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In the present paper the initial boundary value problem for the fast diffusion equa-
tion with strong absorption is considered. An optimal condition guaranteeing the
strict positivity of the solution is proposed. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4798792]

I. INTRODUCTION AND FORMULATION OF THE RESULT

According to the law of heat conduction (or Fourier’s law), the heat flux density is equal to the
product of heat conductivity κ > 0 and the negative gradient − ∇u of the absolute temperature u. The
coefficient κ is generally a function of the temperature. The case of fast diffusion is characterized
by the unbounded growth of κ when u approaches 0 and as a consequence heat propagates from the
warm regions into the cold ones with extremely high speed. This fact usually is modeled by taking
κ = mum − 1 (up to constant multiplier) with m ∈ (0, 1). The heat equation then takes the form

ut − � um = 0.

If in a medium a process with (nonlinear) absorption takes place than in the right hand side
of the equation we should add the term responsible for this process, namely − up multiplied by a
positive constant (for more details see, for example, Refs. 5 and 7 and the references therein).

In the present paper we consider the following equation:

ut − �um = −λu p, 0 < m < 1, 0 < p < 1, λ > 0, in QT = (0, T ) × �, (1.1)

coupled with the boundary and initial conditions

u
∣∣∣
�T

= φ

∣∣∣
�T

> 0, on �T = [0, T ] × ∂� ∪ �, (1.2)

here � is a bounded domain in Rn satisfying the exterior sphere condition, T is an arbitrary positive
constant, and φ is a continuous on �T function. Without loss of generality assume that � is lying in
the strip |x1| ≤ l.

The solution of problems (1.1) and (1.2) with strong absorption (0 < p < 1) is known to develop
a nonempty set {x ∈ � : u(t, x) = 0}, the so called dead core, after finite time (see Refs. 1–5,
and 7). For m ≥ 1 (slow diffusion) and 0 < p < 1 it was shown in Ref. 1 that for large λ the dead
core formation takes place. On the contrary the solution remains positive if p ≥ 1. The case 0 < m
< 1 (fast diffusion) for Eq. (1.1), with one spatial variable, was considered in Ref. 3 where it was
shown that under certain assumptions on the initial-boundary conditions the dead core formation
takes place for 0 < p < m < 1.

Our goal is to give a sufficient condition guaranteeing the positivity of the solution of the above
problem for the multidimensional case. We show that for 0 < m ≤ p < 1 the fast diffusion dominates
the absorption so that even if the temperature on the boundary is arbitrary small the heat flow from
the boundary does not allow the formation of a zone with zero temperature. If the absorption is
“stronger” than diffusion, i.e., 0 < p < m < 1 in order to avoid the dead core formation we need the
boundary temperature to be big enough to provide sufficient heat flow from the boundary. Taking
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into account that for 0 < p < m < 1 without restrictions on φ the dead core formation takes place,
we assert that our condition is in some sense optimal.

As it was already mentioned, from the point of view of physics u is an absolute temperature.
Since the laws of thermodynamics state that the absolute zero cannot be reached, u should remains
strictly positive. Thus the result of this paper can be interpreted as the condition guarantying the
legitimacy of Eq. (1.1) with condition (1.2) in the description of nonlinear heat processes with strong
absorption and fast diffusion for any T > 0.

Let us formulate the result. Define two positive constants κ and κ̃

κ = min{
(2m(5/4)m−1 − m(1 − m)

4l2λ(5/4)p

) 1
p−m

,
4

5
min
�T

φ}, p > m (1.3)

κ̃ =
( 4l2λ(5/4)p

2m(5/4)m−1 − m(1 − m)

) 1
m−p

, p < m.

Theorem.
1. If 0 < m ≤ p < 1 then there exists a unique strictly positive in QT smooth solution u(t, x) of

problem (1.1), (1.2). Moreover, for 0 < m < p < 1

u(t, x) ≥ κ

and for 0 < m = p < 1

u(t, x) ≥ eμx1 min
�T

(φ e−μx1 ), μ2 = λ

m2
.

2. If 0 < p < m < 1 and min�T φ ≥ 5
4 κ̃ then there exists a unique strictly positive in QT smooth

solution u(t, x) of problem (1.1), (1.2). Moreover,

u(t, x) ≥ κ̃ .

II. PROOF OF THE THEOREM

Rewrite Eq. (1.1) in the following form:

ut − mum−1� u = m(m − 1)um−2|∇u|2 − λu p, (2.1)

and consider the auxiliary equation

ut − mam−1(u)� u = m(m − 1)am−2(u)|∇u|2 − λap(u), (2.2)

where

aq (z) =
{

zq , for z > κ

κq , for z ≤ κ
, (2.3)

if 0 < m < p < 1, and

aq (z) =
{

zq , for z > κ̃

κ̃q , for z ≤ κ̃

if 0 < p < m < 1. Our goal is to establish the a priori estimate u ≥ κ (u ≥ κ̃) for any classical
solution of problem (2.2), (1.2). If u ≥ κ (u ≥ κ̃) then first, the global existence and the uniqueness
of a classical solution of problem (2.2), (1.2) follows from the standard theory,6 second equations
(2.1) and (1.1) coincide. Note that the coefficient am − 1 remains strictly positive due to the estimate
u ≤ max�T φ which can be easily established by standard consideration based on maximum principle.

Define the linear operator L,

L ≡ ∂

∂t
− mam−1(u)�.
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Let 0 < m < p < 1. Define the function h(x1)

h(x1) = κ

4l2
x2

1 + κ, |x1| ≤ l.

Obviously

0 < κ ≤ h(x1) ≤ 5

4
κ. (2.4)

For w = u − h we have

L w = L u − L h = m(m − 1)am−2(u)|∇u|2 − λap(u) + mam−1(u)
κ

2l2
. (2.5)

Suppose that at a point N(t0, x0), where t0 ∈ (0, T] and x0 = (x01, . . . , x0n) ∈ � \ ∂�, the function
w attains its negative minimum, then at this point we have

w < 0, ∇w = 0 ⇔ u < h, ux1 = h′ = κ

2l2
x01, uxi = 0, i = 2, . . . , n.

Due to the fact that x0 is an internal point of � we have u2
x1

(N ) < κ2(2l)−2, hence, taking into
account that m − 1 < 0, from (2.5) we obtain

L w

∣∣∣
N

> m(m − 1)am−2(u)
κ2

4l2
− λap(u) + mam−1(u)

κ

2l2

∣∣∣
N
. (2.6)

There is two possibilities (see (2.4)):

κ < u(N ) ≤ 5

4
κ and u(N ) ≤ κ.

In the first case we have (see (2.3))

am−2(u(N )) = um−2(N ) < κm−2, am−1(u(N )) = um−1(N ) ≥
(5

4
κ
)m−1

and

−λap(u(N )) = −λu p(N ) ≥ −λ
(5

4
κ
)p

hence from (2.6)

L w

∣∣∣
N

> m(m − 1)
1

4l2
κm − λκ p

(5

4

)p + mκm 1

2l2

(5

4

)m−1 =

κm 2m(5/4)m−1 − m(1 − m) − 4l2λ
(
5/4)pκ p−m

4l2
,

and from (1.3)

L w

∣∣∣
N

> 0,

which contradicts the assumption that at point N the function w attains its negative minimum.
Now, if u(N) ≤ κ , then aq (u(Ñ )) = κq ∀q and from (2.6) and (1.3) we conclude that

L w

∣∣∣
N

> m(m − 1)
1

4l2
κm + m

1

2l2
κm − λκ p =

κm m + m2 − λ4l2κ p−m

4l2
> 0,
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which (as it was mentioned above) is impossible. Note that the last inequality is a consequence of
the following one

κ p−m ≤ 2m(5/4)m−1 − m(1 − m)

4l2λ(5/4)p
<

m + m2

4l2λ
.

Hence, the function w can not attain its negative minimum in (0, T] × �. On the parabolic boundary
�T due (2.4) we have

w

∣∣∣
�T

= φ − h
∣∣∣
�T

≥ min
�T

φ − 5

4
κ ≥ 0.

Consequently we obtain that w(t, x) ≥ 0 in QT which means that for the solution of problem (2.2),
(1.2) the estimate

u(t, x) ≥ h(x1) ≥ κ in x ∈ QT

holds. Taking into account that (2.2) and (2.1) coincide for u ≥ κ we prove the theorem for 0 < m
< p < 1.

Let us turn to the case 0 < p < m < 1. Define the function h̃(x1) :

h̃(x1) = κ̃

4l2
x2

1 + κ̃, |x1| ≤ l.

Similarly to the previous case we can show that at the point Ñ ∈ (0, T ] × � of negative minimum
of the function w̃ = u − h̃ we have

L w̃

∣∣∣
Ñ

> κ̃m
[2m(5/4)m−1 − m(1 − m)

4l2
− λκ̃ p−m

(5

4

)p
]

= 0

or

L w̃

∣∣∣
Ñ

> κ̃m
[m + m2

4l2
− λκ̃ p−m

]
> 0,

which contradicts the assumption that at the point Ñ the function w̃ attains its negative minimum.
Hence, w̃ cannot attain its negative minimum in (0, T] × �. On the parabolic boundary �T we have

w̃

∣∣∣
�T

= φ − h
∣∣∣
�T

≥ min
�T

φ − 5

4
κ̃ ≥ 0.

Consequently we obtain that w̃(t, x) ≥ 0 in QT which means that for the solution of problem (2.2),
(1.2) the estimate

u(t, x) ≥ h(x1) ≥ κ̃ in QT

holds. Taking into account that (2.2) and (2.1) coincide for u ≥ κ we prove the theorem for 0 < m
< p < 1.

The last case is 0 < m = p < 1. One can easily see that the substitution u = veμx1 , where μ2m2

= λ reduce (2.1) to the equation:

vt − mvm−1eμ(m−1)x1�v = m(m − 1)vm−2eμ(m−1)x1 |∇v|2 + 2μm2vm−1eμ(m−1)x1vx1

coupled with condition

v = φe−μx1 on �T .

By standard arguments we conclude that v ≥ min�T (φe−μx1 ) in QT and consequently
u ≥ eμx1 min�T (φ e−μx1 ) > 0. The theorem is proved.
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