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Abstract

This paper is concerned with the global solvability of the first initial boundary
value problem for the quasilinear parabolic equations with two independent vari-
ables:a(t, x, u, u)uy— u; = f(t,x,u, uy). We investigate the case when the
growth of LLEx4Pl \with respect top is faster tharp? when|p| — co. Condi-

a(t,x,u,p)

tions which guarantee the global classical solvability of the problem are formulated.

0. Introduction

In the present paper we investigate the global solvability of the following prob-
lem

a(t,x,u, ux)uyx —u; = f(t, x,u,uy) in Qr = (—=1,1) x (0, T), (0.2)
u(0, x) = ug(x) for |x| <1, u(t,+xl) =0, (0.2)

where for(t,x) € Or, lul < M (M > 0 is some constant) and for apythe
functionsa(z, x, u, p), f(t, x,u, p) are Hlder continuous and

a(t,x,u, p) > 0, (0.3)
|f(t, x,u, p)| < a(t,x,u, p)y(p). (0.4)

In addition we suppose thatp(x) is a Lipschitz continuous function and
uo(£l) = 0.S.N. KruzHkov in [1] shows that if theC function v (p) is such
thaty (p) > 0 forp > O and

+o00
[ pdp_ 00 (Or ¥(p) = Constl+ p?)), (0.5
1 Yo
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then under the above mentioned assumptions,ghandug there exists a global
(i.e.,foranyT > 0) solution of problem (0.1), (0.2) from the clags™*/***# ()
NCO%(Qr) forsomes € (0, 1). Itis well known that assumption (0.5) (or Bernstein-
Nagumo-Tonelli condition (see [2]-[4]) on no more than quadratic growth of the
function ‘58;‘—;‘;’;‘ with respect top when|p| — +o0) is generally speaking
necessary for the global solvability of problem (0.1), (0.2). Examples show that in
the case of violation of condition (0.5) the gradient of the bounded solution may
blow up on the boundary of the domain (see [5]-[11]) as well as in the interior of
the domain (see [12]-[14]); i.e., there exist$ auch thatu, (¢, xg)| — +oo when

t — t* for somexg € [, 1].

The present paper is devoted to the generalization of condition (0.5). In the first
two sections we obtaia priori estimates of the gradient of the solution. Note that
when obtaining these estimates we do not need any assumption on the smoothness
of the functionsz, f. We use the ldlder continuity of these functions only in the
third section where we prove the existence theorem.

The first section deals with the boundary gradient estimate. We obtain here the
following result. Lety(0) = 0, ¥ (p) > 0 for p > 0 and suppose that there exist
po and p1 such that

/pl pdp > n=maxM, osdu), Kol} 0.6)
o V(p)
and
/Pl dp <1, 0.7)
o V(p)

where 0< po < p1 < +00, M = supy, |ul, uo(x)| = Ko( — |x|), Ko > O

is some constant and a9 = supu — inf u. Then the gradient of the solution is
bounded on the boundary of the domain for &y- 0. If condition (0.7) is not
fulfilled then in order to obtain the same result we should impose an additional
condition onug(x):

luo(x)| < hi(x), i =12, (0.8

where the functiong; (x) are defined in Section 1. Note that the fulfiiment of
condition (0.5) implies the fulfilment of conditions (0.6), (0.7). In fact, let us take
po = 1/l and selecp; such that

/Pl pdp
Po ¥ (p) —H

(that is possible due to the divergence of the integrat-on). We have

P odp <1 "Lpdp

o V() T oty V(p)  po

Let us give an example (see also the example in Section 3).
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Example.Consider the following problem

ey —u; = f(t,x, 0 in (=1,1) x (0, T), (0.9)
u(0,x) = uo(x) in (=I1,1) and u(t,£l) =0 for ¢t € [0, T], (0.10)
whereT is an arbitrary positiveio(x) is Lipschitz continuous functiomg(+/) = 0

andf (¢, x, u) is boundedin—I/, 1] x [0, T] x [-M, M]. Denote byfo the sug 1.
Let us write conditions (0.6), (0.7):

1 1
po P
1 1
== 5 = 2f.
Po P1
Selectpg and p; so that
1 1
— — — = max{M, osdu), Kol} fo. (0.11)
po p1
In the second condition we also take “=", and using (0.11) obtain
1 1 2

(0.12)

—+—= :
po  p1 maxM,osdu), Kol}
Obviously system (0.11), (0.12) is solvable wih > pg > O if

21 > (max{M, osau), Kol})? fo.

This inequality is equivalent to
2 > K3lfo, (0.13)

because for the solution of the problem (0.9), (0.10) we Hdve sup|ug| < Kol

and (see Remark at the end of Section 1) in order to obtain the boundary gradient
estimate it is sufficient to take = max{M, Ko!}. The fact thap = osqu) is used

in the proof of the global gradient estimate. Thus if condition (0.13) is fulfilled we
have the boundary gradient estimate independefit. dote that we can always
selectps > po > 0 so that condition (0.11) is fulfilled. If it is impossible to
satisfy at the same time condition (0.12), then in order to estimate the gradient on
the boundary we should impose condition (0.8). If in (0.9) the funcifodoes

not depend om, is differentiable with respect te and f, = 0, then (having the
boundary gradient estimates) we can easily obtain the global gradient estimate by
differentiating the equation and applying the maximum principle to the function
w(t, x) = u,(t, x). In the general case, in order to obtain global gradient estimates
we also need the fulfilment of conditions (0.4), (0.5). Otherwise we can have interior
gradient blow-up (see [12]).

In the second section we show that fulfilment of conditions (0.4), (0.6), (0.7) or
(0.4), (0.6), (0.8) together with the following condition on the modulus of continu-
ity of ug(x): luo(x) —uo(y)| £ h1(Jx — y| —1), implies the globah priori estimate
of the gradient. If we want to avoid this condition eg(x) we need additional as-
sumptions on the functiofi(z, x, u, p). Namely, the functiory can be represented
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in the form f(z, x, u, p) = f1(t, x,u, p) + fo(t, x, u, p) where the first ternyy
satisfies conditions (0.4), (0.5), the secqgfadatisfies conditions which guarantee
the boundary gradient estimates and

fat, x,u, p) — fat,y,v, p) 20, falt,y,u, —p) — fat,x,v,—p) =2 0

(0.19
whenx = y,u = v, p = 0. The functionf, satisfies conditions (0.14) if, for
example,f> = fa(t, p) or fo = g(t, x)h1(t, p), whereg is nondecreasing with
respect tac and phi(t, p) = 0, or fo = g(t, u)ho(t, p), wherehy(t, p) = 0 for
any p andg is nondecreasing with respectiioAs was mentioned above, we do
not need any assumption on the smoothness of the coefficients in order to obtain
the global gradient estimate. Obviously in (0,9)3 satisfies conditions (0.14) if
f is independent af and nondecreasing with respectito

In the last section based on thepriori estimates of Sections 1, 2 we prove the
existence theorems.

1. Boundary Gradient Estimate

Consider problem (0.1), (0.2). Assume that the functiets x, u, p) and
f(t,x,u, p) are defined on the sed; x [-M, M] x R and are bounded for
(t,x) € Qr, lul| £ M and for anyp. Suppose that conditions (0.3), (0.4),(0.6) are
fulfilled with ¥ (p) € C1([0, +00)), ¥ (p) > 0for p > 0 andy (0) > 0. Introduce
the functionszy(x) andha(x) by the following

hY + ¥ (Jhy]) =0, hi(=D) =0, hi(=l+1) =pu,
hy + ¥ (lho)) =0, ha(l — 1) = p, hao(l) =0,

whereu = max{M, osdu), Kol} and
luo(x)| = Kol — |x). (L.1)

The constantgy will be selected below. Represent the solution of the first equation

in parametric form (using the substitutigiiz1) = A7, Z—Z = quql):

q1 ,Od,O /41 d,O
h = h = —_—, = == _l’ 12
1= hi(q) /q v x(q) S (12

where the parametervaries in the intervalgo, g1] andqo, g1 are chosen so as to
haveg1 > go > 0 and
a pdp

h = — =L,
1(qo) o V) iz

which is possible due to (0.6). We put
a dp
o V)

0 =
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Define D1 and Do:
Dy={(t,x):0<t=T,x e (L, ~l+1)N(=LD}
Do={(t,x):0<t<T,xe(l—1,0)N(=11D]}.

Lemma 1.1.Letu(z, x) be a classical solutiofu(z, x) € Cif(QT) NcQ0r)) of
problem(0.1), (0.2); assume that condition®.3), (0.4), (0.6), (1.1are fulfilled.
If o S 1or |lug(x)| £ hi(x), then
lu(t, x)| < hi(x) in D;, i=12.

Proof. Denote byl"; the parabolic boundary db;; i.e., if g < I then

M1={t=0,xe[-l,—l+1}Uf{t [0, T],x =—I}U{r [0, T],

X = _l + 7:0}7
Ip={t=0,xe[l—1,}U{te[0,Tl,x=1—1}U{re[0,T],x =1}

and iftg > [ then
M=To={=0xe[-LI}U{re[0,T],x=—-1}U{te[0,T],x=1}.

Let us show thatu(z, x)| < h;(x) onTy,i = 1, 2. Due to (1.1), ifrg < [ we
have

luo(—1 4+ 10)| < Kol < h1(—l+10), |uo(l — 70)| = Kol < h2(l — 10).

Taking into account thai] < 0 andh’ < 0, we conclude thatio(x)| = h;(x),
i =12 If g > [, then|ug(x)| £ h;(x), i = 1,2 from the conditions of the
lemma.

Further, forr € [0, T] we have

u(t, —1) = hy(—1) = u(t, 1) = ha(l) = O,
lu(t, =l +10)| =M < ha(—l +10), |u(t,l —10)| =M < ho(l — 10),

andiftg > [,thenforr € [0, TTwe haveu(t,1) =0 < h1(D),u(t, —1) = 0 < ha(l).
Let
Lou = A(#, x)(uxy + ¥ (luxl)) — uy,
whereA(t, x) = a(t, x,u, uy). Iltis clear thatLou = 0, Loh; = 0,i = 1,2 and
for v; = u — h; the following is valid:

Lou — Loh; = Lovi = A(t, x) (ixx + Bivix) —viy 20 in Dj,i =1,2,

wherep; are bounded iD; \ T'; due to the fact that is a classical solution angl is
C* function. By means of the standard arguments based on the maximum principle,
we can show that the functioancannot achieve a positive maximum iy \ T;.
Henceu — h; £ 0in D;.

Replacing: by —u we obtain the inequality +4; = 0 (note thato(—u) = 0).
Lemma 1.1 is proved.

Remark. One can easily see that in order to prove Lemma 1.1 itis sufficient to take
uw = max{M, Kol}, the fact thafu = osdu) will be used in the proof of Lemma
2.1 and of Lemma 2.2.
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2. Global gradient estimate

In this section we obtain the global gradient estimate without assumptions on
the smoothness of the coefficients base® df. Kruzukov's idea of introducing
a new spatial variable [1] (see also [15]-[19]). We consider two cases:

1. The assumptions on the functigi, x, u, p) are the same as in Section 1, but
the functionug(x) satisfies a certain additional condition (Lemma 2.1).

2. The functiornug(x) is the same as in Section 1 anig, x, u, p) can be repre-
sented in the form

f@, x,u, p)= f1(t,x,u, p) + fa(t, x, u, p), (2.1

where the first termy; satisfies conditions (0.4), (0.5), the secofsdsatisfies
conditions (0.4), (0.6) and

f2(t7x7u’ P) - fZ(tv Y, v, P) 2 0, f2(t’ y,u, _P) - fZ(t’ X, v, _P) 2 0
2.2)

whenx =2y, u=2v, p=0(Lemma?2.2).

Lemma 2.1.Assume that the conditions of Lemma 1.1 are fulfilled and the function
uo(x) (uo(xl) = 0) satisfies the inequality

luo(x) —uo(y)| = ha(lx — y| = 1) for |x — y| = 0. (2.3

Then for any classical solution of problgi@.1), (0.2)we have

lux (t, x)| = Co,

where the constanty depends only oy, / and M.

(The functionk, and the constant are defined in Section 1.)

Proof. Consider equation (0.1) at poinds x), (¢, y) € Or wherex # y :
a(t,x,u(t,x), ux(t, X))y, —u(t,x) = f(t, x,ut, x), u @, x)), (2.4)
a(t,y,u(t, y), uy(t, yuyy —u(t,y) = f(t, y,ut, y),uy,y).  (2.5)

Subtracting (2.5) from (2.4) for the functianz, x, y) = u(t, x) — u(z, y), we

obtain

a(t,x,u(t, x), v)vxx +a(t, y,u(t,y), —vy)vyy, — vy
= f(t, x,u(t,x),vy) — f(t, y,u(t,y), —vy).
Taking into account (0.4), we have
Lv = A(t, X)[vex + ¥ (v D]+ A, y)vyy + ¥ (JvyD] = v 2 0,

whereA(t, z) = a(t, z, u(t, z), u;(t, z7)). Let us now define the functiol(z) by
the following:

B0+ v (@)]) =0, h(0) =0, h(tg) =u =maxM,osdu), Kol}.
(2.6)
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ObviouslyLh(x — y) = 0. Compare the functionsand# in the prism
P={(tx,y):0<t<T,|x|<l|yl<l,0<x—y<r10}
Forw = v(t, x, y) — h(x — y) we have
0= Lv—Lh=Lw = A(t, ) (wax + frwx)) + A, y) (wyy + fowy)) — wy,

where|8;| < +o00,i = 1, 2due to the smoothnesswfand to the fact that(z, x) is

the classical solution. By means of the standard arguments based on the maximum
principle, we can show that the functiancannot achieve a positive maximum in

P\ " wherer is a parabolic boundary @?. Consider:

(1) Forx = y we havew = 0.

(2) Forx —y = o we haveu(z, x) —u(t, y) — u S osdu) — u < 0.

(3) Fory=—I,x € (-1,—-1l+109), t € (0, T] we havew = u(t, x) — h(x +1).
Let us show thati(¢, x) < h(x + ). To this end it is sufficient to show that
h1(x) < h(x +1) (recall that from Lemma 1.1 we haw€r, x) < h1(x)). The
latter inequality follows directly from the fact that

1)+ ¥ (hy(x)) =0, hi(=1) =0, hi(—I+ 1) = K,
h'(x) + ¥ (R ()) =0, h(=l)=0, h(—l+10)=p
whereh(x) = h(x + 1).
(4) Forx =1,y e (l—10,1),t € (O, T we havew = —u(t, y) —h( —y). Letus
show thatu(z, y) = —h(l — y). Itis sufficient to show thak(l — y) = ha(y)

(from Lemma 1.1 we have(t, y) = —h2(y)). The latter inequality follows
from

Ry(y) + ¥ (k50 =0, ha(l —10) = 1, ha(l) =0,
')+ ¢ () =0, hil—t)=p, hi)=0,

whereh(y) = h(l — y).
(5) Finally, from the conditions of Lemma 2.1, we have fet 0

uo(x) —uo(y) —hi(x —y—10) = 0.
Thus we have proved that

u(t,x) —u(t,y) <h(x —y) inP.

By analogy, taking the functiof = u(z, y) — u(z, x) in the place ofv, we
obtain )
u(t,x) —u(t,y) 2 —h(x —y) inP.

In view of the symmetry of the variablasandy, we examine the case> x
in the same way. As a result we have that for

0<t<T, |x|<l, |yl<l, O<|x—y| <710
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the inequality
|u(t, x) —u, y)| _ h(lx —y]) — h(0)
Ix =yl - lx =yl
holds, implying thatu, (¢, x)| < A’(0). Lemma 2.1 is proved.

Lemma 2.2.Suppose that the conditions of Lemma 1.1 and condit@®13, (2.2)
hold. Then for any classical solution of probléthl), (0.2)we have

lux(t, x)| = Ca,
where the constar@; depends only o, I, M, Ko = supw.

Proof. Similarly to the proof of Lemma 2.1 far(z, x, y) = u(¢, x) — u(t, y) we
obtain

Lv = A(t, x)(vxx + Yo(lvx])) + A, y) (vyy + Yo(lvy ) — v
2 fz(tvxv M(t,x), ux(tvx)) - f2(t, y’ I/l(t, Y), uy(t’ )’)),

wherey(p) = 1is C1([0, c0)) function and

“+00 P d,O
= . 2.7
/1 Vo) T @0

Define the functiorko(z) by the following

ho(7) + Yo(lho(t)]) =0, ho(0) =0, ho(r1) = u = max{M, osdu), Kol}.
In order to select; represent the solution of (2.7) in parametrical form

“ pdp @) — nodp
. v U7 ety

where the parameter varies in the intervalgo, g1] andqo, g1 are chosen so that
g1 > qo = max{ Ko, h}(—1)} (the functionz; was defined in Section 2) and

ho(g) =

a pdp
h = =
0(q0) Vo) 2
which is possible due to (2.7). Defing by
a dp
71 = .
q0 ‘/fo(,O)

Consider the function(z, x, y) andhg(x — y) in the domain
P={(t,x,y):0<t<T,|x|<l,|lyl<l,0<x—y <1}
Obviously forw = v(z, x, y) — h(x — y) we have the inequality

A(t, x)(wex + Prwy) + At y) (wyy + fowy) — w;
2 fZ(f,xs M([,X), ”x(t» .X)) - fz(tv y’ M(t’ y)v uy(tv y))
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and forw = we™' the inequality

A(t, x)(Wxx + Brx) + A1, y) (Wyy + Bawy) — W — wy
z e_t(fZ(t, -x’ M(t, x)5 ux(t’ -x)) - fz(t’ y’ M(t, )7), uy(t’ )’))) (28)

Suppose thai achieves its positive maximum at the poiite P \ T' (T is the
parabolic boundary of), then at this point we havé > 0, W, = wy, = 0, i.e.,
u(t,x) > u(t,y), uy =h" > 0,u, =h' > 0. Thus, due to (2.2) the right side of
(2.8) atN is positive. This contradicts the fact thatattains a positive maximum
at N. Consider the parabolic boundary Bf

(1) Forx = y we havew = 0.

(2) Forx —y = t1 we haveu(z, x) —u(t, y) — . < 0squ) — u < 0 hencan < 0.

(3) Forr = 0 we haveig(x) — ug(y) — ho(x — y) < 0 becauseg(x) — ug(y) <
Ko(x —y) andho(x — y) = ho(x —y) —ho(0) = hy(t*)(x —y) 2 Ko(x —y).

It remains to consider the following two parts of

4 y=-1, xe(—l,-l+11), t€(0,T]and
) x=1, yel—1,1), te(OT].

On part (4) we haved) = e~ (u(t, x) — ho(x +1)) and on (50 = e~ (—u(t, y) —

ho(l — y)). In order to prove that on (4) and (&) is non-positive it is sufficient to
show that

hi(x) < ho(x +1) forx € (=1, —1 + 11),
ha(y) < ho(l —y) fory e (I —11,0),

and then to apply Lemma 1.1. These inequalities follow immediately from the fact
thathy; = hj(—I). Note thatry < 1o becauséio(x + 1) = hi(x) for x = —,

hiy(x +1) 2 kY (=1) = suph’(x) andho(t1) = h1(—I + 10).
Thus we have proved that

u(t,x) —u(t,y) < ho(x —y) in P.
By analogy, taking the functioh = u(z, y) —u(z, x) in the place ob we obtain
u(t,x) —u(t,y) = —ho(x —y) in P

(here we use the second inequality (2.2)).
Similarly to the proof of Lemma 2.1 we conclude that

lux (1, )| = ho(0) = p1.

Lemma 2.2 is proved.
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3. Existence and Uniqueness Theorem

Let us now formulate the existence and uniqueness theorem for problem (0.1),
(0.2). Denote byD, the setQr x [-M, M] x [-C;, C;], i =0, 1.

Theorem 3.1.Suppose that conditior{§.3), (0.4), (0.6), (0.7jor (0.8)), (2.3)are
fulfilled. In addition suppose that some condition which guarantee the boundedness
of |u| is fulfilled (se€q18], [20]). Ifa(z, x, u, p), f(t, x, u, p) € C*(Dg),a € (0, 1)

then for anyT > 0 problem(0.1),(0.2)has at least one solution(z, x) from
cHPI2258 (1) €O(Qr) for somes e (O, 1).

t,x

Theorem 3.2.Suppose that condition®.3), (0.4), (0.6), (0.7)or (0.8)), (2.1),
(2.2) are fulfilled. In addition suppose that some condition which guarantee the
boundedness ¢fi| is fulfilled. Ifa(z, x, u, p), f(t, x,u, p) € C*(D1),a € (0,1)
anduo(x) is Lipschitz continuous function such tha(+-/) = Othen foranyl" > 0
problem(0.1), (0.2)has at least one solutian(, x) € C;-t7/%%# (01N CcO(Qr)

for someg € (0, 1).

Note that (see [1]) the boundedness|wf| implies Holder continuity of the
solution with respect towith Holder exponent 1/2 anddfder constant depending
only on supu, | and on the maximum of functionrs?, x, u, p), | f (¢, x, u, p)| on
the setD;. The boundedness pf, | implies also the ldlder continuity of:, (see[1])
with Holder constant and dlder exponent depending also on sup and on the
maximum ofa and| f| on D;. These estimates imply the existence of the required
solution (see for example [20]).

Remark on Uniqueness. If the functionsa(s, x, u, p), f(t, x, u, p) are differ-
entiable with respect ta, then the solution in Theorems 3.1, 3.2 is unique (see

[18)).
Example.In [10] it was shown that the solution of the problem
ey — ity = (x +1/2u in (=1/2,1/2) x (0, 400),
u(0, x) = uo(x), for|x| <1/2, uo(=1/2) =0, uo(1/2) =n/2,
whereug(x) is smooth compatible with boundary conditions, remains bounded but
it cannot possess a bounded derivative. It means thatgup> +oo ast goes to

the proper value* (finite or infinite). Note that the only steady-state solution of
this problem is the function arcgin+ 1/2). Let us examine the following problem

oy — iy = (x +Du in (=1, 1) x (0, 400),
u(0, x) =uox) for —1 <x <1, ug(=1)=0, ug(l)="U,

whereU is some constant and the functiog(x) is smooth compatible with bound-
ary conditions. For the function(z, x) = u(¢, x) — U (x +1)/2] we obtain

Vex — U = (x + Dy + U/2D3, v(t, =) = v(t,1) =0,
v(0,x) =upglx) —Ux +1)/2.
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We takey (p) = 2/(p + |U|/21)3 and obtain

/Pl pdp

v 2p+U|/2)3

_ 1 1 +|U| 1 1 |
2lpo+|U|  2lp1+ |U| 2 (2p1+|UD2  @po+|UD2”

/1’1 dp _ l !
o 2+ UI/2D)3  po+|UND2  (2pr+ [UN?

Thus, if there exispy > po > 0 such that

/pl pdp max{sup|v|, 0sav), [ Ko}
_— = V|, V),
o 2p+U1/2)° °

and
(2po + upn=—?— 2p1+ |U)"? =1 or condition (0.8) is fulfilled

then we have the global gradient estimate independerft.ofhe estimate of
lu(z, x)| can be easily obtained from the fact thai, r) attains maximum and
minimum on the parabolic boundary of the domain ({e= 0, |x| < 1/2}U{r €
0, 400), x ==£1/2}).

Remark. The casd/ = n/2, | = 1/2 does not satisfy condition (0.6) for any
initial data. In fact, fortU = /2 andl = 1/2 we have

/-+oo pdp B 1
o 2Ap+IUl/2)3  n

and supgv| — Vp > 1/7 whenr — ¢* for somer* (see [10]).
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