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Abstract

This paper is concerned with the global solvability of the first initial boundary
value problem for the quasilinear parabolic equations with two independent vari-
ables:a(t, x, u, ux)uxx− ut = f (t, x, u, ux). We investigate the case when the
growth of |f (t,x,u,p)|

a(t,x,u,p)
with respect top is faster thanp2 when|p| → ∞. Condi-

tions which guarantee the global classical solvability of the problem are formulated.

0. Introduction

In the present paper we investigate the global solvability of the following prob-
lem

a(t, x, u, ux)uxx − ut = f (t, x, u, ux) in QT = (−l, l)× (0, T ), (0.1)

u(0, x) = u0(x) for |x| < l, u(t,±l) = 0, (0.2)

where for(t, x) ∈ Q̄T , |u| 5 M (M > 0 is some constant) and for anyp the
functionsa(t, x, u, p), f (t, x, u, p) are Hölder continuous and

a(t, x, u, p) > 0, (0.3)

|f (t, x, u, p)| 5 a(t, x, u, p)ψ(|p|). (0.4)

In addition we suppose thatu0(x) is a Lipschitz continuous function and
u0(±l) = 0. S. N. Kruzhkov in [1] shows that if theC1 functionψ(ρ) is such
thatψ(ρ) > 0 for ρ > 0 and

∫ +∞

1

ρ dρ

ψ(ρ)
= +∞ (or ψ(ρ) = Const(1 + ρ2)), (0.5)
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then under the above mentioned assumptions ona, f andu0 there exists a global
(i.e., for anyT > 0) solution of problem (0.1), (0.2) from the classC1+β/2,2+β

t,x (QT )

∩C0(Q̄T ) for someβ ∈ (0,1). It is well known that assumption (0.5) (or Bernstein-
Nagumo-Tonelli condition (see [2]–[4]) on no more than quadratic growth of the
function |f (t,x,u,p)|

a(t,x,u,p)
with respect top when |p| → +∞) is generally speaking

necessary for the global solvability of problem (0.1), (0.2). Examples show that in
the case of violation of condition (0.5) the gradient of the bounded solution may
blow up on the boundary of the domain (see [5]–[11]) as well as in the interior of
the domain (see [12]–[14]); i.e., there exists at∗ such that|ux(t, x0)| → +∞ when
t → t∗ for somex0 ∈ [−l, l].

The present paper is devoted to the generalization of condition (0.5). In the first
two sections we obtaina priori estimates of the gradient of the solution. Note that
when obtaining these estimates we do not need any assumption on the smoothness
of the functionsa, f . We use the H¨older continuity of these functions only in the
third section where we prove the existence theorem.

The first section deals with the boundary gradient estimate. We obtain here the
following result. Letψ(0) = 0,ψ(ρ) > 0 for ρ > 0 and suppose that there exist
p0 andp1 such that

∫ p1

p0

ρ dρ

ψ(ρ)
= µ ≡ max{M,osc(u),K0l} (0.6)

and ∫ p1

p0

dρ

ψ(ρ)
5 l, (0.7)

where 0< p0 < p1 < +∞, M = supQT |u|, |u0(x)| 5 K0(l − |x|), K0 > 0
is some constant and osc(u) = supu − inf u. Then the gradient of the solution is
bounded on the boundary of the domain for anyT > 0. If condition (0.7) is not
fulfilled then in order to obtain the same result we should impose an additional
condition onu0(x):

|u0(x)| 5 hi(x), i = 1,2, (0.8)

where the functionshi(x) are defined in Section 1. Note that the fulfilment of
condition (0.5) implies the fulfilment of conditions (0.6), (0.7). In fact, let us take
p0 = µ/l and selectp1 such that

∫ p1

p0

ρdρ

ψ(ρ)
= µ

(that is possible due to the divergence of the integral on+∞). We have

∫ p1

p0

dρ

ψ(ρ)
5 1

p0

∫ p1

p0

ρ dρ

ψ(ρ)
= µ

p0
= l.

Let us give an example (see also the example in Section 3).
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Example.Consider the following problem

uxx − ut = f (t, x, u)u3
x in (−l, l)× (0, T ), (0.9)

u(0, x) = u0(x) in (−l, l) and u(t,±l) = 0 for t ∈ [0, T ], (0.10)

whereT is an arbitrary positive,u0(x) is Lipschitz continuous function,u0(±l) = 0
andf (t, x, u) is bounded in[−l, l]×[0, T ]×[−M,M]. Denote byf0 the sup|f |.
Let us write conditions (0.6), (0.7):

1

p0
− 1

p1
= max{M,osc(u),K0l}f0,

1

p2
0

− 1

p2
1

5 2lf0.

Selectp0 andp1 so that

1

p0
− 1

p1
= max{M,osc(u),K0l}f0. (0.11)

In the second condition we also take “=”, and using (0.11) obtain

1

p0
+ 1

p1
= 2l

max{M,osc(u),K0l} . (0.12)

Obviously system (0.11), (0.12) is solvable withp1 > p0 > 0 if

2l > (max{M,osc(u),K0l})2f0.

This inequality is equivalent to
2> K2

0 lf0, (0.13)

because for the solution of the problem (0.9), (0.10) we haveM = sup|u0| 5 K0l

and (see Remark at the end of Section 1) in order to obtain the boundary gradient
estimate it is sufficient to takeµ = max{M,K0l}. The fact thatµ = osc(u) is used
in the proof of the global gradient estimate. Thus if condition (0.13) is fulfilled we
have the boundary gradient estimate independent ofT . Note that we can always
selectp1 > p0 > 0 so that condition (0.11) is fulfilled. If it is impossible to
satisfy at the same time condition (0.12), then in order to estimate the gradient on
the boundary we should impose condition (0.8). If in (0.9) the functionf does
not depend onu, is differentiable with respect tox andfx = 0, then (having the
boundary gradient estimates) we can easily obtain the global gradient estimate by
differentiating the equation and applying the maximum principle to the function
w(t, x) ≡ ux(t, x). In the general case, in order to obtain global gradient estimates
we also need the fulfilment of conditions (0.4), (0.5). Otherwise we can have interior
gradient blow-up (see [12]).

In the second section we show that fulfilment of conditions (0.4), (0.6), (0.7) or
(0.4), (0.6), (0.8) together with the following condition on the modulus of continu-
ity of u0(x): |u0(x)−u0(y)| 5 h1(|x−y|− l), implies the globala priori estimate
of the gradient. If we want to avoid this condition onu0(x) we need additional as-
sumptions on the functionf (t, x, u, p). Namely, the functionf can be represented
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in the formf (t, x, u, p) = f1(t, x, u, p) + f2(t, x, u, p) where the first termf1
satisfies conditions (0.4), (0.5), the secondf2 satisfies conditions which guarantee
the boundary gradient estimates and

f2(t, x, u, p)− f2(t, y, v, p) = 0, f2(t, y, u,−p)− f2(t, x, v,−p) = 0
(0.14)

whenx = y, u = v, p = 0. The functionf2 satisfies conditions (0.14) if, for
example,f2 = f2(t, p) or f2 = g(t, x)h1(t, p), whereg is nondecreasing with
respect tox andph1(t, p) = 0, orf2 = g(t, u)h2(t, p), whereh2(t, p) = 0 for
anyp andg is nondecreasing with respect tou. As was mentioned above, we do
not need any assumption on the smoothness of the coefficients in order to obtain
the global gradient estimate. Obviously in (0.9)f u3

x satisfies conditions (0.14) if
f is independent ofu and nondecreasing with respect tox.

In the last section based on thea priori estimates of Sections 1, 2 we prove the
existence theorems.

1. Boundary Gradient Estimate

Consider problem (0.1), (0.2). Assume that the functionsa(t, x, u, p) and
f (t, x, u, p) are defined on the set̄QT × [−M,M] × R and are bounded for
(t, x) ∈ QT , |u| 5 M and for anyp. Suppose that conditions (0.3), (0.4),(0.6) are
fulfilled with ψ(ρ) ∈ C1([0,+∞)), ψ(ρ) > 0 forρ > 0 andψ(0) = 0. Introduce
the functionsh1(x) andh2(x) by the following

h′′
1 + ψ(|h′

1|) = 0, h1(−l) = 0, h1(−l + τ0) = µ,

h′′
2 + ψ(|h′

2|) = 0, h2(l − τ0) = µ, h2(l) = 0,

whereµ = max{M,osc(u),K0l} and

|u0(x)| 5 K0(l − |x|). (1.1)

The constantτ0 will be selected below. Represent the solution of the first equation
in parametric form (using the substitutionq(h1) = h′

1,
dq
dx

= q
dq
dh1

):

h1 = h1(q) =
∫ q1

q

ρ dρ

ψ(ρ)
, x = x(q) =

∫ q1

q

dρ

ψ(ρ)
− l, (1.2)

where the parameterq varies in the interval[q0, q1] andq0, q1 are chosen so as to
haveq1 > q0 > 0 and

h1(q0) =
∫ q1

q0

ρ dρ

ψ(ρ)
= µ,

which is possible due to (0.6). We put

τ0 =
∫ q1

q0

dρ

ψ(ρ)
.
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DefineD1 andD2:

D1 = {(t, x) : 0< t 5 T , x ∈ (−l,−l + τ0) ∩ (−l, l)},
D2 = {(t, x) : 0< t 5 T , x ∈ (l − τ0, l) ∩ (−l, l)}.

Lemma 1.1.Letu(t, x) be a classical solution(u(t, x) ∈ C1,2
t,x (QT )∩C0(Q̄T )) of

problem(0.1), (0.2); assume that conditions(0.3), (0.4), (0.6), (1.1)are fulfilled.
If τ0 5 l or |u0(x)| 5 hi(x), then

|u(t, x)| 5 hi(x) in D̄i, i = 1,2.

Proof. Denote by0i the parabolic boundary ofDi ; i.e., if τ0 5 l then

01 = {t = 0, x ∈ [−l,−l + τ0]} ∪ {t ∈ [0, T ], x = −l} ∪ {t ∈ [0, T ],
x = −l + τ0},

02 = {t = 0, x ∈ [l − τ0, l]} ∪ {t ∈ [0, T ], x = l − τ0} ∪ {t ∈ [0, T ], x = l}
and if τ0 > l then

01 = 02 = {t = 0, x ∈ [−l, l]} ∪ {t ∈ [0, T ], x = −l} ∪ {t ∈ [0, T ], x = l}.
Let us show that|u(t, x)| 5 hi(x) on0i, i = 1,2. Due to (1.1), ifτ0 5 l we

have

|u0(−l + τ0)| 5 K0l 5 h1(−l + τ0), |u0(l − τ0)| 5 K0l 5 h2(l − τ0).

Taking into account thath′′
1 5 0 andh′′

2 5 0, we conclude that|u0(x)| 5 hi(x),
i = 1,2. If τ0 > l, then|u0(x)| 5 hi(x), i = 1,2 from the conditions of the
lemma.

Further, fort ∈ [0, T ] we have

u(t,−l) = h1(−l) = u(t, l) = h2(l) = 0,

|u(t,−l + τ0)| 5 M 5 h1(−l + τ0), |u(t, l − τ0)| 5 M 5 h2(l − τ0),

and ifτ0 > l, then fort ∈ [0, T ]we haveu(t, l) = 0< h1(l),u(t,−l) = 0< h2(l).
Let

L0u ≡ A(t, x)(uxx + ψ(|ux |))− ut ,

whereA(t, x) = a(t, x, u, ux). It is clear thatL0u = 0, L0hi = 0, i = 1,2 and
for vi ≡ u− hi the following is valid:

L0u− L0hi ≡ L̃0vi ≡ A(t, x)(vixx + βivix)− vit = 0 in Di, i = 1,2,

whereβi are bounded in̄Di \0i due to the fact thatu is a classical solution andψ is
C1 function. By means of the standard arguments based on the maximum principle,
we can show that the functionv cannot achieve a positive maximum in̄Di \ 0i .
Henceu− hi 5 0 inDi .

Replacingu by−uwe obtain the inequalityu+hi = 0 (note thatL0(−u) = 0).
Lemma 1.1 is proved.

Remark. One can easily see that in order to prove Lemma 1.1 it is sufficient to take
µ = max{M,K0l}, the fact thatµ = osc(u) will be used in the proof of Lemma
2.1 and of Lemma 2.2.
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2. Global gradient estimate

In this section we obtain the global gradient estimate without assumptions on
the smoothness of the coefficients based onS. N. Kruzhkov’s idea of introducing
a new spatial variable [1] (see also [15]–[19]). We consider two cases:

1. The assumptions on the functionf (t, x, u, p) are the same as in Section 1, but
the functionu0(x) satisfies a certain additional condition (Lemma 2.1).

2. The functionu0(x) is the same as in Section 1 andf (t, x, u, p) can be repre-
sented in the form

f (t, x, u, p) = f1(t, x, u, p)+ f2(t, x, u, p), (2.1)

where the first termf1 satisfies conditions (0.4), (0.5), the secondf2 satisfies
conditions (0.4), (0.6) and

f2(t, x, u, p)− f2(t, y, v, p) = 0, f2(t, y, u,−p)− f2(t, x, v,−p) = 0
(2.2)

whenx = y, u = v, p = 0 (Lemma 2.2).

Lemma 2.1.Assume that the conditions of Lemma 1.1 are fulfilled and the function
u0(x) (u0(±l) = 0) satisfies the inequality

|u0(x)− u0(y)| 5 h1(|x − y| − l) for |x − y| 5 τ0. (2.3)

Then for any classical solution of problem(0.1), (0.2)we have

|ux(t, x)| 5 C0,

where the constantC0 depends only onψ, l andM.

(The functionh1 and the constantτ0 are defined in Section 1.)

Proof. Consider equation (0.1) at points(t, x), (t, y) ∈ QT wherex 6= y :
a(t, x, u(t, x), ux(t, x))uxx − ut (t, x) = f (t, x, u(t, x), ux(t, x)), (2.4)

a(t, y, u(t, y), uy(t, y))uyy − ut (t, y) = f (t, y, u(t, y), uy(t, y)). (2.5)

Subtracting (2.5) from (2.4) for the functionv(t, x, y) ≡ u(t, x) − u(t, y), we
obtain

a(t, x, u(t, x), vx)vxx + a(t, y, u(t, y),−vy)vyy − vt

= f (t, x, u(t, x), vx)− f (t, y, u(t, y),−vy).
Taking into account (0.4), we have

Lv ≡ A(t, x)[vxx + ψ(|vx |)] + A(t, y)[vyy + ψ(|vy |)] − vt = 0,

whereA(t, z) ≡ a(t, z, u(t, z), uz(t, z)). Let us now define the functionh(τ) by
the following:

h′′(τ )+ ψ(|h′(τ )|) = 0, h(0) = 0, h(τ0) = µ = max{M,osc(u),K0l}.
(2.6)
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ObviouslyLh(x − y) = 0. Compare the functionsv andh in the prism

P = {(t, x, y) : 0< t 5 T , |x| < l, |y| < l,0< x − y < τ0}.
Forw ≡ v(t, x, y)− h(x − y) we have

0 5 Lv − Lh ≡ L̃w ≡ A(t, x)(wxx + β1wx))+ A(t, y)(wyy + β2wy))− wt,

where|βi | < +∞, i = 1,2 due to the smoothness ofψ and to the fact thatu(t, x) is
the classical solution. By means of the standard arguments based on the maximum
principle, we can show that the functionw cannot achieve a positive maximum in
P̄ \ 0 where0 is a parabolic boundary ofP . Consider0:

(1) Forx = y we havew = 0.
(2) Forx − y = τ0 we haveu(t, x)− u(t, y)− µ 5 osc(u)− µ 5 0.
(3) Fory = −l, x ∈ (−l,−l + τ0), t ∈ (0, T ] we havew = u(t, x)− h(x + l).

Let us show thatu(t, x) 5 h(x + l). To this end it is sufficient to show that
h1(x) 5 h(x + l) (recall that from Lemma 1.1 we haveu(t, x) 5 h1(x)). The
latter inequality follows directly from the fact that

h′′
1(x)+ ψ(|h′

1(x)|) = 0, h1(−l) = 0, h1(−l + τ0) = µ,

h̃′′(x)+ ψ(|h̃′(x)|) = 0, h̃(−l) = 0, h̃(−l + τ0) = µ,

whereh̃(x) ≡ h(x + l).
(4) Forx = l, y ∈ (l− τ0, l), t ∈ (0, T ] we havew = −u(t, y)−h(l− y). Let us

show thatu(t, y) = −h(l − y). It is sufficient to show thath(l − y) = h2(y)

(from Lemma 1.1 we haveu(t, y) = −h2(y)). The latter inequality follows
from

h′′
2(y)+ ψ(|h′

2(y)|) = 0, h2(l − τ0) = µ, h2(l) = 0,

h̄′′(y)+ ψ(|h̄′(y)|) = 0, h̄(l − τ0) = µ, h̄(l) = 0,

whereh̄(y) ≡ h(l − y).
(5) Finally, from the conditions of Lemma 2.1, we have fort = 0

u0(x)− u0(y)− h1(x − y − l) 5 0.

Thus we have proved that

u(t, x)− u(t, y) 5 h(x − y) in P̄ .

By analogy, taking the functioñv ≡ u(t, y) − u(t, x) in the place ofv, we
obtain

u(t, x)− u(t, y) = −h(x − y) in P̄ .

In view of the symmetry of the variablesx andy, we examine the casey > x

in the same way. As a result we have that for

0 5 t 5 T , |x| < l, |y| < l, 0< |x − y| < τ0
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the inequality
|u(t, x)− u(t, y)|

|x − y| 5 h(|x − y|)− h(0)

|x − y|
holds, implying that|ux(t, x)| 5 h′(0). Lemma 2.1 is proved.

Lemma 2.2.Suppose that the conditions of Lemma 1.1 and conditions(2.1), (2.2)
hold. Then for any classical solution of problem(0.1), (0.2)we have

|ux(t, x)| 5 C1,

where the constantC1 depends only onψ, l,M,K0 ≡ sup|u0(x)−u0(y)|
|x−y| .

Proof. Similarly to the proof of Lemma 2.1 forv(t, x, y) ≡ u(t, x) − u(t, y) we
obtain

Lv ≡ A(t, x)(vxx + ψ0(|vx |))+ A(t, y)(vyy + ψ0(|vy |))− vt

= f2(t, x, u(t, x), ux(t, x))− f2(t, y, u(t, y), uy(t, y)),

whereψ0(ρ) = 1 isC1([0,∞)) function and
∫ +∞

1

ρ dρ

ψ0(ρ)
= +∞. (2.7)

Define the functionh0(τ ) by the following

h′′
0(τ )+ ψ0(|h′

0(τ )|) = 0, h0(0) = 0, h0(τ1) = µ = max{M,osc(u),K0l}.
In order to selectτ1 represent the solution of (2.7) in parametrical form

h0(q) =
∫ q1

q

ρ dρ

ψ0(ρ)
, τ (q) =

∫ q1

q

d ρ

ψ0(ρ)
,

where the parameterq varies in the interval[q0, q1] andq0, q1 are chosen so that
q1 > q0 = max{K0, h

′
1(−l)} (the functionh1 was defined in Section 2) and

h0(q0) =
∫ q1

q0

ρ dρ

ψ0(ρ)
= µ,

which is possible due to (2.7). Defineτ1 by

τ1 =
∫ q1

q0

d ρ

ψ0(ρ)
.

Consider the functionv(t, x, y) andh0(x − y) in the domain

P = {(t, x, y) : 0< t < T, |x| < l, |y| < l,0< x − y < τ1}.
Obviously forw ≡ v(t, x, y)− h(x − y) we have the inequality

A(t, x)(wxx + β1wx)+ A(t, y)(wyy + β2wy)− wt

= f2(t, x, u(t, x), ux(t, x))− f2(t, y, u(t, y), uy(t, y))
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and forw̃ = we−t the inequality

A(t, x)(w̃xx + β1w̃x)+ A(t, y)(w̃yy + β2w̃y)− w̃ − w̃t

= e−t (f2(t, x, u(t, x), ux(t, x))− f2(t, y, u(t, y), uy(t, y))). (2.8)

Suppose that̃w achieves its positive maximum at the pointN ∈ P̄ \ 0 (0 is the
parabolic boundary ofP ), then at this point we havẽw > 0, w̃x = w̃y = 0, i.e.,
u(t, x) > u(t, y), ux = h′ > 0, uy = h′ > 0. Thus, due to (2.2) the right side of
(2.8) atN is positive. This contradicts the fact thatw̃ attains a positive maximum
atN . Consider the parabolic boundary ofP :

(1) Forx = y we havew̃ = 0.
(2) Forx−y = τ1 we haveu(t, x)−u(t, y)−µ 5 osc(u)−µ 5 0 hencew̃ 5 0.
(3) Fort = 0 we haveu0(x)− u0(y)− h0(x − y) 5 0 becauseu0(x)− u0(y) 5

K0(x−y) andh0(x−y) = h0(x−y)−h0(0) = h′
0(τ

∗)(x−y) = K0(x−y).
It remains to consider the following two parts of0:

(4) y = −l, x ∈ (−l,−l + τ1), t ∈ (0, T ] and
(5) x = l, y ∈ (l − τ1, l), t ∈ (0, T ].
On part (4) we havẽw = e−t (u(t, x)− h0(x+ l)) and on (5)w̃ = e−t (−u(t, y)−
h0(l − y)). In order to prove that on (4) and (5)w̃ is non-positive it is sufficient to
show that

h1(x) 5 h0(x + l) for x ∈ (−l,−l + τ1),

h2(y) 5 h0(l − y) for y ∈ (l − τ1, l),

and then to apply Lemma 1.1. These inequalities follow immediately from the fact
that h′

0 = h′
1(−l). Note thatτ1 5 τ0 becauseh0(x + l) = h1(x) for x = −l,

h′
0(x + l) = h′

1(−l) = suph′
1(x) andh0(τ1) = h1(−l + τ0).

Thus we have proved that

u(t, x)− u(t, y) 5 h0(x − y) in P̄ .

By analogy, taking the functioñv ≡ u(t, y)−u(t, x) in the place ofv we obtain

u(t, x)− u(t, y) = −h0(x − y) in P̄

(here we use the second inequality (2.2)).
Similarly to the proof of Lemma 2.1 we conclude that

|ux(t, x)| 5 h′
0(0) = p1.

Lemma 2.2 is proved.
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3. Existence and Uniqueness Theorem

Let us now formulate the existence and uniqueness theorem for problem (0.1),
(0.2). Denote byDi the setQ̄T × [−M,M] × [−Ci, Ci], i = 0,1.

Theorem 3.1.Suppose that conditions(0.3), (0.4), (0.6), (0.7)(or (0.8)), (2.3)are
fulfilled. In addition suppose that some condition which guarantee the boundedness
of |u| is fulfilled(see[18], [20]). If a(t, x, u, p), f (t, x, u, p) ∈ Cα(D0),α ∈ (0,1)
then for anyT > 0 problem (0.1),(0.2)has at least one solutionu(t, x) from
C

1+β/2,2+β
t,x (QT ) ∩ C0(Q̄T ) for someβ ∈ (0,1).

Theorem 3.2.Suppose that conditions(0.3), (0.4), (0.6), (0.7)(or (0.8)), (2.1),
(2.2) are fulfilled. In addition suppose that some condition which guarantee the
boundedness of|u| is fulfilled. If a(t, x, u, p), f (t, x, u, p) ∈ Cα(D1), α ∈ (0,1)
andu0(x) is Lipschitz continuous function such thatu0(±l) = 0 then for anyT > 0
problem(0.1), (0.2)has at least one solutionu(t, x) ∈ C1+β/2,2+β

t,x (QT )∩C0(Q̄T )

for someβ ∈ (0,1).
Note that (see [1]) the boundedness of|ux | implies Hölder continuity of the

solution with respect tot with Hölder exponent 1/2 and H¨older constant depending
only on sup|ux | and on the maximum of functionsa(t, x, u, p), |f (t, x, u, p)| on
the setDi . The boundedness of|ux | implies also the H¨older continuity ofux (see[1])
with Hölder constant and H¨older exponent depending also on sup|ux | and on the
maximum ofa and|f | onDi . These estimates imply the existence of the required
solution (see for example [20]).

Remark on Uniqueness. If the functionsa(t, x, u, p), f (t, x, u, p) are differ-
entiable with respect tou, then the solution in Theorems 3.1, 3.2 is unique (see
[18]).

Example.In [10] it was shown that the solution of the problem

uxx − ut = (x + 1/2)u3
x in (−1/2,1/2)× (0,+∞),

u(0, x) = u0(x), for |x| < 1/2, u0(−1/2) = 0, u0(1/2) = π/2,

whereu0(x) is smooth compatible with boundary conditions, remains bounded but
it cannot possess a bounded derivative. It means that sup|ux | → +∞ ast goes to
the proper valuet∗ (finite or infinite). Note that the only steady-state solution of
this problem is the function arcsin(x+1/2). Let us examine the following problem

uxx − ut = (x + l)u3
x in (−l, l)× (0,+∞),

u(0, x) = u0(x) for − l < x < l, u0(−l) = 0, u0(l) = U,

whereU is some constant and the functionu0(x) is smooth compatible with bound-
ary conditions. For the functionv(t, x) = u(t, x)− U(x + l)/2l we obtain

vxx − vt = (x + l)(vx + U/2l)3, v(t,−l) = v(t, l) = 0,

v(0, x) = u0(x)− U(x + l)/2l.
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We takeψ(ρ) ≡ 2l(ρ + |U |/2l)3 and obtain
∫ p1

p0

ρ dρ

2l(ρ + |U |/2l)3

= 1

2lp0 + |U | − 1

2lp1 + |U | + |U |
2

[ 1

(2lp1 + |U |)2 − 1

(2lp0 + |U |)2 ],

·
∫ p1

p0

dρ

2l(ρ + |U |/2l)3 = l

(2lp0 + |U |)2 − l

(2lp1 + |U |)2 .

Thus, if there existp1 > p0 > 0 such that
∫ p1

p0

ρ dρ

2l(ρ + |U |/2l)3 = max{sup|v|,osc(v), lK0}

and

(2lp0 + |U |)−2 − (2lp1 + |U |)−2 = 1 or condition (0.8) is fulfilled,

then we have the global gradient estimate independent ofT . The estimate of
|v(t, x)| can be easily obtained from the fact thatu(x, t) attains maximum and
minimum on the parabolic boundary of the domain (i.e.,{t = 0, |x| < 1/2}∪{t ∈
(0,+∞), x = ±1/2}).
Remark. The caseU = π/2, l = 1/2 does not satisfy condition (0.6) for any
initial data. In fact, forU = π/2 andl = 1/2 we have

∫ +∞

0

ρ dρ

2l(ρ + |U |/2l)3 = 1

π

and sup|v| → V0 > 1/π whent → t∗ for somet∗ (see [10]).
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