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Abstract. In the present paper we consider the Dirichlet problem in a convex
domain for the multidimensional p-Laplace equation with nonlinear source.
We prove the existence of the unique continuous viscosity solution under quite
general assumptions on the structure of the source.
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0. Introduction. Consider the p-Laplace equation

−div(|∇u|p−2∇u) + g(x, u, ∇u) + f(x) = 0 in Ω ⊂ R
n, p ≥ 2,(0.1)

coupled with the Dirichlet boundary condition

u = 0 for x ∈ ∂Ω,(0.2)

where we suppose that Ω is a strictly convex domain lying in the parallelepiped

Ω ⊂ {x = (x1, . . . , xn) : −li ≤ xi ≤ li, i = 1, ..., n}.

We assume that the parts of ∂Ω lying in the half-spaces x1 ≤ 0 and x1 ≥ 0 can
be expressed as

x1 = F (x2, x3, ..., xn), x1 = G(x2, x3, ..., xn)

respectively.

In this paper we focus our attention on the problem of construction of contin-
uous viscosity sub and supersolutions for equation (0.1) that satisfy the boundary
condition (0.2). Let us recall the precise meaning of the notion of continuous
viscosity solution of (0.1), (0.2). According to [7], u(x) is a continuous viscosity
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subsolution of (0.1), (0.2), if u(x) is upper semicontinuous function on Ω and for
every φ(x) ∈ C2(Ω) and local maximum point x̂ ∈ Ω of u − φ, one has

Φ(x̂, u(x̂), Dφ(x̂), D2φ(x̂)) ≤ 0,

where

Φ(x, r,q, X) = −|q|p−2Tr(X) − (p − 2)|q|p−4Tr((q ⊗ q)X) + g(x, r,q) + f(x).
(0.3)

The notion of a continuous viscosity supersolution of (0.1), (0.2) arises replacing
“upper semicontinuous” by “lower semicontinuous”, “max” by “min” and reversing
the inequality to

Φ(x̂, u(x̂), Dφ(x̂), D2φ(x̂)) ≥ 0.

Continuous viscosity solution of (0.1), (0.2) is a function which is simultaneously
a continuous viscosity subsolution and a continuous viscosity supersolution. The
boundary condition is interpreted in the strict sense.

Viscosity solutions were introduced by M.G. Crandall and P.L. Lions [3] in the
case of Hamilton-Jacobi equations and were extended to the case of second order
elliptic equations by H. Ishii and P. L. Lions [7] and L. Caffarelli, M. Crandall,
M. Kocan and A. Swiȩch [1]. The theory of viscosity solutions applies to certain
partial differential equations that are proper in the sense of [5]. In the case of the
p-Laplace equation (0.1) it means that the function g(x, u,q) is nondecreasing
with respect to u.

It is well known that the extension of the classical maximum principle to the
case of semicontinuous functions (see for example [2], [4], [6]–[14]) plays the key
role in the theory of viscosity solutions. The maximum principle for semicontinuous
functions gives us the comparison principle for viscosity subsolutions and superso-
lutions of problem (0.1), (0.2). When the comparison principle for any subsolutions
and supersolutions holds one can use Ishii’s implementation of Perron’s method
[5], [6] in order to prove the existence of continuous viscosity solution for (0.1),
(0.2).

In order to use the Ishii-Perron method [5, Theorem 4.1] one has to produce a
subsolution and a supersolution that vanish on the boundary. The mentioned above
Theorem leaves open the question when such a subsolution and supersolution can
be found. Concerning the parabolic analogue of (0.1) without the nonlinear source,
we want to mention [14], where viscosity subsolutions and supersolutions were
constructed for the initial problem. To the best of our knowledge there are no
such results concerning the boundary value problems for p-Laplace equations with
nonlinear source.

In this paper we present a new method of constructing subsolutions and super-
solutions for the problem (0.1), (0.2), that one can use for a wider class of degen-
erate and nonuniformly elliptic equations. These subsolutions and supersolutions
are solutions of certain ordinary differential equations, where the function which
describes the boundary of the domain Ω plays the role of independent variable. It
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is worth mentioning that the subsolutions and supersolutions are given explicitly
and can be used to provide modulus of continuity estimates on solutions of (0.1),
(0.2).

In order to use the Ishii-Perron method one has to assume that the strong
comparison result holds, which means that if u∗ is a subsolution and u∗ is a
supersolution of Φ = 0, where u∗ and −u∗ are upper semicontinuous functions,
then from u∗ ≤ u∗ on ∂Ω follows that u∗ ≤ u∗ in Ω. To assert that comparison
holds via theorems of [5, conditions 3.13 and 3.14] one must impose structure
condition on Φ(x, r,q, X). In the case the of p-Laplace equation, according to [5]
we have that if there exists ν > 0 such that

ν(r − s) ≤ g(x, r,q) − g(x, s,q) for s ≤ r, (x,q) ∈ Ω × R
n(0.4)

and there is a function ω : [0, ∞] → [0, ∞] that satisfies ω(0+) = 0 such that

g(y, r, β(x − y)) − g(x, r, β(x − y)) + f(y) − f(x) ≤ ω(β|x − y|2 + |x − y|)
(0.5)

whenever
x,y ∈ Ω, r ∈ R,

then the comparison principle holds. Here β > 0 is a parameter that satisfies

lim
β→∞

β|x − y|2 = 0.

One may produce examples of proper Φ satisfying (0.4), (0.5) assuming, for exam-
ple, that

g(x, r,q) = g1(r,q) + νr,

where g1 is a nondecreasing function of r and f(x) is a continuous function (with
ω the modulus of continuity for f).

In order to formulate the main result of the present paper we will make some as-
sumptions concerning the nonlinear source of (0.1). Denote by x̃ = (x2, x3, . . . , xn).
Suppose that there exist positive constants C0 and C1 such that for ρ ≥ C0

−g(x, 0, −ρ, ρ∇G(x̃)) ≤ C1(p − 1)ρp−1,(0.6)

g(x, 0, ρ,−ρ∇G(x̃)) ≤ C1(p − 1)ρp−1,(0.7)

−g(x, 0, ρ,−ρ∇F (x̃)) ≤ C1(p − 1)|ρ|p−1,(0.8)

g(x, 0, −ρ, ρ∇F (x̃)) ≤ C1(p − 1)ρp−1.(0.9)

Examples of nonlinearities g which satisfy these conditions are given at the end of
the paper.



262 A. S. Tersenov and A. S. Tersenov Arch. Math.

Let us formulate now the main result of the present paper.

Theorem. Let Ω ⊂ R
n be a bounded strictly convex domain with ∂Ω ∈ C

2,
Φ ∈ C(Ω × R × R

n × S(n)). Suppose that the conditions (0.4)–(0.9) are fulfilled,
then there exists a unique continuous viscosity solution for the problem (0.1), (0.2).

The proof of the existence theorem is based on the Ishii-Perron method [5].
The necessary subsolutions and supersolutions of (0.1) that satisfy the boundary
condition are constructed in the next section.

1. Construction of subsolutions and supersolutions. Put

C0 =
(

f0

p − 1

) 1
p−1

> 0, where max |f(x)| = f0.(1.1)

Suppose that the conditions (0.6)–(0.9) are fulfilled. Introduce the function h(ξ)
by

h(ξ) =
C0

C1

(
1 + C1

C1

(
e2C1l1 − eC1(2l1−ξ)

)
− ξ

)
.

One can easily see that h(ξ) satisfies the equation

h′′ + C1h
′ + C0 = 0(1.2)

and boundary conditions

h(0) = 0, h(2l1) =
C0

C1

(
1 + C1

C1

(
e2C1l1 − 1

)− 2l1

)
.

Obviously
h′(ξ) ≥ C0 for ξ ∈ [0, 2l1],

thus we have that h(ξ) ≥ 0 when ξ ∈ [0, 2l1].

Define the operator L by

Lu ≡ −div(|∇u|p−2∇u) + g(x, u, ∇u) + f(x).

For ξ ≡ G(x̃) − x1 we have (recall that x̃ = (x2, x3, . . . , xn))

∇h(ξ) ≡ (hx1(ξ), hx2(ξ), . . . , hxn(ξ)) = (−h′(ξ), h′(ξ)Gx2(x̃), . . . , h′(ξ)Gxn(x̃)),

|∇h(ξ)|p−2 = h′p−2(ξ)(1 + |∇G(x̃)|2) p−2
2 .

Hence we have

Lh(ξ) = −
(

−h′p−1 (1 + |∇G(x̃)|2) p−2
2

)
x1

−
n∑

m=2

(
h′p−1 (1 + |∇G(x̃)|2) p−2

2 Gxm

)
xm
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+ g(x, h, ∇h) + f(x) = −(p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p−2

2

− h′p−1 (1 + |∇G(x̃)|2) p−2
2 
 G(x̃)(1.3)

− (p − 2)h′p−1 (1 + |∇G(x̃)|2) p−4
2

n∑
m=2

(
Gxm

n∑
s=2

Gxs
Gxsxm

)

− (p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p−2

2

n∑
m=2

G2
xm

+ g(x, h, ∇h) + f(x).

Denote by D2G(x̃) the matrix of second derivatives of G(x̃). Then we can represent
the term

n∑
m=2

(
Gxm

n∑
s=2

GxsGxsxm

)

in the following way
n∑

m=2

(
Gxm

n∑
s=2

GxsGxsxm

)
= ∇G(x̃)D2G(x̃)(∇G(x̃))T ,(1.4)

where (∇G(x̃))T means the gradient vector column of G. It is well-known that
(1.4) as a bilinear quadratic form is negatively defined if and only if the matrix
D2G(x̃) is negatively defined. And this is the case because x1 = G(x̃) defines the
part of ∂Ω which is convex. Furthermore, due to the convexity of the domain Ω
we have 
G(x̃) ≤ 0. So from (1.3) we obtain the following inequality (recall that
h′′ ≤ 0)

Lh(ξ) ≥ −(p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p−2

2 −

(p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p−2

2

n∑
m=2

G2
xm

+ g(x, h, ∇h) + f(x)(1.5)

−(p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p−2

2
(
1 + |∇G(x̃)|2)+ g(x, h, ∇h) + f(x) =

−(p − 1)h′p−2
h′′ (1 + |∇G(x̃)|2) p

2 + g(x, h, ∇h) + f(x) ≥
−(p − 1)h′p−2

h′′ + g(x, h, ∇h) + f(x).
From (1.2) we have that h′′ = −C1h

′ − C0. Therefore (1.5) implies

Lh(ξ) ≥ (p − 1)C1h
′p−1 + (p − 1)C0h

′p−2 + g(x, h, ∇h) + f(x)

≥ (p − 1)C1h
′p−1 + (p − 1)C0h

′p−2 + g(x, 0, ∇h) + f(x),

where the last inequality follows from the fact that h ≥ 0 and (0.4). Using the
inequality h′ ≥ C0 we immediately conclude

Lh(ξ) ≥ (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, ∇h) + f(x).(1.6)

Suppose now that g(x, 0, ∇h) �= 0. From (1.1) and (0.6) we obtain that

Lh(ξ) ≥ (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, −h′(ξ), h′(ξ)Gx2 , ..., h

′(ξ)Gxn) + f(x) ≥ 0.
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If g(x, 0, ∇h) = 0 then due to (1.1)

(p − 1)Cp−1
0 (C1 + 1) = f0(C1 + 1) ≥ f0,

and
Lh(ξ) ≥ (p − 1)Cp−1

0 (C1 + 1) + f(x) ≥ 0.

Consider now h(ζ) ≡ h(x1 − F (x̃)). We have

∇h(ζ) ≡ (hx1(ζ), hx2(ζ), . . . , hxn(ζ)) = (h′(ζ), −h′(ζ)Fx2(x̃), . . . ,−h′(ζ)Fxn(x̃)),

|∇h(ζ)|p−2 = h′p−2(ζ)
(
1 + |∇F (x̃)|2) p−2

2 .

Hence we have

Lh(ζ) = −
(

h′p−1 (1 + |∇F (x̃)|2) p−2
2

)
x1

+
n∑

m=2

(
h′p−1 (1 + |∇F (x̃)|2) p−2

2 Fxm

)
xm

+ g(x, h, ∇h) + f(x) = −(p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p−2

2

+ h′p−1 (1 + |∇F (x̃)|2) p−2
2 
 F (x̃)

+ (p − 2)h′p−1 (1 + |∇F (x̃)|2) p−4
2

n∑
m=2

(
Fxm

n∑
s=2

FxsFxsxm

)

− (p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p−2

2

n∑
m=2

F 2
xm

+ g(x, h, ∇h) + f(x).(1.7)

Denote by D2F (x̃) the matrix of second derivatives of F (x̃). Then we can represent
the term

n∑
m=2

(
Fxm

n∑
s=2

FxsFxsxm

)

in the following way
n∑

m=2

(
Fxm

n∑
s=2

Fxs
Fxsxm

)
= ∇F (x̃)D2F (x̃)(∇F (x̃))T .(1.8)

Thus one can easily see that (1.8) as a bilinear quadratic form is positively defined
due to the fact that the matrix D2F (x̃) as a matrix of second derivatives of concave
F (x̃) is positively defined. Moreover, due to the convexity of the domain Ω we have

F (x̃) ≥ 0. So from (1.7) we obtain the following inequality

Lh(ζ) ≥ −(p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p−2

2 −

(p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p−2

2

n∑
m=2

F 2
xm

+ g(x, h, ∇h) + f(x)(1.9)

−(p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p−2

2
(
1 + |∇F (x̃)|2)+ g(x, h, ∇h) + f(x) =
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−(p − 1)h′p−2
h′′ (1 + |∇F (x̃)|2) p

2 + g(x, h, ∇h) + f(x) ≥
−(p − 1)h′p−2

h′′ + g(x, h, ∇h) + f(x).

From (1.2) we have that h′′ = −C1h
′ − C0. Therefore (1.9) implies

Lh(ζ) ≥ (p − 1)C1h
′p−1 + (p − 1)C0h

′p−2 + g(x, h, ∇h) + f(x)

≥ (p − 1)C1h
′p−1 + (p − 1)C0h

′p−2 + g(x, 0, ∇h) + f(x),

where the last inequality follows from the fact that h ≥ 0 and (0.4). Using the
inequality h′ ≥ C0 we immediately conclude that

Lh(ζ) ≥ (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, ∇h) + f(x).

Suppose now that g(x, 0, ∇h) �= 0. From (1.1) and (0.8) we obtain that

Lh(ζ) ≥ (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, h′(ζ), −h′(ζ)Fx2 , ...,−h′(ζ)Fxn) + f(x) ≥ 0.

If g(x, 0, ∇h) = 0 then then due to (1.1), we have

(p − 1)Cp−1
0 (C1 + 1) ≥ f0

and
Lh(ζ) ≥ (p − 1)C1h

′p−1 + (p − 1)Cp−1
0 + f(x) ≥ 0.

Define h∗(x) by

h∗(x) =

{
h(G(x̃) − x1), for x1 ≥ F(x̃)+G(x̃)

2
h(x1 − F (x̃)), for x1 < F(x̃)+G(x̃)

2 .

Function h∗(x) is the viscosity supersolution of (0.1) and h∗(x) = 0 on ∂Ω. In fact,
each of the functions h(G(x̃) − x1), h(x1 − F (x̃)) are classical supersolutions of
(0.1). So the function h∗(x) is also a classical supersolution of (0.1) in the domains

{x : x ∈ Ω, x1 >
F (x̃) + G(x̃)

2
} and {x : x ∈ Ω, x1 <

F (x̃) + G(x̃)
2

}.

On the line x1 = F (x̃)+G(x̃)
2 the function h∗(x) is only continuous. From the def-

inition of a viscosity supersolution and due to the continuity of the elliptic oper-
ator (0.1) h∗(x) will be a viscosity supersolution of (0.1), (0.2). This fact follows
easily from h′ ≥ C0, which implies that there does not exist any C

2 function
whose graph touches the graph of h∗ from below at a point belonging to the set
{x ∈ Ω : x1 = F (x̃)+G(x̃)

2 }.

Now let us show that function h∗(x) ≡ −h∗(x) is a subsolution of (0.1), (0.2).
Obviously h∗(x) = 0 on ∂Ω. For h1(ξ) ≡ −h(ξ) = −h(G(x̃) − x1) we have

L(h1(ξ)) = L(−h(G(x̃)−x1)) ≡ −div(|∇(−h)|p−2∇(−h))+g(x, −h, ∇(−h))+f(x)

div(|∇h|p−2∇h) + g(x, −h, ∇(−h)) + f(x) ≤(1.10)

div(|∇h|p−2∇h) + g(x, 0, ∇(−h)) + f0,
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where the last inequality is the consequence of the fact that −h ≤ 0. From (1.6)
we have that

Lh(ξ) ≥ (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, ∇h) + f(x) ≥ 0.(1.11)

Thus (0.1) and (1.11) imply

div(|∇h|p−2∇h) ≤ −(p − 1)Cp−1
0 (C1 + 1).(1.12)

Finally, from (1.10), (1.12) we obtain that

L(h1(ξ)) ≤div(|∇h|p−2∇h) + g(x, 0, ∇(−h)) + f0

≤ − (p − 1)Cp−1
0 (C1 + 1) + g(x, 0, ∇(−h)) + f0.

Now using (1.1) and (0.7) we conclude that L(h1(ξ)) ≤ 0. Similarly, using (1.1) and
(0.9), one can prove that for h1(ζ) ≡ −h(x1 − F (x̃)) the inequality L(h1(ζ)) ≤ 0
holds. So due to the continuity of the elliptic operator (0.1) the function

h∗(x) =

{
−h(G(x̃) − x1), for x1 ≥ F(x̃)+G(x̃)

2
−h(x1 − F (x̃)), for x1 < F(x̃)+G(x̃)

2 .

is a viscosity subsolution of (0.1), (0.2).

Thus we have constructed a supersolution h∗(x) and a subsolution h∗(x) of
(0.1), (0.2). Since the comparison principle holds we may invoke the Ishii-Perron
method to obtain the existence and uniqueness of the viscosity solution of (0.1),
(0.2).

Finally let us give several examples.

Example 1. Obviously if g(x, u,q) + f(x) is a continuous function that satisfies
conditions (0.4), (0.5) and

g(x, 0,q) ≡ 0,

then conditions of the Theorem are fulfilled.

Example 2. If g = a|ux1 |p−1 + φ(u), where a is a constant, then conditions (0.6) -
(0.9) are fulfilled with

C1 =
1

p − 1

(
a +

|φ(0)|
Cp−1

0

)
.

In fact,
|g(x, 0, |ρ|)| ≤ |a||ρ|p−1 + |φ(0)| ≤ C1(p − 1)ρp−1.

Hence, conditions of the Theorem are fulfilled if f(x), φ(u) are continuous functions
on Ω and [− max h∗, max h∗] respectively and φ is strictly increasing.

Example 3. Suppose now that g = g(x, u). In that case (0.6)–(0.9) are fulfilled
with

C1 =
maxΩ |g(x, 0)|
(p − 1)Cp−1

0

.



Vol. 88 (2007) Viscosity solutions of the p-Laplace equation 267

Thus conditions of the Theorem are fulfilled if g(x, u), f(x) are continuous func-
tions on Ω× [− max h∗, max h∗] and Ω respectively and g is strictly increasing with
respect to u.

Here existence and uniqueness would also follow from the observation that this
is an Euler equation of a strictly convex functional. Therefore a weak solution
exists, and weak solutions are often viscosity solutions according to [13].

Example 4. Consider for simplicity the two dimensional case. Suppose that Ω is a
domain in R

2 with ∂Ω consisting of two parabolas, x1 = G(x2) = 1−x2
2 for x1 ≥ 0

and x1 = F (x2) = x2
2 − 1 for x1 ≤ 0. If

g = a|∇u|p−1 + φ(u),

then conditions (0.6)–(0.9) are fulfilled with

C1 =
1

p − 1

(
ak

(p−1)/2
0 +

|φ(0)|
Cp−1

0

)
,

where k0 = max{1 + max G2
x2

, 1 + max F 2
x2

} = 5. In fact,

|g(x, 0, |ρ|, |ρGx2 |)| ≤ |a|ρp−1(1 + G2
x2

)(p−1)/2 + |φ(0)| ≤ C1(p − 1)ρp−1.

|g(x, 0, |ρ|, |ρFx2 |)| ≤ |a||ρ|p−1(1 + F 2
x2

)(p−1)/2 + |φ(0)| ≤ C1(p − 1)ρp−1.

Thus we conclude that conditions of the Theorem are fulfilled if f , φ are continu-
ous functions on Ω and [− max h∗, max h∗] respectively and φ is strictly increasing.
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227–250 (1995).

[9] B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for vis-
cosity solutions of some classes of nonlinear partial differential equations. Funkcial.
Ekvac 43, 241–253 (2000).

[10] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second-
order partial differential equations. Arch. Rat. Mech. Anal. 101, 1–27 (1988).

[11] R. Jensen, Uniqueness criteria for viscosity solutions of fully nonlinear elliptic
partial differential equations. Indiana Univ. Math. J. 38, 629–687 (1989).

[12] R. Jensen, P. L. Lions and P. E. Souganidis, A uniqueness result for viscosity
solutions of second-order fully nonlinear partial differential equations. Proc. Amer.
Math. Soc. 102, 975–978 (1988).

[13] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of the vis-
cosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal.
vol. 33(N3), 699–717 (2001).

[14] M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applica-
tions to the p-Laplace diffusion equation. Comm. Partial Diff. Eq. 22(3,4), 381–411
(1997).

Alkis S. Tersenov, University of Crete, Department of Mathematics, 71409 Heraklion-
Crete, Greece
e-mail: tersenov@math.uoc.gr

Aris S. Tersenov, University of Peloponesse, Department of Telecommunications
Sciences and Technology, 22 100 Tripolis, Greece
e-mail: aterseno@uop.gr

Received: 18 January 2006


