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1. Introduction and formulation of the result

Consider the following parabolic equation
uy — Au? = k(t,x)u” inQr = (0,T) x 2,2 CR" T >0, (1.1)

whereq > 1,p > 0,0 < k(t, X) < k, coupled with initial and boundary conditions

u

>0, IT=RU[0,T]x a2 (1.2)

I'r I'r

which imply that u > 0in Qy. This equation appears in different applications (see [ 1-3] and the references therein). It is well
known [4-6,1,7] that solutions of this problem may blow-up in finite time. The global solvability (i.e. for arbitrary T > 0)
was proved in [5] for k = 1 and homogeneous boundary conditions in the following three cases (see also [1]):

ifq > p;

if ¢ = p and the first eigenvalue of the problem Au = —Auin 2, u o= 0 is greater than 1;

if g < p and ¢ satisfies smallness type restrictions, for n > 3 the additional restriction p € (q, q%) is required.

In [4], the global solvability of problem (1.1), (1.2) with homogeneous boundary conditions in the one dimensional case
(n=1,x € (0, 1)) was proved under the similar assumptions, namely:

ifq > p;

if g = p and « is sufficiently small;

if g < p and ¢ satisfies the smallness type restrictions.

(Note that in [4] more general equation u; = [h(u)x + eg(u)]y + kf (u) was considered.)

The goal of the present paper is to obtain a new a priori estimate of the solution and to propose slightly different
conditions guaranteeing the global solvability.

For simplicity, in order to work with classical solution, we suppose that

u

-0 (1.3)
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which implies that u > 0 in Qr. Assume that ¢ is continuous and k is a continuously differentiable function. The domain §2
satisfies the exterior sphere condition and

LQCcx|x<l,i=1,...,n},
without loss of generality suppose that [; = min;{l;}. Define the constant K by the following
1
_ 4qg — 3)P \ 9-» m
K = max (Elf(p q+1)22—p—q(q—)]) s (. forq#p
q (g— 1 20(q—1)
and

K = m orq=p
26(q—1)

where

m = max ¢

I'r
Theorem. There exists a global classical solution of (1.1), (1.3) satisfying the estimate

12
O<u(t,x)§§1(4q—3)K VX e R2andt >0 (1.4)

in the following three cases:
1Lifq>p;
2. iffg=pand
— 4)9-1
2 < q (49 —4) ;
Tk (4q—3)9
3.ifq<pand

(4g — 3 )

K 2(p0—q+1)52—p—
m<2B@—-1( —I 2P~
=2 )<q1 (q— D!

Remark. In the case ¢ = p the smallness restriction on the size of the domain is only in one direction and estimate (1.4)
takes the form

-3
4q — 4

0 <u(t,x) < m.

In the case ¢ < p we do not need any additional restrictions on p for n > 3.
2. Proof of the Theorem

Rewrite Eq. (1.1) in the following form

u = qui~'Au+q(q — DuI=2|Vu|? + k(t, x)uP. (2.1)
Consider the auxiliary equation
u —qui~'Au=q(q— 1) ut2|Vul® + k(t, x)g (u) (2.2)
where
uP, ifu< %1%(461 —3)K
g =

1, p ' 1, .
511 (49—-3)K | , ifu> Ell (49 — 3)K
The existence of a classical solution of problem (2.2), (1.3) follows from the standard theory (see, for example, [8]). Our

2
goal is to obtain the a priori estimate u < %(4q — 3) K for the solution of problem (2.2), (1.3) and by this to show that
Egs. (2.2) and (2.1) coincide.
Consider the function

Ko 2
hxi) = (& = x) + 26 — DK.
For v(t, X) = u(t, X) — h(x;) we have
ve —quiTAv = q(q — 1) u?2|Vul> + k(t, x)g (u) + qui~'h"
= q(q — D) u??|Vul]® + k(t, x)g(u) — qui~'K.
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Assume that the function v attains its positive maximum at the point N € Q \ I7, at this point v > 0 and Vv = 0, i.e.
u>h>2E(q- 1K, uy, =h = —Kx;, u, =0 fori=2,...,n.
Thus we have

v — quq_lAv‘ = q(q — DuI™2(—Kx1)* + k(t, x)g(u) — quq_lk‘
N N

12 p
< q(q— Du"’K°[ +« (51(4q — 3)1<> - quq—11<‘
N
—2p2p2 9 g1 ; " g _1
=<q(q—1)uq K ll—zuq 1<)+ K 5(4q—3)1< _zuq K
N
9 9-2k (2 1K i 4q — 3K "4 212 K] 'k
< Ju (2B(q— DK —u) + [« 5 (4q-3) —5[ (@ — DK]
N
12 p q g1
<KP K(El(4q—3)) —5(21§(q—1)) K9P | <o.

Hence we obtain that v, — qui~'A v) < 0 which is impossible. Taking into account the fact that v < 0 on It we conclude

N
that

2
u(t,x) < h(xy) < h(0) = %(4q — 3)K.

The inequality

l% P aq 2 q—1 q—p
c|y¢a-3 —Ecum4» K7 <0 (2.3)

for g > p follows directly from the definition of K, for ¢ = p it follows from the restriction on [;. If ¢ < p then (2.3) takes
the form
-1

q 2 ?
K1 < 5(21%(61 — 1))« <51(4q - 3))

which is fulfilled if
1
_m . (EIZ(P—qul)zqu (49 —3)° )q_p
2R@—1) ~ \q' (q— 1!
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