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a b s t r a c t

In the present paper, we obtain a new a priori estimate of the solution of the initial-
boundary value problem for the porous medium equation with nonlinear source and
formulate the conditions guaranteeing the global solvability of this problem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and formulation of the result

Consider the following parabolic equation

ut − ∆uq
= k(t, x)up in QT = (0, T ) × Ω, Ω ⊂ Rn, T > 0, (1.1)

where q > 1, p > 0, 0 ≤ k(t, x) ≤ κ , coupled with initial and boundary conditions

u

ΓT

= φ


ΓT

≥ 0, ΓT = Ω ∪ [0, T ] × ∂Ω (1.2)

which imply that u ≥ 0 inQT . This equation appears in different applications (see [1–3] and the references therein). It is well
known [4–6,1,7] that solutions of this problem may blow-up in finite time. The global solvability (i.e. for arbitrary T > 0)
was proved in [5] for k ≡ 1 and homogeneous boundary conditions in the following three cases (see also [1]):

if q > p;
if q = p and the first eigenvalue of the problem ∆u = −λ u in Ω , u


∂Ω

= 0 is greater than 1;

if q < p and φ satisfies smallness type restrictions, for n ≥ 3 the additional restriction p ∈ (q, q n+2
n−2 ) is required.

In [4], the global solvability of problem (1.1), (1.2) with homogeneous boundary conditions in the one dimensional case
(n = 1, x ∈ (0, 1)) was proved under the similar assumptions, namely:

if q > p;
if q = p and κ is sufficiently small;
if q < p and φ satisfies the smallness type restrictions.
(Note that in [4] more general equation ut = [h(u)x + εg(u)]x + kf (u) was considered.)
The goal of the present paper is to obtain a new a priori estimate of the solution and to propose slightly different

conditions guaranteeing the global solvability.
For simplicity, in order to work with classical solution, we suppose that

u

ΓT

= φ


ΓT

> 0 (1.3)
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which implies that u > 0 in QT . Assume that φ is continuous and k is a continuously differentiable function. The domain Ω

satisfies the exterior sphere condition and
Ω ⊂ {x: |xi| ≤ li, i = 1, . . . , n},

without loss of generality suppose that l1 = mini{li}. Define the constant K by the following

K = max


κ

q
l2(p−q+1)
1 22−p−q (4q − 3)p

(q − 1)q−1

 1
q−p

,
m

2l21(q − 1)


, for q ≠ p

and

K =
m

2l21(q − 1)
for q = p

where

m = max φ


ΓT

.

Theorem. There exists a global classical solution of (1.1), (1.3) satisfying the estimate

0 < u(t, x) ≤
l21
2

(4q − 3) K ∀x ∈ Ω and t ≥ 0 (1.4)

in the following three cases:
1. if q > p;
2. if q = p and

l21 ≤
q
κ

(4q − 4)q−1

(4q − 3)q
;

3. if q < p and

m ≤ 2l21(q − 1)


κ

q
l2(p−q+1)
1 22−p−q (4q − 3)p

(q − 1)q−1

 1
q−p

.

Remark. In the case q = p the smallness restriction on the size of the domain is only in one direction and estimate (1.4)
takes the form

0 < u(t, x) ≤
4q − 3
4q − 4

m.

In the case q < p we do not need any additional restrictions on p for n ≥ 3.

2. Proof of the Theorem

Rewrite Eq. (1.1) in the following form

ut = q uq−11 u + q(q − 1) uq−2
|∇u|2 + k(t, x)up. (2.1)

Consider the auxiliary equation

ut − q uq−11 u = q(q − 1) uq−2
|∇u|2 + k(t, x)g(u) (2.2)

where

g(u) =


up, if u ≤

1
2
l21(4q − 3)K

1
2
l21(4q − 3)K

p

, if u >
1
2
l21(4q − 3)K

.

The existence of a classical solution of problem (2.2), (1.3) follows from the standard theory (see, for example, [8]). Our

goal is to obtain the a priori estimate u ≤
l21
2 (4q − 3) K for the solution of problem (2.2), (1.3) and by this to show that

Eqs. (2.2) and (2.1) coincide.
Consider the function

h(x1) =
K
2

(l21 − x21) + 2l21(q − 1)K .

For v(t, x) ≡ u(t, x) − h(x1) we have
vt − q uq−11v = q(q − 1) uq−2

|∇u|2 + k(t, x)g(u) + quq−1h′′

= q(q − 1) uq−2
|∇u|2 + k(t, x)g(u) − quq−1K .
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Assume that the function v attains its positive maximum at the point N ∈ Q T \ ΓT , at this point v > 0 and ∇v = 0, i.e.

u > h ≥ 2l21(q − 1)K , ux1 = h′
= −Kx1, uxi = 0 for i = 2, . . . , n.

Thus we have

vt − q uq−11v


N

= q(q − 1)uq−2(−Kx1)2 + k(t, x)g(u) − quq−1K

N

< q(q − 1)uq−2K 2l21 + κ


l21
2

(4q − 3)K
p

− quq−1K

N

=


q(q − 1)uq−2K 2l21 −

q
2
uq−1K


+


κ


l21
2

(4q − 3)K
p

−
q
2
uq−1K

 
N

<
q
2
uq−2K


2l21(q − 1)K − u


+


κ


l21
2

(4q − 3)K
p

−
q
2


2l21(q − 1)K

q−1
K

 
N

< K p


κ


l21
2

(4q − 3)
p

−
q
2


2l21(q − 1)

q−1
K q−p


≤ 0.

Hence we obtain that vt − q uq−11 v


N

< 0 which is impossible. Taking into account the fact that v ≤ 0 on ΓT we conclude
that

u(t, x) ≤ h(x1) ≤ h(0) =
l21
2

(4q − 3)K .

The inequality

κ


l21
2

(4q − 3)
p

−
q
2


2l21(q − 1)

q−1
K q−p

≤ 0 (2.3)

for q > p follows directly from the definition of K , for q = p it follows from the restriction on l1. If q < p then (2.3) takes
the form

K p−q
≤

q
2
(2l21(q − 1))q−1


κ


l21
2

(4q − 3)
p
−1

which is fulfilled if

m
2l21(q − 1)

≤


κ

q
l2(p−q+1)
1 22−p−q (4q − 3)p

(q − 1)q−1

 1
q−p

.
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