heap, 446
heap construction, 153
heapsort, 116, 506
heard-of graph, 201
heart-lung machine, 441
heating ducts, 614
Hebrew calendar, 532
Hertel–Mehlhorn heuristic, 659
heuristics, 399, 652
heuristics – empirical results, 596
hidden-surface elimination, 649
hierarchical decomposition, 454,

461
hierarchical drawings, 578
hierarchical graph structures, 454,

455
hierarchy, 18
Hierholzer’s algorithm, 566

high school algebra, 467
high school cliques, 586
high-precision arithmetic – related

problems, 492, 503
higher-dimensional data structures,

460
higher-dimensional geometry, 627,

635, 638
hill climbing, 479
HIPR, 573
historical objects, 532
history, 438, 509
history – cryptography, 701
history – graph theory, 567
hitting set, 679
HIV virus, 417
homeomorphism, 583
horizon, 650
Horner’s rule, 28, 442, 495
How to Solve It, 433
hub site, 595
Huffman codes, 695
human genome, 99
Hungarian algorithm, 564
hypercube, 161, 523
hypergraph, 453, 455, 457
hyperlinks, 529
hyperplanes, 673
hypertext layout, 470

identical graphs, 610
IEEE Data Compression

Conference, 696
image compression, 637, 661, 693,

694
image data, 461
image features, 666
image filtering, 501
image processing, 655
image segmentation, 554
image simplification, 662
implementation challenges, 30, 67,

108, 146, 169, 195, 242,
280, 306, 353, 388, 428,
444, 463

implementations, caveats, 438
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implicit binary tree, 446
implicit graph, 200
impress your friends algorithms,

533
in-circle test, 625
in-order traversal, 222
inapproximability results, 681
incidence matrices, 453
inconsistent linear equations, 482
increasing subsequences, 323, 707
incremental algorithms, 575
incremental change methods, 517
incremental insertion algorithms –

arrangements, 672
incremental insertion algorithms –

coloring, 605
incremental insertion algorithms –

graph drawing, 582
incremental insertion algorithms –

sorting, 124
incremental insertion algorithms –

suffix trees, 450
incremental insertion algorithms –

TSP, 596
independence, 174
independent set, 275, 589
independent set – alternate

formulations, 682
independent set – hardness proof,

363
independent set – related problems,

588, 593, 607, 684
independent set – simulated

annealing, 410
index – how to use, 437
index manipulation, 322
induced subgraph, 587, 606
induced subgraph isomorphism,

611
induction and recursion, 15
inequivalence of programs with

assignments, 376
information retrieval, 510
information theory, 489
input–output graphics, 437
insertion into binary search tree, 84

insertion sort, 3, 124, 506, 508
insertions – text, 688
inside–outside polygon, 644
instance – definition, 3
integer arithmetic, 623
integer compositions, 527
integer factorization, 612, 698
integer partition, 498, 524, 530, 652
integer programming, 483
integer programming –

applications, 499, 535
integer programming – hardness

proof, 371
integer programming – related

problems, 500
integrality constraints, 483
interfering tasks, 608
interior-point methods, 483
Internal Revenue Service (IRS),

586
Internet, 486, 718
interpolation search, 512
intersection – halfspaces, 483
intersection – set, 456
intersection detection, 648
intersection detection –

applications, 665
intersection detection – related

problems, 625, 673
intersection point, 467
interview scheduling, 608
invariant – graph, 612
inverse Ackerman function, 459
inverse Fourier transform, 501
inverse matrix, 469, 475
inverse operations, 518
inversions, 475
isomorphism, 531
isomorphism – graph, 610
isomorphism-complete, 613
iterative methods – linear systems,

468

JFLAP, 704
jigsaw puzzle, 652
job matching, 562
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job scheduling, 534
job-shop scheduling, 536
JPEG, 694
Julian calendar, 533

K5, 581
K3,3, 583
k-optimal tours, 596
k-subsets, 522, 527
k-subsets – applications, 529
Königsberg, 567
Karatsuba’s algorithm, 495
Karazanov’s algorithm, 573
Karmarkar’s algorithm, 485
kd-trees, 460, 638
kd-trees – applications, 642
kd-trees – related problems, 640,

643, 647
Kepler conjecture, 654
Kernighan–Lin heuristic, 596, 603
key length, 697
key search, 462
Kirchhoff’s laws, 467
knapsack, 483
knapsack problem, 497, 521
knapsack problem – applications,

55
knapsack problem – related

problems, 654
Knuth–Morris–Pratt algorithm,

686
Kolmogorov complexity, 489
Kruskal’s algorithm, 248, 445, 458,

550, 552
kth-order Voronoi diagrams, 636
Kuratowski’s theorem, 583

L∞ metric, 257
label placement, 576
labeled graphs, 200, 528, 611
labels, 19
Lagrangian relaxation, 481
language pattern matching, 611
LAPACK, 469, 473
large graphs – representation, 454
largest element, 514

last in, first out, 75
layered printed circuit boards, 582
LCA – least common ancestor, 451
leap year, 533
least common ancestor, 451
least-squares curve fitting, 484
leaves – tree, 530
LEDA, 207, 444, 447, 454, 458,

544, 548, 552, 557, 561,
564, 567, 570, 582, 625,
628, 632, 636, 639, 643,
646, 650, 714

leetcode, 30, 67, 107, 146, 168, 195,
242, 280, 306, 352, 388,
428

left-right test, 475
left-to-right ordering, 339
Lempel–Ziv algorithms, 694, 695
lexicographic order, 517, 521, 522,

525, 526
lhs, 629
libraries, 465
licensing arrangements, 713
LIFO, 75
lifting-map construction, 629
line arrangements, 671
line graph, 609
line intersection, 622, 649
line segment intersection, 624
line segment Voronoi diagram, 656
line-point duality, 672
linear algebra, 472, 475
linear arrangement, 470
linear congruential generator, 487
linear constraint satisfaction, 671
linear extension, 546
linear interpolation search, 513
linear partitioning, 333
linear programming, 479, 482
linear programming – models, 571
linear programming – related

problems, 481, 573
linear programming – relaxation,

595
linear programming – special cases,

571
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linear regression, 467
linear-time graph algorithms, 455
link distance, 662, 674
linked lists vs. arrays, 76, 441
LINPACK, 469, 473, 476
literate program, 716
little oh notation, 59
local optima, 479
locality of reference, 441, 511
locations, 18
logarithms, 49
logic minimization, 678
logic programming, 342
long division, 495
long keys, 507
longest common prefix, 451
longest common subsequence

(LCS), 323
longest common substring, 449, 706
longest common substring –

related problems, 451, 692
longest cycle, 557, 598
longest increasing subsequence,

324, 692
longest path, 556, 598
longest path, DAG, 231, 535
loop, 31
lossless encodings, 693
lossy encodings, 693
lottery problems, 22
Lotto problem, 518
low-degree spanning tree, 551, 553
lower bound, 35, 144, 516, 629
lower bound – range searching, 643
lower bound – sorting, 509
lower triangular matrix, 468
LU-decomposition, 468, 476
lunar calendar, 532
LZW algorithm, 694, 695

machine clock, 487
machine learning, 478
machine learning – classification,

666
mafia, 698
magnetic tape, 470

mail routing, 565
maintaining arrangements –

related problems, 625, 651
maintaining line arrangements, 671
Malawi, 125
manufacturing applications, 594,

652
map making, 669
Maple, 493
Markov chain random generation,

520
marriage problems, 562
master theorem, 154
matching, 267, 562, 679
matching – applications, 597
matching – dual to, 590
matching – number of perfect, 476
matching – related problems, 477,

536, 567, 573, 681
matching shapes, 664
Mathematica, 455, 466, 493, 520,

523, 527, 531, 561, 567,
580, 606, 708, 716

mathematical notation, 31
mathematical programming, 479,

482
mathematical software – netlib, 715
matrix bandwidth, 470
matrix compression, 709
matrix inversion, 469, 472
matrix multiplication, 156, 472,

560
matrix multiplication –

applications, 476
matrix multiplication – related

problems, 469
matrix-tree theorem, 553
matroids, 553
max-cut, 602
max-flow, min-cut theorem, 570
maxima, 479
maximal clique, 586
maximal matching, 592
maximum acyclic subgraph, 397,

618
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maximum cut – simulated
annealing, 410

maximum spanning tree, 253
maximum-cardinality matchings,

563
maze, 213, 545
McDonald’s restaurants, 634
MD5, 701
mean, 514
mechanical computers, 492
mechanical truss analysis, 467
medial-axis transform, 655, 657
median – application, 508
median and selection, 514
medical residents to hospitals –

matching, 564
memoization, 309
memory accesses, 552
mems, 552
Menger’s theorem, 569
mergesort, 129, 147, 506
merging subsets, 457
merging tapes, 508
mesh generation, 630, 635
Metaphone, 692
Metropolis algorithm, 481
middle-square method, 489
millennium bug, 532
Miller-Rabin algorithm, 492
mindset, 429
minima, 479
minimax search, 160
minimizing automata, 703
minimum change order – subsets,

522
minimum equivalent digraph, 560
minimum product spanning tree,

253
minimum spanning tree (MST),

244, 437, 445, 458, 549,
599

minimum spanning tree –
applications, 256, 394

minimum spanning tree – drawing,
578

minimum spanning tree – related
problems, 459, 597, 617

minimum weight triangulation, 633
minimum-change order, 520
Minkowski sum, 668, 674
Minkowski sum – applications, 662
Minkowski sum – related problems,

657, 670
MIX assembly language, 496
mixed graphs, 567
mixed-integer programming, 483
mode, 141, 515
mode-switching, 327
modeling, 430
modeling algorithm problems, 17
modeling graph problems, 274
models of computation, 509
modular arithmetic, 495
molecular docking, 667
molecular sequence data, 616
Mona Lisa, 564
monotone decomposition, 660
monotone polygons, 633
monotone subsequence, 323
Monte Carlo techniques, 481, 486
month and year, 532
motion planning, 556, 667
motion planning – related

problems, 558, 651, 676
motion planning – shape

simplification, 661
mountain climbing, 479
move to front rule, 441, 511
moving furniture, 667
MPEG, 694
multicommodity flow, 572
multiedge, 199
multigraph, 202
multiple knapsacks, 499
multiple sequence alignment, 707
multiplication, 493, 502
multiplication algorithms, 65
multiplication, matrix, 473
multiset, 303, 519
musical scales, 506
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name variations, recognizing, 691
naming concepts, 636
nanosecond, 37
national debt, 493
National Football League (NFL),

608
National Security Agency (NSA),

698
nauty, 531, 613
NC – Nick’s class, 485
nearest neighbor – related

problems, 636
nearest neighbor graph, 595, 639
nearest neighbor heuristic, 6
nearest neighbor search, 462, 634,

637
nearest neighbor search – related

problems, 463, 647
negation, 538
negative-cost cycle, 555
negative-cost edges, 261, 555
Neo4j, 453
NEOS, 481, 485
Netlib, 466, 469, 471, 473, 503,

632, 636, 715
network, 18
network design, 225, 614
network design – minimum

spanning tree, 549
network flow, 267, 483, 569, 571
network flow – applications, 601
network flow – related problems,

485, 558, 564, 570, 603
network reliability, 543, 568
Network-Enabled Optimization

System (NEOS), 481, 485
next subset, 522
Nobel Prize, 54, 161
noisy channels, 589
noisy images, 661, 665
non self intersecting polygons, 628
non-crossing drawing, 581
non-deterministic automata, 703
non-Euclidean distance metrics,

635
non-numerical problems, 505

non-uniform access, 511
notorious NP-complete problem,

594
NP, 381, 492
NP-complete problem, 498, 535,

561, 602
NP-complete problem –

bandwidth, 470
NP-complete problem – crossing

number, 582
NP-complete problem – NFA

minimization, 703
NP-complete problem –

satisfiability, 537
NP-complete problem – set

packing, 683
NP-complete problem –

superstrings, 710
NP-complete problem –

tetrahedralization, 631
NP-complete problem – tree

drawing, 580
NP-complete problem – trie

minimization, 344
NP-completeness, 355
NP-completeness – definition of,

381
NP-completeness – theory of, 367
NP-hard problems, 476
nuclear fission, 524
number field sieve, 491
number theory, 490, 493
numerical analysis, 470
numerical precision, 623
Numerical Recipes, 465, 469
numerical root finding, 480
numerical stability, 468, 483

O-notation, 34
objective function, 478
obstacle-filled rooms, 555
OCR, 326
octtree, 461
odd-degree vertices, 566
odd-length cycles, 563, 607
off-line problem, 653
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oligonucleotide arrays, 414
on-line problem, 653
one million, 281
one-sided binary search, 149, 512
online algorithm resources, 718
open addressing, 94
OpenGL graphics library, 90
operations research, 482
optical character recognition, 276,

655, 660, 664
optical character recognition –

system testing, 688
optimal binary search trees, 513
optimization, 478
order statistics, 514
ordered set, 456
ordering, 18, 517
organ transplant, 69
orthogonal planes, 461
orthogonal polyline drawings, 575
orthogonal range query, 641
outerplanar graphs, 583
outlying elements, 514
output-sensitive algorithms, 649
over-determined linear systems,

482
overlap graph, 710
overpasses – highway, 582
Oxford English Dictionary, 22

P, 381
P-completeness, 485
packaging, 18
packaging applications, 652
packing vs. covering, 679
paging, 443, 454
pairing heap, 447
palindrome, 450
paradigms of algorithms design,

506
parallel algorithms, 159, 469
parallel algorithms – graphs, 567
parallel lines, 622
parallel processor scheduling, 534
paranoia level, 698
parenthesization, 473

PARI, 491
parse trees, 611
parsing, 687
partial key search, 462
partial order, 447, 505
partitioning automata states, 703
partitioning point sets, 460
partitioning polygons into convex

pieces, 659
partitioning problems, 333, 682
party affiliations, 457
Pascal, 552, 639, 681, 684
password, 486, 698
Pat tree, 451
patented algorithms, 694
path, 542
path generation – backtracking,

287
path planning, 635
path reconstruction, 319
paths – counting, 473, 612
paths across a grid, counting, 312
paths in graphs, 217
pattern matching, 685, 688, 702,

704
pattern recognition, 664
pattern recognition – automata,

686
patterns, 19
PAUP, 616
PDF-417, 326
penalty costs, 321
penalty functions, 480
perfect hashing, 444
perfect matching, 563
performance guarantee, 592
performance in practice, 8
period, 488
periodicities, 502
Perl, 685
permanent, 476
permutation, 18, 475
permutation comparisons, 707
permutation generation, 517
permutation generation –

backtracking, 286
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permutation matrix, 472
perpendicular bisector, 635
personality conflicts – avoiding, 682
PERT/CPM, 536
Petersen graph, 574
PGP, 491, 699
phone company, 549
PHYLIP, 616
phylogenic tree, 615, 616
piano mover’s problem, 670
Picasso, P., 649, 713
pieces of a graph, 542
pilots, 430
pink panther, 274
pivoting rule, 483
pivoting rules, 468
pixel geometry, 656, 665
planar drawings, 453, 578
planar drawings – related

problems, 580
planar graph, 453, 575
planar graph – clique, 587
planar graph – coloring, 605
planar graph – isomorphism, 613
planar separators, 602
planar subdivisions, 646
planar sweep algorithms, 650
planarity detection and

embedding, 581
planarity testing – related

problems, 577
plumbing, 571
point in polygon, 644
point location, 461, 644
point location – related problems,

463, 636, 643, 673
point robots, 667
point set clusters, 549
point-spread function, 502
pointer manipulation, 69
points, 18
polygon partitioning, 658
polygon partitioning – related

problems, 633
polygon triangulation, 632
polygonal data structure, 98

polygons, 19
polyhedral simplification, 662
polyline graph drawings, 575
polynomial evaluation, 495
polynomial multiplication, 502
polynomial-time approximation

scheme (PTAS), 500
polynomial-time problems, 541
poor thin people, 641
pop, 75
popular keys, 511
porting code, 275
positions, 18
potential function, 478
power diagrams, 636
power set, 459
powers of graphs, 612
Prüfer codes, 530, 531
precedence constraints, 546, 618
precedence-constrained scheduling,

534
precision, 465
preemptive scheduling, 536
prefix – string, 448
preflow-push methods, 573
preprocessing – graph algorithms,

542
presortedness measures, 509
previous subset, 522
PRF, 573
price-per-pound, 497
pricing rules, 125
Prim’s algorithm, 245, 246, 259,

550
primality testing, 490, 698
prime number, 442
prime number theorem, 491
principle of optimality, 340
printed circuit boards, 254, 594
printing a graph, 212
priority queues, 88, 445
priority queues – applications, 92,

116, 650, 680
priority queues – arithmetic model,

509



INDEX 787

priority queues – related problems,
516

probability, 172
probability density function, 176
probability distribution, 176
probability of an event, 173
probability of an outcome, 173
problem – definition, 3
problem descriptions, 437
problem instance, 3
problem-solving techniques, 429,

433
procedure call overhead, 440
producer/consumer sectors, 620
profile minimization, 470
profit maximization, 482
Program Evaluation and Review

Technique, 536
program flow graph, 199
program libraries, 465
program structure, 569
programming languages, 12
programming time, 511
Prolog, 342
proof of correctness, 4
propagating consequences, 559
pruning – backtracking, 290, 471,

612
pseudocode, 12
pseudorandom numbers, 486
psychic lotto prediction, 22
PTAS, 500
public key cryptography, 493, 500,

698
push, 75
Python, 493

Qhull, 628, 632, 636, 651
qsort(), 115
quadratic programming, 484
quadratic-sieve method, 492
quadtree, 461
quality triangulations, 635
quantum complexity theory, 421
quantum computing, 418, 513
quantum gates, 419

qubits, 419
questions, 430
queue, 75, 445
queue – applications, 221
quicksort, 130, 506, 508
quicksort – applications, 515

rabbits, 308
Rabin–Karp algorithm, 687
radial embeddings, 579
radio stations, 636
radius of a graph, 557
radix sort, 507
RAM, 443
Random Access Machine (RAM),

31
random graph theory, 531, 606
random graphs – generation, 529
random permutations, 518, 520
random perturbations, 623
random sampling – applications,

669
random search tree, 443
random subset, 522
random variable, 173
random-number generation, 486,

502, 530
random-number generation –

related problems, 520
randomization, 130
randomized algorithms, 486, 491,

552, 570, 603
randomized incremental

algorithms, 635, 646, 651,
673

randomized quicksort, 508
randomized search – applications,

24
range search, 462, 641
range search – related problems,

463, 640
ranked embedding, 579
ranking and unranking operations,

23, 517, 532
ranking combinatorial objects, 505
ranking permutations, 518
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ranking subsets, 522
rasterized images, 675
reachability problems, 559
reading graphs, 205
rebalancing, 443
recommendations, caveat, 438
rectangle, 654
rectilinear Steiner tree, 615
recurrence relation, basis case, 313
recurrence relations, 152, 308
recurrence relations – evaluation,

312
recursion, 217, 223
recursion – applications, 690
recursion and induction, 15
red–black tree, 443
reduction, 356, 591
reduction – direction of, 369
reflex vertices, 659
region of influence, 634
regions, 19
regions formed by lines, 671
register allocation, 604
regular expressions, 686, 702
relationship, 18
reliability, network, 543
repeated vertices, 599
replicating vertices, 563
representative selection, 679
resource allocation, 482, 497
resources – algorithm, 713
restricted growth function, 526
retrieval, 451, 510
reverse-search algorithms, 629
Right Stuff, The, 430
riots ensuing, 533
Rivest-Shamir-Adelman, 698
road network, 197, 199, 543, 575
robot assembly, 5, 594
robot motion planning, 649, 667,

674
robust geometric computations,

476, 622
root finding algorithms, 150, 466,

480
rooted tree, 458, 578

rotating-calipers method, 626
rotation, 443
rotation – polygon, 668
roulette wheels, 487
round-off error, 465, 468
RSA algorithm, 490, 493, 698
RSA-129, 492
rules of algorithm design, 430
run-length coding, 694

s-t connectivity, 569
safe cracker sequence, 567
sample space, 172
satisfiability, 367, 421
satisfiability – related problems,

481, 705
satisfying constraints, 480
SBH, 99
scaling, 468, 499
scanner, OCR, 502
scattered subsequences, 706
scene interpolation, 667
scheduling, 231, 534, 618
scheduling – precedence

constraints, 546
scheduling – related problems, 589,

609, 620
scheduling problems, 571
schoolhouse method, 494
scientific computing, 465, 467, 478
search time minimization –

magnetic media, 470
search tree, 443, 446
searching, 510
searching – related problems, 444,

509
secondary key, 507
secondary storage devices, 693
secure hashing function, 701
security, 486, 697
seed, 487
segment intersection, 649
segmentation, 276, 554
selection, 18, 111, 514
selection – subsets, 521
selection sort, 115
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self-intersecting polygons, 662
self-loop, 202
self-organizing list, 441, 511
self-organizing tree, 443, 513
semidefinite programming, 603
sentence structure, 554
separation problems, 589
separator theorems, 602
sequence, 18
sequencing by hybridization

(SBH), 99
sequencing permutations, 518
sequential search, 510, 638
set, 456
set algorithms, 677
set cover, 483, 591, 678
set cover – applications, 23
set cover – exact, 683
set cover – related problems, 459,

593, 660, 684
set data structures, 79, 98, 456
set data structures – applications,

24
set data structures – related

problems, 455
set packing, 521, 682
set packing – related problems,

654, 681
set partition, 457, 524
shape of a point set, 626
shape representation, 655
shape similarity, 664
shape simplification, 661
shape simplification – applications,

645, 668
shapes, 19
shellsort, 506
Shifflett, 136
shift-register sequences, 489
shipping applications, 652
shipping problems, 571
Shor’s algorithm, 423
shortest common superstring, 709
shortest common superstring –

related problems, 696, 708
shortest cycle, 556

shortest path, 258, 447, 483, 554,
571

shortest path – applications, 266,
276

shortest path – geometric, 274, 635
shortest path – related problems,

447, 474, 545, 561, 613,
617, 670

shortest path, unweighted graph,
217

shortest-path matrix, 612
shotgun sequencing, 709
shuffling, 697
sieving devices – mechanical, 492
sign – determinant, 476
sign – permutation, 475
signal processing, 501
signal propagation minimization,

470
simple cycle, 557
simple graph, 199, 202
simple polygon – construction, 628
simple polygons, 662
simplex method, 483
simplicial complex, 475
simplicity testing, 663
simplifying polygons, 661
simplifying polygons – related

problems, 676
simulated annealing, 481, 486, 576,

587, 596, 599, 603, 606,
619, 680, 683

simulated annealing – satisfiability,
538

simulated annealing – theory, 406
simulations, 445
simulations – accuracy, 486
sin, state of, 486
sine functions, 501
single-precision numbers, 465, 493
single-source shortest path, 555
singular matrix, 467, 475
singular value decomposition

(SVD), 467
sink vertex, 546
sinks – multiple, 572
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sites, 18
size of graph, 452
skeleton, 655, 665
skewed distribution, 441
Skiena, Len, 8, 18
skiing, 696
skinny triangles, 631
skip list, 444
slab method, 645
slack variables, 484
smallest element, 514
Smith Society, 507
smoothing, 501, 674
smoothness, 480
snow plows, 565
soap films, 617
social networks, 201
software engineering, 569
software tools, 578
solar year, 533
solving linear equations, 467
solving linear equations – related

problems, 471, 474, 477
sorted array, 442, 446
sorted linked list, 442, 446
sorting, 3, 445, 506
sorting X + Y , 126
sorting - applications, 110
sorting – applications, 497, 515
sorting – cost of, 511
sorting – rationales for, 109
sorting – related problems, 444,

447, 513, 516, 548, 629
sorting – strings, 450
sound-alike strings, 691
Soundex, 97, 691, 692
source vertex, 546
sources – multiple, 572
space decomposition, 460
space minimization – digraphs, 560
space minimization – string

matching, 690
space-efficient encodings, 693
spanning tree, 549
sparse graph, 202, 452, 581
sparse matrices – compression, 709

sparse subset, 457
sparse systems, 468
sparsification, 455
spatial data structure, 98
special-purpose hardware, 701
speedup – parallel, 160
spelling correction, 314, 687, 688
sphere packing, 654
Spinout puzzle, 523
spiral polygon, 644
splay tree, 443
splicing cycles, 566
splines, 466
split-and-merge algorithm, 662
spreadsheet updates, 559
spring embedding heuristics, 576,

579
square of a graph, 238, 473, 474
square root of a graph, 474
square roots, 150
stable marriages, 564
stable sorting, 507
stack, 75, 445
stack – applications, 221
stack size, 508
standard deviation, 177
standard form, 484
Stanford GraphBase, 454, 716
star-shaped polygon

decomposition, 660
state elimination, automata, 703
static tables, 510
statistical significance, 519
statistics, 514
steepest descent methods, 480
Steiner points, 632
Steiner ratio, 616
Steiner tree, 614
Steiner tree – related problems, 553
Steiner vertices, 659
Stirling numbers, 526
stock exchange, 465
stock picking, 478
straight-line graph drawings, 575,

583
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Strassen’s algorithm, 469, 473, 474,
560

strategy, 429
strength of a graph, 543
string, 456
string algorithms, 677
string data structures, 98, 448, 686
string matching, 448, 685
string matching – related problems,

451, 613, 692, 705
string overlaps, 710
strings, 19
strings – combinatorial, 530
strings – generating, 523
strongly connected component, 233
strongly connected graphs, 543,

568
subgraph isomorphism, 611
subgraph isomorphism –

applications, 665
subroutine call overhead, 440, 494
subset, 18
subset generation, 521
subset generation – backtracking,

284
subset sum problem, 498
substitution cipher, 697
substitutions, text, 688
substring matching, 322, 448, 689
subtraction, 493
suffix arrays, 448, 450
suffix trees, 98, 448, 686
suffix trees – applications, 706, 710
suffix trees – computational

experience, 101
suffix trees – related problems, 687,

711
sunny days, 666
supercomputer, 54
superstrings – shortest common,

709
surface interpolation, 630
surface structures, 581
swap elements, 519
swapping, 443

sweep line algorithms, 635, 650,
672

Symbol Technologies, 326
symbolic computation, 479
symbolic set representation, 459
symmetric difference, 664
symmetry detection, 610
symmetry removal, 290

tactics, 429
tail recursion, 508
tape drive, 507
taxonomy, 18
technical skills, 430
telephone books, 49, 136, 512
terrorist, 225, 568
test data, 528
test pilots, 430
testing planarity, 582
tetrahedralization, 630
text, 19
text compression, 327, 489, 693
text compression – related

problems, 451, 503, 701,
711

text data structures, 448, 686
text processing algorithms, 685
text searching with errors, 688
textbooks, 716
thermodynamics, 406
thinning, 655
thinning – related problems, 666,

676
three-points-on-a-line, 672
tight bound, 35
time slot scheduling, 534
time-series analysis, 501
Timsort, 509
tool path optimization, 594
topological graph, 200
topological sorting, 231, 546
topological sorting – applications,

275, 534
topological sorting – related

problems, 471, 509, 536,
620
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topological sweep, 673
tour, 18
traceback, dynamic programming,

319
transition matrix, 702
transitive closure, 263, 472
transitive reduction, 472, 559
translation – polygon, 668
transmitter power, 636
transportation problems, 529, 554,

594
transpose of a graph, 233
transposition, 519
trapezoidal decomposition, 660
traveling salesman, 8, 483, 517
traveling salesman – applications,

255, 710
traveling salesman – approximation

algorithms, 393
traveling salesman – decision

problem, 356
traveling salesman – related

problems, 539, 553, 600
traveling salesman problem, 299
traveling salesman problem (TSP),

594
tree edge, 222
tree identification, 544
trees, 18, 453
trees – acyclic graphs, 619
trees – drawings, 575
trees – generation, 530
trees – hard problem in, 471
trees – independent set, 590
trees – matching, 611
trees – partition, 602
trial division, 490
Triangle, 632
triangle inequality, 393, 594
triangle refinement method, 647
triangle strips, 90, 211
triangulated surfaces, 90
triangulation, 630
triangulation – applications, 641,

645, 658, 675

triangulation – related problems,
636, 660

triconnected components, 570
trie, 342, 448
TSP, 594
TSPLIB, 597, 718
turnpike reconstruction problem,

304
twenty questions, 148
two’s complement arithmetic, 494
two-coloring, 219

unbounded search, 149, 512
unconstrained optimization, 479,

484, 510
unconstrained optimization –

related problems, 489
undirected graph, 198, 201
uniform distribution, 441, 488, 519
union of polygons, 650
union of polygons – applications,

675
union, set, 456
union-find data structure, 458
union-find data structure –

applications, 550
unit cube, 462
unit sphere, 462
universal set, 456
unknown data structures, 439
unlabeled graphs, 200, 528, 611
unranking combinatorial objects,

505
unranking permutations, 518
unranking subsets, 522
unsorted array, 441
unsorted list, 441
unweighted graph, 199
unweighted graphs – spanning

trees, 551
upper bound, 35
upper triangular matrix, 468
Utah, 696

validation, 699
van Emde Boas priority queue, 447
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Vancouver Stock Exchange, 465
variable elimination, 467
variable length encodings, 695
variance, 177
vector quantification, 637
vector sums, 674
vertex, 198
vertex coloring, 275, 524, 604, 609
vertex coloring – applications, 534
vertex coloring – bipartite graphs,

219
vertex coloring – related problems,

536, 590, 609
vertex connectivity, 229
vertex cover, 521, 591
vertex cover – approximation

algorithm, 390
vertex cover – hardness proof, 363,

369
vertex cover – related problems,

564, 588, 590, 681
vertex degree, 446, 530
vertex disjoint paths, 569
vertex ordering, 470
video compression, 693, 694
virtual memory, 443, 508
virtual memory – performance, 601
virtual reality applications, 648
visibility graphs, 649, 667
Viterbi algorithm, 267
Vizing’s theorem, 553, 608
VLSI circuit layout, 614, 648
VLSI design problems, 455
volume computations, 475, 624

von Neumann, J., 509
Voronoi diagram, 631, 634
Voronoi diagrams – nearest

neighbor search, 638
Voronoi diagrams – related

problems, 629, 633, 640,
647, 657

walk-through, 648
war story, 22, 161, 210, 254, 342,

375, 414
Waring’s problem, 54, 161
Warshall’s algorithm, 559
water pipes, 614
wavelets, 503
weakly connected graphs, 543, 568
web, 18
Website, 438
weighted graph, 199
weighted graphs, applications, 563
Winograd’s algorithm, 474
wire length minimization, 470
wiring layout problems, 614
word ladders, 716
worker assignment – scheduling,

535
worst-case complexity, 33

Xerox machines – scheduling, 536

Young tableaux, 527, 708

Zipf’s law, 511
zone theorem, 672, 673
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