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Ultraparabolic equations and unsteady heat transfer

Alkis S. Tersenov

Abstract. The present paper is concerned with the boundary value problem for the equation
θt + u · ∇θ = κθyy + f. Existence and uniqueness of the generalized solution are proved.

1. Introduction

We consider equation

θt + u · ∇θ = κθyy + f in QT,X (0.1)

coupled with initial-boundary conditions

θ(0, x, y) = θ0(x, y), θ(t, 0, y) = θ(t, x,±R) = 0. (0.2)

Here u = u(t, x, y) = (u(t, x, y), v(t, x, y)), ∇θ = (θx, θy), u · ∇θ = uθx + vθy,

f = f (t, x, y, θ, θy),

QT,X = {(t, x, y) : 0 < t < T, 0 < x < X, |y| < R},
u > 0 for |y| < R, u(t, x,±R) ≥ 0, κ > 0. (0.3)

Equation (0.1) belongs to the class of ultraparabolic equations. Such equations describe
nonstationary transport (of matter, impulse, temperature) processes where in some direction
the effect of diffusion is negligible as compared to convection. Ultraparabolic equations
were first introduced by A. N. Kolmogorov [3], in the probability treatment of certain
diffusion processes. There recently appeared a large number of publications concerning
ultraparabolic equations (see [1], [5] and the references there) but only few of them are
devoted to boundary value problems. In the case when the coefficient u = u(t, x) and
f = f (t, x, y) the solvability of problems (0.1), (0.2) in Hölder spaces follows from [13]. If
u = b1x+b2y,where b1, b2−const then the existence of generalized solution follows from
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[6], [10]. Weak solution of problem (0.1), (0.2) for f = f (t, x, y) was obtained in [11].
The approach proposed in [13] can not be applied in the case when u depends on y or in
the quasilinear case, the method used in [6], [10] cannot be extended to arbitrary u(t, x, y)
and finally the method developed in [11] cannot be extended to quasilinear case.

Our interest in ultraparabolic equations is motivated by the following. Consider unidi-
rectional flow in a tube with radius R, where x is the axis of the tube (see [2, Sections 4.2,
4.3]). The component of the velocity in the y direction is zero (v ≡ 0) and the component
in the x direction is a function of time t and spatial variable y : u = u(t, y). The simplest
case is Poiseuille flow: u = u(|y|) where u(±R) = 0 and u(|y|) > 0 for |y| < R. The
unsteady convection-diffusion equation takes the form

θt + uθx = κ � θ + f,

where θ is temperature, the positive constant κ is the heat conductivity coefficient and
f is a source. It is known (see [7, Section 35]) that if the Péclet number

Pe = ReP r

(here Re is the Reynolds number and Pr is the Prandtl’s number) is large with respect
to 1, then the convective transfer of heat in the x direction essentially exceeds the molec-
ular transfer (diffusion) and we can reject the term θxx in the equation. If we treat θ as
a concentration of the admixture, the term θxx can be neglected when the diffusion coeffi-
cient κ is small compared with ãR,where ã is the average with respect to y of the velocity in
x direction (see [7, Section 21]).

The advantage of such approach is that we need only one boundary condition with respect
to x, i.e., it is sufficient to perform the measurement in the x direction only once (at the
beginning of the tube x = 0).

In order to prove the existence we regularize the original problem by the following one:

θεt + u(t, x, y)θεx + v(t, x, y)θεy = εθεxx + κθεyy + f (t, x, y, θε, θεy ), (0.1)∗

θε(0, x, y) = θ0(x, y), θ
ε(t, 0, y) = θε(t, x,±R) = θεx (t, X, y) = 0, (0.2)∗

ε > 0 − const.We obtain apriori estimates independent of ε and pass to the limit ε → 0 in
the integral identity∫

QT,X

[θεt + u(t, x, y)θεx + v(t, x, y)θεy − κθεyy − f (t, x, y, θε, θεy )]φdtdxdy

= −ε
∫
QT,X

θεxφxdtdxdy.

The key step here is the proof of the boundary gradient estimates independent of ε. In order
to pass to the limit in the nonlinear term f (t, x, y, θε, θεy ) we use the compactness lemma
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(see Section 3). The derivative with respect to x of the obtained limit function θ has no
trace on the boundary x = X and hence “ignores” the condition θx(t, X, y) = 0.

Let us make several assumptions on the smoothness of the data and on the structure of
nonlinearity. Assume that

sign θf (t, x, y, θ, 0) ≤ C0u(t, x, y) (0.4)

for (t, x, y) ∈ Q̄T ,X and any θ . Suppose that

|f (t, x, y, θ, p)| ≤ κψ(|p|) (0.51)

for (t, x, y) ∈ QT,X, |θ | ≤ M and any p, where M > 0 is some constant, ψ(ρ) > 0 is
a smooth function such that∫ +∞ ρdρ

ψ(ρ)
= +∞. (0.52)

Assume that function f (t, x, y, θ, p) for (t, x, y) ∈ Q̄T ,X, θ ∈ [−M,M] and q2 +p2 > L

satisfies the following restriction

fθ + qfx + pfy

q2 + p2
≤ Cf , (0.6)

where L > 0 and Cf > 0 are some constants. Concerning the smoothness of the data we
suppose that

θ0 ∈ C1([0, X] × [−R,R]), θ0(x,±R) = θ0(0, y) = 0,

u, v ∈ C1(Q̄T ,X) f ∈ C1(Q̄T ,X × [−M,M] × R). (0.7)

DEFINITION. We say that Hölder continuous function θ(t, x, y) is a generalized
solution of problem (0.1), (0.2) if

i) θ satisfies equation (0.1) almost everywhere, initial and boundary conditions are
admitted in the classical sense;

ii) θx, θy ∈ L∞(QT,X), θt , θyy ∈ L2(QT,X).

THEOREM. Suppose that conditions (0.3)–(0.7)are fulfilled. Then there exists a unique
generalized solution of problem (0.1), (0.2).

In order to simplify the notation below we will omit the superscript ε.
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§1. A priori Estimates of θ, θx and θy

In this section we will obtain a priori estimates of θ, θx and θy in L∞ norm for the
solution of regularized problem (0.1)∗, (0.2)∗.

We say that θ is a classical solution of (0.1)∗, (0.2)∗ if θ ∈ C1;2
t;x,y(QT,X)∩C0;1

t;x,y(Q̄T ,X).

Here C1;2
t;x,y(QT,X) is the set of functions having the first derivative with respect to t and

the second derivatives with respect to x, y continuous in QT,X.

LEMMA 1.1. Let θ(t, x, y) be a classical solution of problem (0.1)∗, (0.2)∗, assume
that condition (0.4) is fulfilled. Then

|θ(t, x, y)| ≤ C1x ≤ M = C1X in Q̄T ,X,

where C1 = max{C0, sup|θ0x |}.

Proof. Let

L0θ ≡ θt − εθxx − κθyy.

Introduce the following function

h0(x) ≡ (C1 + ε)x,

where ε > 0 − constant. Obviously L0h0 = 0 and for the function θ(t, x, y) − h0(x)

we have

L0(θ − h0) = f (t, x, y, θ, θy)− u(t, x, y)θx − v(t, x, y)θy.

Denote by	 the parabolic boundary ofQT,X, i.e.,	 ≡ ∂QT,X\{t = T }. If θ−h0 attains its
positive maximum at the pointN ∈ Q̄T ,X \	 then at this point θ −h0 > 0, (θ −h0)x = 0,
(θ − h0)y = 0, i.e., θ > 0, θx = h′

0 = C1 + ε, θy = 0 and hence due to (0.4)

L0(θ − h0)|N = f (N, θ(N), 0)− u(N)(C1 + ε) < 0.

This contradicts the assumption that θ(t, x, y)− h0(x) attains positive maximum at N .
Consider the parabolic boundary 	.We have θ0(x, y)−h0(x) = (θ0(x, y)−θ0(0, y))−

(h0(x) − h0(0)) = (θ0x − h′
0)x ≤ 0; θ(t, 0, y) − h0(0) = 0; for y = ±R we have

θ − h0 = −h0 ≤ 0. Let us show that the function θ − h0 cannot attain maximum when
x = X. In fact, suppose that θ − h0 attains maximum at the point (t0, X, y0). Due to (0.2)∗
we have (θ(t0, X, y0)− h0(X))x = −h′

0(X) < 0, which is impossible. Consequently we
conclude that θ(t, x, y) ≤ h0(x) in Q̄T ,X.

Now consider function θ(t, x, y)+ h0(x). If θ + h0 attains its negative minimum at the
pointN1 ∈ Q̄T ,X\	 then at this point we have θ + h0 < 0, (θ + h0)x = 0, (θ + h0)y = 0,
i.e., θ < 0, θx = −h′

0 = −(C1 + ε), θy = 0 and hence due to (0.4)

L0(θ + h0)|N1 = f (N1, θ(N1), 0)+ u(N1)(C1 + ε) > 0.
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This contradicts the fact that θ + h0 attains negative minimum in the interior of the
domain QT,X.

Consider the parabolic boundary 	. We have θ0(x, y) + h0(x) = (θ0x + h′
0)x ≥ 0;

θ(t, 0, y) + h0(0) = 0 and for y = ±R we have θ + h0 = h0 ≥ 0. Let us show that
the function θ + h0 cannot attain minimum when x = X. In fact, suppose that θ + h0

attains minimum at the point (t1, X, y1). Due to (0.2)∗ we have (θ(t1, X, y1)+ h0(X))x =
h′

0(X) > 0, which is impossible. Consequently we conclude that θ(t, x, y) ≥ h0(x)

in Q̄T ,X.
Passing to the limit when ε → 0 we fulfil the proof. �

REMARK. Suppose that θ0 ≡ 0 and f = f (t, x, y). In this case condition (0.4) takes
the form |f (t, x, y)| ≤ C0u(t, x, y). From Lemma 1.1 it follows that for the fixed source
f choosing the velocity u sufficiently big we can make |θ | arbitrary small. The explanation
of this phenomenon is simple. Cooling is caused by the transfer of the substance with
zero temperature from the boundary x = 0 along the tube and depends on the velocity of
propagation of this substance.

Now introduce the functions h1(y) and h2(y) ≡ h1(−y) by the following

h′′
1 = −(ψ1(|h′|)+ ε), h1(−R) = 0, h1(−R + y0) = M,

y0 will be defined below. Here

ψ1(ρ) ≡ ψ(ρ)+ max|v(t, x, y)|
κ

ρ.

Represent the solution of this problem in parametric form using the standard substitution
q = h′

1:

h1(q) =
∫ q1

q

ρdρ

ψ1(ρ)+ ε
, y(q) =

∫ q1

q

dρ

ψ1(ρ)+ ε
− R,

select q1 > q2 ≥ K such that∫ q1

q0

ρdρ

ψ1(ρ)+ ε
= M,

this is possible due to (0.52). Put

y0 =
∫ q1

q0

dρ

ψ1(ρ)+ ε
.

Obviously h′
1(y) ≥ K.
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LEMMA 1.2. Let θ(t, x, y) be a classical solution of problem (0.1)∗, (0.2)∗ and assume
that conditions (0.5) are fulfilled, then

|θ(t, x, y)| ≤ h1(y) in D̄1, |θ(t, x, y)| ≤ h2(y) in D̄2,

where

D1 = {(t, x, y) : 0 < t < T, 0 < x < X, y ∈ (−R,−R + y0) ∩ (−R,R)},

D2 = {(t, x, y) : 0 < t < T, 0 < x < X, y ∈ (R − y0, R) ∩ (−R,R)}.

Proof. Consider function θ(t, x, y)− h1(y). Define operator L1

L1 ≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
− ε

∂2

∂x2
− κ

∂2

∂y2
.

Obviously

L1(θ − h1) = f (t, x, y, θ, θy)− v(t, x, y)h′
1 + κh′′

1

= f (t, x, y, θ, θy)− vh′
1 − κψ(|h′

1|)− max|v|h′
1 − κε

≤ f (t, x, y, θ, θy)− κψ(|h′
1|)− κε.

Suppose that θ − h1 attains positive maximum at N ∈ D̄1 \ 	1 where 	1 is the parabolic
boundary of D1. Then (θ − h1)y(N) = 0 and hence at this point θy = h′

1. From (0.51)

it follows that

L1(θ − h1)|N ≤ f (t, x, y, θ, h′
1)− κψ(|h′

1|)− κε|N < 0

which is impossible at the point where θ − h1 attains positive maximum. Consider the
parabolic boundary of D1. For y = −R we have θ − h1 = −h1(−R) = 0. For t = 0
we have θ0(x, y) ≤ h1, since h′

1(y) ≥ K and for x = 0 obviously θ(t, 0, y) = 0 ≤
h1. If y0 < 2R then for y = −R + y0, we have θ − h1 ≤ M − h1(−R + y0) =
0; if y0 ≥ 2R then we compare θ and h1 on the boundary y = R where we have
θ − h1 = −h1(R) ≤ 0.

Let us show now that θ−h1 cannot attain positive maximum at a point (t∗, X, y∗)where
0 < t∗ < T, y∗ ∈ (−R,−R + y0) ∩ (−R,R). Assume that at the point (t∗, X, y∗) the
function θ − h1 attains positive maximum. Introduce function

�(t, x, y) ≡ θ(t, x, y)− h1(y)− θ∗ + εχ(x)

where θ∗ = θ(t∗, X, y∗)− h1(y∗), χ(x) = e−αx2 − e−αX2
, positive constants ε, α will be

selected below. Consider � in

D
x0
1 = {(t, x, y) : 0 < t < T, x0 < x < X, y ∈ (−R,−R + y0) ∩ (−R,R)},
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where 0 < x0 < X. Select α = (2x2
0 )

−1, we have

L1(�) = f (t, x, y, θ, θy)− vh′
1 − κψ1(|h′

1|)− κε + εL1(χ)

≤ f (t, x, y, θ, θy)− κψ(|h′
1|)− κε,

because in Dx0
1

L1(χ) = −2αe−αx2
(xu+ ε(2αx2 − 1)) ≤ 0.

Function � cannot attain positive maximum at N∗ ∈ D̄x0
1 \ 	x0 where 	x0 is the parabolic

boundary of Dx0
1 . In fact, at N∗ we have �y = 0, i.e., θy = h′

1 and

L1(�)|N∗ ≤ f (t, x, y, θ, h′
1)− κψ(|h′

1|)− κε|N∗ < 0

which is impossible. Consider � on 	x0 . For x = X we have

�(t,X, y) = θ(t, X, y)− h1(y)− θ∗ ≤ 0.

Selecting ε sufficiently small we obtain

�(t, x0, y) = θ(t, x0, y)− h1(y)− θ∗ + εχ(x0) ≤ 0.

Here we use the inequality θ(t, x0, y)− h1(y) < θ∗. This inequality follows from the fact
that θ −h1 cannot attain positive maximum in D̄1 \	1 and from the assumption that θ −h1

attains positive maximum at (t∗, X, y∗). Besides for sufficiently small ε we have

�(t, x,−R) = −θ∗ + εχ(x) ≤ 0,

�(t, x,−R + y0) = θ(t, x,−R + y0)−M − θ∗ + εχ(x) ≤ 0.

and

�(0, x, y) = θ0(x, y)− h1(y)− θ∗ + εχ(x) ≤ 0.

Thus � ≤ 0 in D̄x0
1 , i.e.,

θ(t∗, x, y∗)− h1(y∗)− (θ(t∗, X, y∗)− h1(y∗)) ≤ −εχ(x) in D̄
x0
1

and hence (θ(t∗, x, y∗)−h1(y∗))x |x=X = 2αεXe−αX2
> 0. This contradicts the boundary

condition (θ(t, X, y) − h1(y))x = θx(t, X, y) = 0. Hence θ − h1 cannot attain positive
maximum at x = X, 0 < t < T, |y| < R.

Due to the facts that θ − h1 ≤ 0 on the rest parts of the parabolic boundary of D1 and
that θ − h1 cannot attain positive maximum at D1\	1 we conclude

θ − h1 ≤ 0 in D̄1.
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Now consider function θ(t, x, y)+ h1(y). Obviously for y = −R, for t = 0, for x = 0
and for y = −R+ y0 (or y = R) we have θ +h1 ≥ 0. Suppose that θ +h1 attains negative
minimum at N1 ∈ D̄1\	1. Then at this point we have (θ + h1)y = 0 and hence θy = −h′

1.

From (0.5) we obtain

L1(θ + h1)|N1 = f (t, x, y, θ,−h′
1)+ vh′

1 + κψ1(|h′|)+ κε|N1

≥ f (t, x, y, θ,−h′
1)+ κψ(|h′|)+ κε|N1 > 0.

Similarly to the previous case we can show that if negative minimum is obtained whenx = X

then at this point (θ+h1)x < 0, this contradicts the boundary condition (θ+h1)x |x=X = 0.
As a consequence we conclude that

θ + h1 ≥ 0 in D̄1

and finally

|θ | ≤ h1 in D̄1.

Analogously we can establish the estimate |θ(t, x, y)| ≤ h2(y) in D2. Lemma is
proved. �

REMARK. The estimates of Lemma 1.1 and Lemma 1.2 imply the following boundary
gradient estimates:

|θx ||x=0 ≤ C1, |θy ||y=±R ≤ h′
1(−R) = −h′

2(R).

As it was mentioned in the introduction these estimates play key role in all procedure of
obtaining apriori estimates independent of ε. The global estimates of θx, θy in L∞ norm
(Lemma 1.3) as well as the estimates θt , θyy in L2 norm (Lemmas 2.1, 2.2) can be obtained
now by a standard method. For completeness we will give a brief proof.

LEMMA 1.3. Suppose that conditions (0.4), (0.5) are fulfilled, then for any classical
solution of problem (0.1)∗, (0.2)∗ the following estimate holds

sup
Q̄T ,X

(θ2
x + θ2

y ) ≤ C2,

where constant C2 depends only on L, T , sup|ux |, sup|vy |, sup|vx + uy |, sup|∇θ0|2 and
C1, h

′
1(−R),Cf .

Proof. Differentiate equation (0.1)∗ with respect to x and multiply by 2θx, then differ-
entiate equation (0.1)∗ with respect to y and multiply by 2θy. Summing up forw ≡ θ2

x +θ2
y
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we obtain

κwyy + εwxx − wt − uwx − (v − fp)wy

+ 2fθw + 2θxfx + 2θyfy − 2(vx + uy)θxθy − 2uxθ
2
x − 2vyθ

2
y

− 2κ(θ2
yy + θ2

xy)− 2ε(θ2
xy + θ2

xx) = 0.

Thus we have

κwyy + εwxx − wt − uwx − (v − fp)wy

+ 2

(
fθ + θxfx + θyfy

θ2
x + θ2

y

+ a0

)
w ≥ 0,

where a0 = max{sup|ux |, sup|vy |} + 1
2 sup|vx + uy |. From the lemma on the normal

derivative taking into account that wx(t, X, y) = 0, we conclude that w cannot attain
maximum at x = X for |y| < R, 0 < t < T . Hence

w ≤ max{L, eKT sup
	

|w|},

where 2(Cf + a0) ≤ K and 	 is parabolic boundary of QT,X. For more details see, for
example, [8] Chapter 11. Lemma is proved. �

§2. A priori Estimates of θyy and θt

In this section we will obtain a priori estimates of θyy and θt in L2 norm for the solution
of problem (0.1)∗, (0.2)∗. Denote

U = sup u(t, x, y), F = sup|f (t, x, y, θ, θy)− v(t, x, y)θx |,

here supremum is taken over the set Q̄T ,X × [−M,M] × [−√
C2,

√
C2]2.

LEMMA 2.1. For any classical solution of problem (0.1)∗, (0.2)∗ such that θtx, θxyy ∈
L2(QT,X) we have∫

QT,X

θ2
yydtdxdy ≤ C3,

where the constant C3 depends only on U,C2, F, ‖θ0y‖L2((0,X)×(−R,R)), T ,X and κ−1.
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Proof. Multiply equation (0.1)∗ by θyy and integrate by part with respect to y and x and
then integrate with respect to t, we obtain:

1

2

∫ X

0

∫ R

−R
θ2
y dydx +

∫
QT,X

θ2
xydtdxdy +

∫
QT,X

κθ2
yydtdxdy

= 1

2

∫ X

0

∫ R

−R
θ2

0ydxdy +
∫
QT,X

uθxθyydtdxdy −
∫
QT,X

(f − vθy)θyydtdxdy.

From the Cauchy inequality and the Young inequality |c||d| ≤ 1
p
δp|c|p + 1

q
δ−q |d|q with

p = q = 2 and δ2 = 2/3 we have

∣∣∣∣
∫
QT,X

uθxθyydtdxdy

∣∣∣∣ ≤
(∫

QT,X

κ−1u2θ2
x dtdxdy

)1/2 (∫
QT,X

κθ2
yydtdxdy

)1/2

≤ 1

3

∫
QT,X

κθ2
yydtdxdy + 3

4

∫
QT,X

κ−1u2θ2
x dtdxdy.

Similarly∣∣∣∣
∫
QT,X

(f − vθy)θyydtdxdy

∣∣∣∣ ≤ 1

3

∫
QT,X

κθ2
yydtdxdy

+3

4

∫
QT,X

κ−1(f − vθy)
2dtdxdy.

Finally

1

2

∫ X

0

∫ R

−R
θ2
y dydx + 1

3

∫
QT,X

θ2
yydtdxdy

≤ 1

2

∫ X

0

∫ R

−R
θ2

0ydydx + 3

4

∫
QT,X

κ−1(u2θ2
x + (f − vθy)

2)dtdxdy

≤ 1

2

∫ X

0

∫ R

−R
θ2

0ydydx + 3

2κ
(U2C2

2 + F 2)RTX.

�

Lemma is proved.

LEMMA 2.2. For any classical solution of problem (0.1)∗, (0.2)∗ such that
θtx, θty ∈ L2(QT,X) we have∫

QT,X

θ2
t dtdxdy ≤ C4,

where the constant C4 depends only on U,F,C2, C3 and ε‖θ0x‖L2((0,X)×(−R,R)).
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Proof. Multiply equation (0.1)∗ by θt and integrate over QT,X to obtain:∫
QT,X

θ2
t dtdxdy + 1

2
ε

∫ X

0

∫ R

−R
θ2
x (T , x, y)dydx

=
∫
QT,X

(κθyyθt − uθxθt + (f − vθy)θt )dtdxdy + 1

2
ε

∫ X

0

∫ R

−R
θ2

0xdydx.

Now applying the Cauchy and the Young inequalities we obtain∫
QT,X

(κθyyθt − uθxθt + (f − vθy)θt )dtdxdy

≤ 3

4

∫
QT,X

θ2
t dtdxdy +

∫
QT,X

(κ2θ2
yy + u2θ2

x + (f − vθy)
2)dtdxdy.

Hence∫
QT,X

θ2
t dtdxdy ≤ 4

∫
QT,X

(κ2θ2
yy + u2θ2

x + (f − vθy)
2)dtdxdy

+ 2ε
∫ X

0

∫ R

−R
θ2

0xdydx.

�

Lemma is proved.

§3. Existence and uniqueness

For the sake of simplicity we require θ0x(X, y) = 0. Assumptions (0.4)–(0.7)
guarantee the existence of the solution of problem (0.1)∗, (0.2)∗ belonging toC1;2

t;x,y(QT,X)∩
C

0;1
t;x,y(Q̄T ,X) such that θεtx, θ

ε
ty, θ

ε
xyy, θ

ε
yxx ∈ L2(QT,X) (see [4], [8]). From the estimates

obtained in previous sections it follows that we can find a subsequence εk such that

θεk → θ, θεkx → θx, θ
εk
y → θy, *weakly in L∞(QT,X),

when k → +∞ (εk → 0). Moreover (see [12]),

|θε(t1, x, y)− θε(t2, x, y)| ≤ C|t1 − t2|1/2,
where the constant C depends only on sup|∇θε| and does not depend on ε−1. So we have
θεk → θ uniformly (in C0 norm) and the limit function θ is Hölder continuous. From the
obtained a priori estimates of θεt and θεyy in L2 norm we conclude:

θ
εk
t → θt , θ

εk
yy → θyy, weakly in L2(QT,X) when k → +∞.
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Recall the following compactness lemma (see [9], Chapter 1, Section 5). Let B0, B, B1

are Banach spaces, B0, B1 are reflexive, B0 ⊂ B ⊂ B1, and the embedding B0 ⊂ B1 is
compact. Let

W ≡ {g|g ∈ L2(0, T ;B0), gt ∈ L2(0, T ;B1)},
define the norm in W by

‖g‖W ≡ ‖g‖L2(0,T ;B0) + ‖gt‖L2(0,T ;B1).

LEMMA. The embedding W ⊂ L2(0, T ;B) is compact.

Let us take

B0 ≡ W
1;2
x;y ((0, X)× (−R,R)), B ≡ W

0;1
x;y ((0, X)× (−R,R)),

B1 ≡ L2((0, X)× (−R,R)).
Thus we have that

θεky → θy in L2(QT,X) norm when k → +∞.

Consider the following integral identity∫
QT,X

[θεkt + u(t, x, y)θεkx + v(t, x, y)θεky − κθεkyy − f (t, x, y, θεk , θεky )]φdtdxdy

= −εk
∫
QT,X

θεkx φxdtdxdy,

where φ, φx ∈ L2(QT,X). Passing to the limit when k → +∞ we obtain the required
solution.

Uniqueness can be proved by the standard method based on Gronwall’s inequality. In
fact if we suppose that there exists two solution θ1 and θ2 then the function θ ≡ θ1 − θ2

satisfies the integral identity∫
Qt,X

(θt + uθx)φdτdxdy

=
∫
Qt,X

(κθyy − vθy + (f (t, x, y, θ1, θ1y)− f (t, x, y, θ2, θ2y))φdτdxdy.

Taking φ = θ for

ω(t) ≡ 1

2

∫ X

0

∫ R

−R
θ2dxdy

we obtain

ω(t) ≤
∫ t

0
�(τ)ω(τ)dt,

where�(τ) ≥ 0 belongs to L1(0, T ). From Gronwall’s inequality it follows that ω(t) ≡ 0
and hence θ1(t, x, y) ≡ θ2(t, x, y).
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