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ut of a solution u belongs to L∞ under a suitable assumption 
on the smoothness of the initial data. Moreover, if the domain 
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spatial derivatives uxi belong to L∞ as well. In the singular 
case we show that the second derivatives uxixj of a solution 
of the Cauchy problem belong to L2.
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1. Introduction and main results

Let Ω be a bounded domain in Rn satisfying the exterior sphere condition and ΩT =
(0, T ) × Ω with an arbitrary T ∈ (0, ∞). We denote by x = (x1, . . . , xn) the points in 
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Ω and by t the time variable that varies in the interval [0, T ]. Consider the following 
quasilinear parabolic equation

ut =
n∑

i=1
(|uxi

|piuxi
)xi

in ΩT , (1.1)

coupled with the homogeneous Dirichlet boundary condition

u = 0 on [0, T ] × ∂Ω (1.2)

and the initial condition

u(0, x) = u0(x) in Ω, u0(x) ∈ C2(Ω) and u0(x) = 0 on ∂Ω. (1.3)

Here pi > −1, i = 1, . . . , n. Without loss of generality, we assume that the pi are ordered:

−1 < p1 ≤ p2 ≤ ... ≤ pn < +∞.

Let −1 < pi < 0 for i = 1, ..., m and pi ≥ 0 for i = m + 1, ..., n where 0 ≤ m ≤ n.
This class of equations has received considerable attention in the last years and not 

only, see, for example, [1–5,10–13,22,23] and the references therein. Concerning the dif-
ferent aspects of the stationary case, see, for example, [6,7,17,22,23]. From [13] it follows 
that if u0 ∈ L∞(Ω), then there exists a unique weak solution of problem (1.1)–(1.3)
which is defined as a function

u ∈ L∞(ΩT ) ∩ V (ΩT ) ∩ C([0, T ];Ls(Ω)) ∀s ∈ [1,∞), ut ∈ V ∗(ΩT ),

satisfying the integral identity

∫

ΩT

(
uφt −

n∑
i=1

|uxi
|piuxi

φxi

)
dxdt = −

∫

Ω

u0φ(0, x)dx

for an arbitrary smooth function φ(t, x) which is equal to zero for x ∈ ∂Ω and for t = T . 
Here V ∗(ΩT ) is the adjoint space to V (ΩT ) = ∩n

i=1Lpi+2(0, T ; Ui(Ω)) where Ui(Ω) is the 
closure of C0

∞(Ω) with respect to the norm ‖u‖Ui
= ‖u‖L2 +‖uxi

‖Lpi+2 (for more details 
see [13]).

The main goal of the present paper is to show that under the following assumption 
on the initial data u0:

n∑
i=1

max
Ω

|(|u0xi
|piu0xi

)xi
| < +∞, (1.4)

the derivative of a solution with respect to t is an L∞ function. The proof is based on 
the idea of introducing a new time variable inspired by the idea of introducing a new 
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spatial variable. The last was proposed by Kruzhkov [8] in his investigations devoted 
to the second order quasilinear parabolic equations with one spatial variable. Based on 
this idea he obtained the estimate of the low order spatial derivative of a solution of 
initial boundary value problems. Later the idea of introducing a new spatial variable 
was modified and applied to a wide class of multidimensional quasilinear parabolic and 
elliptic equations [14,15,17] (see also [16,18]).

It must be emphasized that the method we use does not require differentiation of 
the equation and can be applied to more general operator (for more details see remarks 
at the end of sections 2, 3). We restrict ourselves with equation (1.1) in order to avoid 
complicated assumptions and to make the idea as simple as possible.

Definition 1. We say that a function u(t, x) is a weak solution of problem (1.1)–(1.3) if

u ∈ L∞(ΩT ), uxi
∈ Lpi+2(ΩT ), ut ∈ L∞(ΩT )

and the following integral identity

∫

ΩT

(
ut φ +

n∑
i=1

|uxi
|piuxi

φxi

)
dxdt = 0

holds for an arbitrary smooth function φ which vanishes on (0, T ) × ∂Ω. The initial 
condition is satisfied in the classical sense. The boundary condition is satisfied in the 
sense of the trace of function.

Theorem 1. Suppose that condition (1.4) is fulfilled and Ω satisfies the exterior sphere 
condition. Then for an arbitrary T > 0, there exists a unique weak solution of problem 
(1.1)–(1.3). Moreover

‖ut‖L∞(ΩT ) ≤ C0 =
n∑

i=1
max

Ω
|(|u0xi

|piu0xi
)xi

|.

Let us turn to the gradient estimates. The case

0 ≤ min
i

pi ≤ max
i

pi < min
i

pi + 4
n + 2 ,

was considered in [3], where the existence result for the Cauchy–Dirichlet problem with 
inhomogeneous initial-boundary data was proved under the above restriction on the 
exponents pi. The obtained weak solution possess locally Lipschitz gradient with ut ∈
L

p
q−1 (0, T ; W−1, p

q−1 (Ω), where p = min pi, q = max pi. Moreover in [3] the following 
regularity result was established: if

0 ≤ min pi ≤ max pi < min pi + 4

i i i n
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then any weak solution u ∈ Lp(0, T ; W 1,p(Ω)) ∩ Lq
loc(0, T ; W 1,q

loc (Ω)) admits a locally 
bounded spatial gradient ∇u. Taking into account the fact that the equation under con-
sideration is nonuniformly parabolic, we can not expect the global L∞ gradient estimate 
for arbitrary domains, but we show that for some classes of domains Ω the global gradient 
estimate takes place for arbitrary pi > −1, i = 1, ..., n.

Concerning the additional restriction on Ω we suppose that either it is orthogonal 
parallelepiped

Ω = (−l1, l1) × ...× (−ln, ln)

or it satisfies the following (A) condition

Ω is convex and the parts of ∂Ω lying in the half spaces xi ≤ 0 and xi ≥ 0 can be 
expressed as

xi = Fi and xi = Gi, i = 1, ..., n, (A)

respectively, where the C2-functions Fi and Gi do not depend on variable xi.

For example

Ω = {x ∈ Rn :
n∑

i=1

x2
i

α2
i

< 1}, αi ∈ R \ {0}, i = 1, ..., n.

Theorem 2. Assume that condition (1.4) is fulfilled and Ω satisfies assumption (A) or 
Ω = (−l1, l1) × ... × (−ln, ln). Then for an arbitrary T > 0, there exists a unique weak 
solution of problem (1.1)–(1.3) such that uxi

∈ L∞(ΩT ). Moreover

‖ut‖L∞(ΩT ) ≤ C0, ‖uxi
‖L∞(ΩT ) ≤ Ci = max

Ω
|u0xi

|, i = 1, ..., n.

(This implies that u is continuous and so conditions (1.2), (1.3) are satisfied in the 
classical sense.)

If Ω = (−l1, l1) × ... × (−ln, ln) and the equation is singular, i.e. pi ∈ (−1, 0) ∀i, then 
the solution of the Cauchy–Dirichlet problem is more regular than in Theorem 2.

Definition 2. We say that a Lipschitz continuous function u(t, x) is a strong solution of 
problem (1.1)–(1.3) if uxixj

∈ L2(ΩT ), u(t, x) satisfies equation

ut =
n∑

i=1
(1 + pi)|uxi

|piuxixi

almost everywhere in ΩT and the initial and boundary conditions are satisfied in the 
classical sense.
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Theorem 3. Assume that condition (1.4) is fulfilled, Ω = (−l1, l1) × ... × (−ln, ln) and 
−1 < p1 ≤ p2 ≤ ... ≤ pn < 0. Then for an arbitrary T > 0, there exists a unique strong 
solution of problem (1.1)–(1.3). Moreover

‖ut‖L∞(ΩT ) ≤ C0, ‖uxi
‖L∞(ΩT ) ≤ Ci,

‖uxixj
‖2
L2(ΩT ) ≤

1
2(pi + 1)K

2
i C

−pi

i , Ki = ‖u0xi
‖L2(Ω), i, j = 1, ..., n.

Now let us turn to the Cauchy problem: consider the equation

ut =
n∑

i=1
(|uxi

|piuxi
)xi

in ΠT = (0, T ) × Rn, (1.5)

coupled with the initial condition

u(0, x) = u0(x) in Rn. (1.6)

Suppose that u0(x) has a compact support which we denote by Ω.

Definition 3. We say that a globally Lipschitz continuous function u(t, x) is a weak 
solution of problem (1.5), (1.6) if u(0, x) = u0(x) and the following integral identity

∫

ΠT

(
ut φ +

n∑
i=1

|uxi
|piuxi

φxi

)
dxdt = 0

holds for an arbitrary smooth function φ with compact support.

Theorem 4. Suppose that condition (1.4) is satisfied. Then for an arbitrary T > 0, there 
exists a unique weak solution of problem (1.5), (1.6). Moreover

‖uxi
‖L∞(ΠT ) ≤ Ci = max

Ω
|u0xi

|, i = 1, ..., n,

‖ut‖L∞(ΠT ) ≤ C0 =
n∑

i=1
max

Ω
|
(
|u0xi

|piu0xi

)
xi
|.

Definition 4. We say that a globally Lipschitz continuous function u(t, x) is a strong 
solution of problem (1.5), (1.6) if uxixj

∈ L2(ΠT ), u(0, x) = u0(x) and u(t, x) satisfies 
equation

ut =
n∑

i=1
(1 + pi)|uxi

|piuxixi

almost everywhere in ΠT .



3970 A.S. Tersenov, A.S. Tersenov / Journal of Functional Analysis 272 (2017) 3965–3986
Theorem 5. Suppose that (1.4) is fulfilled and assume that −1 < p1 ≤ p2 ≤ ... ≤ pn < 0. 
Then for an arbitrary T > 0, there exists a unique strong solution of problem (1.5), (1.6). 
Moreover

‖uxi
‖L∞(ΠT ) ≤ Ci, ‖ut‖L∞(ΠT ) ≤ C0

and

‖uxixj
‖2
L2(ΠT ) ≤

1
2(pi + 1)K

2
i C

−pi

i , Ki = ‖u0xi
‖L2(Ω), i, j = 1, ..., n.

The paper is organized as follows. In sections 2, 3, 4 we prove Theorems 1, 2, 3
respectively, section 5 is devoted to Theorems 4, 5.

2. Proof of Theorem 1

2.1. Regularization

Regularize equation (1.1):

uεt =
n∑

i=1
((uα

εxi
+ ε)pi/αuεxi

)xi
in ΩT , (2.1)

where constant ε ∈ (0, ε0], ε0 > 0 is an arbitrary fixed number and α ∈ (0, 1) is a 
constant such that α = r/ρ with positive integers r and ρ, where r < ρ and r is even.

Note that for such α

(zα)pi/α = |z|pi .

If 0 < m ≤ n (i.e. there exists at least one negative pi) then we impose an additional 
condition on α: α is small enough so that

−1 ≤ pi − α for i = 1, ...,m. (2.2)

We will use this condition below in the proof of Lemma 2.1.
Introduce functions aiε(zi)

aiε(zi) = (zαi + ε)
pi
α −1((pi + 1)zαi + ε

)
.

Taking into account that

((uα
εxi

+ ε)pi/αuεxi
)xi

= (uα
εxi

+ ε)
pi
α −1((pi + 1)uα

εxi
+ ε

)
uεxixi

,
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we rewrite equation (2.1) in the following form

uεt =
n∑

i=1
aiε(uεxi

)uεxixi
in ΩT . (2.3)

Consider equation (2.3) coupled with conditions

uε = 0 on [0, T ] × ∂Ω, uε(0, x) = u0(x) in Ω. (2.4)

The existence of a classical solution uε of problem (2.3), (2.4) follows from [13] (see 
p. 3024).

2.2. A priori estimates

Our goal in this section is to obtain uniform with respect to ε estimates of solutions 
to (2.3), (2.4) which would enable us to pass to the limit as ε → 0.

Denote by

C(ε0) =
m∑
i=1

max
Ω

∣∣(|u0xi
|piu0xi

)xi

∣∣ +
n∑

i=m+1
max

Ω

∣∣((uα
0xi

+ ε0)pi/αu0xi

)
xi
|.

For simplicity in the proofs we will omit the subindex ε.

Lemma 2.1. For every ε ∈ (0, ε0] and (t, x) ∈ QT the following estimate

|uε(t, x) − u0(x)| ≤ C(ε0) t

takes place.

Proof. First let us show that

C(ε0) ≥
∣∣∣

n∑
i=1

aiε(u0xi
)u0xixi

∣∣∣. (2.5)

To this end consider |aiε(u0xi
)u0xixi

|, i = 1, ..., n. We have

|aiε(u0xi
)u0xixi

| = (uα
0xi

+ ε)
pi
α −1[(pi + 1)uα

0xi
+ ε]|u0xixi

| ≡ f(ε, x).

By direct calculations we obtain

∂f(ε, x) =
(
uα

0x + ε
) pi

α −2
(pi

ε + pi
pi + 1 − α

uα
0x

)
|u0xixi

|. (2.6)

∂ε i α α i
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Consequently ∂f/∂ε ≥ 0 for pi ≥ 0. Thus for pi ≥ 0 the function |aiε(u0xi
)u0xixi

| is 
increasing with respect to ε for arbitrary x and as a consequence maxΩ |aiε(u0xi

)u0xixi
|

is increasing with respect to ε as well. Hence

∣∣∣
n∑

i=m+1
aiε(u0xi

)u0xixi

∣∣∣ ≤
n∑

i=m+1
max

Ω

∣∣((uα
0xi

+ ε)pi/αu0xi

)
xi
|

≤
n∑

i=m+1
max

Ω

∣∣((uα
0xi

+ ε0)pi/αu0xi

)
xi
|.

From (2.6) we have that ∂f/∂ε ≤ 0 for −1 < pi < 0 (see (2.2)). So we conclude that for 
negative pi the function |aiε(u0xi

)u0xixi
| is decreasing with respect to ε for arbitrary x

an as a consequence maxΩ |aiε(u0xi
)u0xixi

| is decreasing with respect to ε as well. Thus

∣∣∣
m∑
i=1

aiε(u0xi
)u0xixi

∣∣∣ ≤
m∑
i=1

max
Ω

∣∣((uα
0xi

+ ε)pi/αu0xi

)
xi
| ≤

m∑
i=1

max
Ω

∣∣(|u0xi
|piu0xi

)
xi
|

and (2.5) is proved.
Introduce the function

h(t) = (C(ε0) + δ)t, t ∈ [0, T ],

where constant δ > 0. Let us prove the following inequality

u(t, x) − u0(x) ≤ h(t). (2.7)

Consider the linear parabolic operator

L ≡
n∑

i=1
aiε(u0xi

) ∂2

∂x2
i

− ∂

∂t
.

Define the function φ− ≡ u − [u0(x) + h(t)]. Obviously

Lφ− =
n∑

i=1
aiε(u0xi

)uxixi
− ut −

[ n∑
i=1

aiε(u0xi
)u0xixi

− h′(t)
]

=
n∑

i=1
aiε(u0xi

)uxixi
− ut −

n∑
i=1

aiε(u0xi
)u0xixi

+ C(ε0) + δ

>
n∑

i=1
aiε(u0xi

)uxixi
− ut. (2.8)

The last inequality is due to (2.5) and the positivity of δ. Denote by ΓT the parabolic 
boundary of ΩT , i.e.
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ΓT = ∂ΩT \ {(T, x) : x ∈ Ω}.

Suppose that at some point N ∈ ΩT \ ΓT the function φ− attains its maximum, then at 
this point we have

∇φ− = 0 ⇔ ∇u = ∇u0 ⇒ aiε(uxi
) = aiε(u0xi

) i = 1, ..., n, ⇒
n∑

i=1
aiε(u0xi

)uxixi
− ut

∣∣∣
N

=
n∑

i=1
aiε(uxi

)uxixi
− ut

∣∣∣
N

= 0.

Hence, from (2.8),

Lφ−
∣∣∣
N

> 0,

which contradicts the assumption that φ− attains its maximum at N . Consider φ− on 
ΓT :

for x ∈ ∂Ω, t ∈ [0, T ] we have φ− = −h(t) ≤ 0;
for t = 0, x ∈ Ω we have φ− = −h(0) = 0.

Thus φ− ≤ 0 and (2.7) is proved.
Let us show now that

u(t, x) − u0(x) ≥ −h(t). (2.9)

Introduce the function φ+ ≡ u − [u0(x) − h(t)]. Similarly to the previous case we ob-
tain

Lφ+ =
n∑

i=1
aiε(u0xi

)uxixi
− ut −

[ n∑
i=1

aiε(u0xi
)u0xixi

+ h′(t)
]

=
n∑

i=1
aiε(u0xi

)uxixi
− ut −

n∑
i=1

aiε(u0xi
)u0xixi

− C(ε0) − δ

<

n∑
i=1

aiε(u0xi
)uxixi

− ut. (2.10)

Suppose that at some point N1 ∈ ΩT \ΓT the function φ+ attains its minimum, then at 
this point we have

∇φ+ = 0 ⇔ ∇u = ∇u0 ⇒ aiε(u0xi
) = aiε(uxi

), i = 1, ..., n, ⇒
n∑

aiε(u0xi
)uxixi

− ut

∣∣∣
N1

=
n∑

aiε(uxi
)uxixi

− ut

∣∣∣
N1

= 0.

i=1 i=1
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Hence, from (2.10),

Lφ+
∣∣∣
N1

< 0,

which contradicts the assumption that φ+ attains its minimum at N1. Consider φ+

on ΓT :

for x ∈ ∂Ω, t ∈ [0, T ] we have φ+ = h(t) ≥ 0;
for t = 0, x ∈ Ω we have φ+ = h(0) = 0.

Thus φ+ ≥ 0 and (2.9) is proved. From (2.7) and (2.9) we have

|u(t, x) − u0(x)| ≤ h(t).

Passing to the limit as δ → 0 we finish the prove of Lemma 2.1. �
Lemma 2.2. For every ε ∈ (0, ε0] and (t, x) ∈ QT the inequality

|uεt| ≤ C(ε0)

holds.

Proof. Consider equation (2.3) at two different points (t, x) and (τ, x):

n∑
i=1

aiε(uxi
)uxixi

− ut = 0, u = u(t, x), (2.11)

n∑
i=1

aiε(uxi
)uxixi

− uτ = 0, u = u(τ, x). (2.12)

Subtracting (2.12) from (2.11) for v(t, τ, x) ≡ u(t, x) − u(τ, x), since

vt = ut(t, x), vτ = −uτ (τ, x), vxixi
= uxixi

(t, x) − uxixi
(τ, x),

we obtain

n∑
i=1

aiε(uxi
(t, x))vxixi

− vt − vτ

=
n∑

i=1

[
aiε(uxi

(τ, x)) − aiε(uxi
(t, x))

]
uxixi

(τ, x).
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Consider the function

w ≡ v − C(ε0)(t− τ) ≡ u(t, x) − u(τ, x) − C(ε0)(t− τ)

in the domain

P = {(t, τ, x) : t ∈ (0, T ), τ ∈ (0, T ), x ∈ Ω, t > τ}.

Obviously for w(t, τ, x) we have:

n∑
i=1

aiε(uxi
(t, x))wxixi

− wt − wτ =
n∑

i=1

[
aiε(uxi

(τ, x)) − aiε(uxi
(t, x))

]
uxixi

(τ, x).

Introduce the function

ω ≡ w e−τ

which satisfies in P the following linear ultraparabolic equation

Lω ≡
n∑

i=1
aiε(uxi

(t, x))ωxixi
− ωt − ωτ − ω

= e−τ
n∑

i=1

[
aiε(uxi

(τ, x)) − aiε(uxi
(t, x))

]
uxixi

(τ, x). (2.13)

Let

Γτ = ∂P \ {(t, τ, x) : t = T, 0 < τ < T, x ∈ Ω}.

Suppose that the function ω attains its positive maximum at some point N ∈ P \Γτ . At 
this point it should be

Lω
∣∣∣
N

=
n∑

i=1
aiε(uxi

(t, x))ωxixi
− ωt − ωτ − ω

∣∣∣
N

< 0,

since ωxixi
(N) ≤ 0, −ωt(N) ≤ 0, −ωτ (N) = 0, −ω(N) < 0. On the other hand at this 

point

∇ω = 0 ⇔ ∇u(t, x) = ∇u(τ, x)

and hence, from (2.13),

Lω
∣∣∣ = 0.

N
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From this contradiction we conclude that ω can not attain its positive maximum in 
P \ Γτ .

Consider ω on Γτ :

for x ∈ ∂Ω, t ∈ [0, T ], τ ∈ [0, T ], t > τ we have ω = −C(ε0)(t − τ)e−τ ≤ 0;
for t = τ , x ∈ Ω, t ∈ [0, T ] we have ω = 0;
for τ = 0, t ∈ [0, T ], x ∈ Ω we have ω = u(t, x) − u0(x) − C(ε0)t ≤ 0 due to 
Lemma 2.1.

Consequently ω ≤ 0 in P , i.e.

u(t, x) − u(τ, x) ≤ C(ε0)(t− τ). (2.14)

Now subtracting (2.11) from (2.12) for ṽ(t, τ, x) ≡ u(τ, x) − u(t, x) we obtain

n∑
i=1

aiε(uxi
(τ, x))ṽxixi

− ṽt − ṽτ =
n∑

i=1

[
aiε(uxi

(t, x)) − aiε(uxi
(τ, x))

]
uxixi

(t, x).

Obviously the function w̃ ≡ ṽ − C(ε0)(t − τ) satisfies in P the following relation

n∑
i=1

aiε(uxi
(τ, x))w̃xixi

− w̃t − w̃τ =
n∑

i=1

[
aiε(uxi

(t, x)) − aiε(uxi
(τ, x))

]
uxixi

(t, x).

Introduce the function ω̃ ≡ w̃ e−τ which satisfies in P the following ultraparabolic equa-
tion

n∑
i=1

aiε(uxi
(τ, x))ω̃xixi

− ω̃t − ω̃τ − ω̃

= e−τ
n∑

i=1

[
aiε(uxi

(t, x)) − aiε(uxi
(τ, x))

]
uxixi

(t, x).

Similarly to the previous case we obtain that ω̃ can not attain its positive maximum in 
P \ Γτ and that ω̃ ≤ 0 on Γτ . The only difference is that for τ = 0, t ∈ [0, T ], x ∈ Ω we 
have ω̃ = u0(x) − u(t, x) − C(ε0)t, which is also nonpositive, due to Lemma 2.1.

Consequently, ω̃ ≤ 0 in P , i.e.

u(τ, x) − u(t, x) ≤ C(ε0)(t− τ) in P . (2.15)

From (2.14) and (2.15) we conclude that

|u(t, x) − u(τ, x)| ≤ C(ε0)(t− τ) in P . (2.16)
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Taking into account the symmetry of the variables t and τ , we similarly consider the 
case t < τ to obtain that

|u(τ, x) − u(t, x)| ≤ C(ε0)(τ − t) in P 1, (2.17)

where

P1 = {(t, τ, x) : t ∈ (0, T ), τ ∈ (0, T ), x ∈ Ω, τ > t}.

Note that here instead of Γτ we should take

Γt = ∂P1 \ {(t, τ, x) : τ = T, 0 < t < T, x ∈ Ω}.

From (2.16) and (2.17) we conclude that in

{(t, τ, x) : t ∈ [0, T ], τ ∈ [0, T ], x ∈ Ω}

the inequality

|u(t, x) − u(τ, x)| ≤ C(ε0)|t− τ |

holds. The last implies the required estimate. �
Remark 2.1. Concerning the linear and nonlinear ultraparabolic equations see [19,21]
and the references therein.

In order to pass to the limit in (2.3), (2.4) we also need the next estimates of the 
spatial derivatives of a solution.

Lemma 2.3. There exists a constant C such that
∫

ΩT

|uεxi
(x, t)|pi+2 dxdt ≤ C, i = 1, . . . , n,

for every ε ∈ (0, ε0].

The proof of Lemma 2.3 follows from [13] p. 3016. The proof of the next lemma follows 
from standard considerations based on the maximum principle.

Lemma 2.4. For every ε ∈ (0, ε0] the following estimate takes place

|uε(x, t)| ≤ max
Ω

|u0(x)|.

Now we are ready to pass to the limit as ε → 0.
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2.3. Passage to the limit

We will obtain a weak solution to problem (1.1)–(1.3) as a limit of the approximate 
solutions uε constructed in Section 2.1.

Multiplying equation (2.1) by an arbitrary smooth function φ, which vanishes on 
(0, T ) × ∂Ω and integrating by parts, we obtain

∫

ΩT

uεt φdxdt +
∫

ΩT

n∑
i=1

(uα
εxi

+ ε)pi/α uεxi
φxi

dxdt = 0. (2.18)

As it follows from Lemmas 2.2–2.4, there exists a sequence εk such that

uεk → u *-weakly in L∞(ΩT ),

uεkxi
→ uxi

weakly in Lpi+2(ΩT ), i = 1, ..., n,

uεkt → ut *-weakly in L∞(ΩT )

as εk → 0. Thus, in order to pass to the limit in (2.18), we only have to prove that

∫

ΩT

n∑
i=1

(uα
εkxi

+ εk)pi/α uεkxi
φxi

dxdt →
∫

ΩT

n∑
i=1

|uxi
|pi uxi

φxi
dxdt as εk → 0.

This can be done exactly in the same way as in [13] (see [13] p. 3019 relation (2.25)).
Finally, passing to the limit as ε0 → 0 we obtain the needed estimate

‖ut‖L∞(ΩT ) ≤ C0.

The uniqueness of the weak solution can be proved by standard considerations taking 
into account the monotonicity of the elliptic part of the operator (see [13], p. 3019).

Theorem 1 is proved.

Remark 2.2. The a priori estimate on uεt can be obtained for more general case. Namely, 
instead of equation (2.3) we can consider the following one

uεt =
n∑

i=1
aiε(x,∇uε)uεxixi

+
n∑

i=1
bi(x,∇uε) + f(x, uε,∇uε)

for a wide class of functions aiε, bi and f under assumptions similar to the one dimen-
sional case [20]. The problem here is the passage to the limit which is an open question. 
In some cases the passage to the limit is simple, for example if aiε are as in (2.3), bi are 
linear with respect to ∇u and f = f(x, uε) is a continuous non-increasing in uε function 
such that f(0) = 0.
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3. Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1. The only difference 
is that we should prove the estimate ‖uεxk

‖L∞(ΩT ) ≤ Ck, k = 1, ..., n for a solution of 
problem (2.3), (2.4) under the additional assumption (A) on the domain Ω or in the case 
when Ω is orthogonal parallelepiped. We will do this in two steps: first we obtain the 
boundary estimate and then the global estimate. As in the previous section we will omit 
index ε in uε in the proofs.

Lemma 3.1. For every ε ∈ (0, ε0] the following inequalities hold:

(i) if Ω satisfies assumption (A) then

|uε(t, x)| ≤ Ck(Gk − xk), |uε(t, x)| ≤ Ck(xk − Fk), k = 1, ..., n

(ii) if Ω = (−l1, l1) × ... × (−ln, ln) then

|uε(t, x)| ≤ Ck(lk − xk), |uε(t, x)| ≤ Ck(lk + xk), k = 1, ..., n.

Proof. (i) Assume that Ω satisfies assumption (A). Let k = 1, the cases k = 2, 3, ..., n
are considered similarly. Introduce the function

v(t, x) = u(t, x) − C1
(
G1(x2, ..., xn) − x1

)
.

Obviously

n∑
i=1

aiε(uxi
)vxixi

− vt = −C1

n∑
i=2

aiε(uxi
)G1xixi

,

and for ṽ = ve−t

n∑
i=1

aiε(uxi
)ṽxixi

− ṽt − ṽ = −C1e
−t

n∑
i=2

aiε(uxi
)G1xixi

≥ 0, (3.1)

the last inequality is due to the convexity of Ω which implies the inequality G1xixi
≤ 0. 

From (3.1) it follows that the function ṽ cannot attain its positive maximum in ΩT \ΓT

(ΓT was defined in the proof of Lemma 2.1). On the parabolic boundary ΓT we have

1. for x1 = G1, t ∈ [0, T ]: ṽ = 0;
2. for x1 = F1, t ∈ [0, T ]: ṽ = e−tC1(F1 −G1) ≤ 0;
3. for t = 0, x ∈ Ω: ṽ = u0(x) −C1

(
G1(x2, ..., xn) − x1

)
≤ 0, because u0

∣∣∣
x1=G1

= 0 and 

|u0x1 | ≤ C1.
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Consequently

v ≤ 0 in QT ⇔ u ≤ C1
(
G1(x2, ..., xn) − x1

)
in QT .

Next we obtain a lower bound. Introduce the function

w(t, x) = u(t, x) + C1
(
G1(x2, ..., xn) − x1

)
.

Similarly to the previous case for w̃ = we−t we obtain

n∑
i=1

aiε(uxi
)w̃xixi

− w̃t − w̃ = C1e
−t

n∑
i=2

aiε(uxi
)G1xixi

≤ 0,

hence the function w̃ cannot attain its negative minimum in QT \ΓT . Taking into account 
that on the parabolic boundary ΓT we have w̃ ≥ 0 we conclude that

w ≥ 0 in QT ⇔ u ≥ −C1
(
G1(x2, ..., xn) − x1

)
in QT .

Thus

|u(t, x)| ≤ C1(G1 − x1).

The proof of the second inequality (i.e. the inequality |u(t, x)| ≤ C1(x1 −F1)) is similar. 
Instead of v = u −C1

(
G1(x2, ..., xn) − x1

)
and w = u +C1

(
G1(x2, ..., xn) − x1

)
we take 

v = u −C1
(
x1 −F1(x2, ..., xn)

)
and w = u +C1

(
x1 −F1(x2, ..., xn)

)
respectively and use 

the fact that the convexity of the domain Ω implies that F1xixi
≥ 0.

(ii) Assume that Ω = (−l1, l1) × ... × (−ln, ln). The proof is similar to the previous 
case. In the first estimate the only difference is that we take v1 instead of v and w1
instead of w where

v1 = u− C1(l1 − x1) and w1 = u + C1(l1 − x1).

In order to obtain the second estimate we take

v1 = u− C1(l1 + x1) and w1 = u + C1(l1 + x1). �
Lemma 3.2. If Ω satisfies assumption (A) or Ω = (−l1, l1) × ... × (−ln, ln), then for every 
ε ∈ (0, ε0] the following estimates take place

|uεxk
(t, x)| ≤ Ck, k = 1, ..., n.

Proof. 1). Suppose that Ω satisfies assumption (A). We will prove the estimate for k = 1, 
for k = 2, ..., n the proof is similar. Consider the equations
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a1ε(ux1)ux1x1 +
n∑

i=2
aiε(uxi

)uxixi
− ut = 0, u = u(t, x) (3.2)

and

a1ε(uξ)uξξ +
n∑

i=2
aiε(uxi

)uxixi
− ut = 0, u = u(t, x̃), (3.3)

where x = (x1, x2, ..., xn), x̃ = (ξ, x2, ..., xn). Subtracting (3.3) from (3.2), for

v(t, ξ, x) = u(t, x) − u(t, x̃) − C1(x1 − ξ)

we obtain

a1ε(ux1(t, x))vx1x1 + a1ε(uξ(t, x̃))vξξ +
n∑

i=2
aiε(uxi

(t, x))vxixi
− vt

=
n∑

i=2

[
aiε(uxi

(t, x̃)) − aiε(uxi
(t, x))

]
uxixi

(t, x̃).

For ṽ = ve−t we have

a1ε(ux1(t, x))ṽx1x1 + a1ε(uξ(t, x̃))ṽξξ +
n∑

i=2
aiε(uxi

(t, x))ṽxixi
− ṽt − ṽ

= e−t
n∑

i=2

[
aiε(uxi

(t, x̃)) − aiε(uxi
(t, x))

]
uxixi

(t, x̃). (3.4)

Consider (3.4) in the domain

PT = {(t, ξ, x) : t ∈ (0, T ), ξ ∈ (F1, G1), x1 ∈ (F1, G1), x1 > ξ, (x2, ..., xn) ∈ Ω1},

where Ω1 is a projection of Ω on the hyperplane x1 = 0 (recall that F1 = F1(x2, ..., xn), 
G1 = G1(x2, ..., xn)). Denote by Γ the parabolic boundary of PT i.e.

Γ = ∂PT \ {(T, ξ, x) : ξ ∈ (F1, G1), x1 ∈ (F1, G1), x1 > ξ, (x2, ..., xn) ∈ Ω1}.

Suppose that at some point N ∈ PT \ Γ the function ṽ attains its positive maximum. 
On the one hand we have

a1ε(ux1(t, x))ṽx1x1 + a1ε(uξ(t, x̃))ṽξξ +
n∑

i=2
aiε(uxi

(t, x))ṽxixi
− ṽt − ṽ

∣∣∣
N

< 0,

on the other
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∇ṽ
∣∣∣
N

= 0 ⇔ uxi
(t, x) − uxi

(t, x̃)
∣∣∣
N

= 0, i = 2, ..., n ⇒

aiε(uxi
(t, x)) − aiε(uxi

(t, x̃))
∣∣∣
N

= 0,

and thus, from (3.4) we obtain

a1ε(ux1(t, x))ṽx1x1 + a1ε(uξ(t, x̃))ṽξξ +
n∑

i=2
aiε(uxi

(t, x))ṽxixi
− ṽt − ṽ

∣∣∣
N

= 0.

Hence ṽ cannot attain its positive maximum in PT \Γ. Consider Γ which consists of four 
parts:

1. ξ = F1, x1 ∈ [F1, G1], (x2, ..., xn) ∈ Ω1, t ∈ [0, T ];
2. x1 = G1, ξ ∈ [F1, G1], (x2, ..., xn) ∈ Ω1, t ∈ [0, T ];
3. x1 = ξ ∈ [F1, G1], (x2, ..., xn) ∈ Ω1, t ∈ [0, T ];
4. t = 0, x1, ξ ∈ [F1, G1], (x2, ..., xn) ∈ Ω1.

According to the previous lemma, on the first and second parts we have

ṽ = e−t
(
u(t, x) − C1(x1 − F1)

)
≤ 0,

ṽ = e−t
(
− u(t, x̃) − C1(G1 − ξ)

)
≤ 0,

respectively. For x1 = ξ we have ṽ = 0 and for t = 0:

ṽ = u0(x) − u0(x̃) − C1(x1 − ξ) ≤ 0.

The last is due to the inequality |u0x1 | ≤ C1. Thus we conclude that ṽ ≤ 0 in PT and 
consequently

u(t, x) − u(t, x̃) ≤ C1(x1 − ξ) in PT . (3.5)

Similarly, subtracting (3.2) from (3.3) and considering the function

ṽ1 = e−t
(
u(t, x̃) − u(t, x) − C1(x1 − ξ)

)
,

instead of ṽ, we obtain

u(t, x̃) − u(t, x) ≤ C1(x1 − ξ) in PT .

From this inequality and inequality (3.5) we conclude that

|u(t, x) − u(t, x̃)| ≤ C1(x1 − ξ) in PT .



A.S. Tersenov, A.S. Tersenov / Journal of Functional Analysis 272 (2017) 3965–3986 3983
Due to the symmetry of the variables x1 and ξ the case x1 < ξ can be considered in the 
same way. Thus for

x1 ∈ [F1, G1], ξ ∈ [F1, G1], (x2, ...xn) ∈ Ω1, t ∈ [0, T ]

the inequality

|u(t, x) − u(t, x̃)| ≤ C1|x1 − ξ|

holds, implying the needed estimate.
2). The case Ω = (−l1, l1) × ... × (−ln, ln) is treated similarly. The only difference is 

in the construction of the domain PT , here we should take

PT = {(t, ξ, x) : t ∈ (0, T ), ξ ∈ (−l1, l1), x1 ∈ (−l1, l1), x1 > ξ, |xi| < li, i = 2, ..., n)}. �
Remark 3.1. The a priori estimate on ∇uε can be obtained for more general case. Namely, 
instead of equation (2.3) we can take the following one

uεt =
n∑

i=1
aiε(t,∇uε)uεxixi

+
n∑

i=1
bi(t,∇uε) + f(t, x, uε,∇uε)

for a wide class of functions aiε, bi and f under assumptions similar to [14,16]. However 
the passage to the limit in this case is an open question. In some cases the passage to 
the limit is simple, for example if aiε are as in (2.3), bi are linear with respect to ∇u and 
f = f(t, uε) is a continuous non-increasing in uε function such that f(t, 0) = 0.

4. Proof of Theorem 3

In order to prove Theorem 3 we first obtain the estimates of ‖uεxixj
‖L2(ΩT ) (indepen-

dent of ε) and second, pass to the limit in the nonlinear term aiε(uεxi
)uεxixi

.
In this section we assume that pi ∈ (−1, 0) for all i and Ω is an orthogonal paral-

lelepiped.

Lemma 4.1. For every ε ∈ (0, ε0] the following estimates take place

∫

ΩT

( ∂2uε

∂xi∂xj

)2
dtdx ≤ 1

2(pi + 1)K
2
i (Cα

i + ε0)−pi/α, i, j = 1, ..., n.

Proof. We restrict ourselves with i = 1 (j = 1, ..., n), the considerations for i = 2, ..., n
are similar. Multiply equation (2.3) by ux1x1 and integrate by parts with respect to x1
to obtain
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−1
2

∂

∂ t

l1∫

−l1

u2
x1
dx1 =

l1∫

−l1

a1ε(ux1)u2
x1x1

dx1

−
n∑

j=2

l1∫

−l1

ajε(uxj
)uxjxjx1ux1dx1

−
n∑

j=2

l1∫

−l1

a′jε(uxj
)uxjx1uxjxj

ux1dx1, (4.1)

we use here the fact that uxjxj

∣∣∣
x1=±l1

= 0 for j = 2, ..., n and that ut

∣∣∣
x1=±l1

= 0. 
Integrate (4.1) by parts with respect to x2, ..., xn to obtain

−1
2

∂

∂ t

∫

Ω

u2
x1
d x =

∫

Ω

a1ε(ux1)u2
x1x1

d x +
n∑

j=2

∫

Ω

ajε(uxj
)u2

xjx1
dx.

We use here the fact that ux1

∣∣∣
xj=±lj

= 0 for j = 2, ..., n.
Integrate the last relation with respect to t to obtain

∫

ΩT

ajε(uxj
)u2

xjx1
dxdt ≤ 1

2

∫

Ω

u2
0x1

dx, j = 1, ..., n.

Taking into account that

ajε(uxj
) = (uα

xj
+ ε)

pj
α −1((pj + 1)uα

xj
+ ε

)
≥ (pj + 1)(uα

xj
+ ε)

pj
α ≥ (pj + 1)(Cα

j + ε0)
pj
α

we obtain the needed estimates. �
Recall that for the solution of problem (2.3), (2.4) the estimates of the previous 

sections hold as well. Thus we have that there exists a sequence εk such that

uεk → u uniformly,
∂uεk

∂xi
→ ∂u

∂xi
*-weakly in L∞(ΩT ), i = 1, ..., n,

uεk

∂t
→ ∂u

∂t
*-weakly in L∞(ΩT ),

∂2uεk

∂xi∂xj
→ ∂2u

∂xi∂xj
weakly in L2(ΩT ), i = 1, ..., n,

as εk → 0.
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Multiply equation (2.3) by an arbitrary smooth function φ and integrate to obtain

∫

ΩT

[
uεt −

n∑
i=1

aiε(uεxi
)uεxixi

]
φdxdt = 0. (4.2)

In order to pass to the limit in (4.2) we show that in some sense

aiε(uεkxi
) → a(uxi

) = (1 + pi)|uxi
|pi .

To this end we will show that

∂uεk

∂xi
→ ∂u

∂xi
in L2(ΩT ), i = 1, ..., n. (4.3)

In fact, consider

W ≡ {u : u ∈ L2(0, T ;H2(Ω)), ut ∈ L2(0, T ;L2(Ω))}

(actually ut ∈ L∞(0, T ; L∞(Ω))). From the compactness lemma (see, for example, [10], 
Ch. 1, Section 5) it follows that the embedding W ⊂ L2(0, T ; H1(Ω)) is compact and 
consequently (4.3) holds.

Thus we can pass to the limit in (4.2) and obtain strong solution (according to Defi-
nition 2).

The last step in the proof of Theorem 3 is to pass to the limit ε0 → 0 in order to 
obtain the declared estimate ‖uxixj

‖2
L2(ΩT ) ≤ 1

2(pi+1)K
2
i C

−pi

i .

5. Proof of Theorems 4 and 5

In order to prove Theorems 4 and 5 consider the problem (1.1)–(1.3) taking Ω = Ωl =
(−l, l)n and choosing l > 0 so that the support of u0(x) lies in Ωl. Denote the solution 
of this problem by ul. Note that all estimates obtained in the previous sections are 
independent of the size of the domain Ω i.e. of l in this case. The solution of the Cauchy 
problem is obtained as a limit of a sequence of solutions ul of problem (1.1)–(1.3) under 
an unlimited dilatation of the domain Ωl when l → ∞ applying the diagonal process 
(see, for example, [9]).
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