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Abstract. In the present paper we study the Cauchy problem as well as the first initial boundary value problem for a class of
quasilinear ultraparabolic equations. We show that the presence of the low order term satisfying a certain assumption provides
a global solvability of the above problems. The optimality of this assumption is demonstrated.
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1. Introduction and formulation of the results

The present work deals with the solvability of the following ultraparabolic equation

ut + g(t,u)ux + f (t,u) = Δyu in ST = (0,T ) × R × Rn, (1.1)

coupled with initial condition

u(0,x, y) = u0(x, y), (1.2)

here Δy =
∑n

1 ∂2/∂y2
i .

Equation (1.1) describes nonstationary transport (of matter, impulse, temperature) processes where in
some direction the effect of the diffusion is negligible as compared to the convection (see [12,15,17]).
Such equations appear in age dependent population diffusion (see [5]) and in mathematical finance (see
[3,9,11]) as well. This class of equations has received considerable attention in the recent decades from
different authors (see, e.g., [1,2,4,6,10,13,14,21–23] and the references therein).

The local existence of a smooth solution (at least Lipschitz continuous with respect to x, y and Hölder
continuous with respect to t) to problem (1.1), (1.2) was proved in [14] under the assumptions that g,
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f and u0 are globally Lipschitz continuous functions, the global classical solvability was obtained if
additionally u0 is nonincreasing with respect to x and g(u)−g(v) � c0(u−v) for some positive constant
c0. Our goal is to prove the global solvability of problem (1.1), (1.2) for locally Hölder continuous
functions g and f under the following structure restriction:

K
∣∣g(t,u2) − g(t,u1)

∣∣ � f (t,u2) − f (t,u1) for u1 < u2, t ∈ [0,T ), (1.3)

where T > 0 is an arbitrary positive constant and

K = sup
R×Rn

|u0(x, y) − u0(x′, y)|
|x− x′| . (1.4)

Actually we show that the presence of low order term f connected with g as in (1.3) provides global
solvability and, as it will be shown below (Example 4), condition (1.3) is in some sense optimal.

Definition 1. We say that function u(t,x, y) is a generalized solution of problem (1.1), (1.2) if:

(i) u ∈ L∞(ST )∩L2(ST )∩C
1/2
t (ST ), ux ∈ L∞(ST ), uyi ∈ L∞(ST )∩L2(ST ), ut,uyiyj ∈ L2

loc(ST ),
i, j = 1, . . . ,n.

(ii) u satisfies Eq. (1.1) almost everywhere in ST , initial condition is admitted in the classical sense.

Here C
1/2
t is the set of Hölder continuous with respect to t functions with Hölder exponent 1/2.

Theorem 1. Suppose that u0 is a Lipschitz continuous function vanishing at infinity (when |x|+ |y| →
∞) so that ‖u0‖L2(Rn+1) < ∞. Assume that g, f are locally Hölder continuous functions such that
g(t, 0) = f (t, 0) = 0. If condition (1.3) is fulfilled, then for arbitrary T > 0 there exists a generalized
solution of problem (1.1), (1.2) and for this solution the following estimates take place:

‖u‖L∞(ST ) � M = sup
R×Rn

∣∣u0(x, y)
∣∣,

‖ux‖L∞(ST ) � K = sup
R×Rn

|u0(x, y) − u0(x′, y)|
|x− x′| ,

‖uyi‖L∞(ST ) � Ki = sup
R×Rn

|u0(x, y) − u0(x, y′)|
|yi − y′i|

, i = 1, . . . ,n.

If, in addition, function g(t,u) is differentiable with respect to u, then this solution is unique.

Here y′ = (y1, . . . , yi−1, y′i, yi+1, . . . , yn) (for i = 1 and i = n we put y′ = (y′1, y2, . . . , yn) and
y′ = (y1, . . . , yn−1, y′n), respectively).

Let us give three examples when condition (1.3) is fulfilled for an arbitrary T > 0.

Example 1. Consider the equation

ut + g(t,u)ux + λg(t,u) = Δyu,

where g(t, 0) = 0. Condition (1.3) is fulfilled for arbitrary T ∈ (0,+∞) if locally Hölder continuous
function g is nondecreasing with respect to u and the constant λ � K.
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Example 2. For the equation

ut + au2/3ux + λu1/3 = Δyu,

where a,λ ∈ R, condition (1.3) takes the form K|a||u1/3
2 + u

1/3
1 | � λ. Taking into account that here

m ≡ max |u| = max |u0| we conclude that (1.3) is fulfilled for an arbitrary T ∈ (0,+∞) if

λ � 2m1/3|a|K.

Example 3. For the equation

ut + au2 ux + λu = Δyu,

condition (1.3) is fulfilled for arbitrary T > 0 if

λ � 2m|a|K, m = max |u0|.

In the next example we will demonstrate the optimality of condition (1.3).

Example 4. Consider equation

ut + auux + λu = Δyu (1.5)

and suppose that initial data does not depend on y

u(0,x, y) = u0(x). (1.6)

Condition (1.3) takes the form λ � |a|K, i.e. if this inequality holds then there exists a solution of
problem (1.5), (1.6) for T ∈ (0,+∞). The solution of the equation

ut + auux + λu = 0 (1.7)

coupled with condition (1.6) is at the same time solution of (1.5), (1.6).
It is well known that, even for smooth initial data, the solution of problem (1.7), (1.6) can develop

shocks in finite time. Global Lipschitz continuous solution of this problem exists only if characteristics
do not intersect. The family of characteristics x = x(t) is defined by

x(t) = x(0) +
a

λ
φ
(
x(0)

)(
1 − e−λt

)
.

Suppose that the characteristics x1(t) and x2(t) which start from the points x1(0) and x2(0), respectively,
intersect at time t∗ ∈ (0,+∞), i.e. x1(t∗) = x2(t∗) or

x1(0) +
a

λ
φ
(
x1(0)

)(
1 − e−λt∗) = x2(0) +

a

λ
φ
(
x2(0)

)(
1 − e−λt∗)
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or

|φ(x1(0)) − φ(x2(0))|
|x1(0) − x2(0)| =

λ

|a|
eλt

∗

eλt∗ − 1
.

The last is possible only if λ < |a|K, hence condition λ � |a|K is optimal.

Let us mention here the example in [2] where it was shown that a smooth solution of equation ut −
uux = uyy starting from smooth and compactly supported initial data depending on both x and y
becomes discontinuous after a finite time.

Obviously if condition (1.3) is fulfilled only for some value of T (say T ∗), then we have the local
existence (i.e., we guarantee the existence on the interval [0,T ∗)). What happens if condition (1.3) is
not fulfilled? In this case we also guarantee the local solvability of the problem under an additional
assumptions.

Theorem 2. Suppose that u0 is a Lipschitz continuous function vanishing at infinity (when |x|+ |y| →
∞) so that ‖u0‖L2(Rn+1) < ∞. Assume that functions g(t,u) and f (t,u) are locally Hölder continuous
with respect to t and locally Lipschitz continuous with respect to u such that g(t, 0) = f (t, 0) = 0,
uf (t,u) � 0. Then for some T ∗ > 0 there exists a generalized solution of problem (1.1), (1.2). If g
and f are globally Lipschitz continuous functions with respect to u, then condition uf (t,u) � 0 is
unnecessary.

This solution is unique if in addition function g(t,u) is differentiable with respect to u.

Note that the estimate of T ∗ from the below can be find in the explicit form (see Examples 5, 6 and
the proof of Theorem 2 in Section 3).

Let us turn now to the initial boundary value problem.

ut + g(t,u)ux + f (t,u) = Δyu in Sl
T = (0,T ) ×Ql, (1.8)

where Ql = (−l, l) × (−l1, l1) × · · · × (−ln, ln), coupled with initial condition

u(0,x, y) = u0(x, y) in Ql, u0|x=±l = u0|yi=±li = 0 (1.9)

and boundary conditions

u|x=±l = u|yi=±li = 0, i = 1, . . . ,n. (1.10)

Note that due to the specificity of the equation (namely g(t, 0) = f (t, 0) = 0) even though only
the first-order derivative with respect to x is present in (1.8) we have two boundary conditions in x
direction. If g > 0 (g < 0) than we should not impose condition on x = l (x = −l). See also comments
in Section 3.

Definition 2. We say that function u(t,x, y) is a generalized solution of problem (1.8)–(1.10) if:

(i) u ∈ C
1/2
t (Sl

T ), ux,uyi ∈ L∞(Sl
T ), ut,uyiyj ∈ L2(Sl

T ), i, j = 1, . . . ,n.
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(ii) u satisfies Eq. (1.8) almost everywhere in Sl
T , initial and boundary conditions are admitted in the

classical sense;

For simplicity we use the same symbols (M , K, Ki) as in Theorem 1.

Theorem 3. Suppose that u0 is a Lipschitz continuous function and g, f are locally Hölder continu-
ous functions such that g(t, 0) = f (t, 0) = 0. If condition (1.3) is fulfilled, then there exists a unique
generalized solution of problem (1.8)–(1.10) and for this solution the following estimates take place:

‖u‖L∞(Sl
T ) � M = sup

Ql

∣∣u0(x, y)
∣∣,

‖ux‖L∞(Sl
T ) � K = sup

Ql

|u0(x, y) − u0(x′, y)|
|x− x′| ,

‖uyi‖L∞(Sl
T ) � Ki = sup

Ql

|u0(x, y) − u0(x, y′)|
|yi − y′i|

, i = 1, . . . ,n.

If, in addition, function g(t,u) is differentiable with respect to u, then this solution is unique.

Similarly to the Cauchy problem the following theorem takes place.

Theorem 4. Suppose that u0 is a Lipschitz continuous function and functions g(t,u) and f (t,u) are
locally Hölder continuous with respect to t and locally Lipschitz continuous with respect to u such
that g(t, 0) = f (t, 0) = 0, uf (t,u) � 0. Then for some T ∗ > 0 there exists a generalized solution
of problem (1.8)–(1.10). If g and f are globally Lipschitz continuous functions with respect to u, then
condition uf (t,u) � 0 is unnecessary.

This solution is unique if in addition function g(t,u) is differentiable with respect to u.

Let us mention that Examples 1–4 can be trivially extended to the initial – boundary value problem.
In the next section we obtain the a priori estimate for the regularized problem and in the last section

we prove Theorems 1–4.

2. A priori estimates for the auxiliary problem

Approximate problem (1.8)–(1.10) by the following one

uεt + g
(
t,uε

)
uεx + f

(
t,uε

)
= Δyu

ε + εuεxx in Sl
T = (0,T ) ×Ql, (2.1)

uε(0,x, y) = u0(x, y), (2.2)

uε(t,x, y)|x=±l = uε(t,x, y)|yi=±li = 0, i = 1, . . . ,n. (2.3)

The goal of the present section is to obtain a priori estimate of the solution of problem (2.1)–(2.3)
independent of ε, l and li. The key step is the estimate of the derivative uεx. We apply the approach used
in [18,20] and which is a development of the Kruzhkov’s idea of introducing of a new spatial variable [7].

To simplify the notation, below we will omit the superscript ε.
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We say that u is a classical solution of (2.1)–(2.3) if u ∈ C1;2
t;x,y(Sl

T ) ∩ C(S̄l
T ). Here C1;2

t;x,y(Sl
T ) is the

set of functions having the first derivative with respect to t and the second derivatives with respect to
x, y continuous in Sl

T .
Everywhere below by Γ we denote the parabolic boundary of Sl

T , i.e.

Γ ≡ ∂Sl
T \

{
t = T , |x| < l, |yi| < li, i = 1, . . . ,n

}

and by L0 we denote the operator

L0 ≡ ∂

∂t
− ε

∂2

∂x2
− Δy.

To simplify the calculations we substitute condition (1.3) by the following one

K
∣∣g(t,u2) − g(t,u1)

∣∣ < f (t,u2) − f (t,u1) for u1 < u2, t ∈ [0,T ) (2.4)

and then explain how we extend the results to the case of nonstrict inequality (1.3).

Lemma 2.1. Let u(t,x, y) be a classical solution of problem (2.1)–(2.3). Assume that condition (2.4) is
fulfilled, then

∣∣u(t,x, y)
∣∣ � M.

Proof. From condition (2.4) and the assumption f (t, 0) = g(t, 0) = 0 it follows that u f (t,u) > 0 for
u �= 0 which implies that u cannot attain neither its positive maximum nor its negative minimum in
S̄l
T \ Γ . Taking into account boundary conditions (2.3) we obtain the needed estimate. �

Lemma 2.2. Let u(t,x, y) be a classical solution of problem (2.1)–(2.3) and assume that condition (2.4)
is fulfilled. Then

∣∣u(t,x, y)
∣∣ � K(l + x) and

∣∣u(t,x, y)
∣∣ � K(l − x) in S̄l

T .

Proof. For the function u(t,x, y) −K(l + x) we have

L0
(
u−K(l + x)

)
= −g(t,u)ux − f (t,u).

If u−K(l + x) attains its positive maximum at the point N ∈ S̄l
T \ Γ then at this point

u > 0 and ux = K,

hence, due to (2.4),

L0
(
u−K(l + x)

)∣∣
N

= −g(t,u)K − f (t,u)|N < 0.

This contradicts the assumption that u−K(l + x) attains positive maximum at N . It is clear that

u|Γ � 0
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and hence

u(t,x, y) −K(l + x) � 0 in S̄l
T .

Now consider the function u(t,x, y) +K(l + x). If u+K(l + x) attains its negative minimum at the
point N1 ∈ S̄l

T \ Γ then at this point we have

u < 0, ux = −K,

and hence, due to (2.4),

L0
(
u+K(l + x)

)∣∣
N1

= g(t,u)K − f (t,u)|N1 > 0.

This contradicts the assumption that u+K(l+ x) attains negative minimum at N1. Taking into account
that

u|Γ � 0

we conclude that

u(t,x, y) +K(l + x) � 0 in S̄l
T .

The first inequality is proved, the second one can be proved similarly taking into account that (2.4)
implies that g(t,u)K − f (t,u) < 0 for u > 0 and −g(t,u)K − f (t,u) < 0 for u < 0. �

Lemma 2.3. Let u(t,x, y) be a classical solution of problem (2.1)–(2.3) and assume that condition (2.4)
is fulfilled, then in S̄l

T the following inequalities hold

∣∣u(t,x, y)
∣∣ � Ki(li + yi) and

∣∣u(t,x, y)
∣∣ � Ki(li − yi), i = 1, . . . ,n.

Proof. Suppose that u−Ki(li + yi) attains its positive maximum at the point N ∈ S̄l
T \ Γ then at this

point u > 0 and ux = 0, hence, taking into account that (2.4) implies the inequality uf (t,u) > 0 for
u �= 0, we conclude that

L0
(
u−Ki(li + yi)

)∣∣
N

= −f (t,u)|N < 0.

This contradicts the assumption that u−Ki(li + yi) attains positive maximum at N . Hence, taking into
account that u|Γ � 0, we obtain

u(t,x, y) � Ki(li + yi) in S̄l
T .

If u +Ki(li + yi) attains its negative minimum at the point Ni ∈ S̄l
T \ Γ then at this point we have

u < 0 and ux = 0, and hence, due to the fact that uf (t,u) > 0 for u �= 0,

L0
(
u+Ki(li + yi)

)∣∣
Ni

= −f (t,u)|Ni > 0.
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This contradicts the assumption that u + Ki(li + yi) attains negative minimum in the interior of the
domain Sl

T . Consequently, taking into account that u|Γ � 0, we conclude that

u(t,x, y) � −Ki(li + yi) in S̄l
T .

Similarly we obtain the estimate |u(t,x, y)| � Ki(li − yi). �

In the next two lemmas we will obtain the global estimate of ux and ∇yu.

Lemma 2.4. Let u(t,x, y) be a classical solution of problem (2.1)–(2.3) and assume that condition (2.4)
is fulfilled. Then

∣∣ux(t,x, y)
∣∣ � K in S̄l

T .

Proof. Consider Eq. (2.1) in two different points (t,x, y) and (t, ξ, y):

ut + g(t,u)ux + f (t,u) = εuxx + Δyu, u = u(t,x, y), (2.5)

ut + g(t,u)uξ + f (t,u) = εuξξ + Δyu, u = u(t, ξ, y). (2.6)

Subtracting Eq. (2.6) from (2.5) for the function

w(t,x, ξ, y) ≡ u(t,x, y) − u(t, ξ, y) −K(x− ξ)

we obtain

wt − εwxx − εwξξ − Δyw =−
(
g
(
t,u(t,x, y)

)
ux(t,x, y) − g

(
t,u(t, ξ, y)

)
uξ(t, ξ, y)

)
−
(
f
(
t,u(t,x, y)

)
− f

(
t,u(t, ξ, y)

))
.

Consider this equation in the domain

P =
{

(t,x, ξ, y): 0 < t < T ,−l < ξ < x < l, |yi| < li, i = 1, . . . ,n
}
.

Denote by ΓP the parabolic boundary of P . Suppose that function w attains its positive maximum at
some point N ∈ P \ ΓP , then at this point we have

w > 0, wx = wξ = 0 i.e. u(t,x, y) > u(t, ξ, y),ux(t,x, y) = uξ(t, ξ, y) = K

and hence

wt − εwxx − εwξξ − Δyw|N
= −K

(
g
(
t,u(t,x, y)

)
− g

(
t,u(t, ξ, y)

))
−
(
f
(
t,u(t,x, y)

)
− f

(
t,u(t, ξ, y)

))∣∣
N
.

Due to (2.4),

wt − εwxx − εwξξ − Δyw|N < 0
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which is impossible. Let us show that w � 0 on ΓP . By definition

ΓP =
2n+4⋃
i=1

Ωi,

where

Ω1 =
{
t = 0,−l � ξ < x � l, |yi| � li, i = 1, . . . ,n

}
,

Ω2 =
{

0 < t � T , ξ = −l,−l � x � l, |yi| � li, i = 1, . . . ,n
}

,

Ω3 =
{

0 < t � T ,−l � ξ � l,x = l, |yi| � li, i = 1, . . . ,n
}

,

Ω4 =
{

0 < t � T , ξ = x,−l � x � l, |yi| � li, i = 1, . . . ,n
}

,

Ω5 =
{

0 < t � T ,−l � ξ < x � l, y1 = l1, |yi| � li, i = 2, . . . ,n
}

,

...

Ωn+4 =
{

0 < t � T ,−l � ξ < x � l, |yi| � li, i = 1, . . . ,n− 1, yn = ln
}

,

Ωn+5 =
{

0 < t � T ,−l � ξ < x � l, y1 = −l1|yi| � li, i = 2, . . . ,n
}

,

...

Ω2n+4 =
{

0 < t � T ,−l � ξ < x � l, |yi| � li, i = 1, . . . ,n− 1, yn = −ln
}
.

In Ω1 we have (see (1.4))

w = u0(x, y) − u0(ξ, y) −K(x− ξ) � 0.

From Lemma 2.2, in Ω2 we have

w = u(t,x, y) −K(x+ l) � 0

and in Ω3 we have

w = −u(t, ξ, y) −K(l − ξ) � 0.

In Ω4 obviously w = 0. Finally, in Ωk+4 for k = 1, . . . , 2n we have

w = −K(x− ξ) � 0.

Thus

w(t,x, ξ, y) � 0 in P . (2.7)

Now subtracting Eq. (2.5) from (2.6) for the function

v(t,x, ξ, y) ≡ u(t, ξ, y) − u(t,x, y) −K(x− ξ)
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we obtain

vt − εvxx − εvξξ − Δyv =−
(
g
(
t,u(t, ξ, y)

)
uξ(t, ξ, y) − g

(
t,u(t,x, y)

)
ux(t,x, y)

)
−
(
f
(
t,u(t, ξ, y)

)
− f

(
t,u(t,x, y)

))
.

Consider this equation in the domain P . Suppose that function v attains its positive maximum at some
point N1 ∈ P \ ΓP , then at this point we have

v > 0, vx = vξ = 0, i.e. u(t, ξ, y) > u(t,x, y),ux(t,x, y) = uξ(t, ξ, y) = −K

and hence

vt − εvxx − εvξξ − Δyv|N
= K

(
g
(
t,u(t, ξ, y)

)
− g

(
t,u(t,x, y)

))
−
(
f
(
t,u(t, ξ, y)

)
− f

(
t,u(t,x, y)

))∣∣
N
.

Thus, from (2.4),

vt − εvxx − εvξξ − Δyw|N < 0,

which is impossible.
Similarly to the previous case we can show that v � 0 on ΓP . Thus

v(t,x, ξ, y) � 0 in P . (2.8)

From (2.7) and (2.8) it follows that for t ∈ [0,T ], −l � ξ � x � l, |yi| � li the inequality

∣∣u(t,x, y) − u(t, ξ, y)
∣∣ � K(x− ξ)

holds. Due to the symmetry of the variables x and ξ we can similarly consider the case ξ > x to obtain

∣∣u(t,x, y) − u(t, ξ, y)
∣∣ � K(ξ − x)

for t ∈ [0,T ], −l � x � ξ � l, |yi| � li. Thus for t ∈ [0,T ], x, ξ ∈ [−l, l] and |yi| � li we have

∣∣u(t,x, y) − u(t, ξ, y)
∣∣ � K|ξ − x|,

which implies the needed estimate. �

Lemma 2.5. Let u(t,x, y) be a classical solution of problem (2.1)–(2.3) and assume that condition (2.4)
is fulfilled, then

∣∣uyi(t,x, y)
∣∣ � Ki, i = 1, . . . ,n, in S̄l

T .
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Proof. We will prove the lemma for i = 1, the proof for i > 1 is similar. Consider Eq. (2.1) in two
different points (t,x, y) and (t,x, y′), where y′ = (η, y2, . . . , yn):

ut + g(t,u)ux + f (t,u) = εuxx + Δyu, u = u(t,x, y), (2.9)

ut + g(t,u)ux + f (t,u) = εuxx + Δy′u, u = u
(
t,x, y′

)
. (2.10)

Subtracting Eq. (2.10) from (2.9) for the function

ω
(
t,x, y, y′

)
≡ u(t,x, y) − u

(
t,x, y′

)
−K1(y1 − η)

we obtain

ωt − εωxx − Δyω − ωηη

= −
(
g
(
t,u(t,x, y)

)
ux(t,x, y) − g

(
t,u

(
t,x, y′

))
ux

(
t,x, y′

))
−
(
f
(
t,u(t,x, y)

)
− f

(
t,u

(
t,x, y′

)))
.

Consider this equation in the domain

P1 =
{(

t,x, y1, y′
)
: 0 < t < T , |x| < l,−l1 < η < y1 < l1, |yi| < li, i = 2, . . . ,n

}
.

Denote by ΓP1 the parabolic boundary of P1. Suppose that function ω attains its positive maximum at
some point N ∈ P1 \ ΓP1 , then at this point we have

ω > 0, ωx = 0, i.e. u(t,x, y) > u
(
t,x, y′

)
,ux(t,x, y) = ux

(
t,x, y′

)

and hence taking into account the previous Lemma we obtain

ωt − εωxx − Δyω − ωηη|N
= −ux(t,x, y)

(
g
(
t,u(t,x, y)

)
− g

(
t,u

(
t,x, y′

)))
−
(
f
(
t,u(t,x, y)

)
− f

(
t,u

(
t,x, y′

)))∣∣
N

� K
∣∣g(t,u(t,x, y)

)
− g

(
t,u

(
t,x, y′

))∣∣− (
f
(
t,u(t,x, y)

)
− f

(
t,u

(
t,x, y′

)))∣∣
N
.

Due to (2.4) we have

ωt − εωxx − Δyω − ωηη|N < 0,

which is impossible. Let us show that ω � 0 on ΓP1 . By definition

ΓP1 =
2n+4⋃
i=1

Di,
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where

D1 =
{
t = 0, |x| � l,−l1 � η < y1 � l1, |yi| � li, i = 2, . . . ,n

}
,

D2 =
{

0 < t � T , |x| � l, η = −l1, |yi| � li, i = 1, . . . ,n
}

,

D3 =
{

0 < t � T , |x| � l,−l1 � η � l1, y1 = l1, |yi| � li, i = 2, . . . ,n
}

,

D4 =
{

0 < t � T , |x| � l, η = y1, |yi| � li, i = 2, . . . ,n
}

,

D5 =
{

0 < t � T ,x = l,−l1 � η � y1 � l1, |yi| � li, i = 2, . . . ,n
}

,

D6 =
{

0 < t � T , |x| � l,−l1 � η � y1 � l1, y2 = l2, |yi| � li, i = 3, . . . ,n
}

,

...

Dn+4 =
{

0 < t � T , |x| � l,−l1 � η � y1 � l1, |yi| � li, i = 2, . . . ,n− 1, yn = ln
}

,

Dn+5 =
{

0 < t � T ,x = −l,−l1 � η � y1 � l1, |yi| � li, i = 2, . . . ,n
}

,

Dn+6 =
{

0 < t � T , |x| � l,−l1 � η � y1 � l1, y2 = −l2, |yi| � li, i = 3, . . . ,n
}

,

...

D2n+4 =
{

0 < t � T , |x| � l,−l1 � η � y1 � l1, |yi| � li, i = 2, . . . ,n− 1, yn = −ln
}
.

In D1 we have

ω = u0(x, y) − u0
(
x, y′

)
−K1(y1 − η) � 0,

in D2 and D3 due to the boundary conditions and Lemma 2.3 we have

ω = u(t,x, y) −K1(y1 + l1) � 0

and

ω = −u
(
t,x, y′

)
−K1(l1 − η) � 0,

respectively. On D4 obviously

ω = 0,

respectively. On Di, i = 5, . . . , 2n+ 4, due to the boundary conditions

ω = −K1(y1 − η) � 0.

Hence

ω � K1(y1 − η) in P1. (2.11)
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Now subtracting Eq. (2.9) from (2.10) for the function

v
(
t,x, y, y′

)
≡ u

(
t,x, y′

)
− u(t,x, y) −K1(y1 − η)

we obtain

vt − εvxx − Δyv − vηη

= −
(
g
(
t,u

(
t,x, y′

))
ux

(
t,x, y′

)
− g

(
t,u(t,x, y)

)
ux(t,x, y)

)
−
(
f
(
t,u

(
t,x, y′

))
− f

(
t,u(t,x, y)

))
.

Suppose that function v attains its positive maximum at some point N ∈ P1 \ ΓP1 , then at this point we
have

v > 0, vx = 0, i.e. u
(
t,x, y′

)
> u(t,x, y),ux(t,x, y) = ux

(
t,x, y′

)

and hence

vt − εvxx − Δyv − vηη|N
= −ux(t,x, y)

(
g
(
t,u

(
t,x, y′

))
− g

(
t,u(t,x, y)

))
−
(
f
(
t,u

(
t,x, y′

))
− f

(
t,u(t,x, y)

))∣∣
N

� K
∣∣g(t,u(t,x, y′

))
− g

(
t,u(t,x, y)

)∣∣− (
f
(
t,u

(
t,x, y′

))
− f

(
t,u(t,x, y)

))∣∣
N
.

Due to (2.4) we have

vt − εvxx − vyy − vy′y′ |N < 0,

which is impossible.
Similarly to the previous case we can show that v� 0 on ΓP1 and consequently

v � K1(y1 − η) in P1. (2.12)

From (2.10) and (2.11) we conclude that

∣∣u(t,x, y) − u
(
t,x, y′

)∣∣ � K1(y1 − η) in P1.

Due to the symmetry of the variables y1 and η we can similarly consider the case η > y1 to obtain

∣∣u(t,x, y) − u
(
t,x, y′

)∣∣ � K1(η − y1)

for t ∈ [0,T ], |x| � l, −l1 � y1 � η � l1 and |yi| � li, i = 2, . . . ,n.
Finally, for t ∈ [0,T ], |x| � l, y1, η ∈ [−l1, l1] and |yi| � li, i = 2, . . . ,n, we have

∣∣u(t,x, y) − u
(
t,x, y′

)∣∣ � K1|y1 − η|

which implies the needed estimate. �
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Let us extend Lemmas 1–5 to the case when non strict inequality (1.3) instead of strict (2.4) takes
place.

Lemma 2.6. Lemmas 2.1–2.5 remain correct when substituting condition (2.4) by (1.3).

Proof. Suppose that condition (1.3) is fulfilled. Consider the function v = ue−εt satisfying the equation

vt + g
(
t, veεt

)
vx + f̃

((
t, veεt

))
= Δyv + εvxx

and the initial-boundary conditions

v|t=0 = u0, v|x=±l = v|yi=±li = 0, i = 1, . . . ,n,

where f̃ ((t, veεt)) = f ((t, veεt))+ εv. Similarly to the proofs of Lemmas 2.1–2.3 we prove the estimates

|v| � M , |v| � K(l + x), |v| � K(l − x), |v| � Ki(li + yi), |v| � Ki(li − yi),

i = 1, . . . ,n,

and passing to the limit when ε → 0 we obtain the needed estimates for u.
Since condition (1.3) is fulfilled the following inequality takes place

K
∣∣g(t, v2eεt

)
− g

(
t, v1eεt

)∣∣ < f̃
(
t, v2eεt

)
− f̃

(
t, v1eεt

)
for v2 > v1. (2.13)

Similarly to the proofs of Lemmas 2.4 and 2.5 we obtain the estimates

|vx| � K, |vyi | � Ki, i = 1, . . . ,n,

and passing to the limit while ε → 0 we obtain the needed estimate. �

Remark. When proving the estimate for vx (vyi) we consider equation in two different points (t,x, y)
and (t, ξ, y) ((t,x, y), (t,x, y′)), i.e. variable t remains the same, consequently we require the fulfillment
of (2.13) and not of

K
∣∣g(t, v2eεt2

)
− g

(
t, v1eεt1

)∣∣ < f̃
(
t, v2eεt2

)
− f̃

(
t, v1eεt1

)
.

In the next lemma we prove the L2 estimates of u and uyi independent both of ε and of the size of the
domain Ql.

Lemma 2.7. For any classical solution of problem (2.1)–(2.3) we have

∫
Ql

u2 dy dx+

∫
Sl
T

n∑
i=1

u2
yi dt dx dy � U0,

where

U0 =

∫
Ql

u2
0(x, y) dy dx.
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Proof. Multiply Eq. (2.1) by u and integrate by part with respect to y and to x we obtain:

1
2

d
dt

∫
Ql

u2 dy dx+

∫
Ql

n∑
i=1

u2
yi dy dx � 0

from where integrating with respect to t we obtain the needed estimate. We use here the inequality
[g(t,u)ux + f (t,u)]u � 0 which follows immediately from (1.3). �

We close this section by the following lemma where we prove the L2 estimates of ut and uyiyj inde-
pendent of ε but depending on the size of the domain Ql.

Lemma 2.8. For any classical solution of problem (2.1)–(2.3) we have

∫
Sl
T

u2
t dt dx dy � C0,

∫
Sl
T

u2
yiyj dt dx dy � Cij , i, j = 1, . . . ,n,

where the constants C0,Cij are independent of ε.

Proof. Multiply Eq. (2.1) by ut and integrate by part with respect to y and to x we obtain:

∫
Ql

u2
tdy dx+

ε

2
d
dt

∫
Ql

u2
x dy dx+

1
2

d
dt

∫
Ql

n∑
i=1

u2
yi dy dx

= −
∫
Ql

ut
[
g(t,u)ux + f (t,u)

]
dy dx � 1

2

∫
Ql

u2
t dy dx+

1
2

∫
Ql

[
g(t,u)ux + f (t,u)

]2
dy dx,

where dy = dy1 · · · dyn. Now integrating with respect to t and taking into account Lemma 2.1 and
Lemma 2.4 we obtain the first estimate.

In order to obtain the remaining estimates multiply Eq. (2.1) by uy1y1 and integrate by part with respect
to y and x, we obtain:

∫
Ql

u2
y1y1

dy dx+ ε

∫
Ql

u2
xy1

dy dx+
1
2

d
dt

∫
Ql

u2
y1

dy dx+

∫
Ql

n∑
j=2

u2
y1yj

dy dx

=

∫
Ql

[
g(t,u)ux + f (t,u)

]
uy1y1 dy dx � 1

2

∫
Ql

[
g(t,u)ux + f (t,u)

]2
dy dx+

1
2

∫
Ql

u2
y1y1

dy dx.

Integrating with respect to t and taking into account Lemmas 2.1 and 2.4 we obtain the second estimate
for i = 1, similarly we can consider the case i > 1. �

3. Proof of Theorems 1–4

We start from the following proof.
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Proof of Theorem 3. Assumptions of Theorem 3 guarantee the existence of a classical solution of
problem (2.1)–(2.3) (see [19]). Actually the classical solvability follows from the Lemmas 2.1, 2.5, 2.6
and the following estimate (see, e.g., [17]):

∣∣uε(t1,x, y) − uε(t2,x, y)
∣∣ � K0|t1 − t2|1/2,

where the constant K0 depends only on M = max |uε|, K = max |uεx|, Ki = max |uεyi |, i = 1, . . . ,n,
and does not depend on ε−1.

From the above estimate and the estimates obtained in previous sections it follows that we can find a
subsequence εk such that for k → +∞ (εk → 0)

uεk =⇒ u uniformly,

hence the limit function u is Hölder continuous and
∣∣u(t1,x, y) − u(t2,x, y)

∣∣ � K0|t1 − t2|1/2.

Moreover,

uεkx → ux, uεkyi → uyi , i = 1, . . . ,n, ∗weakly in L∞
(
Sl
T

)
,

uεkt → ut, uεkyiyi → uyiyi , i = 1, . . . ,n, weakly in L2
(
Ql

T

)
.

Consider the following integral identity
∫
Sl
T

[
uεkt + g

(
t,uεk

)
uεkx + f

(
t,uε

)
− Δyu

εk
]
φ dt dx dy = −ε

∫
Sl
T

uεkx φx dt dx dy,

where φ,φx ∈ L2(Sl
T ). Passing to the limit when k → +∞ we obtained the required solution:

∫
Sl
T

[
ut + g(t,u)ux + f (t,u) − Δyu

]
φ dt dx dy = 0

∀φ ∈ L2(Sl
T ) such that φx ∈ L2(Sl

T ).
In order to prove the uniqueness we suppose that there exists two solutions u1 and u2. For the differ-

ence ũ ≡ u1 − u2 we obtain

ũt + g(t,u1)ũx +
(
g(t,u1) − g(t,u2)

)
u2x + f (t,u1) − f (t,u2) = Δyũ a.e. in Sl

T .

Multiply this relation by ũ and integrate by part to obtain

1
2

d
dt

∫
Ql

ũ2 dy dx+

∫
Ql

|∇yũ|2 dy dx

+

∫
Ql

[(
g(t,u1) − g(t,u2)

)
u2x + f (t,u1) − f (t,u2)

]
(u1 − u2) dy dx

=
1
2

∫
Ql

gu1 (t,u1)u1xũ
2 dy dx.
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Integrate with respect to t. Taking into account (2.4) and the fact that ũ(0,x, y) ≡ 0 we obtain
∫
Ql

ũ2 dy dx �
∫
Sl
T

gu1 (t,u1)u1xũ
2 dy dx.

Apply Gronwall’s inequality to obtain
∫
Ql

ũ2 dy dx = 0 ⇐⇒ ũ ≡ 0. �

Proof of Theorem 4. In order to prove Theorem 4 introduce the function v = u e−μt (with μ – positive
constant) which satisfies the equation

vt + g
(
t, veμt

)
vx + f̃

(
t, veμt

)
= Δyv in ST

and the initial condition

v|t=0 = u0,

here f̃ (t, veμt) = f (t, veμt) + μv. Condition (1.3) takes the form (see remark to Lemma 2.6)

K
∣∣g(t, v2eμt

)
− g

(
t, v1eμt

)∣∣ � f
(
t, v2eμt

)
− f

(
t, v1eμt

)
+ μ(v2 − v1) for v1 < v2. (3.1)

Denote by gL and fL the Lipschitz constant of g and f , respectively. Taking into account the assumptions
of Theorem 4 for any μ > KgL + fL we can find T ∗ > 0 small enough such that condition (3.1) is
fulfilled for all t ∈ (0,T ∗) and as a consequence we obtain the existence of a generalized solution on
the interval (0,T ∗) (see Example 5). Note that due to the condition uf (t,u) � 0 the solution is bounded
and as a consequence gL and fL are bounded. If condition uf (t,u) � 0 is not fulfilled then we can find
T ∗ > 0 small enough such that condition (3.1) is fulfilled for all t ∈ (0,T ∗) under the assumption that g
and f are global Lipschitz continuous functions (see Example 6). �

The following arguments explain why we can impose two boundary conditions in the x direction while
only the first-order derivative with respect to x is present in the equation. Consider the following problem

ut + g(t,u)ux + f (t,u) = 0 in ST , u|t=0 = u0(x), x ∈ R. (3.2)

Problem (3.2) is equivalent to the following one

{
dx/dt = g(t,u), x(0) = ξ,
du/dt = −f (t,u), u(0) = u0(ξ).

(3.3)

Suppose that u0(±l) = 0. The characteristics of system (3.3) starting from x(0) = ±l are x(t) = ±l
and the function u along these characteristics is equal to zero (recall that g(t, 0) = f (t, 0) = 0), i.e. the
solution of problem (3.2) satisfies condition u(t,±l) = 0. Obviously the solution of problem (3.2) is at
the same time solution of the following one

ut + g(t,u)ux + f (t,u) = Δyu in ST ,u|t=0 = u0(x),x ∈ R. (3.4)
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Actually Eq. (1.8) and the fact that u0|x=±l = 0 create the boundary conditions u|x=±l = 0.

Proof of Theorem 1. Denote by ul0(x, y), l = 1, 2, . . . , a sequence of Lipschitz continuous functions
such that

ul0
∣∣
x=±l

= ul0
∣∣
yi=±l

= 0, i = 1, . . . ,n,

and which approximate the initial function u0 from (1.2). Consider the following problem

ut + g(t,u)ux + f (t,u) = Δyu in (0,T ) × (−l, l)n+1,

u|t=0 = ul0(x, y) in (−l, l)n+1, u|x=±l = u|yi=±l = 0, i = 1, . . . ,n.

The solution of the Cauchy problem now can be obtained as the limit of a sequence of solutions of the
above problem when l → +∞. For more details see [8]. �

Proof of Theorem 2. The proof of Theorem 2 is similar to the proof of Theorem 4. �

Let us give two examples to demonstrate Theorem 2 and 4. We give these examples for the Cauchy
problem but they can be trivially extended to the initial-boundary value problem.

Example 5. Consider the equation

ut + g(t,u)ux + λg(t,u) = Δyu, λ � 0. (3.5)

Assume that g is locally Lipschitz continuous and nondecreasing with respect to u function such that
g(t, 0) = 0 (note that these imply inequality ug(t,u) � 0). For the function v = ue−μt problem (3.5),
(1.2) takes the following form

vt + g
(
t, veμt

)
vx + λg

(
t, veμt

)
+ μv = Δyv in ST , v|t=0 = u0 (3.6)

and condition (1.3) takes the form

(K − λ)
(
g
(
t, v2eμt

)
− g

(
t, v1eμt

))
� μ(v2 − v1) for v2 > v1. (3.7)

These inequality is fulfilled if

(K − λ)eμtgL � μ.

Here gL is a Lipschitz constant for the function g, taking into account that for the solution v of prob-
lem (3.6) the estimate |v| � m = max |u0| takes place we conclude that gL < ∞. Obviously if K � λ
then condition (3.7) is fulfilled for arbitrary t and as a consequence we have global solvability (see
Example 1 in the Introduction). Let K > λ, we can define T ∗ from the relation

(K − λ)eμT
∗
gL = μ.
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One can easily see that the maximal value of T ∗ satisfying this relation is

T ∗ = sup
μ>C0

1
μ

ln
μ

C0
=

1
μ

ln
μ

C0

∣∣∣∣
μ=C0e

=
1

C0e
,

here C0 = (K − λ)gL. Thus Theorem 4 guaranties the solvability of problem (3.5), (1.2) on the interval
(0, (C0e)−1). It is clear that T ∗ → +∞ when λ → K.

Example 6. Consider equation

ut + a uux + λu = Δyu, a,λ ∈ R. (3.8)

For the function v = u e−μt problem (3.8), (1.2) takes the following form

vt + aeμtvvx + (λ+ μ)v = Δyv in ST , v|t=0 = u0 (3.9)

while condition (1.3) takes the form

K|a|eμt � λ+ μ. (3.10)

If λ � K|a| then we can take μ = 0 and (3.10) is fulfilled for arbitrary t > 0 guaranteeing the
global solvability of problem (3.8), (1.2) (see Example 4 in the Introduction). If λ < |a|K then for any
μ > K|a| − λ there exists T ∗ such that for t ∈ [0,T ∗) (3.10) is satisfied, one can easily see that T ∗ is
defined from the relation

T ∗ = sup
μ>K|a|−λ

1
μ

ln
λ+ μ

K|a| .

It is clear that if λ = 0 then T ∗ = (eK|a|)−1 and if λ > K|a| then T ∗ = +∞. Moreover, T ∗ → +∞
for K → 0.

References

[1] D.R. Akhmetov, M.M. Lavrentiev Jr. and R. Spigler, Singular perturbations for parabolic equations with unbounded
coefficients leading to ultraparabolic equations, Differential Integral Equations 17(1,2) (2004), 99–118.

[2] A.L. Amadori and R. Natalini, Entropy solutions to a strongly degenerate anisotropic convection-diffusion equation with
application to utility theory, J. Math. Anal. Appl. 284(2) (2003), 511–531.

[3] F. Antonelly, E. Barucci and M.E. Mancino, A comparison result for FBSDE with applications to decisions theory, Math.
Methods Oper. Res. 54 (2001), 407–423.

[4] F. Antonelly and A. Pascucci, On the viscosity solutions of a stochastic differential utility problem, J. Differential Equa-
tions 186 (2002), 69–87.

[5] G. Di Blasio, An ultraparabolic problem arising from age-dependent population diffusion, Discrete Contin. Dyn. Syst.
25(3) (2009), 843–858.

[6] S. Kerbal and M. Kirane, Nonexistence results for the Cauchy problem for nonlinear ultraparabolic equations, Abstract
Appl. Anal. 2011 (2011), article ID 149091, 10 pp.

[7] S.N. Kruzhkov, Quasilinear parabolic equations and systems with two independent variables, Trudy Sem. Petrovsk. 5
(1979), 217–272.



AUTHOR  C
OPY

314 A.S. Tersenov / On the global solvability of the Cauchy problem for a quasilinear ultraparabolic equation

[8] O.A. Ladyzhenskaja, V.A. Solonnikov and N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type (transl.
from Russian by S. Smith). Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, RI, 1967.

[9] E. Lanconelli, A. Pascucci and S. Polidoro, Linear and nonlinear ultra-parabolic equations of Kolmogorov’s type, which
appear in diffusion theory and financial mathematics, in: Nonlinear Problems in Mathematical Physics and Related Topics
II, In honor of Professor O.A. Ladyzhenskaya, International Mathematical Series, Kluwer Academic, Dordrecht, 2002,
pp. 223–242.

[10] S.P. Lavrenyuk and N.P. Protsakh, A mixed problem for an ultraparabolic equation in an unbounded domain, Ukrainian
Math. J. 54(8) (2002), 1264–1280.

[11] M.D. Marcozzi, On the valuation of Asian options by variational methods, SIAM J. Sci. Comput. 24(4) (2003), 1124–1140.
[12] O.A. Oleinik and V.N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathe-

matical Computation, Vol. 15, Chapman and Hall/CRC, Boca Raton, FL, 1999.
[13] E.Yu. Panov, Ultraparabolic equations with rough coefficients. Entropy solutions and strong precompactness property,

J. Math. Sci. 159(2) (2009), 180–228.
[14] A. Pascucci and S. Polidoro, On the Cauchy problem for a nonlinear Kolmogorov equation, SIAM J. Math. Anal. 35(3)

(2003), 579–595.
[15] P.I. Plotnikov and S.A. Sazhenkov, Kinetic formulation for the Graetz–Nusselt ultraparabolic equation, J. Math. Anal.

Appl. 304(2) (2005), 703–724.
[16] Al.S. Tersenov, On quasilinear non-uniformly parabolic equations in general form, J. Differential Equations 142(2)

(1998), 263–276.
[17] Al.S. Tersenov, Ultraparabolic equations and unsteady heat transfer, J. Evol. Equ. 5(2) (2005), 277–289.
[18] Al.S. Tersenov, On the generalized Burgers equation, Nonlinear Differential Equations Appl. 17(4) (2010), 437–452.
[19] Al.S. Tersenov and Ar.S. Tersenov, The Cauchy problem for a class of quasilinear parabolic equations, Ann. Mat. Pura

Appl. (4) 182(3) (2003), 325–336.
[20] Al.S. Tersenov and Ar.S. Tersenov, On the Bernstein–Nagumo’s condition in the theory of nonlinear parabolic equations,

J. Reine Angew. Math. 572 (2004), 197–217.
[21] S.A. Tersenov, Boundary value problems for a class of ultraparabolic equations and their applications, Math. USSR-Sb.

61(2) (1988), 529–544.
[22] S.A. Tersenov, On fundamental boundary value problems for an ultraparabolic equation, Sib. Math. J. 42(6) (2001), 1173–

1189.
[23] J. Zhang, Well-posedness for a class of nonlinear parabolic equations with strong degeneracy, Nonlinear Anal. 67(1)

(2007), 270–280.


