
Annali di Matematica (2018) 197:1937–1950
https://doi.org/10.1007/s10231-018-0757-5

Smoothing effect of absorption for degenerate parabolic
equations in 1-d

Alkis S. Tersenov1

Received: 14 November 2017 / Accepted: 5 May 2018 / Published online: 24 May 2018
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbHGermany, part of Springer
Nature 2018

Abstract In the present paper we consider the Cauchy and the Dirichlet problems for the
equation

ut = (
κ(t, u)ux

)
x − f (t, u),

where κ(t, u) ≥ 0 for u ≥ 0. We formulate conditions on κ(t, u) and f (t, u) guaranteeing
the existence of a global and local solutions such that ux ∈ L∞ and ut ∈ L2.
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1 Introduction and formulation of the results

Consider the equation

ut = (
κ(t, u)ux

)
x − f (t, u), (t, x) ∈ �T = (0, T ) × R, (1.1)

coupled with initial condition

u(0, x) = u0(x) for x ∈ R, (1.2)

where T > 0 is an arbitrary constant. We assume that

0 ≤ u0(x) ≤ M, |u0(x) − u0(y)| ≤ K |x − y|, ∀x, y ∈ R and ‖u0x‖L2(R) < ∞,

(1.3)

B Alkis S. Tersenov
tersenov@uoc.gr

1 Department of Mathematics and Applied Mathematics, University of Crete, 700 13 Heraklion, Crete,
Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-018-0757-5&domain=pdf


1938 A. S. Tersenov

where M and K are some positive constants. Concerning the smoothness of coefficients we
suppose that

κ(t, u) ∈ C1, 1+α
t, u ([0, T ] × (0,+∞)), f (t, u) ∈ Cα([0, T ] × (0,+∞)) (1.4)

for some α ∈ (0, 1). We impose the following structure restrictions

κ(t, 0) = f (t, 0) = 0, κ(t, u) ≥ 0 and f (t, u) ≥ 0 for u ≥ 0 (1.5)

and

K 2[κu(t, u2) − κu(t, u1)
] ≤ f (t, u2) − f (t, u1) for u2 > u1 > 0, t ∈ [0, T ]. (1.6)

Definition 1 We say that a bounded nonnegative Hölder continuous function u(t, x) is a
strong solution of problem (1.1), (1.2) if ux ∈ L∞(�T ), ut ∈ L2(�T ),

√
κ(t, u)ux ∈

L2(�T ), and for an arbitrary smooth φ(t, x) vanishing for large |x | the following identity is
satisfied

∫

�T

utφdtdx +
∫

�T

κ(t, u)uxφxdtdx +
∫

�T

f (t, u)φdtdx = 0.

Theorem 1 (global existence) Assume that conditions (1.3)–(1.6) are fulfilled, then for any
T > 0 there exists a strong solution u(t, x) of problem (1.1), (1.2). Moreover

0 ≤ u ≤ M ∀(t, x) ∈ �T , ‖ux‖L∞(�T ) ≤ K ,

and

‖u‖2L2(R) + 2‖√κux‖2L2(�T ) ≤ ‖u0‖2L2(R) ∀t ∈ (0, T ).

Let us apply this Theorem to the porous media equation with absorption:

ut = (
mum−1ux

)
x − f (t, u). (1.7)

Condition (1.6) takes the form

m(m − 1)K 2[um−2
2 − um−2

1

] ≤ f (t, u2) − f (t, u1), u2 > u1 > 0. (1.8)

Example 1 Obviously this condition is fulfilled for an arbitrary nondecreasing Hölder con-
tinuous f if m ∈ [1, 2] and for such f , m above Theorem 1 guarantees the existence of a
global strong solution of problem (1.7), (1.2). Note that we can take here f ≡ 0 as well.

Example 2 Consider equations

ut = (
u5/2

)
xx − λu1/2, λ ≥ 15/4 K 2, (1.9)

ut = (
u5/2

)
xx − λu1/4, λ ≥ 15/2 K 2

√
M, (1.10)

where M = max�T u = maxR u0. One can easily see that (1.4)–(1.6) are fulfilled in both
cases, and thus Theorem 1 guarantees the global solvability of problem (1.9), (1.2) and (1.10),
(1.2). See also Example 3 in Sect. 2.4.

What happens if no absorption term is present? We will give an answer on this question
for the porous medium equation:

ut = (
um

)
xx in �T . (1.11)

Let us remind (see [2,6]) that in the one-dimensional case the optimal regularity of a weak
solution of the Cauchy problem (1.11), (1.2) (with m > 1) is the following one: if um−1

0 is
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Smoothing effect of absorption for degenerate parabolic… 1939

Lipschitz continuous then u ∈ Cβ where β = min{1, (m − 1)−1}. In particular β = 1 for
m ∈ (1, 2] which is consistent with the above Theorem 1 (see Example 1 with f ≡ 0). In the
multidimensional case the situation is more complicated and is not completely set yet (see,
for example [3,16] and the references therein).

Recall that by weak solution of problem (1.11), (1.2) we understand (see for example [1,
16]) a nonnegative bounded functionu, with bounded generalized derivative

(
um

)
x , satisfying

the identity
∫

�T

−uψtdtdx +
∫

�T

(
um

)
xψxdtdx =

∫

R
u0(x)ψ(0, x)dx,

for all smoothψ(t, x) vanishing for large |x | and for t = T . Such solution exists for arbitrary
T > 0, see for example [1,8,11,16].

Theorem 2 (local existence) Assume that condition (1.3) is fulfilled and m ≥ 3, then for
some T ∗ > 0 there exists a strong solution u(t, x) of problem (1.11), (1.2). Moreover

0 ≤ u ≤ M ∀(t, x) ∈ �T ∗ , ‖ux (t, x)‖L∞(�T∗ ) ≤ K ∗,

and

‖u‖2L2(R) + 2‖√κux‖2L2(�T∗ ) ≤ ‖u0‖2L2(R) ∀t ∈ (0, T ∗),

where �T ∗ = (0, T ∗) × R, T ∗ depends only on m, K 2, Mm−3 and K ∗ depends only on
K , T ∗.

Actually Theorem 2 states that a weak solution (which as it was mentioned above exists
for any T > 0) has better differential properties for t ∈ (0, T ∗). Note that T ∗ and K ∗ can be
find explicitly.

Thus we give an answer to the question formulated above for m ∈ (1, 2] ∪ [3,∞). For
m ∈ (2, 3) our approach seems not working.

Let us turn now to the Dirichlet problem. Consider equation

ut = (
κ(t, u)ux

)
x − f (t, u), (t, x) ∈ QT = (0, T ) × (−l, l), (1.12)

coupled with initial and boundary conditions

u(0, x) = u0(x) for |x | < l, u0(±l) = 0 and u(t,±l) = 0 for t ∈ [0, T ]. (1.13)
We suppose that

0 ≤ u0(x) ≤ M, |u0(x) − u0(y)| ≤ K |x − y|, ∀x, y ∈ [−l, l]. (1.14)

Assume that conditions (1.4), (1.5) are fulfilled and instead of (1.6) we impose the more
restrictive one

K 2[κu(t, u2) − κu(t, u1)
] ≤ f (t, u2) − f (t, u1) for u2 > u1 ≥ 0, t ∈ [0, T ] (1.15)

Note that (1.15) unlike to (1.6) implies that

K 2κu(t, u) ≤ f (t, u) for u ≥ 0, t ∈ [0, T ]
which will be used below in the boundary gradient estimates (see Lemma 2.2).
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1940 A. S. Tersenov

Definition 2 We say that a nonnegative Hölder continuous function u(t, x) is a strong solu-
tion of problem (1.12), (1.13) if ux ∈ L∞(QT ), ut ∈ L2(QT ) and for an arbitrary smooth
φ(t, x) the following identity is satisfied

∫

QT

utφdtdx +
∫

QT

κ(t, u)uxφxdtdx +
∫

QT

f (t, u)φdtdx = 0.

Theorem 3 (global existence)Assume that conditions (1.4), (1.5), (1.14), (1.15) are fulfilled,
then for any T > 0 there exists a strong solution u(t, x) of problem (1.12), (1.13). Moreover

0 ≤ u ≤ M ∀(t, x) ∈ QT , ‖ux (t, x)‖L∞(QT ) ≤ K .

Example 2 (but not Example 1) can be extended to the Dirichlet problem by obvious way
(see also Example 3 in Sect. 2.4).

Let us consider the Dirichlet problem for the standard porous medium equation with
m ≥ 3

ut = (
um

)
xx , m ≥ 3 in QT , (1.16)

coupled with conditions (1.13).

Theorem 4 (local existence) Assume that condition (1.14) is fulfilled, then for some T ∗ > 0
there exists a strong solution u(t, x) of problem (1.16), (1.13). Moreover

0 ≤ u ≤ M ∀(t, x) ∈ QT ∗ , ‖ux (t, x)‖L∞(QT∗ ) ≤ K ∗

where QT ∗ = (0, T ∗) × (−l, l), T ∗ depends only on m, K 2, Mm−3 and K ∗ depends only
on K , T ∗.

As in Theorem 2, constants T ∗ and K ∗ will be find explicitly (see proof of this theorem
in Sect. 2).

Note that the regularized effect of the low order term for the Burgers equation was demon-
strated in [14] andwas based on themodification of conditions (0.10)–(0.11) from [13]. In the
present paper we actually apply similar approach giving another modification of conditions
(0.10)–(0.11) from [13].

Different aspects of degenerate equationswith absorptionwere investigated in [4,7,12,15].
The paper is organized as follows. We start with the Dirichlet problem in Sect. 2 and in

Sect. 3 we consider the Cauchy problem.

2 The Dirichlet problem

2.1 Regularization

Rewrite Eq. (1.12) in the nondivergent form and consider the regularized equation

ut = (
κ(t, u) + ε

)
uxx + κu(t, u)u2x − f (t, u), (2.1)

where ε is an arbitrary positive constant.
First consider the auxiliary equation

ut = (
κ(t, u) + ε

)
uxx + κu(t, u)u2x − f (t, u) (2.2)

123



Smoothing effect of absorption for degenerate parabolic… 1941

coupled with initial and boundary conditions (1.13), here

κ(t, z) =
{

κ(t, z), for z ≥ 0
0, for z < 0

f (t, z) =
{
f (t, z), for z ≥ 0
0, for z < 0

.

The existence of classical solution uε of problem (2.2), (1.13) under the smoothness
assumptions (1.4) follows from [13].

2.2 A priori estimates

For simplicity in the proofs of lemmas below we omit the subindex ε.

Lemma 2.1 For a classical solution uε(t, x) of problem (2.2), (1.11) the estimate

0 ≤ uε(t, x) ≤ M,

holds in QT .

Proof For v = u e−δt , δ > 0 constant, we have

vt − (
κ(t, u) + ε

)
vxx − κu(t, u)v2x e

δt + δv = − f (t, u)e−δt . (2.3)

Denote by �T the parabolic boundary of QT , i.e.

�T = ∂QT \ {t = T, |x | < l}.
Suppose that the function v attains its negative minimum at the point N ∈ QT \ �T , then at
this point the left-hand side of (2.3) is strictly negative and the right-hand side is zero (since
v < 0 implies u < 0 implies f (t, u) = 0). From this contradiction we conclude that v cannot
attain its negative minimum at the internal points and hence, taking into account the initial
and the boundary conditions, we conclude that v(t, x) ≥ 0.

Assume now that the function v attains its positive maximum at the point N1 ∈ QT \ �T ,
then at this point the left-hand side of (2.3) is strictly positive and the right-hand side is
nonpositive (since v > 0 implies u > 0 implies f (t, u) ≥ 0). Hence v cannot attain its
positive maximum at the internal points and taking into account the boundary conditions we
conclude that v(t, x) ≤ M and thus

0 ≤ u(t, x) ≤ eδt M.

Passing to the limit as δ → 0 we obtain the needed estimate. 
�
From the above estimate it immediately follows that Eq. (2.2) coincides with Eq. (2.1),

so, instead of problem (2.2), (1.13) we will consider problem (2.1), (1.13).

Lemma 2.2 For a classical solution uε(t, x) of problem (2.1), (1.13) the estimates

uε(t, x) ≤ K (x + l), uε(t, x) ≤ K (l − x)

hold in QT .

Proof Let

v(t, x) = (
u(t, x) − K (x + l)

)
e−δt .

By direct calculations we obtain that

vt + δv − (κ(t, u) + ε)vxx = e−δt [κu(t, u)u2x − f (t, u)]. (2.4)
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Suppose that at the point N ∈ QT \�T the function v attains its positive maximum, we have

vt + δv − (κ(t, u) + ε)vxx

∣
∣
∣
N

> 0, (2.5)

on the other hand at this point

v > 0, vx = 0 ⇔ u > 0, ux = K

and hence, due to (1.5), (1.15)

e−δt [κu(t, u)u2x − f (t, u)]
∣
∣
∣
N

= e−δt [κu(t, u)K 2 − f (t, u)]
∣
∣
∣
N

≤ 0.

This contradicts (2.5); thus, v cannot attain its positive maximum at the internal points of
QT . Consider v on the parabolic boundary of QT :

for t = 0 we have

v(0, x) = (
u0(x) − K (x + l)

)
e−δt ≤ 0,

for x = ±l we have

v(t,±l) = ( − K (±l + l)
)
e−δt ≤ 0.

Hence

v(t, x) ≤ 0 for (t, x) ∈ QT

and consequently

u(t, x) ≤ K (x + l) for (t, x) ∈ QT .

Similarly, for

w(t, x) = (
u(t, x) − K (l − x)

)
e−δt

we obtain that

wt + δw − (κ(t, u) + ε)wxx = e−δt [κu(t, u)u2x − f (t, u)] (2.6)

Suppose that at the point N1 ∈ QT \ �T the function w attains its positive maximum, then
at this point the left-hand side of (2.6) is strictly positive, on the other hand at this point

u > 0, ux = −K

and hence, due to (1.5), (1.15) the right-hand side of (2.6) is less or equal zero. From this
contradiction we conclude that w cannot attain its positive maximum at the internal points
of QT . Consider w on the parabolic boundary of QT :

w(0, x) = (
u0(x) − K (l − x)

)
e−δt ≤ 0, w(t,±l) = ( − K (l ∓ l)

)
e−δt ≤ 0.

Hence

w(t, x) ≤ 0 for (t, x) ∈ QT

and consequently

u(t, x) ≤ K (l − x) for (t, x) ∈ QT .


�
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Lemma 2.3 For a classical solution of problem (2.1), (1.13) the estimate

|uεx (t, x)| ≤ K

holds in QT .

Proof Consider Eq. (2.1) at two different points (t, x), (t, y), x > y:

ut = (κ(t, u) + ε)uxx + κu(t, u)u2x − f (t, u), u = u(t, x), (2.7)

ut = (κ(t, u) + ε)uyy + κu(t, u)u2y − f (t, u), u = u(t, y). (2.8)

Subtracting (2.8) from (2.7) for

w̄(t, x, y) = u(t, x) − u(t, y) − K (x − y)

we obtain

w̄t − (κ(t, u(t, x)) + ε)w̄xx − (κ(t, u(t, y)) + ε)w̄yy

= κu(t, u(t, x))u2x (t, x) − f (t, u(t, x)) − κu(t, u(t, y))u2y(t, y) + f (t, u(t, y))

and for w = w̄e−t we have

L w ≡ wt + w − (κ(t, u(t, x)) + ε)wxx − (κ(t, u(t, y)) + ε)wyy

=
[
κu(t, u(t, x))u2x (t, x) − f (t, u(t, x))

−κu(t, u(t, y))u2y(t, y) + f (t, u(t, y))
]
e−t . (2.9)

Consider Eq. (2.9) in the domain

P = {(t, x, y) : t ∈ (0, T ), x ∈ (−l, l), y ∈ (−l, l), x > y}.
Denote by � the parabolic boundary of P , i.e.

� = ∂P \ {t = T, x ∈ (−l, l), y ∈ (−l, l), x > y}.
Suppose that the function w attains its positive maximum at the point N ∈ P \ �, then at
this point we have

u(t, x) > u(t, y) and ux (t, x) = uy(t, y) = K ,

hence due to condition (1.5)

L w

∣∣∣
N

< 0

which is impossible. Consequentlyw cannot attain its positivemaximumat the internal points
of P . Consider the parabolic boundary of the domain P:

1. for t = 0 we have w(0, x, y) = u0(x) − u0(y) − K (x − y) ≤ 0;
2. for x = y we have w = 0;
3. for x = l, y ∈ [−l, l], since −u(t, y) ≤ 0, we have

w(t, l, y) = ( − u(t, y) − K (l − y)
)
e−t ≤ 0;

and finally
4. for y = −l, x ∈ [−l, l], due to Lemma 2.2, we have

w(t, x,−l) = (
u(t, x) − K (x + l)

)
e−t ≤ 0.
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1944 A. S. Tersenov

Thus we obtain that for x > y

u(t, x) − u(t, y) ≤ K (x − y).

Similarly, subtracting (2.7) from (2.8) for

v(t, x, y) =
(
u(t, y) − u(t, x) − K (x − y)

)
e−t

we obtain

L v =
[
κu(t, u(t, y))u2y(t, y) − f (t, u(t, y))

−κu(t, u(t, x))u2x (t, x) + f (t, u(t, x))
]
e−t . (2.10)

Consider Eq. (2.10) in the domain P . Suppose that the function v attains its positivemaximum
at the point N ∈ P \ �, then at this point we have

u(t, y) > u(t, x) and uy(t, y) = ux (t, x) = −K ,

hence due to condition (1.5)

L v

∣∣∣
N

< 0

which is impossible. Thus v cannot attain its positive maximum at the internal points of P .
Consider the parabolic boundary of the domain P:

1. for t = 0 we have v(0, x, y) = u0(y) − u0(x) − K (x − y) ≤ 0;
2. for x = y we have v = 0;
3. for x = l, y ∈ [−l, l] due to Lemma 2.2, we have

v(t, l, y) = (
u(t, y) − K (l − y)

)
e−t ≤ 0,

and finally
4. for y = −l, x ∈ [−l, l] we have

v(t, x,−l) = ( − u(t, x) − K (x + l)
)
e−t ≤ 0

since −u(t, y) ≤ 0.

Thus we obtain that for x > y

|u(t, x) − u(t, y)| ≤ K (x − y).

In view of the symmetry of the variables x, y we conclude that for t ∈ [0, T ], |x | ≤ l,
|y| ≤ l we have

|u(t, x) − u(t, y)| ≤ K |x − y|
which implies the required estimate. 
�
Lemma 2.4 For a classical solution of problem (2.1), (1.13) the estimate

∫

QT

u2εt (t, x)dtdx ≤ C

holds, where the constant C do not depend on ε.
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Proof Rewrite Eq. (2.1) in divergent form

uεt = (
κ(t, uε) + ε)uεx

)
x − f (t, uε). (2.11)

Multiplying (2.11) by ut and integrating by parts with respect to x we obtain

∫ l

−l
u2t dx = −1

2

∫ l

−l
(κ + ε)

(
u2x

)
tdx −

∫ l

−l
f utdx .

Now integrating by parts with respect to t we obtain

∫

QT

u2t dtdx = −1

2

∫ l

−l
(κ + ε)u2x

∣∣
∣
t=T

t=0
dx + 1

2

∫

QT

κt u
2
xdtdx

+1

2

∫

QT

κuutu
2
xdtdx −

∫

QT

f utdtdx .

Applying the Hölder and Young inequalities we conclude

∫

QT

u2t dtdx + 2
∫ l

−l
(κ(T, u(T, x)) + ε)u2x (T, x)dx)

≤ 2
∫ l

−l
(κ(0, u0(x)) + ε)u20(x)dx + 2

∫

QT

|κt |u2xdtdx

+
∫

QT

κuu
4
xdtdx + 2

∫

QT

f 2dtdx,

from where the assertion of the Lemma follows. 
�
2.3 Proof of Theorem 3

We have constructed functions uε-classical solutions of (2.1), (1.2). Multiplying (2.11) by
an arbitrary smooth φ and integrating by part we obtain

∫

QT

uεtφdtdx +
∫

QT

(
κ(t, uε) + ε

)
uεxφxdtdx +

∫

QT

f (t, uε)φdtdx

= ε

∫ T

0
uεxφ

∣∣∣
x=l

x=−l
dt. (2.12)

Note that the for uε the following estimate (see [5,9]) takes place:

|uε(t1, x) − uε(t2, x)| ≤ C |t1 − t2|1/2 (2.13)

with constant C depending only on M , K and max (κ + ε), max κu , max f (maximum is
taken over the set [0, T ] × [0, M]). The above estimate and Lemmas 2.1, 2.3, 2.4 guarantee
the existence of subsequence εn such that

uεn → u uniformly,

uεn x → ux *weakly in L∞(QT ),

uεn t → ut *weakly in L2(QT )

as n → ∞ (εn → 0). Based on these we can pass to the limit in the identity (2.12) and by
this prove the existence.
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2.4 Proof of Theorem 4

For the function v = ue−μt , μ > 0 the problem (1.16), (1.13) takes the form

vt = (κ(t, v)vx )x − μv, m ≥ 3, (2.14)

v(0, x) = u0(x) ≥ 0, v(t,±l) = 0, (2.15)

with

κ(t, v) = meμ(m−1)tvm−1.

Condition (1.15) in this case can be written as follows

m(m − 1)K 2[vm−2
2 − vm−2

1

] ≤ μeμ(1−m)t [v2 − v1], v2 > v1 ≥ 0 (2.16)

or

t ≤ 1

μ(m − 1)
ln

(
μ

m(m − 1)K 2

v2 − v1

vm−2
2 − vm−2

1

)

.

The last is fulfilled if

t ≤ 1

μ(m − 1)
ln

(
μ

m(m − 1)K 2

1

(m − 2)Mm−3

)
,

where M = max v = max u. Define T ∗ > 0 by the following

T ∗ = sup
μ

1

μ(m − 1)
ln

(
μ

m(m − 1)(m − 2)K 2Mm−3

)
,

here supremum is taking for μ > m(m − 1)(m − 2)K 2Mm−3. Thus Theorem 3 guarantees
the existence of a strong solution of problem (2.14), (2.15) on the interval (0, T ∗) and the
estimate

‖vx‖L∞(0,T ∗) ≤ K = max |vx (0, x)| = max |u0x (x)|.
Returning to problem (1.16), (1.13) we finish the proof of the existence. Obviously

‖ux‖L∞(0,T ∗) ≤ Keμt ≤ K ∗ = KeμT ∗
.

Example 3 Consider equation

ut = (
u3

)
xx − λu, λ ≥ 6K 2 in QT , (2.17)

One can easily see that (1.15) is fulfilled and thus Theorem 3 guarantees the global solvability
of problem (2.17), (1.13).

Now consider equation

ut = (
u3

)
xx in QT , (2.18)

For v = ue−μt we obtain

vt = (
3e2μtv2vx

)
x − μt.

Condition (2.16) takes the form

6K 2 ≤ μe−2μt ⇔ t ≤ 1

2μ
ln

μ

6K 2 .
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Supremum of 1/2μ ln(μ/6K 2) (with respect to μ under restriction μ > 6K 2) is obtained
for μ = e 6K 2, hence for

t ∈
(
0,

1

12eK 2

)

we have

|vx (t, x)| ≤ K ⇔ |ux (t, x)| ≤ Ke6eK
2t ≤ K ∗ = K

√
e.

Thus we conclude that Theorem 4 guarantees the existence of a strong solution to the
problem (2.18), (1.13) on the interval

t ∈ (0, T ∗), T ∗ = 1

12eK 2 .

3 The Cauchy problem

3.1 Regularized problem

Consider the following regularized problem

ut = (
κ(t, u) + ε

)
uxx + κu(t, u)u2x − f (t, u) in Ql

T = (0, T ) × (−l, l) (3.1)

coupled with initial and boundary conditions

u(0, x) = hl(x), ux (t,±l) ± δu(t,±l) = 0, (3.2)

where

0 ≤ hl(x) ≤ M, |h′
l(x)| ≤ K , ∀x ∈ [−l, l]

and hlx (±l)±δh0(±l) = 0, here ε and l are arbitrary positive constants and positive constant
δ is such that

Mδ < K

(we will use the last inequality in the proof of Lemma 3.2).
First consider the following auxiliary equation

ut = (
κ(t, u) + ε

)
uxx + κu(t, u)u2x − f (t, u) in Ql

T (3.3)

where functions κ(t, u), f (t, u) where defined in the previous section.
The existence of classical solution of problem (3.3), (3.2) under the smoothness assump-

tions (1.4) follows from [13].

3.2 A priori estimates

Lemma 3.1 For a classical solution uε(t, x) of problem (3.3), (3.2) the estimate

0 ≤ uε(t, x) ≤ M,

holds in QT .
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Proof The proof is similar to the proof of Lemma 2.1. The only difference is on the lateral
boundary of the domain, i.e. x = ±l, t ∈ [0, T ] where for v = ue−δt we have

vx (t,±l) ± δv(t,±l) = 0.

Hence on the lateral boundary the function v cannot attain positive maximum or negative
minimum. Thus, similarly to the proof of Lemma 2.1 we conclude that the function v attains
its positive maximum and negative minimum at the initial moment and consequently

0 ≤ u ≤ M.


�
From the above estimate it immediately follows that equation (3.3) coincideswith equation

(3.1), so, instead of problem (3.3), (3.2) we will consider problem (3.1), (3.2).

Lemma 3.2 For a classical solution of problem (3.1), (3.2) the estimate

|uεx (t, x)| ≤ K

holds in QT .

Proof The proof is similar to the proof of Lemma 2.3. The only difference is on the lateral
boundary of the domain P .

Consider the function w(t, x, y) (see the proof of Lemma 2.3) on the lateral boundary of
the domain P:

1. for x = y we have w = 0;
2. for x = l, y ∈ [−l, l] we have

wx (t, l, y) = (
ux (t, l) − K

)
e−t = ( − δu(t, l) − K

)
e−t < 0

and thus the function w cannot attain its positive maximum on this part of the lateral
boundary;

3. for y = −l, x ∈ [−l, l] we have
wy(t, x,−l) = ( − uy(t,−l) + K

)
e−t = ( − δu(t,−l) + K

)
e−t > 0

and the functionw cannot attain its positive maximum on this part of the lateral boundary
as well (recall that K > δM and note that on this part of the boundary the derivative with
respect to y is inward derivative).

Thus similarly to Lemma 2.3 we conclude that for x > y

u(t, x) − u(t, y) ≤ K (x − y).

Now consider the function v(t, x, y) on the lateral boundary of the domain P:

1. for x = y we have v = 0;
2. for x = l, y ∈ [−l, l] we have

vx (t, l, y) = (−ux (t, l) − K )e−t = (δu(t, l) − K ) < 0,

3. for y = −l, x ∈ [−l, l] we have
vy(t, x,−l) = (uy(t,−l) + K )e−t = (

δu(t,−l) + K
)
e−t > 0

and hence the function v cannot attain its positive maximum on part 2. and 3. of the
lateral boundary.
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Thus we obtain that for x > y

|u(t, x) − u(t, y)| ≤ K (x − y).

In view of the symmetry of the variables x y we conclude that for t ∈ [0, T ], |x | ≤ l,
|y| ≤ l we have

|u(t, x) − u(t, y)| ≤ K |x − y|
which implies the required estimate. 
�
3.3 Proof of Theorems 1 and 2

We have constructed functions uε-classical solutions of (3.1), (3.2). Note that the estimates
of uε, uεx as well as the estimate

|uε(t1, x) − uε(t2, x)| ≤ C |t1 − t2|1/2 (3.4)

are independent of δ (and of ε). FromSchauder estimateswe conclude that for someγ ∈ (0, 1)
the C1+γ /2,2+γ

t,x normof uε is bounded by a constant independent of δ (but of course depending
on ε). Thus we can pass to the limit as δ → 0 and obtain the classical solution of the
homogeneous Neumann problem:

uεt = (
κ(t, uε) + ε

)
uεxx + κu(t, uε)u

2
εx − f (t, uε) in Ql

T , (3.5)

u(0, x) = hl(x), ux (t,±l) = 0, (3.6)

where hlx (±l) = 0.
Obviously the estimates of Lemma 3.1 and 3.2 as well as the estimate (3.4) hold for the

solution of problem (3.5), (3.6). Let us obtain the needed integral estimates.

Lemma 3.3 For a classical solution of problem (3.5), (3.6) the estimate
∫

QT

u2εtdtdx ≤ C

holds, where the constant C do not depend on ε.

The proof is similar to the proof of Lemma 2.4.

Lemma 3.4 For a classical solution of problem (3.5), (3.6) the estimate
∫ l

−l
u2εdx + 2

∫

QT

κ(t, uε)u
2
εxdxdt ≤

∫ l

−l
u20(x)dx

holds ∀t ∈ (0, T ), where the constant C do not depend on ε.

Proof Multiplying (3.5) by u and integrating by parts we obtain

1

2

d

dt

∫ l

−l
u2dx +

∫ l

−l

(
κ(t, u) + ε

)
u2xdx = −

∫ l

−l
f udx ≤ 0.

Integrating with respect to t we obtain the required estimate. 
�
Let us extend hl(x) by zero for |x | > l. Now we approach the initial function u0 by

(extended) functions hl and obtain the (classical) solution of the Cauchy problem

uεt = (
κ(t, uε) + ε

)
uεxx + κu(t, uε)u

2
εx − f (t, uε) in �T , (3.7)
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u(0, x) = u0(x), (3.8)

passing to the limit as l → ∞ and applying the standard diagonal process ( [10]). Note that
the a priori estimates obtained above are independent of l and hence are valid for the problem
(3.7), (3.8) as well.

Thus there exists a subsequence εn such that

uεn → u uniformly,

uεn x → ux *weakly in L∞(�T ),

uεn t → ut *weakly in L2(�T )

as n → ∞ (εn → 0). Based on these we can pass to the limit in the identity
∫

�T

uεtφdtdx +
∫

�T

(
κ(t, uε) + ε

)
uεxφxdtdx +

∫

�T

f (t, uε)φdtdx = 0

with an arbitrary smoothφ(t, x)vanishing for large |x |. By thiswefinish the proof ofTheorem
1.

The proof of Theorem 2 is similar to the proof of Theorem 4.
Note that Example 3 by obvious way can be extended to the Cauchy problem.
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