DUNDEE

An Introduction to Matlab

Version 3.0

David F. Griffiths

formerly of
Department of Mathematics

The University of Dundee

Dundee DD1 4HN
Scotland, UK

With additional material by Ulf Carlsson
Department of Vehicle Engineering
KTH, Stockholm, Sweden

Thanks to Dr Anil Bharath, Imperial College,
for his contributions to this revised version.

Copyright ©1996 by David F. Griffiths. Amended October, 1997, August 2001, September 2005,
October 2012.

This introduction may be distributed provided that it is not be altered in any way and that its
source is properly and completely specified.

Contents

9

MATLAB

Starting Up

Matlab as a Calculator
Numbers & Formats

Variables
5.1 Variable Names

Suppressing output

Built—In Functions
7.1 Trigonometric Functions
7.2 Other Elementary Functions . . .

Vectors

8.1 The Colon Notation
8.2 Extracting Parts of Vectors

8.3 Column Vectors.
8.4 Transposing

Keeping a record

10 Script Files

11 Keyboard Accelerators

12 Arithmetic with Vectors

12.1 Inner Product (*¥)
12.2 Elementwise Product (.*)
12.3 Elementwise Division (./)
12.4 Elementwise Powers (. ")

13 Plotting Functions

13.1 Plotting—Titles & Labels
132 Grids.
13.3 Line Styles & Colours
13.4 Multi—plots
135 Hold
13.6 Hard Copy
13.7 Subplot
13.8 Zooming
13.9 Figure Properties
13.10Formatted text on Plots
13.11Controlling Axes

14 Elementwise Examples

15 Two—Dimensional Arrays

15.1 Size of a matrix
15.2 Transpose of a matrix
15.3 Special Matrices
15.4 The Identity Matrix
15.5 Diagonal Matrices
15.6 Building Matrices
15.7 Tabulating Functions
15.8 Extracting Parts of Matrices
15.9 Elementwise Products (. *)
15.10Matrix—vector products
15.11Matrix—Matrix Products
15.12Sparse Matrices

16 Systems of Linear Equations

16.1 Overdetermined systems

17 Characters, Strings and Text
18 Loops
19 Timing

20 Logicals

20.1 While Loops
20.2 if...then...else...end

21 Further Built—in Functions

21.1 Rounding Numbers
21.2 The sum Function
213 max & min
21.4 Random Numbers
21.5 find for vectors
21.6 find for matrices

22 Function m—files
23 Plotting Surfaces

24 Reading/Writing Data Files

24.1 Formatted Files

24.2 Unformatted Files
25 Graphic User Interfaces

26 Command Summary

17
18
18
18
19
19
20
20
20
21
21
22
23

23
24

26

27

28

28
29
30

31
31
31
32
32
32
32

33

36

38
39
39

40

41

1 MATLAB

e Matlab is an interactive system for doing
numerical computations.

e A numerical analyst called Cleve Moler
wrote the first version of Matlab in the
1970s. It has since evolved into a success-
ful commercial software package.

e Matlab relieves you of a lot of the mun-
dane tasks associated with solving prob-
lems numerically. This allows you to spend
more time thinking, and encourages you
to experiment.

e Matlab makes use of highly respected al-
gorithms and hence you can be confident
about your results.

e Powerful operations can be performed us-
ing just one or two commands.

e You can build up your own set of func-
tions for a particular application.

e Excellent graphics facilities are available,
and the pictures can be inserted into IXTEX
and Word documents.

These notes provide only a brief glimpse of the
power and flexibility of the Matlab system. For
a more comprehensive view we recommend the

book

Matlab Guide 2nd ed.
D.J. Higham & N.J. Higham
SIAM Philadelphia, 2005, ISBN:
0-89871-578-4.

2 Starting Up

Matlab can be used in a number of different
ways or modes; as an advanced calculator in the
calculator mode, in a high level programming
language mode and as a subroutine called from
a C-program. More information on the first two
of these modes is provided by these notes.
When used in calculator mode all Matlab com-
mands are entered to the command line from
the keyboard at the “command line prompt”
indicated with >>’.

Type quit at any time to exit from Matlab.
Extensive documentation is available, either via
the command line by using the 'help topic’
command (see below) or via the internet. We
recommend starting with the command

demo

(a link may also be provided on the top line
of the command window). This brings up a
separate window which gives access to a short
video entitled “Getting Started” that describes
the purpose of the various panes in the main
Matlab window.

Help is available from the command line prompt.
Type help help for “help” (which gives a brief
synopsis of the help system), help for a list of
topics. The first few lines of this read

HELP topics: -

MatlabCode/matlab - (No table of contents file)

matlab/general - General purpose commands.
matlab/ops - Operators and special ...
matlab/lang - Programming language ...
matlab/elmat - Elementary matrices and ...
matlab/randfun - Random matrices and ...
matlab/elfun - Elementary math functions.
matlab/specfun - Specialized math functions.

(truncated lines are shown with ...). Then to
obtain help on “Elementary math functions”,
for instance, type

>> help elfun

Clicking on a key word, for example sin will
provide further information together with a link
to doc sin which provides the most extensive
documentation on a keyword along with exam-
ples of its use.

Another useful facility is to use the

lookfor keyword

command, which searches the help files for the
keyword. See Exercise 15.1 (page 22) for an
example of its use.

3 Matlab as a Calculator

The basic arithmetic operators are + - *x / ~
and these are used in conjunction with brackets:
(). The symbol ~ is used to get exponents
(powers): 274=16.

You should type in the commands shown at the
prompt: >>.

>> 2 + 3/4x5
ans =

5.7500
>>

Command Example of Output
>>format short 31.4162(4-decimal places)
>>format short e | 3.1416e+01

>>format long e 3.141592653589793e+01
>>format short 31.4162(4-decimal places)
>>format bank 31.42(2-decimal places)

The command
format compact

is also useful in that it suppresses blank lines in
the output thus allowing more information to

Is this calculation 2 + 3/(4%5) or 2 + (3/4)%5? be displayed.

Matlab works according to the priorities:
1. quantities in brackets,
2. powers 2 + 372 =2 + 9 = 11,
3. * /, working left to right (3*4/5=12/5),

4. + -, working left to right (3+4-5=7-5),

Thus, the earlier calculation was for 2 + (3/4)*5

by priority 3.

4 Numbers & Formats

Matlab recognizes several different kinds of num-
bers

Type Examples
Integer 1362, —217897
Real 1.234,—10.76
Complex | 3.21 —4.3i (i =+/—1)
Inf Infinity (result of dividing by 0)
NaN Not a Number, 0/0
The “e” notation is used for very large or very

small numbers:

-1.3412e+03 = —1.3412 x 103 = —1341.2
-1.3412e-01 = —1.3412 x 107! = —0.13412
All computations in MATLAB are done in dou-
ble precision, which means about 15 significant
figures. How Matlab prints numbers is con-
trolled by the “format” command. Type help
format for full list.

Should you wish to switch back to the default
format then format will suffice.

5 Variables

>> 3-274
ans =
-13
>> ansx*b
ans =
-65

The result of the first calculation is labelled
“ans” by Matlab and is used in the second cal-
culation, where its value is changed.

We can use our own names to store numbers:

>> x = 3-274
x =
-13
>> y = xxb
y =
-65

so that x has the value —13 and y = —65. These
can be used in subsequent calculations. These
are examples of assignment statements: val-
ues are assigned to variables. Each variable
must be assigned a value before it may be used
on the right of an assignment statement.

5.1 Variable Names

Legal names consist of any combination of let-
ters and digits, starting with a letter. These
are allowable:

NetCost, Left2Pay, x3, X3, z25cb

These are not allowable:
Net-Cost, 2pay, %x, @sign

Use names that reflect the values they repre-
sent.

Special names: you should avoid using

eps (which has the value 2.2204e-16= 2754
which is the largest number such that 1 + eps
is indistinguishable from 1) and

pi = 3.14159... = .

If you wish to do arithmetic with complex num-
bers,both i and j have the value v/—1 unless
you change them

>>i,j, i=3

ans = 0 + 1.00001
ans = 0 + 1.00001
i =3

See Section 8.4 for more on complex numbers.

6 Suppressing output

One often does not want to see the result of in-
termediate calculations—terminate the assign-
ment statement or expression with semi—colon

>> x=-13; y = b*x, z = x"2+y

y =
-65
z =
104
>>

the value of x is hidden. Note that we can
place several statements on one line, separated
by commas or semi—colons.

Exercise 6.1 In each case find the value of the
expression in Matlab and explain precisely the
order in which the calculation was performed.

-273+9 i) 2/3%3

3x2/3 iv) 3%4-572%2-3
(2/3°2%5)*(3-473)"2 vi) 3%(3%4-2%5"2-3)

7 Built—In Functions

7.1 Trigonometric Functions

Those known to Matlab are

sin, cos, tan

and their arguments should be in radians.

e.g. to work out the coordinates of a point on
a circle of radius 5 centred at the origin and
having an elevation 30° = /6 radians:

>> x = b*xcos(pi/6), y = 5*sin(pi/6)
x =

4.3301
y =

2.5000

To work in degrees, use sind, cosd and tand.
The inverse trig functions are called asin, acos,
atan (as opposed to the usual arcsin or sin™!
etc.). The result is in radians.

>> acos(x/5), asin(y/5)

ans = 0.5236
ans = 0.5236
>> pi/6

ans = 0.5236

7.2 Other Elementary Functions
These include sqrt, exp, log, loglO

>> x = 9;
>> sqrt(x),exp(x),log(sqrt(x)),logl0(x"2+6)
ans =

3
ans =
8.1031e+03
ans =
1.0986
ans =
1.9395

exp (x) denotes the exponential function exp(z) =
e® and the inverse function is log:

>> format long e, exp(log(9)), log(exp(9))
ans = 9.000000000000002e+00

ans = 9

>> format short

and we see a tiny rounding error in the first
calculation. logl0O gives logs to the base 10.
A more complete list of elementary functions is
given in Table 2 on page 42.

8 Vectors

These come in two flavours and we shall first de-
scribe row vectors: they are lists of numbers
separated by either commas or spaces. The
number of entries is known as the “length” of
the vector and the entries are often referred to
as “elements” or “components” of the vector.
The entries must be enclosed in square brack-
ets.

> v =[13, sqrt(5)]
v =
1.0000 3.0000 2.2361
>> length(v)
ans =
3

Spaces can be vitally important:

>> yv2 = [3+ 4 5]

v2 =

7 5
>> v3 = [3 +4 5]
v3 =

3 4 5

We can do certain arithmetic operations with
vectors of the same length, such as v and v3 in
the previous section.

>> v + v3
ans =

4.0000 7.0000 7.2361
>> v4d = 3*v
vd =

3.0000 9.0000 6.7082
>> vb = 2xv -3%v3
vb =

-7.0000 -6.0000 -10.5279
>> v o+ v2

7?77 Error using ==> +
Matrix dimensions must agree.

i.e. the error is due to v and v2 having different
lengths.

A vector may be multiplied by a scalar (a num-
ber, see v4 above), or added/subtracted to an-
other vector of the same length. The opera-
tions are carried out elementwise.

We can build row vectors from existing ones:

>w =1[1223], z=[809]
>> cd = [2%z,-w], sort(cd)
W =

1 2 3
z =

8 9
cd =

16 18 -1 -2 -3
ans =

-3 -2 -1 16 18

Notice the last command sort’ed the elements
of cd into ascending order.

We can also change or look at the value of par-
ticular entries

>> w(2) = -2, w(3)

1 -2 3

8.1 The Colon Notation

This is a shortcut for producing row vectors:

>> 1:4
ans =
1 2 3 4
>> 3:7
ans =
3 4 5 6 7
>> 1:-1
ans =
(]

More generally a : b : ¢ produces a vector of
entries starting with the value a, incrementing
by the value b until it gets to ¢ (it will not
produce a value beyond ¢). This is why 1:-1
produced the empty vector [J.

>> 0.32:0.1:0.6

ans =
0.3200 0.4200 0.5200
>> -1.4:-0.3:-2
ans =
-1.4000 -1.7000 -2.0000

8.2 Extracting Parts of Vectors
>> r5 = [1:2:6, -1:-2:-7]

rb5 =
i1 35 -1 -3 -5 -7
To get the 3rd to 6th entries:

>> r5(3:6)
ans =
5 -1 -3 -5

To get alternate entries:

>> r5(1:2:7)
ans =
1 5 -3 =7
What does r5(6:-2:1) give?
See help colon for a fuller description.

8.3 Column Vectors

These have similar constructs to row vectors
except that entries are separated by ; or “new-
lines”

>>c = [1; 3; sqrt(b)]
c =
1.0000
3.0000
2.2361
>> c2 = [3
4
5]
c2 =
3
4
5
>> c3 = 2%c - 3%c2
c3 =
-7.0000
-6.0000
-10.5279

so column vectors may be added or subtracted
provided that they have the same length.
The length of a vector (number of elements)
can be determined by

>> length(c)
ans = 3
>> length(r5)
ans =7

and does not distinguish between row and col-
umn vectors (compare with size described in
§15.1). The size might be needed to deter-
mine the last element in a vector but this can
be found by using the reserved word end:

>> c2(end), c2(end-1:end)
ans =

8.4 Transposing

We can convert a row vector into a column vec-
tor (and vice versa) by a process called trans-
posing which is denoted by ’.

> w, w», [1 23], [123]
W =
1 -2 3
ans =
1
-2
3
ans =
1.0000
3.0000
2.2361
ans =
1.0000 3.0000 2.2361
>> t =w + 2%[1 2 3]°
t:
3.0000 4.0000 7.4721
>> T = Bxw’?-2%[1 2 3]
T =
3.0000
-16.0000
10.5279

If x is a complex vector, then x° gives the com-
plex conjugate transpose of x:

>> x = [1+3i, 2-2i]
ans =
1.0000 + 3.0000i 2.0000 - 2.0000i
>> x?
ans =

1.0000 - 3.00001
2.0000 + 2.00001

Note that the components of x were defined
without a * operator; this means of defining
complex numbers works even when the variable
i already has a numeric value. To obtain the
plain transpose of a complex number use .’ as
in

>> x.’

ans =
1.0000 + 3.0000i
2.0000 - 2.0000i

and the computation can be resumed where you
left off. We do not advocate this procedure ex-
cept is special circumstances, but suggest mak-
ing use of script files (see Section 10).

A list of variables used in the current session
may be seen with

>> whos

They can also be seen in the “Workspace” pane
of the main window. See help whos and help
save.

One must be aware at all times, as the next >> whos

example shows:

>> i=3; [1+2i, 3-i, 3-1i] Name Size Elements Bytes Density Complex

ans = ans 1 by 1 1 8 Full No
1.0000 + 2.00001 0 3.0000 - 1.0000i W 1 by 3 3 24 Full No

. . . vli 1 by 2 2 16 Full No

in which only the 2nd element has been influ- o 4 by 2 2 16 Full No

enced by the value of the variable i.

Grand total 16 elements using 128 bytes

9 Keeping a record

Issuing the command
>> diary mysession

will cause all subsequent text that appears on
the screen to be saved to the file mysession
located in the directory in which Matlab was
invoked. You may use any legal filename ez-
cept the names on and off. The record may be
terminated by

>> diary off

The file mysession may be edited with your
favourite editor (the Matlab editor, emacs, or
even Word) to remove any mistakes.

If you wish to quit Matlab midway through a
calculation so as to continue at a later stage:

>> save thissession

will save the current values of all variables to a
file called thissession.mat. This file cannot
be edited. When you next startup Matlab,
type

>> load thissession

10 Script Files

Script files are ordinary ASCII (text) files that
contain Matlab commands. It is essential that
such files have names having an extension .m
(e.g., myfile.m) and, for this reason, they are
commonly known as m-files. The commands in
this file may then be executed using

>> myfile

Note: the command does not include the file
name extension .m.

Script files are created with the built-in editor
(it is possible to change to your favourite edi-
tor in the Preferences window). Any text that
follows % on a line is ignored. This enables de-
scriptive comments to be included. It is possi-
ble, via a mouse menu, to highlight commands
that appear in the “Command History” pane
to create a script file. “Cut and Paste” can
be used to copy individual commands from the
“Command History” pane into a script file.

Exercise 10.1
§8.4 into a file called exsub.m. Its con-
tents might look like:

1. Type in the commands from

% My first script file: exsub.m
w, w’, [1 23], [1 23]
t =w+ 2%[1 2 3]°

% Use w to compute T
T = 5xw’-2x[1 2 3]

2. Check in the “Current Folder” pane of
the Matlab window (or use the command
what, which lists the m-files in the cur-
rent directory) to see that the file is in
the correct area.

3. Use the command type exsub to see the
contents of the file.

4. Execute the file with the command exsub.

It is only the output from the commands (and
not the commands themselves) that are dis-
played on the screen. To see the commands in
the command window prior to their execution:
>> echo on

and echo off will turn echoing off. Compare
the effect of

>> echo on, exsub, echo off

with the results obtained earlier.

See §22 for the related topic of function files.

11 Keyboard Accelerators

One can recall previous Matlab commands in
the Command Window by using the 1 and |
cursor keys. Repeatedly pressing 1 will review
the previous commands (most recent first) and,
if you want to re-execute the command, simply
press the return key.

To recall the most recent command starting
with p, say, type p at the prompt followed by
1. Similarly, typing pr followed by 1 will recall
the most recent command starting with pr.
Once a command has been recalled, it may be
edited (changed). You can use < and — to
move backwards and forwards through the line,
characters may be inserted by typing at the cur-
rent cursor position or deleted using the Del
key. This is most commonly used when long
command lines have been mistyped or when
you want to re—execute a command that is very
similar to one used previously.

The following emacs—like commands may also
be used:

cntrl a move to start of line

cntrl e move to end of line

cntrl £ move forwards one character
cntrl b move backwards one character
cntrl d delete character under the cursor

Once the command is in the required form,
press return.

Exercise 11.1 Type in the commands

>> x = -1:0.1:1;

>> plot(x,sin(pi*x),’w-’)
>> hold on

>> plot(x,cos(pi*x),’r-’)

Now use the cursor keys with suitable editing to
execute:

>> x = -1:0.05:1;
>> plot (x,sin(2*pi*x),’w-")
>> plot(x,cos(2*pi*x),’r-.’), hold off

12

12.1 Inner Product (*)

We shall describe two ways in which a meaning
may be attributed to the product of two vec-
tors. In both cases the vectors concerned must
have the same length.

The first product is the standard inner product.
Suppose that u and v are two vectors of length
n, u being a row vector and v a column vector:

Arithmetic with Vectors

u = [y, Uz, ..., U,

S
I

The inner product is defined by multiplying the
corresponding elements together and adding the
results to give a single number (inner).

n
u*xv = E U Vi
i=1

20
—21
—22

For example, if u = [10, —11,12], v =

then n = 3 and
wkv = 10x20+(—11) x (—21)+12x (—22) = 167.
We can perform this product in Matlab by

>> u =
>> prod = u*v % row times column vector

Suppose we also define a row vector w and a
column vector z by

> w=[2,1, 3], z= [7; 6; 5]
_—

2 1 3
z =

7

6

5

and we wish to form the inner products of u
with w and v with z.

>> u*xw
7?77 Error using ==> x*
Inner matrix dimensions must agree.

an error results because w is not a column vec-

tor. Recall from page 6 that transposing (with)
turns column vectors into row vectors and vice

versa. S0, to form the inner product of two row

vectors or two column vectors,

>> ukw’ % u & w are row vectors
ans =

45
>> uku’ % u is a row vector
ans =

365
>> vlikxz % v & z are column vectors
ans =

-96

The Euclidean length of a vector is an example
of the norm of a vector; it is denoted by the
symbol |lu|| and defined by

where n is its dimension. This can be computed
in Matlab in one of two ways:

[10, -11, 12], v = [20; -21; -22]

>> [sqrt(u*u’), norm(u)]
ans =

19.1050 19.1050

where norm is a built—in Matlab function that
accepts a vector as input and delivers a scalar
as output. It can also be used to compute other
norms: help norm.

Exercise 12.1 The angle, 6, between two col-
umn vectors x and y is defined by

z'y

cosf = ———.
lzll lyll

Use this formula to determine the cosine of the

angle between
z=1[1,2,3] and y=[3,2,1]".

Hence show that the angle is 44.4153degrees.

[Hint: see cosd and acosd.]

12.2 Elementwise Product (.x*)

The second way of forming the product of two

vectors of the same length is known as the Hadamard

product. It is rarely used in the course of nor-
mal mathematical calculations but is an invalu-
able Matlab feature. It involves vectors of the
same type. If v and v are two vectors of the
same type (both row vectors or both column
vectors), the mathematical definition of this prod-
uct, which we shall call the Hadamard prod-
uct, is the vector having the components

UV = (U1, UV, . . ., U V.

The result is a vector of the same length and
type as w and v. Thus, we simply multiply the
corresponding elements of two vectors. Sum-
ming the entries in the resulting vector would
give their inner product.

For example, if u [10,—11,12], and w
[2,1,3] then n = 3 and

w.xw = [10 x 2, (—11) x (1),12 x (3)]
= [20,—11, 36]
In Matlab, the product is computed with the

operator .* and, using the vectorsu, v, w, z
defined on page 9,

>> u.*xw
ans =

20 -11 36
>> u.*xv’
ans =

200 231 -264
>> v.*z
ans =

140

-126

-110

Perhaps the most common use of the Hadamard
product is in the evaluation of mathematical
expressions so that they may be plotted.

Example 12.1 Tabulate the function
y =zsinmx forx =0,0.25,...,1.

The display is clearer with column vectors so
we first define a vector of z-values: (see Trans-
posing: §8.4)

>>x = (0:0.25:1)°;

To evaluate y we have to multiply each element
of the vector = by the corresponding element of
the vector sin 7a:

T X sinmxr = xsinnmz
0 x 0= 0
0.2500 x 0.7071 = 0.1768
0.5000 x 1.0000 = 0.5000
0.7500 x 0.7071 = 0.5303
1.0000 x 0.0000 = 0.0000

To carry this out in Matlab:

>> y = x.*sin(pi*x)
y =
0
0.1768
0.5000
0.5303
0.0000

Note: a) the use of pi, b) x and sin(pix*x)
are both column vectors (the sin function is
applied to each element of the vector). Thus,
the Hadamard product of these is also a column
vector.

Exercise 12.2 Enter the vectors

Q:[67274]7 22[37—2’3,0]’
3 3
—4 2
E_ 2 9 Z_ 2
—6 7

into Matlab. Which of the products

UV, VW, UxV’, VxW’, WxZ’, U.*V
U2V, VW, W *Z, U.*W, W.*Z, V.*W

is legal? State whether the legal products are
row or column vectors and give the values of
the legal results.

12.3 Elementwise Division (./)

In Matlab, the operator ./ is defined to give
element by element division of one vector by
another—it is therefore only defined for vectors
of the same size and type.

>> a=1:5, b = 6:10, a./b

a =
1 2 3 4 5
b =
6 7 8 9 10
ans =

0.1667 0.2857 0.3750 0.4444 0.5000
If we change to format rat (short for rational)

>> format rat
>> (1:5)./(6:10)
ans =
1/6 2/7
>> format compact

3/8 4/9 1/2

the output is displayed in fractions. Note that

>> a./a
ans =
1 1 1 1 1
>> ¢ =-2:2, a./c
c =
-2 -1 0 1 2
Warning: Divide by zero
ans =
-0.5000 -2.0000 Inf 4.0000 2.5000

The previous calculation required division by
0—notice the Inf, denoting infinity, in the an-
swer.

10

>> a.*b -24, ans./c

ans =
-18 -10 0 12 26
Warning: Divide by zero
ans =
9 10 NaN 12 13

Here we are warned about 0/0—giving a NaN

(Not a Number).
Example 12.2 Estimate the limit
. sinwx
lim
x—0 x

The idea is to observe the behaviour of the ra-
tio % for a sequence of values of x that ap-
proach zero. Suppose that we choose the se-
quence defined by the column vector

>> x [0.1; 0.01; 0.001; 0.0001]

then

>> sin(pi*x)./x
ans
.0902
L1411
.1416
.1416

3
3
3
3

which suggests that the values approach 7. To
get a better impression, we subtract the value of
7 from each entry in the output and, to display
more decimal places, we change the format

>> format long
>> ans -pi

ans
-0.05142270984032
-0.00051674577696
-0.00000516771023
-0.00000005167713

Can you explain the pattern revealed in these
numbers?

We also need to use ./ to compute a scalar
divided by a vector:

>> 1/x

??? Error using ==> /

Matrix dimensions must agree.
>> 1./x

ans

10 100 1000 10000

so 1./x works, but 1/x does not.

11

12.4 Elementwise Powers (.")

The square of each element of a vector could be
computed with the command u.*u. However,
a neater way is to use the .~ operator:

>> u = [10, 11, 12]; u."2

ans =
100 121 144
>> u.*u
ans =
100 121 144
>> ans.” (1/2)
ans =
10 11 12
>> u."4
ans =
10000 14641 20736
>> v. 2
ans =
400
441
484
>> u.kw. " (-2)
ans =
2.5000 -11.0000 1.3333

Recall that powers (.~ in this case) are done
first, before any other arithmetic operation. Frac-
tional and decimal powers are allowed.

When the base is a scalar and the power is a
vector we get

>>n = 0:4
n =
0 1 2 3 4
>> 2.°n
ans =
1 2 4 8 16

and, when both are vectors of the same dimen-
sion,

>> x =1:3:15
x =
1 4 7 10 13
>> x."n
ans =
4 49 1000 28561

13 Plotting Functions

In order to plot the graph of a function, y =
sin3wz for 0 < z < 1, say, it is sampled at
a sufficiently large number of points and the
points (x,y) joined by straight lines. Suppose
we take N 4+ 1 sampling points equally spaced
a distance h apart:

>> N =10; h = 1/N; x = 0:h:1;

defines the set of points z = 0, h,2h,...,1—h,1
with h = 0.1. Alternately, we may use the
command linspace: The general form of the
command is linspace (a,b,n) which gener-
ates n + 1 equispaced points between a and b,

inclusive. So, in this case we would use the
command
>> x = linspace (0,1,11);

The corresponding y values are computed by
>> y = sin(3*pi*x);

and finally, we can plot the points with

>> plot(x,y)

The result is shown in Fig. 1 below, where it is
clear that the value of N is too small.

08
[
o4t /

02t

-02
-04
-06

-08f

Fig. 1: Graph of y = sin3nz for 0 <z <1
using h = 0.1.

On changing the value of N to 100:

>> N
>>y

100; h = 1/N; x = 0:h:1;
sin(3*pi*x); plot(x,y)

we get the picture shown in Fig. 2.

12

Fig. 2: Graph of y
using h = 0.01.

=sin3nz for 0 < z <1

13.1 Plotting—Titles & Labels

To put a title and label the axes, we use

>> title(’Graph of y = sin(3pi x)’)
>> xlabel(’x axis’)
>> ylabel(’y-axis’)

The strings enclosed in single quotes, can be
anything of our choosing. Some simple N TEX
commands are available for formatting mathe-
matical expressions and Greek characters—see
Section 13.10.

See also ezplot the “Easy to use function plot-

)

ter”.

13.2 Grids
A dotted grid may be added by
>> grid on

and is removed with grid off.

13.3 Line Styles & Colours

The default is to plot solid lines. A solid red
line is produced by

>> plot(x,y,’r--x’)

The third argument is a string comprising char-
acters that specify the colour (red), the line
style (dashed) and the symbol (x) to be drawn
at each data point. The order in which they
appear is unimportant and any, or all, may be
omitted. The options for colours, styles and
symbols include:

Colours Line Styles/symbols
y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green - solid
b blue * star
w white : dotted
k black -. dashdot
-- dashed

The number of available plot symbols is wider
than shown in this table. Use help plot to
obtain a full list. See also help shapes.

The command c1f clears the current figure while
close(1) will close the graphics window la-
belled “Figure 1”7. To open a new figure win-
dow type figure or, to get a window labelled
“Figure 97, for instance, type figure (9). If
“Figure 9” already exists, this command will
bring this window to the foreground and the
next plotting commands will be drawn on it.

13.4 Multi—plots

Several graphs may be drawn on the same figure
as in

>> plot(x,y,’k-’,x,cos(3*pi*x),’g--")
A descriptive legend may be included with
>> legend(’Sin curve’,’Cos curve’)

which will give a list of line—styles, as they ap-
pear in the plot command, followed by the brief
description provided in the command.

For further information do help plot etc.
The result of the commands

>>
>>
>>
>>
>>

plot(x,y, k-’ ,x,cos(3*pi*x),’g--")
legend(’Sin curve’,’Cos curve’)
title(’Multi-plot’)
xlabel(’x axis’),
grid

ylabel(’y axis’)

is shown in Fig. 3. The legend may be moved
either manually by dragging it with the mouse
or as described in help legend.

Muli-plot

Fig. 3: Graph of y = sin3nx and y = cos3nx
for 0 <z <1 using h = 0.01.

13.5 Hold

A call to plot clears the graphics window be-
fore plotting the current graph. This is not con-
venient if we wish to add further graphics to the
figure at some later stage. To stop the window
being cleared:

>> plot(x,y,’r-’), hold on
>> plot(x,y,’gx’), hold off

“hold on” holds the current picture; “hold off”
releases it (but does not clear the window, which
can be done with c1f). “hold” on its own tog-
gles the hold state.

13.6 Hard Copy

To obtain a printed copy select from the

menu on the Figure toolbar.

Alternatively one can save a figure to a file for
later printing (or editing). A number of for-
mats is available (use help print to obtain a
list). To save the current figure in “Encapsu-
lated Color PostScript” format, issue the Mat-
lab command

print -depsc figl

which will save a copy of the image in a file
called figl.eps.

print -f4 -djpeg90 figb

will save figure 4 as a jpeg file figb.jpg at a
quality level of 90. It should be borne in mind
that neither command (despite its name) sends
the file to a printer.

13

13.7 Subplot

The graphics window may be split into an mxn
array of smaller windows into each of which we
may plot one or more graphs. The windows
are counted 1 to mn row—wise, starting from
the top left. Both hold and grid work on the
current subplot.

>>
>>
>>
>>
>>
>>
>>
>>

subplot(221), plot(x,y)
xlabel(’x’),ylabel(’sin 3 pi x’)
subplot (222), plot(x,cos(3*pixx))
xlabel(’x’),ylabel(’cos 3 pi x’)
subplot (223), plot(x,sin(6*pi*x))
xlabel(’x’),ylabel(’sin 6 pi x’)
subplot(224), plot(x,cos(6*pi*x))
xlabel(’x’) ,ylabel(’cos 6 pi x’)

subplot(221) (or subplot(2,2,1)) specifies
that the window should be split into a 2 x 2
array and we select the first subwindow.

sin@pix
°

083 pix
°

sin6pix
°

086 pix
°

13.8 Zooming

We often need to “zoom in” on some portion
of a plot in order to see more detail. Clicking
on the “Zoom in” or “Zoom out” button on the
Figure window is simplest but one can also use
the command

>> zoom

Pointing the mouse to the relevant position on
the plot and clicking the left mouse button will
zoom in by a factor of two. This may be re-
peated to any desired level.

Clicking the right mouse button will zoom out
by a factor of two.

Holding down the left mouse button and drag-
ging the mouse will cause a rectangle to be out-
lined. Releasing the button causes the contents
of the rectangle to fill the window.

zoom off turns off the zoom capability.

Exercise 13.1 Draw graphs of the functions

Yy = COsSx

y =

for 0 < x < 2 on the same window. Use the
zoom facility to determine the point of inter-
section of the two curves (and, hence, the root
of x = cosx) to two significant figures.

13.9 Figure Properties

All plot properties can be edited from the Fig-
ure window by selecting the ’ Edit ‘ and ’ Tools ‘
menus from the toolbar. For instance, to change
the linewidth of a graph, click and choose
Figure Properties... from the menu. Click-
ing on the required curve will display its at-
tributes which can be readily modified.

One of the shortcomings of editing the figure
window in this way is the difficulty of repro-
ducing the results at a later date. The recom-
mended alternative involves using commands
that directly control the graphics properties.
The current setting of any plot property can be
determined by first obtaining its “handle num-
ber”, which is simply a real number that we
save to a named variable:

>> plt = plot (x,y."3,’k--0")
plt =
188.0194

and then using the get command. This lists the
settings for a number of properties that include

>>get (plt)

Color: [0 0 0]
LineStyle: ’==
LineWidth: 1
Marker: ’o’
MarkerSize: 6
XData: [1 2 3]

14

YData:
ZData:

[27 8 1]
[1x0 double]

The colour is described by a rgb triple in which
[0 0 0] denotes black and [1 1 1] denotes
white. Properties can be changed with the set
command, for example

>> set(plt, ’markersize’,12)

will change the size of the marker symbol o’
while

will change the lifestyle from dashed to dot-
ted while also changing the y—coordinates of the
data points. The commands

>>
>>
>>
>>

x = 0:.01:1; y=sin(3*pi*x);
plot(x,y, k-’ ,x,cos(3*pi*x),’g--")
legend(’Sin curve’,’Cos curve’)
title(’Multi-plot ’)
>> xlabel(’x axis’), ylabel(’y axis’)
>> set(gca,’fontsize’,16,...
’ytick’,-1:.5:1);
redraw Fig. 3 and the last line sets the font
size to 16points and changes the tick-marks on
the y-axis to —1,—0.5,0, 0.5, 1—see Fig. 4. The
. in the penultimate line tell Matlab that the
line is split and continues on the next line.

Multi-plot

//>\\

Cos curv
/ \

05+ /

/

/
/

y axis

0.6 08

x axis

0.‘2 0:4
Fig. 4: Repeat of Fig. 3 with a font size of
16points and amended tick marks on the y-axis.

13.10 Formatted text on Plots

It is possible to typeset simple mathematical
expressions (using BTEX commands) in labels,
legends, axes and text. We shall give two illus-
trations.

>> set(plt,’linestyle’,’:’,’ydata’,[1 8 27])

15

Example 13.1 Plot the first 100 terms in the
sequence {y,} given by y, = (1+ %)n and il-
lustrate how the sequence converges to the limit
e =exp(l) =2.7183.... as n — oo.

Exercises such as this that require a certain
amount of experimentation are best carried out
by saving the commands in a script file. The
contents of the file (which we call latexplot.m)
are:

close all

figure(1);

set (0, ’defaultaxesfontsize’,12)
set (0, ’defaulttextfontsize’,16)
set (0, ’defaulttextinterpreter’,’latex’)
N 100; n = 1:N;

y = (1+1./n)."n;

subplot(2,1,1)

plot(n,y,’.’, markersize’,8)
hold on

axis([0 N,2 3])

plot ([0 NI, [1, 1]*exp(1),’--7)
text(40,2.4,°$y_n (1+1/n)"n$’)
text(10,2.8,’y = e’)
xlabel(’n’), ylabel(’y_n’)

The results are shown in the upper part of Fig. 5.

28-

26
24l Yn = (1+1/n)"

22

L L L L
20 30 40 50 80
n

1 . . :
oxp(—4022) sin® (37z)

05

Fig. 5: The output from Example 13.1 (top)
and Example 13.2 (bottom).

The salient features of these commands are

1. The set commands in lines 3-4 increase
the size of the default font size used for

the axis labels, legends, titles and text.
Line 4 tells Matlab to interpret any strings
contained within § symbols as ITEX com-
mands.

2. Defining a variable N = 100 makes it eas-
ier to experiment with a different number
of sampling points.

3. The size of the plot symbol “.” is changed
from the default (6) to size 8 by the ad-
ditional string followed in the plot com-
mand.

4. The axis command changes the dimen-
sions of the plotting areatobe 0 <z < N
and 2 <y < 3.

The axis command has four parameters,
the first two are the minimum and max-
imum values of x to use on the axis and
the last two are the minimum and maxi-
mum values of y.

5. The command text(40,2.4, ’string’)
prints string at the location with coordi-
nates (40 2.4).

6. The string y_n gives subscripts: y,,, while
3

x~3 gives superscripts: x°.
Exagnple 13.2 Draw a graph the functiony =
e3%" sin®(3mx) on the interval —2 < x < 2.

The appropriate commands are included in the
script file for the previous example (so the de-
fault values continue to operate):

subplot(2,1,2)

x = -2:.01:2;

y = exp(-3*x.72) .*sin(8*pi*x)."3;
plot(x,y,’r-’,’linewidth’,1)
xlabel(°x°), ylabel(’y’)

2. Greek characters «, f3,...,w,) are pro-
duced by the strings '\alpha’, '\beta’,
..., \omega’, "\Omega’. the integral sym-
bol: [is produced by \int’.

3. The thickness of the line used in the plot
command is changed from its default value
(0.5) to 2.

4. The graphics are saved in jpeg format to
the file eplot1.

13.11 Controlling Axes

The look of a graph can be changed by using
the axis command. We have already seen in
Example 13.1 how the plotting area can be
changed.

axis equal is required in order that a circle
does not appear as an ellipse

>>
>>
>>
>>
>>

clf, N = 100; t = (0:N)*2xpi/N;
x = cos(t); y = sin(t);
plot(x,y,’-’,0,0,7.%);
set(gca,’ytick’,-1:.5:1)

axis equal

See Fig. 6. We recommend looking at help
axis and experimenting with the commands
axis equal, axis off, axis square,

axis normal, axis tight in any order.

051

05 /
\ /

text(-1.95,.75,’% \exp(-40x~2)\sin~3(8\pi

print -djpeg90 eplotl

The results are shown in the lower part of Fig. 5.

1. sin® 87z is typeset by the IXTEX string
$\sin~3 8\pi x$ and translates into the
Matlab command sin(8*pi*x) . 3—the
position of the exponent is different.

16

Fig. 6: Use of axis equal to get a circle to
appear correctly.

14 Elementwise Examples
Example 14.1 Draw graphs of the functions
i) y=)

i) v=51 @) w=

(10—z)1/3—2
(4—z2)1/2

for 0 < x <10.

>> x = 0:0.1:10;

>> y = sin(x)./x;

>> subplot(221), plot(x,y), title(’(i)’)
Warning: Divide by zero

> u=1./(x-1)."2 + x;

>> subplot(222),plot(x,u), title(’(ii)’)
Warning: Divide by zero

>> v = (x.72+1)./(x.72-4);

>> subplot(223),plot(x,v),title(’ (iii)’)
Warning: Divide by zero

>> w = ((10-x).7(1/3)-1) ./sqrt (4-x.72);
Warning: Divide by zero

>> subplot(224),plot(x,w),title(’ (iv)’)

[0] (i)

(iii) ()

Note the repeated use of the “dot” (element-
wise) operators.

Experiment by changing the axes (page 16),
grids (page 12) and hold(page 13).

>> subplot(222),axis([0 10 0 10])
>> grid

>> grid

>> hold on

>> plot(x,v,’--’), hold off,

>> plot(x,y,’:’)

17

Exercise 14.1 Tabulate the functions
y = (2% + 3) sin wz?
and
z =sin®mx/(z72 + 3)
forz=0,0.2,...,10. Hence, tabulate the func-

tion)
T

(22 + 3) sin 22 sin
(x=2+3)

Plot a graph of w over the range 0 < x < 10.

15 Two—Dimensional Arrays

A rectangular array of numbers having m rows
and n columns is referred to as an m x n ma-
trix. It is usual in a mathematical setting to
enclose such objects in either round or square
brackets—Matlab insists on square ones. For
example, when m = 2,n = 3 we have a 2 X 3
matrix such as

5 7 9
=[] 5]

To enter such an matrix into Matlab we type
it in row by row using the same syntax as for
vectors:

> A=[679

1 -3 -7]
A =
5 7 9
1 -3 =7

Rows may be separated by semi-colons rather
than a new line:

> B =[-125; 90 5]

B =
-1 2 5
9 0 5
>>C = [0, 1; 3, -2; 4, 2]
C =
0 1
3 -2
4 2
>> D = [1:5; 6:10; 11:2:20]
D =
1 2 3 4 5
6 7 8 9 10
11 13 15 17 19

So A and B are 2 x 3 matrices, C is 3 X 2 and D
is 3 x 5.

In this context, a row vector is a 1 X n matrix
and a column vector a m x 1 matrix.

15.1 Size of a matrix

We can get the size (dimensions) of a matrix
with the command size

>> size(d), size(x)

ans =

2 3
ans =

3 1
>> size(ans)
ans =

1 2

So Ais2x 3 and zis 3 x 1 (a column vector).
The last command size(ans) shows that the
value returned by size is itself a 1 x 2 matrix
(a row vector). We can save the results for use
in subsequent calculations.

>> [r c] = size(A’), S = size(A?)
r =
3
c =
2
S =
3 2

Arrays can be reshaped. A simple example is:

>> A(:)

ans =
5
1
7
-3
9
-7

which converts A into a column vector by stack-
ing its columns on top of each other. This could
also be achieved using reshape(A,6,1). The
command

>> reshape(4,3,2)
ans

5 -3

18

1
7

9
-7

also redistributes the elements of A columnwise.

15.2 Transpose of a matrix

Transposing a vector changes it from a row to a
column vector and vice versa (see §8.4)—recall
that is also performs the conjugate of complex
numbers. The extension of this idea to matrices
is that transposing interchanges rows with the
corresponding columns: the 1st row becomes
the 1st column, and so on.

>> D, D’
D =
1 2 3 4 5
6 7 8 9 10
1 13 15 17 19
ans =
1 6 11
2 7 13
3 8 15
4 9 17
5 10 19
>> size(D), size(D’)
ans =
3 5
ans =
5 3

15.3 Special Matrices

Matlab provides a number of useful built—in
matrices of any desired size.
ones(m,n) gives an m X n matrix of 1’s,

>> P = ones(2,3)
P:
1 1 1
1 1 1

zeros(m,n) gives an m X n matrix of 0’s,

>> Z = zeros(2,3), zeros(size(P’))
7 =

0 0 0

0 0 0
ans =

0 0

0
0

0
0

The second command illustrates how we can
construct a matrix based on the size of an ex-
isting one. Try ones(size(D)).

An n X n matrix that has the same number
of rows and columns and is called a square
matrix.

A matrix is said to be symmetric if it is equal
to its transpose (i.e. it is unchanged by trans-
position):

> S8 =1[2-10; -12-1; 0 -1 2],

2 -1 0
-1 2 -1
0 -1 2
>> St = S’
St =
2 -1 0
-1 2 -1
0 -1 2
>> S-St
ans =
0 0 0
0 0 0
0 0 0

15.4 The Identity Matrix

The n x n identity matrix is a matrix of zeros
except for having ones along its leading diag-
onal (top left to bottom right). This is called
eye(n) in Matlab (since mathematically it is
usually denoted by TI).

>> 1 = eye(3), x = [8; -4; 1], I*x
I =
1 0 0
0 1 0
0 0 1
x =
8
-4
1
ans =
8
-4
1

19

Notice that multiplying the 3 x 1 vector x by
the 3 x 3 identity I has no effect (it is like mul-
tiplying a number by 1).

15.5 Diagonal Matrices

A diagonal matrix is similar to the identity ma-
trix except that its diagonal entries are not nec-
essarily equal to 1.

D =

o O W
O = O
N OO

is a 3 x 3 diagonal matrix. To construct this in
Matlab, we could either type it in directly

>D=[-300; 040; 00 2]

D =
-3 0 0
0 4 0
0 0 2

but this becomes impractical when the dimen-
sion is large (e.g. a 100 x 100 diagonal matrix).
We then use the diag function.We first define a
vector d, say, containing the values of the diag-
onal entries (in order) then diag(d) gives the
required matrix.

> d=[-342], D= diag(d)
d =

-3 4 2
D =

-3 0 0

0 4 0

0 0 2

On the other hand, if A is any matrix, the com-
mand diag(A) extracts its diagonal entries:

>F=[0187; 3-2-42;4211]
F

0

3

4
>> diag(F)
ans

0
-2
1

Notice that the matrix does not have to be
square.

15.6 Building Matrices

It is often convenient to build large matrices
from smaller ones:

>> c=[0 1; 3 -2; 4 2]; x=[8;-4;1];

>> G = [C x]
G =
0 1 8
3 -2 -4
4 2 1
>> A, B, H= [A; B]
A=
5 7 9
1 -3 -7
B =
-1 2 5
9 0 5
H =
5 7 9
1 -3 -7
-1 2 5
9 0 5

so we have added an extra column (x) to C in
order to form G and have stacked A and B on
top of each other to form H.

>> J = [1:4; 5:8; 9:12; 20 0 5 4]
J

1 2 3 4
5 6 7 8
9 10 11 12
20 0 5 4
>> K = [diag(1:4) J; J’ zeros(4,4)]
K =
1 0 0 0 1 2 3 4
0 2 0 0 5 6 7 8
0 0 3 0 9 10 11 12
0 0 0 4 20 0 5 4
1 5 9 20 0 0 0 0
2 6 10 0 0 0 0 0
3 7 11 5 0 0 0 0
4 8 12 4 0 0 0 O

The command spy (K) will produce a graphical
display of the location of the nonzero entries in
K (it will also give a value for nz—the number
of nonzero entries):

>> spy(K), grid

20

The keyword end can also be used with multi-
dimensional arrays

K(1:2,end-1:end)
ans
4
8

~N w

15.7 Tabulating Functions

This has been addressed in earlier sections but
we are now in a position to produce a more
suitable table format.

Example 15.1
Tabulate the functions y = 4sin3z and u
3sindx for x =0,0.1,0.2,...,0.5.

>> x =0:0.1:0.5;

>> y = 4*xsin(3*x); u = 3*sin(4*x);

> [x7 y» wl

ans =

0 0 0

0.1000 1.1821 1.1683
0.2000 2.2586 2.1521
0.3000 3.1333 2.7961
0.4000 3.7282 2.9987
0.5000 3.9900 2.7279

Note the use of transpose (’) to get column
vectors. (we could replace the last command
by [x; y; u;1?)

We could also have done this more directly:

>> x (0:0.1:0.5)7;
>> [x 4*sin(3*x) 3*sin(4x*x)]

15.8 Extracting Parts of Matrices

We may extract sections from a matrix in much
the same way as for a vector (page 6).

Each element of a matrix is indexed according
to which row and column it belongs to. The
entry in the ¢th row and jth column is de-
noted mathematically by A;; and, in Matlab,
by A(i,j). So

J =

9 10 11 12
20 0 5 4
>> J(1,1)
ans =
1
>> J(2,3)
ans =
7
>> J(4,3)
ans =
5
>> J(4,5)
7?7 Index exceeds matrix dimensions.
>> J(4,1) = J(1,1) + 6
J =
1 2 3 4
5 6 7 8
9 10 11 12
7 0 5 4
>> J(1,1) = J(1,1) - 3%J(1,2)
J =
-5 2 3 4
5 6 7 8
9 10 11 12
7 0 5 4

In the following examples we extract i) the 3rd
column, ii) the 2nd and 3rd columns, iii) the
4th row, and iv) the “central” 2 x 2 matrix.
See §8.1.

>> J(:,3) % 3rd column
ans =

3

7

11

5
>> J(:,2:3) % columns 2 to 3
ans =

2 3

6 7

10 11

0 5
>> J(4,:) % 4th row
ans =

7 0 5 4

>> Y, To get rows 2 to 3 & cols 2 to 3:
>> J(2:3,2:3)
ans

6 7

21

10 11

Thus, : on its own refers to the entire column
or row depending on whether it is the first or
the second index.

15.9 Elementwise Products (.*)

The elementwise product works as for vectors:
corresponding elements are multiplied together—
so the matrices involved must have the same
size.

>> A, B
A =
5 7 9
1 -3 -7
B =
-1 2 5
9 0 5
>> A.*B
ans =
-5 14 45
9 0 -35
>> A.xC

??? Error using ==
Matrix dimensions must agree.
>> A.xC’

ans

Lk

21
6

36

1 -14

Elementwise powers .~ and division ./ work in
an analogous fashion.

15.10 Matrix—vector products

We turn next to the definition of the product of
a matrix with a vector. This product is only de-
fined for column vectors that have the same
number of entries as the matrix has columns.
So, if A is an m X n matrix and z is a column
vector of length n, then the matrix—vector Az
is legal.

An m X n matrix times an n x 1 matrix = a
m X 1 matrix.

We visualise A as being made up of m row vec-
tors stacked on top of each other, then the prod-
uct corresponds to taking the inner product

A = m rows

(See §12.1) of each row of A with the vector z:
The result is a column vector with m entries.

|

5x8+7Tx(—4)+9x1
| 1x 8+ (=3) x (=4)+ (=7) x1

K

| 13
It is somewhat easier in Matlab:

8

5
1

7
-3

9

Az
-7

|

> A =[579; 1-3-7]
A =
5 7 9
1 -3 -7
>> x = [8; -4; 1]
x =
8
-4
1
>> Axx
ans =
21
13
(mxmxl) = (m x 1).
>> x*xA

??7 Error using ==> *
Inner matrix dimensions must agree.

Unlike multiplication in scalar arithmetic, Axx
is not the same as x*A.

15.11 Matrix—Matrix Products

To form the product of an m X n matrix A and
a n X p matrix B, written as AB, we visualise
the first matrix (A) as being composed of m
row vectors of length n stacked on top of each
other while the second (B) is visualised as being
made up of p column vectors of length n:

L1
|

» columns

22

The entry in the ith row and jth column of the
product is then the innerproduct of the ith row
of A with the jth column of B. The product is
an m X p matrix:

(mexp) = (m X p).

Check that you understand what is meant by
working out the following examples by hand
and comparing with the Matlab answers.

> A=[6 7 9; 1-3-7]
A =
5 7 9
1 -3 -7
> B = [0, 1; 3, -2; 4, 2]
B =
0 1
3 -2
4 2
>> C = A*B
C =
57 9
-37 =7
>> D = Bx*A
D =
1 -3 -7
13 27 41
22 22 22
>> E = B’*A’
E =
57 -37
9 -7

We see that E = C’ suggesting that

(A*B)’ = B™*A’
Why is Bx A a 3 x 3 matrix while A% B is 2 x 27

Exercise 15.1 [t is often necessary to factor-
ize a matriz, e.g., A = BC or A = STXS
where the factors are required to have specific
properties. Use the 'lookfor keyword’ com-
mand to make a list of factorizations commands
in Matlab.

15.12 Sparse Matrices

Matlab has powerful techniques for handling
sparse matrices — these are generally large ma-
trices (to make the extra work involved worth-
while) that have only a very small proportion
of non—zero entries.

Example 15.2 Create a sparse 5 x 4 matriz
S having only 8 non-zero values: S12 = 10,
5373 =11 and 5574 =12.

We first create 3 vectors containing the i—index,
the j—index and the corresponding values of
each term and we then use the sparse com-
mand.

> i =1[1, 3, 5]; j = [2,3,4];
>> v = [10 11 12];
>> § = sparse (i,j,v)
S =
(1,2) 10
(3,3) 11
(5,4) 12
>> T = full(S)
T =
0 10 0 0
0 0 0 0
0 0 11 0
0 0 0 0
0 0 0 12

The matrix T is a “full” version of the sparse
matrix S.

Example 15.3 Develop Matlab code to create,
for any given value of n, the sparse (tridiago-
nal) matriz

1
-2

n—1
2
-3

n—2

3 n—3

-n+1 n—1 1
-n n

We define three COLUMN vectors, one for each
“diagonal” of non—zeros and then assemble the
matrix using spdiags (short for sparse diago-
nals). The vectors are named 1 (lower diago-
nal), d (diagonal) and u (upper diagonal). They

23

must all have the same length and only the first
n — 1 terms of 1 are used while the last n — 1
terms of u are used. spdiags places these vec-
tors in the diagonals labelled -1, 0 and 1 (0
defers to the leading diagonal, negatively num-
bered diagonals lie below the leading diagonal,
etc.)

>> n = b5;

> d = (1:n)’; 1 = -(d+1)’;

>> u = flipud(d’)

>> B = spdiags([1 d ul,-1:1,n,n);

>> full(B)

ans =
1 4 0 0 0
-2 2 3 0 0
0 -3 3 2 0
0 0 -4 4 1
0 0 0 -5 5

Notice the use of the command flipud that
reverses the entries in a column vector. More
generally flipudreverses the order of rows in a
matrix (two dimensional array), while fliplr
reverses the order of columns.

16 Systems of Linear Equa-
tions

Mathematical formulations of engineering prob-
lems often lead to sets of simultaneous linear
equations.

A general system of linear equations can be ex-
pressed in terms of a coefficient matrix A, a
right-hand-side (column) vector b and an un-
known (column) vector x as

Ax=Db
or, componentwise, as

1,121 + a1,2%2 + - @1 Ty = by

a2.1%1 + a22%2 + - - A2 Ty = b2

ap, 171 + Ap 272 + - ApnTn = bn

When A is non-singular and square (n X n),
meaning that the number of independent equa-
tions is equal to the number of unknowns, the

system has a unique solution given by
x=A"b

where A~ is the inverse of A. Thus, the solu-

tion vector x can, in principle, be calculated by —

taking the inverse of the coefficient matrix A
and multiplying it on the right with the right-
hand-side vector b.

Exercise 16.2 Use the backslash operator to
solve the complex system of equations for which

242 -1 0 1+i
-1 2-2 -1]|, b=]| 0
0 -1 2 1—1i

Exercise 16.3 Find information on the ma-
triz inversion command ’inv’ using each of the

This approach based on the matrix inverse, thoughy, 15,45 isted in Section 2 for obtaining help.

formally correct, is at best inefficient for prac-
tical applications (where the number of equa-
tions may be extremely large) but may also give
rise to large numerical errors unless appropri-
ate techniques are used. These issues are dis-
cussed in most courses and texts on numerical
methods. Various stable and efficient solution
techniques have been developed for solving lin-
ear equations and the most appropriate in any
situation will depend on the properties of the
coefficient matrix A. For instance, on whether
or not it is symmetric, or positive definite or
if it has a particular structure (sparse or full).
Matlab is equipped with many of these special
techniques in its routine library and many are
invoked automatically.

The standard Matlab routine for solving sys-
tems of linear equations is invoked by calling

the matrix left-division routine,
> x=A\Db

where “\” is the matrix left-division operator
known as “backslash” (see help backslash).

Exercise 16.1 Enter the symmetric coefficient
matriz and Tight-hand-side vector b given by

2 -1 0 1
A=|1 -2 1|, b=]|o0
0 -1 2 1

and solve the system of equations Ax = b using
the three alternative methods:

i) x = A™1b, (the inverse A=' may be com-
puted in Matlab using inv(4).)

i) x = A\ b,

iii) xT AT = b7 leading to T = b’ / A which
makes use of the “slash” or “right divi-
sion” operator “/”. The required solution
is then the transpose of the row vector zT.

24

What kind of matrices are the ’inv’ command
applicable to?

Obuviously problems may occur if the inverted
matriz is nearly singular. Suggest a command
that can be used to give an indication on whether
the matriz is nearly singular or not. [Hint: see
the topics referred to by 'help inv’.]

16.1 Overdetermined systems

An overdetermined system of linear equations is
a one with more equations (m) than unknowns
(n), i.e., the coefficient matrix has more rows
than columns (m > n). Overdetermined sys-
tems frequently appear in mathematical mod-
elling when the parameters of a model are de-
termined by fitting to experimental data. For-
mally the system looks the same as for square
systems but the coefficient matrix is rectangu-
lar and so it is not possible to compute an in-
verse. In these cases a solution can be found
by requiring that the magnitude of the residual
vector r, defined by

r=Ax—b,

be minimized. The simplest and most frequently
used measure of the magnitude of r is require

the Euclidean length (or norm—see Section 12.1)
which corresponds to the sum of squares of the

components of the residual. This approach leads
to the least squares solution of the overdeter-

mined system. Hence the least squares solution

is defined as the vector x that minimizes

I‘TI‘.

It may be shown that the required solution sat-
isfies the so—called “normal equations”

Cx =d, where C = ATA and d = ATb.

It is well-known that the solution of this system
can be overwhelmed by numerical rounding er-
ror in practice unless great care is taken in its
solution (a large part of the difficulty is inher-
ent in the loss of information in computing the
matrix-matrix product AT A). As in the solu-
tion of square systems of linear equations, spe-
cial techniques have been developed to address
these issues and they have been incorporated
into the Matlab routine library.

This means that a direct solution to the prob-
lem of overdetermined equations is available in
Matlab through its left division operator “\”.
When the matrix A is not square, the operation

x = A\b

automatically gives the least squares solution
to Ax = b. This is illustrated in the next ex-
ample.

Example 16.1 A spring is a mechanical ele-
ment which, for the simplest model, is charac-
terized by a linear force-deformation relation-
ship

F =kx,

F being the force loading the spring, k the spring
constant or stiffness and x the spring deforma-
tion. In reality the linear force—deformation re-
lationship is only an approximation, valid for
small forces and deformations. A more accu-
rate relationship, valid for larger deformations,
is obtained if non-linear terms are taken into
account. Suppose a spring model with a quadratic
relationship

F=kux+ k‘g.’L‘2

is to be used and that the model parameters,
k1 and ko, are to be determined from experi-
mental data. Five independent measurements
of the force and the corresponding spring defor-
mations are measured and these are presented
in Table 1.

Using the quadratic force-deformation relation-
ship together with the experimental data yields
an overdetermined system of linear equations
and the components of the residual are given

25

Force F' [N] | Deformation z [cm)]
51 0.001
50 | 0.011
500 | 0.013
1000 | 0.30
2000 | 0.75
Table 1: Measured force-deformation data for
spring.
by
1 :$1k1—|—$%k‘2 - K
ro = Toky + $§I{32 — Fy
rs = .’Egkl + x%kg — F3
T4 = I4k1 + IL'ZICQ — F4
ry = x5k + l‘gk‘g — F5.

These lead to the matrix and vector definitions

X1 SC% Fl
X2 $g F2
A= | 23 22 and b= | F3
Ty J;Z Fy
Ts5 x% Fs.

The appropriate Matlab commands give (the
components of x are all multiplied by 1e-2, i.e.,

1072, in order to change from cm to m)
>> x = [.001 .011 .13 .3 .75]*le-2;
>> A =[x (x2).72]
A =
0.0000 0.0000
0.0001 0.0000
0.0013 0.0000
0.0030 0.0000
0.0075 0.0001
>> format short e
>> A
A =
1.0000e-05 1.0000e-10
1.1000e-04 1.2100e-08
1.3000e-03 1.6900e-06
3.0000e-03 9.0000e-06
7.5000e-03 5.6250e-05

>> format, format compact
>> b = [65 50 500 1000 2000];

The second column of A is mainly zeros in stan-
dard format and so a switch to format short

e is used the least squares solution to this sys-
tem is given by

>> k = A\b’
k =
1.0e+07 *
0.0386
-1.5993
0.39 6 .
Thus, k ~ _16.0 } x 10° and the quadratic

spring force-deformation relationship that opti-
mally fits experimental data in the least squares
sense is

F ~ 38.6 x 10z — 16.0 x 10%22.

The data and solution may be plotted with the
following commands

>>
>>

% plot data points
plot(x,f,’0’), hold on

>> X = (0:.01:1)*max(x);
>> % best fit curve
>> plot (X, [X> (X.72)’1xk,’-?)

>> xlabel(’x[m]’), ylabel(’F[N]’)

and the results are shown in Fig. 7.

2000

1800
1600
1400 -
1200
Z:1000f
800
600}
400}

200

Fig. 7: Data for Example 16.1 (circles) and best
least squares fit by a quadratic model (solid
line).

Matlab has a routine polyfit for data fitting
by polynomials: see “help polyfit”. It is not
applicable in this example because we require
that the force — deformation law passes through
the origin (so there is no constant term in the
quadratic model that we used).

26

17 Characters, Strings and
Text

The ability to process text in numerical pro-
cessing is useful for the input and output of
data to the screen or to files. In order to man-
age text, a new datatype of “character” is intro-
duced. A piece of text is then simply a string
(vector) or array of characters.

Example 17.1 The assignment,
>> t1 = A’

assigns the value A to the 1-by-1 character ar-
ray t1. The assignment,

>> t2 = ’BCDE’
t2 =
BCDE
>> size(t2)
ans =

1 4

assigns the value BCDE to the 1-by—4 character
array t2.

Strings can be combined by using the opera-
tions for array manipulations.
The assignment,

>> t3 = [t1,t2]

assigns a value ABCDE to the 1-by-5 character
array t3. The assignment,

>> t4 = [t3,’ are the first 5
’characters in the alphabet.’]

assigns the value

’ABCDE are the first 5 °’

’characters in the alphabet.’

to the 2-by-27 character array t4. It is essen-
tial that the number of characters in both rows
of the array t4 is the same, otherwise an error
will result. The three dots ... signify that the
command is continued on the following line
Sometimes it is necessary to convert a charac-
ter to the corresponding number, or vice versa.
These conversions are accomplished by the com-
mands ’str2num’—which converts a string to

the corresponding number, and two functions,
’int2str’ and 'num2str’, which convert, respec-
tively, an integer and a real number to the cor-
responding character string. These commands
are useful for producing titles and strings, such
as 'The value of pi is 3.1416’. This can be
generated by the command

[’The value of pi is ’,num2str(pi)].

> N =5; h =1/N;

>> [’The value of N is ’,int2str(N),...
> h >, num2str(h)]

ans
The value of N is 5, h = 0.2

18 Loops

There are occasions that we want to repeat a
segment of code a number of different times
(such occasions are less frequent than other pro-
gramming languages because of the : nota-
tion).

A standard for loop has the form

>> for counter 1:20

which repeats the code as far as the end with

the variable counter=1 the first time, counter=2

the second time, and so forth. Rather more
generally

>> for counter [23 11 19 5.4 +#6]

repeats the code with counter=23 the first time,
counter=11 the second time, and so forth.

Example 18.1 The Fibonnaci sequence starts
off with the numbers 0 and 1, then succeeding
terms are the sum of its two immediate prede-
cessors. Mathematically, f1 =0, fo =1 and
f71,:fn—1+fn—2, 7123,4,57....
Test the assertion that the ratio fn_1/fn of two
successive values approaches the golden ratio

(v5—1)/2 = 0.6180. . ..

>>

>>
>>
>>
>>
>>

F(1) = 0; F(2) = 1;
for i = 3:20
F(i) = F(i-1) + F(i-2);
end
plot(1:19, F(1:19)./F(2:20),’0’)
hold on, xlabel(’n’)
plot(1:19, F(1:19)./F(2:20),’-’)
legend(’Ratio of terms f_{n-1}/f_n’)
plot ([0 20], (sqrt(5)-1)/2x[1,1],’--")

The last of these commands produces the dashed
horizontal line.

. Ratiooftermsf /f
0.9 | 1

o8k |1
0.7F [

067!
05 | ¢
04f |
0sF |
02 |
oar |

Example 18.2 Produce a list of the values of

the sums

Seo = l+gm+z+- +$

Sop = l4+mtpt -+t

S0 = l+g+3++artszt +oe

There are a total of 81 sums.

The first can

be computed using sum(1./(1:20).72) (The
function sum with a vector argument sums its
components. See §21.2].) A suitable piece of
Matlab code might be

>> S = zeros(100,1);
>> §8(20) = sum(1./(1:20).72);
>> for n = 21:100
> S(n) = S(n-1) + 1/n"2;
>> end
>> clf; plot(S,’.’,[20 100],[1,1]1*pi~2/6,°-")
>> axis([20 100 1.5 1.71)
>> [(98:100)° 8(98:100)]
ans =
98.0000 1.6364

27

99.0000
100.0000

1.6365
1.6366

where a column vector S was created to hold the
answers. The first sum was computed directly
using the sum command then each succeeding
sum was found by adding 1/n? to its prede-
cessor. The little table at the end shows the
values of the last three sums—it appears that
they are approaching a limit (the value of the
limit is 72/6 = 1.64493...).

A more elegant solution is given by

>>n =
>> S

1:100;
cumsum(l./n."2);

where cumsum calculates the cumulative sum of
entries in a vector.

Exercise 18.1 Repeat Example 18.2 to include
181 sums (i.e., the final sum should include the
term 1/2002.)

19 Timing

Matlab allows the timing of sections of code
by providing the functions tic and toc. tic
switches on a stopwatch while toc stops it and
returns the CPU time (Central Processor Unit)
in seconds. The timings will vary depending
on the model of computer being used and its
current load.

>> tic, sum((1:10000).7°2) ;toc
Elapsed time is 0.000124 seconds.
>> tic, sum((1:10000)."2);toc
Elapsed time is 0.000047 seconds.
>> tic, sum((1:10000).72);T = toc
T =

8.2059e-05

s =

The first two instances illustrate that there can
be considerable variation in successive calls to
the same operations. The third instance shows
that the elapsed time can be assigned to a vari-
able.

20 Logicals

Matlab represents true and false by means of
the integers 0 and 1.

28

true = 1, false = 0
If at some point in a calculation a scalar x, say,
has been assigned a value, we may make certain
logical tests on it:

X == is x equal to 27

x "= 2 is x not equal to 27

X > 2 is x greater than 27

x <2 is x less than 27

x >= 2 s x greater than or equal to 27
x <= 2 s x less than or equal to 27

Pay particular attention to the fact that the
test for equality involves two equal signs ==.

>> x =
X =
3.1416
> x "= 3, x "=pi
ans =
1
ans =
0

pi

When x is a vector or a matrix, these tests are
performed elementwise:

X =
-2.0000 3.1416 5.0000
-1.0000 0 1.0000

>> x ==

ans =

0 0 0

0 1 0
> x > 1, x >=-1
ans =

0 1 1

0 0 0
ans =

0 1 1

1 1 1
>y =x>=-1, x>y

y =

0 1 1

1 1 1
ans =

0 1 1

0 0 0

-2.0000

3.1416 5.0000
-5.0000 -3.0000 -1.0000
> x >3 & x< 4
ans =
0 1 0
0 0 0
>>x >3 | x == -3
ans =
0 1 1
0 1 0

As one might expect, & represents and and (not
so clearly) the vertical bar | means or; also ~

means not as in ~

(not equal), ~ (x>0), etc.

>> x > 3 |
ans

-3 | x <= -5

1

1 1

One of the uses of logical tests is to “mask out”
certain elements of a matrix.

> x, L= x>0
x =
-2.0000 3.1416 5.0000
-5.0000 -3.0000 -1.0000
L =
0 1 1
0 1 1
>> pos = x.*L
pos =
0 3.1416 5.0000
0 0 0

so the matrix pos contains just those elements
of x that are non—negative.

>> x = 0:0.05:6; y = sin(pi*x);
>> Y = (y>=0).%y;

>> plot(x,y,’:’,x,Y,’-’

)

20.1 While Loops

There are some occasions when we want to re-
peat a section of Matlab code until some logical
condition is satisfied, but we cannot tell in ad-
vance how many times we have to go around

the loop. This we can do with a while...end
construct.

29

Example 20.1 What is the greatest value of n
that can be used in the sum

124224+ n?
and get a value of less than 1007

> S =1; n = 2;
>> while S+ n”"2 < 100

S=S+n"2; n=ntl;
end
>> [n-1, S]
ans =
6 91

The lines of code between while and end will

only be executed if the condition S+n~2 < 100
is true.

Exercise 20.1 Replace 100 in the previous ez-
ample by 10 and work through the lines of code

by hand. You should get the answers n = 2 and
S =5.

Exercise 20.2 Type the code from Example20.1
into a script—file named WhileSum.m (See §10.)

A more typical example is

Example 20.2 Find the approzimate value of
the root of the equation x = cosx. (See Exam-

ple 13.1.)
We may do this by making a guess z, = /4,
say, then computing the sequence of values

Ty = COSTn—1,

n=23.4,...

and continuing until the difference, d, between
two successive values |2, —x,_1| is small enough.

Method 1:

>> x = zeros(1,20); x(1) = pi/4;
> n=1; d=1;
>> while 4 > 0.001

n = n+l; x(n) = cos(x(n-1));
d = abs(x(n) - x(n-1));
end
n,x(1:n)
o=
14

x =
Columns 1 through 6

0.7854 0.7071 0.7602 0.7247 0.7487 0.7326
Columns 7 through 12

0.7435 0.7361 0.7411 0.7377 0.7400 0.7385
Columns 13 through 14

0.7395 0.7388

There are a number of deficiencies with this
program. The vector x stores the results of
each iteration but we don’t know in advance
how many there may be. In any event, we are
rarely interested in the intermediate values of
x, only the last one. Another problem is that
we may never satisfy the condition d < 0.001,
in which case the program will run forever, so
we should place a limit on the maximum num-
ber of iterations.

Incorporating these improvements leads to

Method 2:

>> xo0ld = pi/4; n=1; d=1;
>> while d > 0.001 & n < 20

n = n+l; xnew = cos(xold);
d = abs(xnew - xold);
x0ld = xnew;
end
>> [n, xnew, d]
ans =
14.0000 0.7388 0.0007

We continue around the loop so long as d >
0.001 and n < 20. For greater precision we
could use the condition d > 0.0001, and this
gives

>> [n, xnew, d]
ans =
19.0000

0.7391 0.0001

30

from which we may judge that the root required
is ¢ = 0.739 to 3 decimal places.
The general form of while statement is

while a logical test
Commands to be executed
when the condition is true
end

20.2

This allows us to execute different commands
depending on the truth or falsity of some logical
tests. To test whether or not 7¢ is greater than,
or equal to, e™:

if...then...else...end

>> a = pitexp(1); c = exp(pi);
>> if a >= ¢
b = sqrt(a”2 - ¢72)

end

so that b is assigned a value only if a > ¢. There
is no output so we deduce that a = 7° < c = e€™.
A more common situation is

>> if a >= ¢

b = sqrt(a”2 - ¢72)
else
b=0
end
b =
0

which ensures that b is always assigned a value
and confirming that a < c.
A more extended form is

>> if a >= ¢

b = sqrt(a”2 - ¢72)
elseif a"c > c”a
b = c"a/a"c
else
b = a“c/c"a
end
b =
0.2347

Exercise 20.3 Which of the above statements
assigned a value to b?

The general form of the if statement is

if logical test 1
Commands to be executed if test 1
15 true

elseif logical test 2
Commands to be executed if test 2
is true but test 1 is false

end

21 Further Built—in Functions,

21.1 Rounding Numbers

There are a variety of ways of rounding and
chopping real numbers to give integers. Use the
definitions given in the table in §26 on page 42
in order to understand the output given below:

>> x = [-4 -1 1 4]*pi
x =
-12.5664 -3.1416 3.1416 12.5664
>> round(x)
ans =
-13 -3 3 13
>> fix(x)
ans =
-12 -3 3 12
>> floor(x)
ans =
-13 -4 3 12
>> ceil (x)
ans =
-12 -3 4 13
>> sign(x), rem(x,3)
ans =
-1 0 1 1 1
ans =
-0.5664 -0.1416 0.1416 0.5664

Do “help round” for help information.

21.2 The sum Function

The “sum” applied to a vector adds up its com-
ponents (as in sum(1:10)) while, for a matrix,
it adds up the components in each column
and returns a row vector. sum(sum(A)) then
sums all the entries of A.

31

>> A = [1:3; 4:6; 7:9]

A
2
5
8
sum(A), ss

3
6
9

N bd -

\4

>

0]

12 15 18

45

SS

pi/4%(1:3)7;

>> A
0.5000
0.7071
0.5000

0.7071
0.0000
-0.7071

>>
sl

s1

sum(A."2), s2

1.0000 1.0000

3.0000

s2

sum(sum(A))

x =
A=[sin(x),sin(2*x),sin(3*x)]/sqrt(2)

0.5000
-0.7071
0.5000

sum(sum(A."2))

1.0000

The sums of squares of the entries in each col-
umn of A are equal to 1 and the sum of squares
of all the entries is equal to 3.

>> AxA°
ans =
1.0000 0
0 1.0000
0 0.0000
>> A’ *A
ans =
1.0000 0
0 1.0000
0 0.0000

0.0000
1.0000

0
0.0000
1.0000

It appears that the products AA’ and A’A are

both equal to the identity:

>> AxA’ - eye(3)
ans

1.0e-15 *

-0.2220 0
0 -0.2220
0 0.0555

>> A’*A - eye(3)
ans

1.0e-15 *

0
0.0555
-0.2220

-0.2220 0 0
0 -0.2220 0.0555
0 0.0555 -0.2220

This is confirmed since the differences are at
round-off error levels (less than 107°). A ma-
trix with this property is called an orthogonal
matrix.

21.3 max & min

These functions act in a similar way to sum. If
x is a vector, then max(x) returns the largest
element in x

>> x = [1.3 -2.4 0 2.3]
x =

1.3000 -2.4000 0 2.3000
>> max(x), max(abs(x))
ans =

2.3000
ans =

2.4000
>> [m, jl = max(x)
m =

2.3000
j =

4

When we ask for two outputs, the first gives us
the maximum entry and the second the index
of the maximum element.

For a matrix, A, max(A) returns a row vec-
tor containing the maximum element from each
column. Thus, to find the largest element in A,
we use max (max (A)).

21.4 Random Numbers

The function rand (m,n) produces an m xXn ma-
trix of random numbers, each of which is in the
range 0 to 1. rand on its own produces a single
random number.

>> y = rand, Y = rand(2,3)

y =
0.9191

Y =
0.6262 0.1575 0.2520
0.7446 0.7764 0.6121

Repeating these commands will lead to differ-
ent answers. Example 22.2 gives an illustration
of the use of random numbers.

21.5 find for vectors

The function “find” returns a list of the posi-
tions (indices) of the elements of a vector sat-
isfying a given condition. For example,

>> x -1:.05:1;

>> y = sin(3*pi*x).*exp(-x.72);
>> plot(x,y,”:’)

>> k = find(y > 0.2)

k
Columns 1 through 12

9 10 11 12 13 22 23 24 25 26 27 36
Columns 13 through 15

37 38 39

hold on, plot(x(k),y(k),’0’)

km = find(x>0.5 & y<0)

>>
>>
km

32 33 34

>> plot (x(km),y(km),’-?)

-05 05

21.6 find for matrices

The find—function operates in much the same
way for matrices:

> A=[-2344;,05-16; 680 1]

32

6 8 0 1
>> k = find(A==0)
k =

2

9

Thus, we find that A has elements equal to 0 in
positions 2 and 9. To interpret this result we
have to recognize that “find” first reshapes A
into a column vector (see §15.1)—this is equiva-
lent to numbering the elements of A by columns
as in

1 4 7 10
2 5 8 11
3 6 9 12
>> n = find(A <= 0)
n =
1
2
8
9
>> A(n)
ans =
-2
0
-1
0

Thus, n gives a list of the locations of the entries
in A that are < 0 and then A(n) gives us the
values of the elements selected.

>>m = find(A’ == 0)

Since we are dealing with A’, the entries are
numbered by rows.

22 Function m-files

We can extend the number of Matlab built-in
functions by writing our own. They are special
cases of m-files (§7).

Example 22.1 The area, A, of a triangle with
sides of length a, b and c is given by

A=+/s(s—a)(s—b)(s—c),

33

where s = (a+b+c)/2. Write a Matlab function
that will accept the values a, b and ¢ as inputs
and return the value of A as output.

The main steps to follow when defining a Mat-
lab function are:

1. Decide on a name for the function, mak-
ing sure that it does not conflict with a
name that is already used by Matlab. In
this example the name of the function is
to be area, so its definition will be saved
in a file called area.m

. The first line of the file must have the
format:

function [list of outputs]
= function_name(list of inputs)

For our example, the output (A) is a func-
tion of the three variables (inputs) a, b
and c so the first line should read

function [A] area(a,b,c)

Document the function. That is, describe
briefly the purpose of the function and
how it can be used. These lines should be
preceded by % which signify that they are
comment lines that will be ignored when
the function is evaluated.

Finally include the code that defines the
function. This should be interspersed with
sufficient comments to enable another user
to understand the processes involved.

The complete file might look like:

function
%
%

[A] = area(a,b,c)
Compute the area of a triangle whose
sides have length a, b and c.

% Inputs:

% a,b,c: Lengths of sides
% Output:

% A: area of triangle

% Usage:

% Area = area(2,3,4);

% Written by dfg, Oct 14, 1996.
s = (a+b+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

Kb hhh%h end of area Uhhhhhhhhhth

The command

>> help area

will produce the leading comments from the
file:

Compute the area of a triangle whose
sides have length a, b and c.

Inputs:
a,b,c: Lengths of sides
Output:
A: area of triangle
Usage:
Area = area(2,3,4);

Written by dfg, Oct 14, 1996.

To evaluate the area of a triangle with side of
length 10, 15, 20:

>> Area = area(10,15,20)
Area =

72.6184

where the result of the computation is assigned
to the variable Area—the use of a capitalised
variable name is critical here, otherwise there
would be confusion between the variable name
and the function name. If we inadvertently use
a variable name that coincides with a function
name, as in

>> sin =

sin =
0.5000

>> sin(pi/2)

??? Subscript indices must either be
real positive integers or logicals.

sin(pi/6)

Matlab now considers the name sin to refer to
a variable and pi/2 in the command sin(pi/2)
is interpreted as an index to a vector. To re-
claim the function name we clear the variable
sin from memory with

>> clear sin

The variable s used in the definition of the area
function above is a “local variable”: its value is
local to the function and cannot be used out-
side:

>> s

7?7 Undefined function or variable s.

If we were interested in the value of s as well
as A, then the first line of the file should be
changed to

34

function [A,s] = area(a,b,c)

where there are two output variables.
This function can be called in several different

ways:

1. No outputs assigned

>> area(10,15,20)
ans =
72.6184

gives only the area (first of the output
variables from the file) assigned to ans;
the second output is ignored.

2. One output assigned
>> Area = area(10,15,20)
Area =
72.6184

again the second output is ignored.

3. Two outputs assigned

>> [Area, hlen] =
Area =

72.6184
hlen =

22.5000

area(10,15,20)

The previous examples illustrate the fact that
a function may have a different number of out-
puts. It is also possible to write function files
that accepts a variable number of inputs. For
example, in the context of our area function,
to calculate the area of a right angled triangle it
is only necessary to specify the lengths of two
of the sides since the third (the hypotenuse)
can be calculated by Pythagoras’s theorem. So
our amended function operates as previously
described but, when only two input arguments
are supplied, it assumes the triangle to be right
angled. It does this by using the reserved vari-
able nargin that holds the number of input ar-
guments. The revised function, called area2,
might then resemble the following code:

[A] = area2(a,b,c)
Compute the area of a triangle whose
sides have length a, b and c.
Inputs: either

a,b,c: Lengths of 3 sides
or

a, b: two shortest sides of a
right angled triangle

function
%
%
%
%
%
%
%

% Output:

% A: area of triangle
% Usage:

% Area = area2(2,3,4);
% or

% Area = area2(3,4);

% Written by dfg, Oct 14, 1996.
% Extended Oct 25, 2012
if nargin <2
error(’Not enough arguments’)
elseif nargin==2
c = sqrt(a”2+b"2);

end

s = (atb+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

D hhhhhethl end of areal %hhhhhhhlhhh

The command error issues an error message
to the screen and could be usefully employed in
the following exercise.

Exercise 22.1 FEzplain the output obtained from
the command

area(4,5,10)

Devise a test to warn the user of this type of
sttuation.

Exercise 22.2 FEztend the area function so that
it also calculates the area of an equilateral tri-
angle when only one input argument is supplied,
as in area(2).

Example 22.2 Write a function—file that will
simulate n throws of a pair of dice.

This requires random numbers that are integers
in the range 1 to 6 which can be produced with

floor(1 + 6*rand)

Recall that floor takes the largest integer that
is smaller than a given real number (see §21.1
and Table 2, page 42).

File: dice.m

35

[d] = dice(n)
simulates "n" throws of a pair of dice

function

h

% Input: n, the number of throws
% Output: an n times 2 matrix, each
% row referring to one throw.
)

% Useage: T = dice(3)

d = floor(1 + 6*rand(n,2));
%% end of dice

>> dice(3)
ans =
6 1
2 3
4 1
>> sum(dice(100))/100
ans =
3.8500 3.4300

The last command gives the average value over
100 throws (it should theoretically have the value
3.5).

Example 22.3 Construct a function that will
return the nth Fibonnaci number f,, where
fl :05f2 =1 and

fn = fn—l +fn—27

(See Example 18.1.) The function has:

n=3,4,5,....

e Input: Non-negative integer n

e Output: f,
We shall describe four possible functions and
try to assess which provides the best solution.

Method 1: File Fibl.m

function f = Fibl(n)
% Returns the nth number in the
% Fibonacci sequence.

F = zeros(1,n);
F(2) = 1;
for i = 3:n
F(i) = F(i-1) + F(i-2);
end
f =F(@);

This code resembles that given in Example 18.1.
We have simply enclosed it in a function m—file
and given it the appropriate header. The most

significant change is the line F=zeros (1,n) which

serves to both define the value of F(1) and to
allocate sufficient memory to store a vector to
hold the first n Fibonacci numbers. Had we not
done this then the length of the vector F would
be extended on each trip around the loop and
more memory would have to be allocated for
its storage. The time penalties this would incur
would not be significant in this example (since,
with modest values of n, it computes in a tiny
fraction of a second) but could be important
when dealing with large arrays in codes that
are run many times over.

Method 2: File Fib2.m

The first version was rather wasteful of mem-
ory, all the entries in the sequence where saved
even though we only required the last one for
output. The second version removes the need
to use a vector.

function f Fib2(n)
% Returns the nth number in the
% Fibonacci sequence.
if n==
f 0;
elseif n==2
f 1;
else
f1 =0; £f2 = 1;
for i 3:n
f = f1 + £2;
f1 = £2; £f2 = £;
end
end

Method 3: File: Fib3.m

This version makes use of an idea called “recur-
sive programming”—the function makes calls
to itself.

Fib3(n)
% Returns the nth number in the
% Fibonacci sequence.
if n==1
f

function £

0;

36

elseif n==2

f =1;
else

f = Fib3(n-1) + Fib3(n-2);
end

Method 4: File Fib4.m
The final version uses matrix powers. The vec-

il

tor y has two components, y = { Fos
n

function f = Fib4(n)

% Returns the nth number in the
% Fibonacci sequence.

A= [0 1;1 1];

y = A"n*[1;0];

f=y(1);

Assessment: One may think that, on grounds
of style, the 3rd is best (it avoids the use of
loops) followed by the second (it avoids the use
of a vector). The situation is somewhat differ-
ent when it comes to speed of execution. When
n = 20 the time taken by each of the methods
is (in seconds)

Method Time
1 5.8052 x 10~°
2 2.5534 x 1075
3 1.4972 x 10~!
4 5.4041 x 10~°

What is immediately obvious from these tim-
ings is that Method 3 is significantly slower
than the others. Moreover, the time increases
dramatically as n is increased and is totally im-
practical. Methods 1, 2, and 4 execute very
rapidly and the times increase quite slowly as
n is increased. When times are averaged over
many hundreds of runs it becomes clear that
Method 2 is the most efficient followed by Method 1.

23 Plotting Surfaces

A surface is defined mathematically by a func-
tion f(x,y)—corresponding to each value of (z,y)
we compute the height of the function by

In order to plot this we have to decide on the
ranges of r and y—suppose 2 < =z < 4 and
1 <y < 3. This gives us a square in the (z,y)-
plane. Next, we need to choose a grid on this
domain; Figure 8 shows the grid with intervals
0.5 in each direction. Finally, we have to eval-

25

Fig. 8: An example of a 2D grid

uate the function at each point of the grid and
“plot” it.

Suppose we choose a grid with intervals 0.5 in
each direction for illustration. The z— and y—

coordinates of the grid lines are
x = 2:0.5:4; y =1:0.5:3;

in Matlab notation. We construct the grid with
meshgrid:

as corresponding to the (7, j)th entry in a matrix,
then (X(i,3j), Y(i,j)) are the coordinates of the
point. We then need to evaluate the function f us-
ing X and Y in place of x and y, respectively. As
in Example 14.1, elementwise operations (powers,
products, etc.) are usually appropriate.

Example 23.1 Plot the surface defined by the func-
tion

fl@,y) = (z = 3)" = (y - 2)°
for2<z<4andl <y<3.

>> [X,Y] = meshgrid(2:.2:4, 1:.2:3);

>> Z = (X-3).72-(Y-2).72;

>> mesh(X,Y,Z)

>> title(’Saddle’), xlabel(’x’),ylabel(’y’)

Saddle

0.5-

o

Fig. 9: Plot of Saddle function.

>> [X,Y] = meshgrid(2:.5:4, 1:.5:3);
>> X Exercise 23.1 Repeat the previous example replac-
X = ing mesh by surf and then by surfl. Consult the
2.0000 2.5000 3.0000 3.5000 4.0000 lelp pages to find out more about these functions.
;8888 22888 ggggg 22888 28888 Example 23.2 Plot the surface defined by the func-
2.0000 2.5000 3.0000 3.5000 4.0000 " @)
2.0000 2.5000 3.0000 3.5000 4.0000 f=—wye
>> Y on the domain —2 < x < 2,—-2 <y < 2. Find the
Y = values and locations of the mazxima and minima of
1.0000 1.0000 1.0000 1.0000 1.0000 the function.
1.5000 1.5000 1.5000 1.5000 1.5000
2.0000 2.0000 2.0000 2.0000 2.0000>> [X,Y] = meshgrid(-2:.1:2,-2:.2:2);
2.5000 2.5000 2.5000 2.5000 2.5000>> f = -X.*Y.*kexp(-2%(X."2+Y.72));
3.0000 3.0000 3.0000 3.0000 3.0000>> figure (1)

If we think of the ith point along from the left
and the jth point up from the bottom of the grid)

>> mesh(X,Y,f), xlabel(’x’), ylabel(’y’), grid
>> figure (2), contour(X,Y,f)
>> xlabel(’x’), ylabel(’y’), grid, hold on

37

0.1,

-0.05

=01

L 2 ;/:\i\ // \\\\\

s) (//”:\\ \

| 3

) /NN (N
« ((OH©)))
i \\\j// \\\:/,// o

-15 05

Fig. 10: “mesh” and “contour” plots.

To locate the maxima of the “£” values on the grid:

>> fmax = max(max(f))
fmax =
0.0886
>> kmax = find(f==fmax)
kmax =
323
539
>> Pos = [X(kmax), Y(kmax)]
Pos =
-0.5000 0.6000
0.5000 -0.6000

>> plot (X(kmax),Y(kmax),’*’)
>> text (X(kmax),Y(kmax),’ Maximum’)

See §13.10 for formatting text and labels.

38

Fig. 11: contour plot showing maxima.

24 Reading/Writing Data Files

Direct input of data from keyboard becomes im-
practical when

e the amount of data is large and
e the same data is analysed repeatedly.

In these situations input and output is preferably
accomplished via data files. We have already de-
scribed in Section 9 the use of the commands save
and load that, respectively, write and read the val-
ues of variables to disk files.

When data are written to or read from a file it
is crucially important that a correct data format
is used. The data format is the key to interpreting
the contents of a file and must be known in order to
correctly interpret the data in an input file. There
are two types of data files: formatted and unfor-
matted. Formatted data files uses format strings
to define exactly how and in what positions of a
record the data is stored. Unformatted storage, on
the other hand, only specifies the number format.
The files used in this section are available from the
web site

http://www.maths.dundee.ac.uk/software/matlab.shtml

Those that are unformatted are in a satisfactory
form for the Windows version on Matlab (version
6.1) but not on Version 5.3 under Unix.

Exercise 24.1 Suppose the numeric data is stored
in a file 'table.dat’ in the form of a table, as
shown below.

100 2256
200 4564
300 3653
400 6798
500 6432

The three commands,

>> fid = fopen(’table.dat’,’r’);
>> a = fscanf (fid, ’%3d%44’);
>> fclose(fid);

respectively

1. open a file for reading (this is designated by
the string 'r’). The variable fid is assigned
a unique integer which identifies the file used
(a file identifier). We use this number in all
subsequent references to the file.

2. read pairs of numbers from the file whose
identifier is fid, one with 3 digits and one
with 4 digits, and

3. close the file with file identifier fid.

This produces a column vector a with elements,
100 2256 200 4564 ...500 6432. This vector can
be converted to 5 x 2 matrix by the command

A = reshape(a,2,5)’;.

24.1 Formatted Files

Some computer codes and measurement instruments
produce results in formatted data files. In order to
read these results into Matlab for further analysis
the data format of the files must be known. For-
matted files in ASCII format are written to and
read from with the commands fprintf and fscanf.

fprintf(fid, ’format’, variables) writes
variables an a format specified in string ’for-
mat’ to the file with identifier fid

a = fscanf(fid, ’format’,size) assignsto
variable a data read from file with identifier
fid under format 'format’.

Exercise 24.2 Study the available information and
help on fscanf and fprintf commands. What is
the meaning of the format string, *%3d\n’ ¢

Example 24.1 Suppose a sound pressure measure-
ment system produces a record with 512 time — pres-
sure readings stored on a file 'sound.dat’. Fach
reading is listed on a separate line according to a
data format specified by the string, *%8.6f %8.6£f°.

39

Step 1:

Step 2:

Step 3:

A set of commands reading time-sound pressure
data from ’sound.dat’ is,

Assign a namestring to a file identifier.

>> fidl = fopen(’sound.dat’,’r’);

The string 'r’ indicates that data is to be read
(not written) from the file.

Read the data to a vector named ’data’ and
close the file,

>> data = fscanf(fidl,
>> fclose(fidl);

YhE KE?);

Partition the data in separate time and sound
pressure vectors,

>> t = data(l:2:1length(data));
>> press = data(2:2:length(data));

The pressure signal can be plotted in a 1in-1in
diagram,

>> plot(t, press);

The result is shown in Figure 12.

0.015 0.025

Fig. 12: Graph of “sound data” from Exam-
ple 24.1

24.2 Unformatted Files

Unformatted or binary data files are used when
small-sized files are required. In order to interpret
an unformatted data file the data precision must
be specified. The precision is specified as a string,
e.g., 'float32’, controlling the number of bits read
for each value and the interpretation of those bits
as character, integer or floating point values. Pre-
cision 'float32’, for instance, specifies each value
in the data to be stored as a floating point number
in 32 memory bits.

Example 24.2 Suppose a system for vibration mea- knowledge of Matlab. They also provides means
surement stores measured acceleration values as float- for efficient data management.

ing point numbers using 32 memory bits. The data
is stored on file 'vib.dat. The following commands
illustrate how the data may be read into Matlab for
analysis.

Step 1: Assign a file identifier, £id, to the string spec-
ifying the file name.
>> fid = fopen(’vib.dat’,’rb’);

The string ’rb’ specifies that binary num-
bers are to be read from the file.

Read all data stored on file 'vib.dat’ into a
vector vib.

Step 2

>> vib = fread(fid,
>> fclose(fid);
>> size(vib)
ans =
131072

’float32’);

The size(vib) command determines the size,
i.e., the number of rows and columns of the
vibration data vector.

In order to plot the vibration signal with a
correct time scale, the sampling frequency
(the number of instrument readings taken
per second) used by the measurement system
must be known. In this case it is known to
be 24000 Hz so that there is a time interval
of 1/24000 seconds between two samples.

Step 3: Create a column vector containing the cor-

rect time scale.

>> dt = 1/24000;
>> t = dt*(1:length(vib))’;

Step 4: Plot the vibration signal in a lin-lin dia-

gram

>> plot(t,vib);

>> title(’Vibration signal’);

>> xlabel(’Time, [s]’);

>> ylabel(’Acceleration, [m/s"2]°);

A graphic user interface is a Matlab script file cus-
tomized for repeated analysis of a specific type of
problem. There are two ways to design a graphic
user interface. The simplest method is to use a
tool especially designed for the purpose. Matlab
provides such a tool and it is invoked by typing
’guide’ at the Matlab prompt. Maximum flexibility
and control over the programming is, however, ob-
tained by using the basic user interface commands.
The following text demonstrates the use of some
basic commands.

Example 25.1 Suppose a sound pressure spectrum
is to be plotted in a graph. There are four alterna-
tive plot formats; lin-lin, lin-log, log-lin and log-log.
The graphic user interface below reads the pressure
data stored on a binary file selected by the user,
plots it in a lin-lin format as a function of frequency
and lets the user switch between the four plot for-
mats.

We use two m—files. The first (specplot.m) is the
main driver file which builds the graphics window.
It calls the second file (firstplot.m) which allows
the user to select among the possible *.bin files in
the current directory.

% File: specplot.m
%

% GUI for plotting a user selected frequency spectrum

% in four alternative plot formats, lin-lin,
% lin-log, log-lin and log-log.

%

% Author: U Carlsson, 2001-08-22

% Create figure window for graphs
figWindow =
% Create file input selection button

figure(’Name’,’Plot alternatives’);

fileinpBtn =

uicontrol(’Style’, ’pushbutton’,...
’string’,’File’,’position’, [5,395,40,20],...
’callback’,’ [fdat,pdat] = firstplot;’);

% Press ’File’ calls function ’firstplot’

. % Create pushbuttons for switching between four

25 Graphlc User Interfaces % different plot formats. Set up the axis stings.
X = ’Frequency, [Hz]’;

The efficiency of programs that are used often and y = >pressure amplitude, [Pal’;

by several different people can be improved by sim- 1in1inBtn = uicontrol(’ style’,’pushbutton’, ...

plifying the input and output data management. ’string’,’lin-lin’,...

The use of Graphic User Interfaces (GUI), which 'position’, [200,395,40,20], callback’, ...

provides facilities such as menus, pushbuttons, slid- 'plot (fdat,pdat) ;xlabel (X) ;ylabel(Y);’);

ers etc, allow programs to be used without any linlogBtn = uicontrol(’style’,’pushbutton’, ...

40

’string’,’lin-log’, ...
’position’, [240,395,40,20],...
’callback’, ...

’semilogy(fdat,pdat) ;xlabel (X) ;ylabel(Y);’) ; EiE Nl rre

uicontrol(’style’, ’pushbutton’,...

loglinBtn =
’string’,’log-1lin’,...
’position’, [280,395,40,20],...
’callback’, ...

’semilogx(fdat,pdat) ;xlabel (X) ;ylabel(Y);’);
uicontrol(’style’, ’pushbutton’,..

loglogBtn =
’string’,’log-log’, ...
’position’, [320,395,40,20],...
’callback’, ...
’loglog(fdat,pdat) ;xlabel(X);

% Create exit pushbutton with red text.

exitBtn = uicontrol(’Style’,’pushbutton’,...

’string’, ’EXIT’, ’position’, [610,395,40,20],

ylabel(Y);’) 10

Executing this GUI from the command line
(>> specplot) brings the following screen.

_lolxI
File Edt Yiew Insert | Tools Window Help
Fie | livin | fivdog | login | Jogog) EXIT

Pressure amplitude, [Pa]
=)

0 10 10' 10 10
Frequency, [Hz]

’foregroundcolor’, [1 0 0],’callback’,’closeFip; 13: Graph of “vibration data” from Exam-

Script file: firstplot.m

Brings template for file selection. Reads
selected filename and path and plots
spectrum in a 1lin-lin diagram.

Output data are frequency and pressure
amplitude vectors: ’fdat’ and ’pdat’.
Author: U Carlsson, 2001-08-22

S OS5 S % oo

function [fdat,pdat] = firstplot

% Call Matlab function ’uigetfile’ that
% brings file selction template.

[filename,pathname] = uigetfile(’*.bin’,...
’Select binary data-file:’);

% Change directory

cd(pathname) ;

% Open file for reading binary floating

% point numbers.

fid = fopen(filename,’rb’);

data = fread(fid,’float32’);

% Close file

fclose(fid);

% Partition data vector in frequency and

% pressure vectors

pdat = data(2:2:length(data));

fdat = data(1l:2:length(data));

% Plot pressure signal in a lin-lin diagram

plot(fdat,pdat);

% Define suitable axis labels

xlabel (’Frequency, [Hz]’);

ylabel(’Pressure amplitude, [Pal’);

41

ple 25.1

Example 25.1 illustrates how the ’callback’ prop-
erty allows the programmer to define what actions
should result when buttons are pushed etc. These
actions may consist of single Matlab commands or
complicated sequences of operations defined in var-
ious subroutines.

Exercise 25.1 Five different sound recordings are

stored on binary data files, soundl.bin, sound2.bin,
., sound5.bin. The storage precision is 'float32’

and the sounds are recorded with sample frequency

12000 Hz.

Write a graphic user interface that, opens an inter-

face window and

o lets the user select one of the five sounds,

e plots the selected sound pressure signal as a
function of time in a lin-lin diagram,

o lets the user listen to the sound by pushing a

"SOUND’ button and finally

e closes the session by pressing a "CLOSE’ but-
ton.

26 Command Summary

The command

>> help

will give a list of categories for which help is avail-
able (e.g. matlab/general covers the topics listed
in Table 3.

Further information regarding the commands listed
in this section may then be obtained by using:

>> help topic

try, for example,

>> help help

abs Absolute value

sqrt Square root function

sign Signum function

conj Conjugate of a complex number

imag Imaginary part of a complex
number

real Real part of a complex number

angle Phase angle of a complex number

cos Cosine function, radians

sin Sine function, radians

tan Tangent function, radians

cosd Cosine function, degrees

sind Sine function, degrees

tand Tangent function, degrees

exp Exponential function

log Natural logarithm

logl0 Logarithm base 10

cosh Hyperbolic cosine function

sinh Hyperbolic sine function

tanh Hyperbolic tangent function

acos Inverse cosine, result in radians

acosd Inverse cosine, result in degrees

acosh Inverse hyperbolic cosine

asin Inverse sine, result in radians

asind Inverse sine, result in degrees

asinh Inverse hyperbolic sine

atan Inverse tan, result in radians

atand Inverse tan, result in degrees

atan2 Two—argument form of inverse
tan

atanh Inverse hyperbolic tan

round Round to nearest integer

floor Round towards minus infinity

fix Round towards zero

ceil Round towards plus infinity

rem Remainder after division

Table 2: Elementary Functions

Managing commands and functions.

help
doc
what

type
lookfor

which
demo

On-line documentation.

Load hypertext documentation.
Directory listing of M-, MAT-
and MEX-files.

List M-file.

Keyword search through the
HELP entries.

Locate functions and files.

Run demos.

Managing variables and the workspace.

who
whos
load
save
clear

size
length
disp

List current variables.

List current variables, long form.
Retrieve variables from disk.
Save workspace variables to disk.
Clear wvariables and functions
from memory.

Size of matrix.

Length of vector.

Display matrix or text.

Working with files and the operating system.

cd Change current working direc-
tory.

dir Directory listing.

delete Delete file.

! Execute operating system com-
mand.

unix Execute operating system com-
mand & return result.

diary Save text of MATLAB session.

Controlling the command window.

cedit Set command line edit/recall fa-
cility parameters.

clc Clear command window.

home Send cursor home.

format Set output format.

echo Echo commands inside script
files.

more Control paged output in com-
mand window.

Quitting from MATLAB.
quit Terminate MATLAB.

42

Table 3: General purpose commands.

Matrix analysis.

Graphics & plotting.

cond Matrix condition number.

norm Matrix or vector norm.

rcond LINPACK reciprocal condition
estimator.

rank Number of linearly independent
rows or columns.

det Determinant.

trace Sum of diagonal elements.

null Null space.

orth Orthogonalization.

rref Reduced row echelon form.

Linear equations.

\ and / Linear equation solution; use
“help slash”.

chol Cholesky factorization.

lu Factors from Gaussian elimina-
tion.

inv Matrix inverse.

qr Orthogonal- triangular decompo-
sition.

grdelete Delete a column from the QR fac-
torization.

grinsert Insert a column in the QR factor-
ization.

nnls Non—negative least- squares.

pinv Pseudoinverse.

lscov Least squares in the presence of

known covariance.

Eigenvalues and singular values.

eig Eigenvalues and eigenvectors.

poly Characteristic polynomial.

polyeig Polynomial eigenvalue problem.

hess Hessenberg form.

qz Generalized eigenvalues.

rsf2csf Real block diagonal form to com-
plex diagonal form.

cdf2rdf Complex diagonal form to real
block diagonal form.

schur Schur decomposition.

balance Diagonal scaling to improve
eigenvalue accuracy.

svd Singular value decomposition.

Matrix functions.

expm Matrix exponential.

expml M- file implementation of expm.

expm2 Matrix exponential via Taylor se-
ries.

expm3 Matrix exponential via eigenval-
ues and eigenvectors.

logm Matrix logarithm.

sqrtm Matrix square root. 4

funm Evaluate general matrix function.

figure Create Figure (graph window).

clf Clear current figure.

close Close figure.

subplot Create axes in tiled positions.

axis Control axis scaling and appear-
ance.

hold Hold current graph.

figure Create figure window.

text Create text.

print Save graph to file.

plot Linear plot.

loglog Log-log scale plot.

semilogx Semi-log scale plot.

semilogy Semi-log scale plot.

Specialized X-Y graphs.

polar Polar coordinate plot.

bar Bar graph.

stem Discrete sequence or ”stem” plot.

stairs Stairstep plot.

errorbar Error bar plot.

hist Histogram plot.

rose Angle histogram plot.

compass Compass plot.

feather Feather plot.

fplot Plot function.

comet Comet-like trajectory.
Graph annotation.

title Graph title.

xlabel X-axis label.

ylabel Y-axis label.

text Text annotation.

gtext Mouse placement of text.

grid Grid lines.

contour Contour plot.

mesh 3-D mesh surface.

surf 3-D shaded surface.

waterfall Waterfall plot.

view 3-D graph viewpoint specifica-
tion.

zlabel Z-axis label for 3-D plots.

gtext Mouse placement of text.

grid Grid lines.

Table 4: Matrix functions—numerical linear al-

gebra.

Table 5: Graphics & plot commands.

Index

<, 28, 30 diary, 7
<=, 28, 30 dice, 35
==, 28, 30 divide
>, 28, 30 elementwise, 10
>=, 28, 30 doc, 2
%, 7,33
’ 6 echo, 8
LT elementary functions, 4
%, 0 elementwise
.., 15,26 divide ./, 10
./, 10 power .7, 11
11 product .*, 9, 21
1, 5,6, 18,21 end, 6, 20
i, 4 error, 35
eye, 19
abs, 42 ezplot, 12
accelerators
keyboard, 8 false, 28
acosd, 9 Fibonnaci, 27, 35
and, 29 figure, 13
angle, 42 file
ans, 3 function, 33
array, 17 script, 7
axes, 16, 17 find, 32
axis, 16 fix, 42
auto, 16 fliplr, 23
normal, 16 flipud, 23
square, 16 floor, 42
floor, 35
ceil, 42 for loops, 27
clear, 34 format, 3
clf, 13 compact, 10
close, 13 long, 11
colon notation, 5, 21 rat, 10
column vectors, 6 fraction, 10
comment (%), 7, 33 full, 23
complex function m-files, 33
conjugate transpose, 6 functions
numbers, 4, 6 elementary, 4
complex numbers, 4 trigonometric, 4
components of a vector, 5
conj, 42 get, 14
contour, 37 graphs, see plotting
cos, 42 grid, 12, 17, 37
cosd, 42 GUI, 40
cosd, 9
CPU, 28 hard copy, 13
cumsum, 28 help, 2, 34
cursor keys, 8 hold, 13, 17
diag, 19 if statement, 30

44

imag, 42
inner product, 8, 21, 22
int2str, 27

keyboard accelerators, 8

labels for plots, 12
legend, 13
length, 6
length of a vector, 5, 6, 8
line styles, 12
linspace, 12
logical conditions, 28
lookfor, 2
loops, 27

while, 29

m-files, 7, 33

matrix, 17
building, 20
diagonal, 19
identity, 19
indexing, 20
orthogonal, 32
size, 18
sparse, 23
special, 18
spy, 20
square, 19
symmetric, 19
tridiagonal, 23
zeros, 18

matrix products, 22

matrix—vector products, 21

max, 32, 37

mesh, 37

meshgrid, 37

min, 32, 37

multi—plots, 13

nargin, 34

norm of a vector, 9

not, 28-30

num2str, 27

numbers, 3
complex, 4
format, 3
random, 32
rounding, 31

ones, 18
or, 29

plotting, 12, 17, 36

45

labels, 12

line styles, 12

printing, 13

surfaces, 36

title, 12
power

elementwise, 11
printing plots, 13
priorities

in arithmetic, 3
product

elementwise, 9, 21

inner, 21, 22
Pythagoras’s theorem, 34

quit, 2

rand, 32

random numbers, 32
real, 42

rem, 42

reshape, 18, 39
round, 42

rounding error, 4
rounding numbers, 31

save, 7

script files, 7
semi—colon, 4, 17
set, 15

shapes, 13
sign, 42

sin, 42

sind, 42

size, 18

sort, 5

sparse, 23
spdiags, 23
spy, 20

sqrt, 42
str2num, 26
strings, 12
subplot, 14
subscripts, 16
sum, 27, 31
superscripts, 16

timing, 28

title for plots, 12

toc, 28

transposing, 6
tridiagonal, 23
trigonometric functions, 4
true, 28

type (list contents of m-file), 8

variable names, 3

vector
column, 6
components, 5
row, 5

what, 8

while loops, 29

whos, 7

xlabel, 12, 37
ylabel, 12

zeros, 18
zoom, 14

46

