
J. Math. Anal. Appl. 340 (2008) 1109–1119

www.elsevier.com/locate/jmaa

The problem of Dirichlet for evolution one-dimensional p-Laplacian
with nonlinear source

Alkis S. Tersenov a,∗, Aris S. Tersenov b

a Department of Mathematics, University of Crete, 71409 Heraklion, Crete, Greece
b Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia

Received 30 August 2005

Available online 19 September 2007

Submitted by J.A. Goldstein

Abstract

In the present paper we consider the Dirichlet problem for one-dimensional p-Laplacian with nonlinear source. We obtain new
a priori estimates of a solution and of the gradient of a solution and formulate conditions guaranteeing the global solvability of this
problem. Our consideration includes singular case as well.
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0. Introduction and main results

In the present paper we consider the following quasilinear parabolic equation:

ut = (|ux |p−2ux

)
x

+ λg(u) in QT = (0, T ) × (−l, l), (0.1)

where p > 1, λ are constants, coupled with homogeneous Dirichlet boundary condition

u(t,±l) = 0 for t ∈ [0, T ] (0.2)

and initial condition

u(0, x) = u0(x) for x ∈ [−l, l]. (0.3)

We assume that

g(u) = |u|q−1u, q � 1 or g(u) = |u|q, q � 0 or g(u) = uq, q � 0 if defined. (0.4)

For p > 2 Eq. (0.1) is degenerate and for p ∈ (1,2) is singular.
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Definition. We say that u(t, x) is a global generalized solution of problem (0.1)–(0.3) if ux(t, x) is Hölder continuous
function, ut (t, x) ∈ L2(0, T ;H−1(−l, l)) and

T∫
0

〈ut ,φ〉dt +
∫

QT

|ux |p−2uxφx dx dt =
∫

QT

λg(u)φ dx dt, ∀φ(t, x) ∈ L2
(
0, T ; H̊ 1(−l, l)

)
.

Conditions (0.2), (0.3) are satisfied in the classical sense.

Here 〈 , 〉 denotes the pairing between H−1(−l, l) and H̊ 1(−l, l).
The local solvability of problem (0.1)–(0.3) follows from [9]. Also from [9] it follows that if q < p − 1, then there

exists a global solution, for the critical case q = p − 1 the global solution exists if the measure of the domain is
sufficiently small, otherwise there is no global solution. For q > p − 1 the blow up of the solution was demonstrated.
In the present paper for the one-dimensional case we formulate a general condition (see (0.6)) guaranteeing the global
solvability of problem (0.1)–(0.3). If q < p − 1 this condition is fulfilled with arbitrary initial function and domain, if
q = p − 1 this condition is fulfilled with arbitrary initial function if the size of the domain is small (see (0.9)). Finally
if q > p − 1 this condition becomes the smallness restriction connecting the size of the domain, the initial function,
and parameters λ, p, q . The proposed condition is given in the explicit form and is easily verifiable. Moreover the
estimates of u and ux are also given in an explicit form. For more details see Examples 1–4 below.

Let us pass to the formulation of the result.
Suppose that the initial function u0(x) satisfies the following conditions:

u0(x) ∈ C1+α
([−l, l]), u0(±l) = 0,

∣∣u′
0(x)

∣∣ � K. (0.5)

Assume that there exists a positive constant M such that

M � l∗K and |λ|Mq < (p − 1)l
1−p∗ Mp−1, (0.6)

where

l∗ = 3l2 + 2l

2
.

Below we will give several examples concerning condition (0.6).

Theorem 1. Suppose that conditions (0.4)–(0.6) are fulfilled. Then there exists a global generalized solution of prob-
lem (0.1)–(0.3) such that

max
QT

|u| � M, (0.7)

max
QT

|ux | � (1 + 2l)max

{
K,

4l + 2

3l2 + 2l
M,

( |λ|Mq

(p − 1)

) 1
p−1

}
. (0.8)

If, in addition, g(u) is Lipschitz continuous function on [−M,M], then the solution is unique.

Remark 1. Estimates (0.7) and (0.8) are independent of T .

Example 1. If q < p − 1, then for any p > 1 we can always find a (sufficiently big) positive constant M such that

|λ|Mq < (p − 1)l
1−p∗ Mp−1.

Thus for such q Theorem 1 guarantees the existence of a global generalized solution of problem (0.1)–(0.3) satisfy-
ing (0.7) and (0.8).

Note that in [8] for p > 2 it was shown that for nonnegative initial data there exists a global nonnegative solution if
q < p − 1. For q > p − 1 the existence of a global solution was proved under additional assumption on the smallness
of the initial data and for sufficiently large (nonnegative) initial data it was shown that the solution blows up in a finite
time. The blow-up results for q > p − 1, p > 2 were also proved in [3].
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Example 2. Consider the critical case q = p − 1. Condition (0.6) takes the form

M � l∗K, |λ| < q

l
q∗
.

Put M = Kl∗ and rewrite the second inequality as follows

|λ|(3l2 + 2l
)q

< q2q or 3l2 + 2l < 2

(
q

|λ|
) 1

q

. (0.9)

Thus if (0.9) is fulfilled, then Theorem 1 guarantees the existence of a global generalized solution of problem (0.1)–
(0.3) for q = p − 1 for any p > 1. Moreover for this solution we have

max
QT

|u| � 3l2 + 2l

2
K <

(
q

|λ|
) 1

q

K,

max
QT

|ux | � (1 + 2l)K max

{
1 + 2l,

3l2 + 2l

2

( |λ|
q

) 1
q
}
.

In [4] the critical case q = p − 1 under the assumption p > 2 and g(u) = |u|q−1u was also considered. It was
shown that if λ > λ1, there are no global weak solutions, and if λ � λ1, all weak solutions are global. Here λ1 is the
first eigenvalue of the problem

−(|ψx |p−2ψx

)
x

= λ|ψ |p−2ψ in (−l, l), ψ(±l) = 0.

Example 3. Consider equation

ut = (|ux |p−2ux

) + λu2(p−1). (0.10)

Condition (0.6) takes the form

3l2 + 2l

2
K � M <

(
p − 1

|λ|
) 1

p−1 2

3l2 + 2l
. (0.11)

In order to find M satisfying condition (0.11), we need to impose the following restriction

3l2 + 2l

2
K <

(
p − 1

|λ|
) 1

p−1 2

3l2 + 2l

or

(
3l2 + 2l

)2
K < 4

(
p − 1

|λ|
) 1

p−1

. (0.12)

Hence if (0.12) is fulfilled, then for any p > 1 Theorem 1 guarantees the existence of a global generalized solution of
problem (0.10), (0.2), (0.3) satisfying (0.7), (0.8).

Example 4. Finally, let us consider the case p = 2:

ut = uxx + λg(u). (0.13)

Condition (0.6) takes the form

3l2 + 2l

2
K � M <

(
2

|λ|(3l2 + 2l)

) 1
q−1

.

In order to find M satisfying this condition, we need to impose the following restriction:

|λ|(3l2 + 2l
)q

Kq−1 < 2q . (0.14)

Hence if the smallness condition (0.14) is fulfilled, then Theorem 1 guarantees the existence of a classical solution of
problem (0.13), (0.2), (0.3) satisfying (0.7) and (0.8).
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When p = 2 the blow-up properties of Eq. (0.13) have been intensively investigated by many researchers, see, for
example, the survey paper [1]. It is well known that different smallness conditions on the data of problem (0.13), (0.2),
(0.3) guarantee the global solvability of this problem. To the best of our knowledge smallness condition (0.14) is new.

The paper consists of two sections. In the first section we obtain a priori estimates for the regularized problem and
in the second one based on these a priori estimates we prove Theorem 1.

1. A priori estimates for the regularized problem

Consider the regularized equation

uεt = ((
uα

εx + ε
) p−2

α uεx

)
x

+ λgM(uε). (1.1)

Here ε > 0 is a constant and the function gM is defined by the following:

gM(ξ) =
⎧⎨
⎩

g(ξ), for |ξ | � M,

g(M), for ξ > M,

g(−M), for ξ < −M.

(1.2)

Obviously from (1.2) and (0.4) we have −g(M) � gM(uε) � g(M).
Concerning constants α and ε we consider three cases:

(i) if p � 3 we take α = 2 and arbitrary ε > 0,

(ii) if 2 � p < 3 we put α = r/m with r,m positive integers, r < m and r even, for example, α = 2/3, here ε > 0 is
also arbitrary,

(iii) if p ∈ (1,2), then additionally to assumption (ii) we require

α > p − 1 and 0 < ε �
(
α − (p − 1)

)(M

l∗

)α

.

For example, if p = 3
2 one can put α = 2

3 , if p = 5
3 one can put α = 4

5 . The choice of α and ε is motivated by two
reasons, the first is that for such α,(

uα
x

) p−2
α = |ux |p−2

and the second is that E′(ε) � 0, where the function E(ε) is defined below (see (1.5)).
The first step (Lemma 1) is to obtain the estimate |u(t, x)| � M for the solution of problem (1.1), (0.2), (0.3). After

this in (1.1) instead of gM(uε) we can take g(uε) (due to (1.2)). The second step (Lemma 2) is to obtain the gradient
estimate.

In order to simplify the notation, below in this section we will omit the subscript ε in uε .

Lemma 1. If (0.4)–(0.6) are fulfilled, then for any classical solution of problem (1.1), (0.2), (0.3) the following estimate
is valid:∣∣u(t, x)

∣∣ � M.

Proof. Rewrite Eq. (1.1) in nondivergent form

ut = aε(ux)uxx + λgM(u),

where

aε(z) = (
zα + ε

) p−2
α

−1(
(p − 1)zα + ε

)
, aε(z) = aε(−z).

Define the function h(x),

h(x) = M̃

(
l2 − x2

+ (1 + l)(l + x)

)
,

2
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where

M̃ = M

l∗
.

Obviously h′(x) � M̃, h′′(x) = −M̃ . For

Lu ≡ ut − aε(ux)uxx

we have

Lu = λgM(u) (1.3)

and

Lh = ht − aε(hx)hxx = (
h′α + ε

) p−2
α

−1(
(p − 1)h′α + ε

)
M̃. (1.4)

Consider E(ε),

E(ε) ≡ (
zα + ε

) p−2
α

−1(
(p − 1)zα + ε

)
M̃, z � M̃. (1.5)

Due to the choice of α and ε (see (i)–(iii))

E′(ε) = M̃

α

(
zα + ε

) p−2−2α
α

[
(p − 2)ε + (

p2 − (3 + α)p + 2 + 2α
)
zα

]
= M̃

α

(
zα + ε

) p−2−2α
α (p − 2)

[
ε + (p − 1 − α)zα

]
� 0 for z � M̃.

Thus, taking into account that E(ε) � E(0) and h′(x) � M̃ , from (1.4) we conclude that

Lh � (p − 1)M̃p−1. (1.6)

For the function

v(t, x) ≡ u(t, x) − h(x)

we have

Lu − Lh = ut − aε(ux)uxx + aε(hx)hxx = vt − aε(ux)vxx + (
aε(h

′) − aε(ux)
)
h′′.

On the other hand due to (1.3) and (1.6) we obtain

Lu − Lh = λgM(u) − Lh � λgM(u) − (p − 1)M̃p−1.

Hence

vt − aε(ux)vxx �
(
aε(ux) − aε(h

′)
)
h′′ + λgM(u) − (p − 1)M̃p−1.

Suppose that at a point N ∈ QT \ ΓT the function v(t, x) attains its positive maximum. Here ΓT is the parabolic
boundary of QT i.e. ΓT = ∂QT \ {(t, x): t = T , −l < x < l}. At the point N we have v > 0 and vx = 0 or u > h � 0
and ux = h′ � M̃ (in particular aε(ux) − aε(h

′) = 0). Thus

vt − aε(ux)vxx |N � λgM(u) − (p − 1)M̃p−1|N � |λ|Mq − (p − 1)l
1−p∗ Mp−1.

Here we use the fact that for positive u we have 0 � gM(u) � g(M) = Mq . Hence due to (0.6)

vt − aε(ux)vxx |N < 0.

This contradicts the assumption that v(t, x) attains positive maximum at N . Due to the homogeneous boundary con-
ditions, for x = ±l we have v = −h � 0. Moreover

v(0, x) = u0(x) − h(x) = u0(x) − u0(−l) − (
h(x) − h(−l)

)
� K(x + l) − h′(ξ)(x + l) � 0,
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ξ ∈ [−l, x]. Here we use the fact that h′ � M̃ � K . Taking into account that v(t, x) cannot attain positive maximum
in QT \ ΓT we conclude that

v(t, x) � 0 or u(t, x) � h(x) in QT .

Now let us obtain the estimate from the below. For the function w(t, x) ≡ u(t, x) + h(x) we have

Lu + Lh = ut − aε(ux)uxx − aε(hx)hxx = wt − aε(ux)wxx − (
aε(h

′) − aε(ux)
)
h′′.

On the other hand

Lu + Lh = λgM(u) + Lh � λgM(u) + (p − 1)M̃p−1.

Thus

wt − aε(ux)wxx �
(
aε(h

′) − aε(ux)
)
h′′ + λgM(u) + (p − 1)M̃p−1.

Suppose that at a point N1 ∈ QT \ ΓT the function w(t, x) attains its negative minimum. At this point we have w < 0
and wx = 0 or u < −h � 0 and ux = −h′ � −M̃ . Therefore (because aε(z) = aε(−z))

wt − aε(ux)wxx |N1 � λgM(u) + (p − 1)M̃p−1|N1 � −|λ|Mq + (p − 1)l
1−p∗ Mp−1. (1.7)

Here we use the inequality

λgM

(
u(N1)

)
� −|λ|g(M) = −|λ|Mq.

If λ � 0, then the last inequality follows from the fact that gM(u) � −g(M). If λ < 0, then the inequality follows
from the fact that gM(u) � g(M). Hence due to (0.6) from (1.7) we obtain

wt − aε(ux)wxx |N1 > 0.

This contradicts the assumption that w(t, x) attains negative minimum at N1.
Due to the homogeneous boundary conditions, for x = ±l we have w = h � 0. Moreover,

w(0, x) = u0(x) + h(x) = u0(x) − u0(−l) + h(x) − h(−l) � −K(x + l) + h′(ξ)(x + l) � 0.

Taking into account that w(t, x) cannot attain negative minimum in QT \ ΓT we conclude that

w(t, x) � 0 or u(t, x) � −h(x) in QT .

Finally we obtain

−h(x) � u(t, x) � h(x). (1.8)

Now taking h̃(x) ≡ h(−x) instead of h(x) we obtain

−h̃(x) � u(t, x) � h̃(x). (1.9)

Estimate (1.9) can be easily established in the same way as (1.8) due to the fact that h̃′α(x) � M̃α and h̃′′(x) = −M̃.

The first inequality (h̃′α(x) � M̃α) follows from −h̃′(x) � M̃ � 0 due to the choice of α.

From (1.8) and (1.9) we conclude that∣∣u(t, x)
∣∣ � h(0) = h̃(0) = l∗M̃ = M.

Lemma 1 is proved. �
Remark 2. Actually Lemma 1 gives us not only the estimate of max |u| but also the boundary gradient estimate. In
fact, from (1.8) it follows that∣∣ux(t,−l)

∣∣ � h′(−l) = M
2 + 4l

3l2 + 2l
.

Similarly, from (1.9) we obtain∣∣ux(t, l)
∣∣ � −h̃′(l) = M

2 + 4l

3l2 + 2l
.
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Let us turn to the global gradient estimate. We will use here the classical Kruzhkov’s idea of introducing of a new
spatial variable (see, for example, [7]). Define the function H(τ) by the following:

H(τ) = −C
τ 2

2
+ [

C(1 + 2l) + ε
]
τ, τ ∈ [0,2l],

where

C = max

{
K,

4l + 2

3l2 + 2l
M,

( |λ|Mq

p − 1

) 1
p−1

}
.

Obviously

H ′′ = −C, H ′ � C + ε > C.

Lemma 2. If conditions (0.4)–(0.6) are fulfilled, then for any classical solution of problem (1.1), (0.2), (0.3) the
following estimate is valid:∣∣ux(t, x)

∣∣ � (1 + 2l)C.

Proof. Consider Eq. (1.1) at two different points (t, x) and (t, y) (x 	= y). Taking into account the fact that due to
Lemma 1 g(u) = gM(u), we have

ut (t, x) − aε

(
ux(t, x)

)
uxx(t, x) = λg

(
u(t, x)

)
, (1.10)

ut (t, y) − aε

(
uy(t, y)

)
uyy(t, y) = λg

(
u(t, y)

)
. (1.11)

Subtracting Eq. (1.11) from (1.10) for

v(t, x, y) ≡ u(t, x) − u(t, y)

we obtain

vt − aε

(
ux(t, x)

)
vxx − aε

(
uy(t, y)

)
vyy = λ

(
g
(
u(t, x)

) − g
(
u(t, y)

))
. (1.12)

Consider (1.12) in the domain

P = {
(t, x, y): t ∈ (0, T ), x ∈ (−l, l), y ∈ (−l, l), x > y

}
.

For

w(t, x, y) = v(t, x, y) − H(x − y)

we have

wt − aε

(
ux(t, x)

)
wxx − aε

(
uy(t, y)

)
wyy = (

aε

(
ux(t, x)

) + aε

(
uy(t, y)

))
H ′′ + λ

(
g
(
u(t, x)

) − g
(
u(t, y)

))
� −C

(
aε

(
ux(t, x)

) + aε

(
uy(t, y)

)) + 2|λ|Mq. (1.13)

Suppose that at a point N ∈ P \Γ the function w(t, x, y) attains its maximum. At this point we have wx = wy = 0, or

ux = uy = H ′ > C � (2l + 1)M̃ > M̃.

Hence from (1.13) we have (recall that aε is nondecreasing with respect to ε for z � M̃)

wt − aε

(
ux(t, x)

)
wxx − aε

(
uy(t, y)

)
wyy |N < −2(p − 1)Cp−1 + 2|λ|Mq � 0

due to the choice of C. This contradicts the assumption that w(t, x, y) attains maximum at the internal point of the
domain P .

Now consider w(t, x, y) on Γ. The parabolic boundary of P consists of four parts:

(1) x = y,
(2) y = −l, x ∈ [−l, l],
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(3) x = l, y ∈ [−l, l], and
(4) t = 0.

On the first part we obviously have w = −H(0) = 0. On the second and the third parts we have, respectively,

w = u(t, x) − H(x + l) � 0 and w = −u(t, y) − H(l − y) � 0.

The first inequality follows from (1.8), the fact that h(−l) = H(0) = 0 and

H ′ � C � 4l + 2

3l2 + 2l
M = (1 + 2l)M̃ � h′.

Concerning the second one note that due to (1.9) we have to prove that h̃(y) � H(l − y). Put l − y = μ, μ ∈ [0,2l].
Thus one has to prove now that h̃(l − μ) � H(μ). Obviously h̃(l) = H(0) = 0. Moreover one can easily see that

h̃μ = −h̃′(l − μ) � M̃(1 + 2l) � C � H ′.

That means that h̃(l − μ) � H(μ) for μ ∈ [0,2l] or h̃(y) � H(l − y) for y ∈ [−l, l].
For t = 0 we have

u0(x) − u0(y) − H(x − y) � K(x − y) − (
H(x − y) − H(0)

)
� K(x − y) − C(x − y) � 0.

Consequently w(t, x, y) � 0 in P , which means

u(t, x) − u(t, y) � H(x − y) in P .

Similarly, taking the function ṽ ≡ u(t, y) − u(t, x) instead of v, we obtain that

u(t, y) − u(t, x) � H(x − y) in P

and as a consequence we conclude that∣∣u(t, x) − u(t, y)
∣∣ � H(x − y) in P .

Using the symmetry of the variables x and y, we consider the case y > x in the same way. As a result we obtain
that for x ∈ [−l, l], y ∈ [−l, l], |x − y| > 0 the following inequality holds:

|u(t, x) − u(t, y)|
|x − y| � H(|x − y|) − H(0)

|x − y| ,

which in turn implies the estimate∣∣ux(t, x)
∣∣ � H ′(0) = (1 + 2l)C + ε.

Passing to the limit when ε → 0 we conclude∣∣ux(t, x)
∣∣ � (1 + 2l)C.

Lemma 2 is proved. �
Lemma 3. If p � 3, then for any classical solution of problem (1.1), (0.2), (0.3) the following estimate holds:

‖ut‖2
L2(QT ) � 2lT

(|λ|Mq
)2 + 2

p

l∫
−l

(
u2

0x + 1
) p

2 dx.

Here, without loss of generality, we assume that ε � 1.



A.S. Tersenov, A.S. Tersenov / J. Math. Anal. Appl. 340 (2008) 1109–1119 1117
Proof. Recall that for p � 3 we take α = 2. Multiply (1.1) by ut , taking into account that gM(u) = g(u) and integrat-
ing by parts with respect to x we obtain

l∫
−l

(
u2

t + (
u2

x + ε
) p−2

2 uxutx

)
dx =

l∫
−l

λg(u)ut dx.

Use the Young inequality to obtain

l∫
−l

u2
t dx + 1

p

d

dt

l∫
−l

(
u2

x + ε
) p

2 dx � 1

2

l∫
−l

u2
t dx + 1

2

l∫
−l

(
λg(u)

)2
dx.

Integrating with respect to t we conclude that

∫
QT

u2
t dx dt � 2lT

(|λ|Mq
)2 + 2

p

l∫
−l

(
u2

0x + 1
) p

2 dx.

Lemma 3 is proved. �
2. Existence and uniqueness

Consider equation

uεt − ((
uα

εx + ε
) p−2

α uεx

)
x

= λg(uε). (2.1)

The classical solvability of problem (2.1), (0.2), (0.3) for ε > 0 follows from Lemmas 1, 2 (see, for example, [2]).
Multiply (2.1) by φ ∈ L2(0, T ; H̊ 1(−l, l)) and integrate by parts (with respect to x) to obtain∫

QT

(
uεtφ + (

uα
εx + ε

) p−2
α uεxφx

)
dx dt =

∫
QT

λg(uε)φ dx dt. (2.2)

From the estimates of the previous section it follows that the right-hand side of (2.1) is uniformly bounded indepen-
dently of ε. Hence from [5] (see [5, Theorem 3.1]) it follows that for vε = uεx we have∣∣vε(t, x) − vε(τ, y)

∣∣ � C1
(|x − y| + |t − τ |)β

, ∀(t, x), (τ, y) ∈ QT ,

where constants C1, β ∈ (0,1) are independent of ε. Moreover, from (2.1) it follows that

‖uεt‖L2(0,T ;H−1(−l,l)) � C2

with constant C2 independent of ε. Rewrite (2.2) in the following form:

T∫
0

〈uεt , φ〉dt +
∫

QT

(
uα

εx + ε
) p−2

α uεxφx dx dt =
∫

QT

λg(uε)φ dx dt. (2.3)

Based on the above estimates we conclude that there exists subsequence εn such that

uεn → u,
∂uεn

∂x
→ ∂u

∂x
uniformly in C0(QT ),

((
∂uεn

∂x

)α

+ ε

) p−2
α →

∣∣∣∣∂u

∂x

∣∣∣∣p−2

uniformly in C0(QT ),

∣∣∣∣∂uεn

∂x

∣∣∣∣r−1
∂uεn

∂x
→

∣∣∣∣∂u

∂x

∣∣∣∣r−1
∂u

∂x
uniformly in C0(QT ),

and
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∂uεn

∂t
→ ∂u

∂t
weakly in L2

(
0, T ;H−1(−l, l)

)
.

Passing to the limit in (2.3) we obtain the required solution.

Remark 3. Let us mention here that due to Lemma 3, if p � 3, then we have

∂uεn

∂t
→ ∂u

∂t
weakly in L2(QT )

and we can pass to the limit in (2.2). Thus the obtained global generalized solution for p � 3 is somehow better with
respect to t . Namely ut ∈ L2(QT ). For that case in the definition of the global generalized solution instead of

T∫
0

〈ut ,φ〉dt we take
∫

QT

utφ dx dt.

Let us prove the uniqueness. Suppose that there exist two solutions u1 and u2. For u = u1 − u2 we have

T∫
0

〈ut ,φ〉dt +
∫

QT

(|u1x |p−2u1x − |u2x |p−2u2x

)
φx dx dt =

∫
QT

(
λ
(
g(u1) − g(u2)

))
φ dx dt.

By setting u instead of φ we obtain

T∫
0

〈ut , u〉dt +
∫

QT

(|u1x |p−2u1x − |u2x |p−2u2x

)
(u1x − u2x) dx dt �

∫
QT

λGu2 dx dt

due to the Lipschitz continuity of g,∣∣g(u1) − g(u2)
∣∣ � G|u1 − u2| = G|u|.

Hence
T∫

0

〈ut , u〉dt �
∫

QT

λGu2 dx dt (2.4)

since ∫
QT

(|u1x |p−2u1x − |u2x |p−2u2x

)
(u1x − u2x) dx dt � 0.

The latter is due to the monotonicity of operator A(u) : u ∈ H̊ 1 → A(u) ∈ H−1 defined by

〈
A(u),w

〉 =
l∫

−l

|ux |p−2uxwx dx

(for more details see [6]).
Notice that instead of integrating from 0 to T we can integrate from 0 to t for any t ∈ (0, T ] hence from (2.4) we

conclude that

‖u‖2
L2(−l,l) �

t∫
0

2|λ|G‖u‖2
L2(−l,l) dτ.

Here we use the fact that
d

dt
‖u‖2

L2(−l,l) = 2〈ut , u〉.
From Gronwall’s inequality we conclude that u1 ≡ u2. The theorem is proved.
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