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Abstract. The present paper is concerned with the Bernstein-Nagumo’s condition
for nonlinear and quasilinear parabolic equations. We show that Bernstein-Nagumo’s
condition can be substituted by a less restrictive one. We prove the existence theorems for
the boundary value problems and discuss several examples of gradient blow-up in order to
show the optimality of the new condition.

Introduction

In the present paper we consider the nonlinear equation

ut ¼ Fðt; x; u; ux; uxxÞ in QT ¼ ð�l; lÞ � ð0;TÞ;ð0:1Þ

coupled with one of the boundary conditions

uxðt;�lÞ ¼ uxðt; lÞ ¼ 0;ð0:2Þ

ux þ s1ðt; x; uÞjx¼�l ¼ ux þ s2ðt; x; uÞjx¼l ¼ 0;ð0:3Þ

uðt;�lÞ ¼ uðt; lÞ ¼ 0;ð0:4Þ

and the initial condition

uð0; xÞ ¼ u0ðxÞ:ð0:5Þ

We suppose that Fðt; x; u; p; rÞ is continuously di¤erentiable with respect to r function sat-
isfying the parabolicity condition, i.e.

Frðt; x; u; p; rÞ > 0 for ðt; x; u; p; rÞ A QT � ½�M;M � � R2:ð0:6Þ

Let us write equation (0.1) in the following form:

ut ¼ Frðt; x; u; ux; luxxÞuxx þ Fðt; x; u; ux; 0Þ; l A ½0; 1�;ð0:7Þ



using the mean value theorem. The well known Bernstein-Nagumo’s condition [5], [6], [25]
(see also [7], [19]–[21], [23], [24], [26]) for equation (0.7) appears as

jFðt; x; u; p; 0Þj
Frðt; x; u; p; rÞ e fðjpjÞ for ðt; x; u; p; rÞ A QT � ½�M;M � � R2;ð0:8Þ

where fðrÞ is nondecreasing positive function such that

Ðþy r dr

fðrÞ ¼ þy:

Condition (0.8) guarantees the global a priori estimate of the gradient of the bounded so-
lution. This a priori estimate plays a key role in proving the existence theorems. There are
examples showing that a violation of the Bernstein-Nagumo’s condition can imply the
gradient blow up on the boundary as well as at interior points of the domain (see [1], [2],
[9]–[12], [22], [27], [32]), i.e. there exists a t� such that juxðt; x0Þj ! þy when t ! t� at least
for some x0 A ½�l; l � while the solution itself remains bounded.

The goal of this paper is to substitute condition (0.8) by a less restrictive one which
allows an arbitrary growth of Fðt; x; u; p; 0Þ with respect to p. Of course the examples men-
tioned above do not satisfy this new condition. There are several papers on this subject for
the quasilinear equations [28]–[31]. We want to mention here that the results of the present
paper are new for quasilinear equations as well.

Let us formulate the main results. Suppose that the right hand side of equation (0.7)
can be represented in the following way:

Fðt; x; u; p; 0Þ ¼ f1ðt; x; u; pÞ þ f2ðt; x; u; pÞ;ð0:9Þ

where function f2 satisfies the next restrictions

f2ðt; y; u1; pÞ � f2ðt; x; u2; pÞf 0;ð0:10Þ

f2ðt; x; u1;�pÞ � f2ðt; y; u2;�pÞf 0ð0:11Þ

for t A ½0;T �, �l e y < xe l, �M e u1 < u2 eM, pf 0. For the Dirichlet boundary
value problem we additionally suppose that

uf2ðt; x; u; pÞe 0;ð0:12Þ

for ðt; xÞ A QT , jujeM and arbitrary p.

For the function f1 we assume that

j f1ðt; x; u; pÞjeFrðt; x; u; p; rÞcðjpjÞð0:13Þ

for ðt; xÞ A QT , jujeM and arbitrary ðp; rÞ, where cðrÞ A C1ð0;þyÞ is a nondecreasing
nonnegative function. Suppose that c satisfies the next condition: there exist p0 and p1 such
that 0 < p0 < p1 < þy and
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Ðp1

p0

r dr

cðrÞ f oscðuÞ1max u � min u:ð0:14Þ

Introduce function hðtÞ as a solution of the following problem:

h 00 þ cðjh 0jÞ ¼ 0; hð0Þ ¼ 0; hðt0Þ ¼ oscðuÞ;

where t0 will be specified below. Represent the solution of the equation h 00 þ cðjh 0jÞ ¼ 0 in

parametrical form (using the standard substitution h 0ðtÞ ¼ qðhÞ, dq

dt
¼ q

dq

dh
):

hðqÞ ¼
Ðq1

q

r dr

cðrÞ ; tðqÞ ¼
Ðq1

q

dr

cðrÞ :

The parameter q varies in the interval ½q0; q1� and we select q0; q1 such that
0 < q0 < q1 < þy, hðq0Þ ¼ oscðuÞ (this is possible due to (0.14)). Put t0 1 tðq0Þ. Suppose
that the initial function satisfies the assumption

ju0ðxÞ � u0ðyÞje hðjx � yjÞ:ð0:15Þ

If conditions (0.14), (0.15) as well as conditions (0.10), (0.11) are fulfilled then the
gradient of a bounded solution of problem (0.1), (0.2), (0.5) is bounded by a constant
depending only on c; oscðuÞ. In the case of problem (0.1), (0.3), (0.5) we need additional
assumption on p0 in terms of functions si (see Lemma 2). For problem (0.1), (0.4), (0.5)
assumptions (0.10)–(0.12), (0.14), (0.15) guarantee the gradient estimate of a bounded solu-
tion of this problem depending only on c and oscðuÞ.

Note that (0.15) is a smallness restriction on the oscðu0Þ. If u0ðxÞ is an arbitrary Lip-
schitz continuous function, then in condition (0.14) and in the parametrical representation
of hðtÞ we must take p0 ¼ K and q0 ¼ K respectively, where ju0ðxÞ � u0ðyÞjeK jx � yj
and we do not need restriction (0.15) (strictly speaking this restriction will be automatically
fulfilled (see proof of Lemma 1)). Thus for an arbitrary Lipschitz continuous function u0ðxÞ
conditions (0.14), (0.15) are equivalent to the following one: there exists p1 > K such that

Ðp1

K

r dr

cðrÞ f oscðuÞ:ð0:16Þ

The global gradient a priori estimate

juxðt; xÞjeC

holds with C depending only on c;K; oscðuÞ.

If f1ðt; x; u; pÞ1 0, then for a solution of problems (0.1), (0.2), (0.5) and (0.1), (0.4),
(0.5) we have:

max
QT

juxðt; xÞjeK:ð0:17Þ
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If f1ðt; x; u; pÞ is an arbitrary function satisfying the Bernstein-Nagumo’s condition (0.8),
then for a classical solution of problems (0.1), (0.2), (0.5) and (0.1), (0.4), (0.5) holds:

max
QT

juxðt; xÞjeC;ð0:18Þ

where the constant C depends only on f;K and oscðuÞ.

Note that if f1 satisfies (0.8) then for an arbitrary Lipschitz continuous function u0ðxÞ
the gradient estimate (0.18), (0.17) holds and condition (0.16) is automatically fulfilled for
any K .

One can easily construct function f2 satisfying conditions (0.10), (0.11) or (0.10)–
(0.12) and having an arbitrary growth with respect to p (see Section 2). Note that condi-
tions on f2 are independent of the principal part of equation (0.7) (i.e. of Fr).

In the case when f2 1 0 condition (0.16) first appears in [15], [16] for quasilinear
equation and in [3] for fully nonlinear equation.

In order to prove the existence theorems additional assumptions are needed. Specifi-
cally we require conditions (2.1)–(2.3) (see Section 2) to be fulfilled. Conditions (2.1), (2.2)
guarantee the a priori estimate of maxjuj, while (2.3) is an assumption on the smoothness of
the function Fðt; x; u; p; rÞ. Now let us formulate the existence theorems.

Theorem 1. Suppose that conditions (0.6), (0.9)–(0.13), (0.16), (2.1), (2.3) hold and

u0ðxÞ A C1þbð½�l; l �Þ, where u0ðGlÞ ¼ 0. Then for any T A ð0;yÞ there exists a solution of

problem (0.1), (0.4), (0.5) which belongs to C
1þg=2;2þg
t;x ðQTÞXCg;1þg

t;x ðQTÞ for some g A ð0; 1Þ.

Theorem 2. Suppose that conditions (0.6), (0.9)–(0.11), (0.13), (0.16), (2.1), (2.3)
hold and u0ðxÞ A C1þbð½�l; l �Þ. In addition assume that u 0

0ð�lÞ ¼ u 0
0ðlÞ ¼ 0. Then for any

T A ð0;yÞ there exists a solution of problem (0.1), (0.2), (0.5) which belongs to

C
1þg=2;2þg
t;x ðQTÞXCg;1þg

t;x ðQTÞ for some g A ð0; 1Þ.

Theorem 3. Suppose that conditions (0.6), (0.9)–(0.11), (0.13), (0.16), (2.1)–(2.3) hold

and u0ðxÞ A C1þbð½�l; l �Þ. In addition assume that

u 0
0ð�lÞ þ s1

�
0;�l; uð0;�lÞ

�
¼ u 0

0ðlÞ þ s2

�
0; l; uð0; lÞ

�
¼ 0:

Then for any T A ð0;yÞ there exists a solution of problem (0.1), (0.3), (0.5) which belongs to

C
1þg=2;2þg
t;x ðQTÞXCg;1þg

t;x ðQTÞ for some g A ð0; 1Þ.

Theorem 4. Suppose that conditions (0.6), (0.9)–(0.11), (0.13), (0.16), (2.1), (2.3) hold

and u0ðxÞ A C1þbð½�l; l �Þ for any jlj < þy and vanishes with its first derivative when

jxj !y. Then for any T A ð0;yÞ there exists a solution of problem (0.1), (0.5) which belongs

to C
1þg=2;2þg
t;x ðPTÞXCg;1þg

t;x ðPTÞ for some b A ð0; 1Þ. Here PT ¼ ð0;TÞ � R.

Note that in Theorems 1–4 instead of condition (0.16) one can require the fulfilment
of conditions (0.14), (0.15).
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In Section 1 we obtain the a priori estimate of the gradient of a bounded solution. In
Section 2, based on the estimate of the gradient, we prove the existence theorems. In Sec-
tion 3 we apply the results of Section 1 to quasilinear equations as well as to Hamilton-
Jacobi equations. We give also several examples (including the equation of curvature evo-
lution for capillary surfaces and KPZ equation) where we show that in some sense the
results of the present paper are optimal.

Before we pass to the next section let us recall that historically restrictions on the
growth of the right side with respect to the gradient for nonlinear equations was first for-
mulated in [5]. Specifically in [5] the boundary value problems for the ordinary di¤erential
equation y 00ðxÞ ¼ g

�
x; yðxÞ; y 0ðxÞ

�
were considered. Under the assumption

jgðx; y; pÞjeAðx; yÞp2 þ Bðx; yÞð0:19Þ

the gradient
�

y 0ðxÞ
�

estimate was obtained, here A and B are bounded for bounded x and
y. Based on this estimate and on the estimate of jyðxÞj the existence of a classical solution
was proved. In [25] condition (0.19) was substituted by the less restrictive one

jgðx; y; pÞje fðjpjÞ;
Ðþy r dr

fðrÞ ¼ þy:ð0:20Þ

In [14] (0.20) was improved, it was shown that instead of (0.20) g must satisfy:

jgðx; y; pÞje fðjpjÞ;
Ðþy

0

r dr

fðrÞ > 2 maxjyj:ð0:21Þ

Condition (0.16) is actually the analogue of condition (0.21) for parabolic partial di¤eren-
tial equations.

§1. The gradient estimates

In this section we will obtain gradient a priori estimates of classical solutions for
boundary value problems for equation (0.1). Recall that a classical solution is a function

belonging to C1;2
t;x ðQTÞXC0;1

t;x ðQTÞ in the case of problem (0.1), (0.2), (0.5) or (0.1), (0.3),

(0.5) and to C1;2
t;x ðQTÞXC0ðQTÞ for problem (0.1), (0.4), (0.5). We use here the Kruzhkov’s

idea of introducing a new spatial variable [19], [20].

Assume that the function Fðt; x; u; p; rÞ is defined for ðt; xÞ A QT , u A ½�M;M � and
arbitrary ðp; rÞ and is bounded on every compact set in QT � ½�M;M � � R2. Suppose that
F is di¤erentiable with respect to r and satisfies (0.6). Consider problem (0.1), (0.2), (0.5).

Lemma 1. Let uðt; xÞ be a classical solution of problem (0.1), (0.2), (0.5). Suppose

that conditions (0.6), (0.9)–(0.11), (0.13)–(0.15) are fulfilled. Then in QT the inequality

juxðt; xÞjeC1

holds, where the constant C1 depends only on oscðuÞ and c.
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Proof. Consider equation (0.1) in the form (0.7) at two di¤erent points ðt; xÞ and
ðt; yÞ:

ut ¼ Frðt; x; u; ux; luxxÞuxx þ Fðt; x; u; ux; 0Þ; l A ½0; 1�; u ¼ uðt; xÞ;ð1:1Þ

ut ¼ Frðt; y; u; uy; muyyÞuyy þ Fðt; y; u; uy; 0Þ; m A ½0; 1�; u ¼ uðt; yÞ:ð1:2Þ

Introduce the function vðt; x; yÞ ¼ uðt; xÞ � uðt; yÞ. In

W ¼ fðt; x; yÞ : 0 < t < T ; 0 < x � y; jxj < l; jyj < lg

the function vðt; x; yÞ satisfies the following equation:

(1.3)
�vt þ Fr

�
t; x; uðt; xÞ; uxðt; xÞ; luxxðt; xÞ

�
vxx þ Fr

�
t; y; uðt; yÞ; uyðt; yÞ; muyyðt; yÞ

�
vyy

¼ F
�
t; y; uðt; yÞ; uyðt; yÞ; 0

�
� F

�
t; x; uðt; xÞ; uxðt; xÞ; 0

�
:

Put

F ðxÞ
r ¼ Fr

�
t; x; uðt; xÞ; vx; luxxðt; xÞ

�
; F ðyÞ

r ¼ Fr

�
t; y; uðt; yÞ;�vy; muyyðt; yÞ

�
;

obviously uxðt; xÞ ¼ vx, uyðt; yÞ ¼ �vy. Define the operator

LðvÞ1�vt þ F ðxÞ
r ½vxx þ cðjvxjÞ� þ F ðyÞ

r ½vyy þ cðjvyjÞ�:

From (0.9), (0.13) it follows that

LðvÞf f2

�
t; y; uðt; yÞ; uyðt; yÞ

�
� f2

�
t; x; uðt; xÞ; uxðt; xÞ

�
:ð1:4Þ

Let the function hðtÞ be a solution of the following ordinary di¤erential equation:

h 00ðtÞ þ c
�
jh 0ðtÞj

�
¼ 0ð1:5Þ

on the interval ½0; t0� and satisfies conditions

hð0Þ ¼ 0; hðt0Þ ¼ oscðuÞ; h 0 > 0 for t A ½0; t0�:ð1:6Þ

Represent the solution of (1.5), (1.6) in parametrical form:

hðqÞ ¼
Ðq1

q

r dr

cðrÞ ; tðqÞ ¼
Ðq1

q

dr

cðrÞ :

The parameter q varies in the interval ½q0; q1�, where 0 < q0 < q1 < þy and

hðq0Þ ¼
Ðq1

q0

r dr

cðrÞ ¼ oscðuÞ:ð1:7Þ
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Put

t0 1 tðq0Þ ¼
Ðq1

q0

dr

cðrÞ :

Consider the function wðt; x; yÞ ¼ vðt; x; yÞ � hðx � yÞ in

P ¼ fðt; x; yÞ : 0 < t < T ; 0 < x � y < t0; jxj < l; jyj < lg:

Due to the fact that hðtÞ satisfies (1.5) we have L
�
hðx � yÞ

�
¼ 0. Hence, using (1.4) we

obtain

~LLðwÞ1LðvÞ � LðhÞ1�wt þ F ðxÞ
r ½wxx þ a1wx� þ F ðyÞ

r ½wyy þ a2wy�

f f2

�
t; y; uðt; yÞ; uyðt; yÞ

�
� f2

�
t; x; uðt; xÞ; uxðt; xÞ

�
:

Where jaij < þy, i ¼ 1; 2, by virtue of the mean value theorem and of the fact that c is a
smooth function and u is a classical solution of (0.1), (0.2), (0.5). Let ~ww ¼ we�t, then

~LL1ð~wwÞ1�~wwt þ F ðxÞ
r ½~wwxx þ a1 ~wwx� þ F ðyÞ

r ½~wwyy þ a2 ~wwy� � ~wwð1:8Þ

f e�t
�

f2

�
t; y; uðt; yÞ; uyðt; yÞ

�
� f2

�
t; x; uðt; xÞ; uxðt; xÞ

��
:

Denote by G the parabolic boundary of P

ði:e: G ¼ qPnfðt; x; yÞ : t ¼ T ; 0 < x � y < t0; jxj < l; jyj < lgÞ:

Suppose that the function ~ww attains its positive maximum at some point ðt1; x1; y1Þ A PnG.
Obviously it should be ~LL1ð~wwÞjðt1;x1;y1Þ < 0. On the other hand, at this point we have

�~ww < 0; ~wwx ¼ ~wwy ¼ 0; ~wwxx e 0; ~wwyy e 0; �~wwt e 0;

i.e.

~wwðt1; x1; y1Þ ¼ e�t½uðt1; x1Þ � uðt1; y1Þ � hðx1 � y1Þ� > 0;

~wwxðt1; x1; y1Þ ¼ e�t½uxðt1; x1Þ � h 0ðx1 � y1Þ� ¼ 0;

~wwyðt1; x1; y1Þ ¼ e�t½�uyðt1; y1Þ þ h 0ðx1 � y1Þ� ¼ 0

and as a consequence

uðt1; x1Þ > uðt1; y1Þ; uxðt1; x1Þ ¼ uyðt1; y1Þ ¼ h 0ðx1 � y1Þ > 0:ð1:9Þ

Hence, from (1.8), (1.9), (0.10) it follows that ~LL1

�
~wwðt1; x1; y1Þ

�
f 0. From this contradiction

we conclude that ~ww cannot attain its positive maximum in PnG.

Now let us show that ~wwjGe 0. Consider two possible cases: t0 < 2l and t0 f 2l. First
let t0 < 2l. For t ¼ 0:

~wwð0; x; yÞ ¼ e�t
�
u0ðxÞ � u0ðyÞ � hðx � yÞ

�
e 0
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due to (0.15). Obviously ~wwðt; x; yÞjx¼y ¼ 0 and when x � y ¼ t0 we have
~ww ¼ e�t

�
uðt; xÞ � uðt; yÞ � hðt0Þ

�
e 0 due to (1.6). Denote by

Q1 ¼ fðt; xÞ : 0 < teT ;�l < x < �l þ t0; y ¼ �lg;

Q2 ¼ fðt; yÞ : 0 < teT ; l � t0 < y < l; x ¼ lg:

Estimate the normal derivative of ~ww on Q1 and Q2 using boundary conditions (0.2) and the
fact that h 0 f q0 > 0

�~wwyðt; x;�lÞ ¼ e�t
�
uyðt;�lÞ � h 0ðx þ lÞ

�
¼ �e�th 0ðx þ lÞ < 0;

~wwxðt; l; yÞ ¼ e�t
�
uxðt; lÞ � h 0ðl � yÞ

�
¼ �e�th 0ðl � yÞ < 0:

Thus the function ~wwðt; x; yÞ cannot attain its positive maximum neither on Q1 nor on
Q2 since �q=qy and q=qx are here outward normal derivatives with respect to P. Conse-
quently, ~wwjG e 0 and hence ~wwðt; x; yÞe 0 in P.

The case when t0 f 2l can be treated similarly. The only di¤erence is the absence of
the boundary x � y ¼ t0. We put

~QQ1 ¼ fðt; xÞ : 0 < teT ;�l < xe l; y ¼ �lg,

~QQ2 ¼ fðt; yÞ : 0 < teT ;�l < y < l; x ¼ lg

(note that the line x ¼ l, y ¼ �l belongs to ~QQ1Þ. Consequently, ~wwjG e 0 and hence
~wwðt; x; yÞe 0 in P. It means that

uðt; xÞ � uðt; yÞe hðx � yÞ in P:ð1:10Þ

Treating similarly the function ~vvðt; x; yÞ ¼ uðt; yÞ � uðt; xÞ one can easily see that for
~ww1ðt; x; yÞ ¼ e�t

�
~vvðt; x; yÞ � hðx � yÞ

�
we have

~LL1ð~ww1Þf e�t
�

f2

�
t; x; uðt; xÞ; uxðt; xÞ

�
� f2

�
t; y; uðt; yÞ; uyðt; yÞ

��
in P:

Suppose that the function ~ww1 attains its positive maximum at ð~tt1; ~xx1; ~yy1Þ A PnG. On the one
hand it should be ~LL1ð~ww1Þjð~tt1; ~xx1; ~yy1Þ < 0. On the other hand, we have

uð~tt1; ~yy1Þ > uð~tt1; ~xx1Þ; uxð~tt1; ~xx1Þ ¼ uyð~tt1; ~yy1Þ ¼ �h 0ð~xx1 � ~yy1Þ < 0:

Using inequality (0.11) we obtain that ~LL1ð~ww1Þf 0. From this contradiction it follows that
~ww1 cannot attain positive maximum in PnG.

Consider ~ww1 on G. One can easily see that all considerations concerning the estimate
of the function ~ww on the boundary G can be done without any changes in estimate of the
function ~ww1. Thus we have that

uðt; yÞ � uðt; xÞe hðx � yÞ in P:ð1:11Þ

Combining (1.11) with (1.10) we get

juðt; xÞ � uðt; yÞje hðx � yÞ in P:
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In view of the symmetry of the variables x; y in the same manner we examine the case
y > x. As a result we have that for

0e teT ; jxje l; jyje l; 0 < jx � yje t0

the inequality

uðt; xÞ � uðt; yÞ
x � y

����
����e hðjx � yjÞ � hð0Þ

jx � yj

holds implying

juxðt; xÞje h 0ð0Þ ¼ q1 ¼ C1:

Lemma is proved.

Corollary 1.1. Suppose that u0 is an arbitrary Lipschitz continuous function

ju0ðxÞ � u0ðyÞjeK jx � yj and suppose that conditions (0.6), (0.9)–(0.11), (0.13) and (0.16)
are fulfilled. Then for any classical solution of problem (0.1), (0.2), (0.5) we have

juxðt; xÞje ~CC1;

where ~CC1 depends only on oscðuÞ;c, and K .

The proof of this statement is a slight modification of the proof of Lemma 1. The first
di¤erence is in (1.7). Here we select q0 ¼ K instead of q0 > 0. The second di¤erence is in the
proof of the inequality ~wwð0; x; yÞe 0. Here we have

~wwð0; x; yÞ ¼ e�t
��

u0ðxÞ � u0ðyÞ
�
�
�
hðx � yÞ � hð0Þ

��
ee�t

�
Kðx � yÞ � h 0ðt�Þðx � yÞ

�
e0

since h 0 ¼ qf q0 fK.

Let us pass to problem (0.1), (0.3), (0.5).

Lemma 2. Let uðt; xÞ be a classical solution of (0.1), (0.3), (0.5) and all conditions of

Lemma 1 are fulfilled. Then in QT the inequality

juxðt; xÞjeC2

holds, where the constant C2 depends only on oscðuÞ;N1;N2 and c, where Ni ¼ supjsij (the

supremum is taken over the set ½0;T � � ½�M;M �).

Proof. The proof of Lemma 2 di¤ers from the proof of the previous one only in
the selection of q0 and in analysing the behaviour of ~wwðt; x; yÞ on the bounds Q1 ð ~QQ1Þ and
Q2 ð ~QQ2Þ. We select the quantity q0 so that

q0 > maxfN1;N2g:ð1:12Þ

Taking into account (1.12) and boundary conditions (0.3) we obtain that
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�~wwyjQ1
¼ �e�t

�
�uyðt;�lÞ þ h 0ðx þ lÞ

�
ð1:13Þ

¼ e�t
�
�s1 � h 0ðx þ lÞ

�
e e�tðN1 � q0Þ < 0;

~wwxjQ2
¼ e�t

�
uxðt; lÞ � h 0ðl � yÞ

�
¼ e�t

�
�s2 � h 0ðl � yÞ

�
e e�tðN2 � q0Þ < 0;

�~ww1yjQ1
¼ �e�t

�
uyðt;�lÞ þ h 0ðx þ lÞ

�
ð1:14Þ

¼ e�t
�
s1 � h 0ðx þ lÞ

�
e e�tðN1 � q0Þ < 0;

~ww1xjQ2
¼ e�t

�
�uxðt; lÞ � h 0ðl � yÞ

�
¼ e�t

�
s2 � h 0ðl � yÞ

�
e e�tðN2 � q0Þ < 0:

Inequalities (1.13), (1.14) imply that neither ~ww nor ~ww1 can attain positive maximum on Q1

ð ~QQ1Þ and Q2 ð ~QQ2Þ. By using a similar arguments as in Lemma 1 we complete the proof.

Corollary 1.2. Suppose that u0 is an arbitrary Lipschitz continuous function

ju0ðxÞ � u0ðyÞjeK jx � yj and suppose that conditions (0.6), (0.9)–(0.11), (0.13) and (0.16)
are fulfilled. Then for any classical solution of problem (0.1), (0.3), (0.5) we have

juxðt; xÞje ~CC2;

where ~CC2 depends only on oscðuÞ;c;N1;N2 and K.

In order to prove this statement we follow the proof of Corollary 1.1, where we take
q0 > maxfK;N1;N2g.

Consider now problem (0.1), (0.4), (0.5). In that case we additionally suppose that for
jujeM the function f2 satisfies condition

uf ðt; x; u; pÞe 0 for x A ½�l;�l þ minft0; 2lg�W ½l � minft0; 2lg; l �:ð1:15Þ

Lemma 3. Let uðt; xÞ be a classical solution of (0.1), (0.4), (0.5) and all conditions of

Lemma 1 are fulfilled. Suppose in addition that condition (1.15) is fulfilled and u0ðGlÞ ¼ 0.
Then in QT the following inequality

juxðt; xÞjeC3

holds, where the constant C3 depends only on oscðuÞ and c.

Proof. The proof of Lemma 3 di¤ers from the proof of Lemma 1 only in analysing
the behaviour of wðt; x; yÞ on Q1 ð ~QQ1Þ and Q2 ð ~QQ2Þ.

Let us show that wðt; x; yÞe 0 on Q2. When x ¼ l, we have

wðt; l; yÞ ¼ �uðt; yÞ � hðl � yÞ:

Define the following linear operator L0ðuÞ1�ut þ F
ðyÞ
r uyy, obviously
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L0ðuÞ ¼ �f1ðt; y; u; uyÞ � f2ðt; y; u; uyÞ

and

L0

�
hðl � yÞ

�
¼ F ðyÞ

r hyy ¼ �F ðyÞ
r cðjh 0jÞ:

For w2 1 uðt; yÞ þ hðl � yÞ we have

L0ðw2Þ ¼ �f1ðt; y; u; uyÞ � f2ðt; y; u; uyÞ � ~FF ðyÞcðjh 0jÞ:

Let us show that w2ðt; yÞf 0 on Q2. For ~ww2 ¼ w2e�t we have

~LL0ð~ww2Þ1�~ww2t þ F ðyÞ
r ~ww2yy � ~ww2 ¼ e�t½�f1ðt; y; u; uyÞ � f2ðt; y; u; uyÞ � F ðyÞ

r cðjh 0jÞ�:

If the function ~ww2ðt; yÞ attains its negative minimum at some point ðt1; y1Þ A Q2 then at this
point it should be ~LL0ð~ww2Þ > 0. At the same time due to (0.13) and taking into account that
uyðt1; y1Þ ¼ h 0ðl � y1Þ (because ~ww2yðt1; y1Þ ¼ 0) we have

�f1

�
t1; y1; uðt1; y1Þ; h 0�� F ðyÞ

r cðjh 0jÞe 0:

On the other hand by virtue of the fact that

~ww2ðt1; y1Þ < 0 and hence uðt1; y1Þ < �hðl � y1Þe 0;

using inequality (1.15) we obtain

�f2

�
t1; y1; uðt1; y1Þ; h 0ðl � y1Þ

�
e 0:

As a consequence

~LL0ð~ww2Þjðt1;y1Þ e 0:

From this contradiction we conclude that ~ww2 cannot attain its negative minimum on Q2.
Let us show that ~ww2 f 0 on parabolic boundary of Q2. As in Lemma 1 we will consider two
cases. First we suppose that t0 < 2l. One can easily see that condition (0.15) together with
u0ðGlÞ ¼ 0 give us

ju0ðyÞje hðl � yÞ:ð1:16Þ

Due to (1.16) we have

~ww2ð0; yÞ ¼ e�t½u0ðyÞ þ hðl � yÞ�f 0:

For y ¼ l � t0 we have ~ww2ðt; l � t0Þ ¼ e�t
�
uðt; l � t0Þ þ hðt0Þ

�
f0 (recall that hðt0Þ ¼ osc u

and oscðuÞfmaxjuj because uðt; lÞ ¼ 0). For y ¼ l we have

~ww2ðt; lÞ ¼ e�t
�
uðt; lÞ þ hð0Þ

�
¼ 0

due to (0.4) and (1.6). The case when t0 > 2l can be treated similarly. The only di¤erence
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which makes the things simpler is the substitution of the boundary y ¼ l � t0 by y ¼ �l.
Hence wðt; l; yÞe 0 on Q2.

Consider the function w1 ¼ uðt; yÞ � uðt; xÞ � hðx � yÞ. For x ¼ l we have
w1 ¼ uðt; yÞ � hðl � yÞ. Let us show that w3 1 uðt; yÞ � hðl � yÞe 0 on Q2. For w3ðt; yÞ
we have

L0ðw3Þ ¼ �f1ðt; y; u; uyÞ � f2ðt; y; u; uyÞ þ F ðyÞ
r cðjh 0jÞ;

and for ~ww3 ¼ w3e�t we have

~LL0ð~ww3Þ1�~ww3t þ F ðyÞ
r ~ww3yy � ~ww3 ¼ e�t½�f1ðt; y; u; uyÞ � f2ðt; y; u; uyÞ þ F ðyÞ

r cðjh 0jÞ�:

If ~ww3ðt; yÞ attains its positive maximum at some point ðt2; y2Þ A Q2, then it should be
~LL0ð~ww3Þjðt2;y2Þ < 0. From the other hand

uðt2; y2Þ > hðl � y2Þf 0; uyðt2; y2Þ ¼ �h 0ðl � y2Þ

and hence due to (0.13), (1.15) we conclude

�f1

�
t2; y2; uðt2; y2Þ;�h 0ðl � y2Þ

�
þ F ðyÞ

r c
�
jh 0ðl � y2Þj

�
� f2

�
t2; y2; uðt2; y2Þ;�h 0ðl � y2Þ

�
f 0:

Thus we obtain that ~LL0ð~ww3Þjðt2;y2Þf 0, which in turn contradicts the assumption that ~ww3

attains its positive maximum. One can easily obtain that ~ww3 e 0 on the parabolic boundary
of Q2. Whence it immediately follows that w1ðt; l; yÞe 0 on Q2. Note that here we use the
fact that ju0ðxÞje hðx þ lÞ, which is the consequence of (0.15) and u0ðGlÞ ¼ 0.

Let us show now that wðt; x; yÞe 0 and w1ðt; x; yÞe 0 on Q1. When y ¼ �l we have

wðt; x;�lÞ ¼ uðt; xÞ � uðt;�lÞ � hðx þ lÞ ¼ uðt; xÞ � hðx þ lÞ:

w1ðt; x;�lÞ ¼ uðt;�lÞ � uðt; xÞ � hðx þ lÞ ¼ �uðt; xÞ � hðx þ lÞ:

Using the same arguments when proving that w3ðt; yÞe 0 on Q2 one can obtain that
w4ðt; xÞ ¼ wðt; x;�lÞe 0 on Q1. And finally using the same arguments when proving that
w2ðt; xÞf 0 on Q2 one can obtain that w5ðt; xÞ ¼ �w1ðt; x;�lÞf 0 on Q1. By using similar
arguments as in Lemma 1, we complete the proof.

Corollary 1.3. Suppose that u0 is an arbitrary Lipschitz continuous function

ju0ðxÞ � u0ðyÞjeK jx � yj and suppose that conditions (0.6), (0.9)–(0.13) and (0.16) are

fulfilled. Then for any classical solution of problem (0.1), (0.2), (0.5) we have

juxðt; xÞje ~CC3;

where ~CC3 depends only on oscðuÞ;c, and K .

The proof is similar to the proof of Corollary 1.1.
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Corollary 1.4. Suppose that all conditions of Lemma 3 except condition (1.15) are ful-

filled. If t0 e l and the function f2 is independent of u, suppose that (instead of (1.15)) f2 sat-

isfies conditions

pf2ðt; x; pÞe 0 for x A ½�l;�l þ t0�;ð1:17Þ

pf2ðt; x; pÞf 0 for x A ½l � t0; l �:ð1:18Þ

Then in QT the following inequality

juxðt; xÞjeC 0
3

holds, where the constant C 0
3 depends only on oscðuÞ and c.

Proof. Consider the function w ¼ uðt; xÞ � uðt; yÞ � hðx � yÞ. Following the proof
of Lemma 3 we obtain

~LL0ð~ww2Þ1�~ww2t þ F ðyÞ
r ~ww2yy � ~ww2 ¼ e�t½�f1ðt; y; u; uyÞ � F ðyÞ

r cðjh 0jÞ � f2ðt; y; uyÞ�:

If the function ~ww2ðt; yÞ attains its negative minimum at some point ðt1; y1Þ A Q2, then at this
point ~LL0ð~ww2Þ > 0. On the other hand, by virtue of the fact that

uyðt1; y1Þ ¼ h 0ðl � y1Þ > 0;

using inequality (1.18) and condition (0.13) we obtain

�f1

�
t1; y1; u; h

0ðl � y1Þ
�
� F ðyÞ

r c
�
jh 0ðl � y1Þj

�
� f2

�
t1; y1; h

0ðl � y1Þ
�
e 0:

As a consequence

~LL0ð~ww2Þjðt1;y1Þ e 0:

From this contradiction we conclude that ~ww2 cannot attain its negative minimum on Q2.
Similarly to the proof of Lemma 3 we conclude that wðt; l; yÞe 0 on Q2.

Consider the function w1 ¼ uðt; yÞ � uðt; xÞ � hðx � yÞ. Following the proof of
Lemma 3 we obtain

~LL0ð~ww3Þ1�~ww3t þ F ðyÞ
r ~ww3yy � ~ww3 ¼ e�t½�f1ðt; y; u; uyÞ þ F ðyÞ

r cðjh 0jÞ � f2ðt; y; uyÞ�:

If ~ww3ðt; yÞ attains its positive maximum at some point ðt2; y2Þ A Q2 then at this point
~LL1ð~ww3Þ < 0. On the other hand

uyðt2; y2Þ ¼ �h 0ðl � y2Þ < 0;

and hence due to (0.13), (1.18)

~LL0ð~ww3Þjðt2;y2Þ f 0:

This contradicts the assumption that ~ww3 attains its positive maximum. Following the proof
of Lemma 3 we conclude that w1ðt; l; yÞe 0 on Q2.

Tersenov and Tersenov, Bernstein-Nagumo’s condition 209



Using inequality (1.17) we similarly obtain that wðt; x; yÞe 0, w1ðt; x; yÞe 0 on Q1

and complete the proof.

Remark 1. Note that if the function f1 satisfies the Bernstein-Nagumo’s condition
(0.8) then we can always select t0 to be less or equal to l.

In fact, select p0 f oscðuÞl�1 then

t0 ¼
Ðp1

p0

dr

cðrÞ e
1

p0

Ðp1

p0

r dr

cðrÞ ¼
oscðuÞ

p0
e l:

Remark 2. Our assumptions on the functions f1ðt; x; u; pÞ and f2ðt; x; u; pÞ appear-
ing in Lemmas 1, 2, 3, can be somehow weakened. One can easily see that in order to
prove the above mentioned lemmas those assumptions must be fulfilled only for p from
½�p1;�p0�W ½p0; p1�.

Consider the case Fðt; x; u; p; 0Þ ¼ f2ðt; x; u; pÞ where the gradient estimates take a
very simple form.

Suppose that all the assumptions of Lemma 1 are fulfilled and in addition f1 1 0.
Then for the classical solution of problem (0.1), (0.2), (0.5) we have

juxðt; xÞjeK ;ð1:19Þ

where K is a Lipschitz constant of u0ðxÞ (i.e. ju0ðxÞ � u0ðyÞjeKjx � yj). In fact, when
f1 1 0 we can take c1 0. So the barrier function is the solution of the equation h 00 ¼ 0 i.e.
h ¼ Kt. It is not di‰cult to show that juðt; xÞ � uðt; yÞjeKjx � yj in

P ¼ fðt; x; yÞ : 0e teT ; 0e x � y; jxje l; jyje lg

and juxje h 0ð0Þ ¼ K .

Suppose that all the assumptions of Lemma 2 are fulfilled and in addition f1 1 0. In
the same way as in the previous example we obtain that for a classical solution of problem
(0.1), (0.3), (0.5) we have

juxðt; xÞjemaxfK;N1;N2g:ð1:20Þ

Now suppose that all the assumptions of Lemma 3 are fulfilled and in addition
f1 1 0. Analogously to the previous examples we obtain that for a classical solution of
problem (0.1), (0.4), (0.5) we have

juxðt; xÞjeK :ð1:21Þ

§2. The existence theorems

In the previous section the a priori estimate of juxj was carried out under the condi-
tion that u is a bounded solution of boundary value problems. Now let us formulate su‰-
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cient conditions that guarantee the boundedness of u. Consider problem (0.1), (0.4), (0.5).
The fulfilment of the condition

uFðt; x; u; 0; 0Þe jujFðjujÞ;
Ðþy dz

FðzÞ ¼ þy;ð2:1Þ

for ðt; xÞ A QT and jujfM, where M is some positive constant and FðzÞ is a nonde-
creasing positive function of zf 0, guarantees the global a priori estimate of juj for prob-
lem (0.1), (0.4), (0.5) (see [20]). The same condition guarantees the boundedness of the solu-
tion of problem (0.1), (0.2), (0.5) ([20]). Consider problem (0.1), (0.3), (0.5). If Fðt; x; u; p; rÞ
satisfies condition (2.1) together with

us1ðt; x; uÞjx¼�l < 0; us2ðt; x; uÞjx¼l > 0 for juj > M;ð2:2Þ

then we have a global a priori estimate of juj for the given problem. Concerning the oblique
derivative problems one can find condition (2.2) in general form in [24], theorem 13.1. Let
us formulate the assumption on F which will be necessary for the proof of the existence
theorems. Suppose that

jFðt1; x1; u1; p1; rÞ � Fðt2; x2; u2; p2; rÞjð2:31Þ

eCðjt1 � t2j1=2 þ jx1 � x2j þ ju1 � u2j þ jp1 � p2jÞbðb1 þ b2jrjÞ;

jFrðt; x; u; p; r1Þ � Frðt; x; u; p; r2ÞjeCjr1 � r2jb;ð2:32Þ

where C; b1; b2, are positive constants and constant b A ð0; 1Þ.

In order to prove the existence Theorems 1–4 (see Introduction) we follow the well-
known technique based on the a priori estimates of the solution and the fixed point theo-
rem ([24]). Condition (2.1) gives us an a priori estimate of juj in the case of the first and
the second boundary value problems. Condition (2.1) together with (2.2) give us an a priori
estimate of juj in the case of the third boundary value problem. The a priori estimate of juxj
was obtained in Section 1. The next step is the deriving of a Hölder estimate of ux. Note
that the function w ¼ ux can be treated as a weak solution of the equation

wt ¼
�
Frwx þ Fðt; x; u; ux; 0Þ

�
x
;

now based on the well known results of Nash-De Giorgi we obtain the Hölder estimate of
w and as a consequence of ux (for more details see [24], theorems 12.2, 12.10). Having all
these a priori estimates the dependence of Fðt; x; u; p; rÞ on variables u and p is no longer
important and we can consider the equation (0.1) in the form ut ¼ Fðt; x; uxxÞ. The exis-
tence follows now from [24], Theorem 14.10 (for more details see also Ch. 14, §7). Note
that in order to prove the existence theorem for the Cauchy problem we obtain the solution
(0.1), (0.5) as a limit of a sequence of solutions of the second boundary problem under an
unlimited dilatation of the domain QT (see for example [31]).

Let us mention here that according to Corollary 1.4, if f2 is independent of u then in
Theorem 1 condition (0.12) can be substituted by conditions (1.17), (1.18).
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§3. Application to quasilinear equations and to Hamilton-Jacobi equation

Consider the quasilinear parabolic equation

�
Fðt; x; u; p; rÞ1 aðt; x; u; pÞr þ f ðt; x; u; pÞ

�
ut ¼ aðt; x; u; uxÞuxx þ f ðt; x; u; uxÞ in QTð3:1Þ

coupled with one of boundary conditions (0.2), (0.3), (0.4) and initial condition (0.5).

Condition (0.6) takes the form

aðt; x; u; pÞ > 0 for ðt; x; u; pÞ A QT � ½�M;M � � R:

Obviously

Fðt; x; u; p; 0Þ ¼ f ðt; x; u; pÞ ¼ f1ðt; x; u; pÞ þ f2ðt; x; u; pÞ:

Note that the existence theorems for all boundary value problems for equation (3.1) imme-
diately follow from Theorems 1–3.

Let us point out the novelty of the obtained results concerning the quasilinear case.
Conditions (0.10), (0.11) on the term f2 first appear in [30] and [31]. In [31] the existence of
a classical solution of Cauchy problem (3.1), (0.5) was proved under the assumptions that
f1 satisfies condition (0.8) and f2 satisfies (0.10), (0.11). In [30] the existence of a classical
solution for the second and the third boundary value problems was obtained under similar
restrictions. In the present paper we suppose that f1 satisfies the weaker than (0.8) restric-
tion. Namely f1 satisfies (0.13), (0.14) and u0 satisfies (0.15) (or f1 satisfies (0.13), (0.16)) for
arbitrary Lipschiz continuous function.

In [28] the first boundary value problem was considered. The function f was repre-
sented as a sum of f1 and f2, where f1 satisfies the classical Bernstein-Nagumo’s condition
(0.8) and f2ðt; x; u; pÞ satisfies conditions similar to (0.13), (0.14) and (0.10), (0.11). Both f1

and f2 satisfy condition j fije ac. The novelty of the present paper is that we do not need
restriction j f2je ac but supplementary we want condition (1.15) to be fulfilled.

In [29] conditions (0.10), (0.11) appear when proving the existence of a radially—
symmetric solution of the boundary value problems in multidimensional case for the
equation

ut ¼ e4 u þ f1ðt; jxj; u; j‘ujÞ þ f2ðt; jxj; u; j‘ujÞ:

The function f1 satisfies here condition (0.8) (as in [30] and [31]).

Now let us discuss several examples in order to show that the results obtained in the
present paper are in some sense optimal.

Consider the following problem:

ut ¼ uxx � ðx þ 1=2Þðux þ UÞ3 in ð�1=2; 1=2Þ � ð0;TÞ;ð3:2Þ

uð0; xÞ ¼ u0ðxÞ for jxj < 1=2; u0ðG1=2Þ ¼ 0;
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where U is an arbitrary constant, with boundary conditions

uðt;G1=2Þ ¼ 0:ð3:3Þ

Let us take f1 1 0, f2 ¼ �ðx þ 1=2Þðux þ UÞ3. In this case ( f1 1 0) from Remark 1 it fol-

lows that we can select p0 f
oscðuÞ

l
and hence t0 e l. For pf p0 fmax jU j; oscðuÞ

l

� �
the

function f2 ¼ �ðx þ 1=2Þðux þ UÞ3 satisfies conditions (0.10), (0.11) and condition (1.17).
From Remarks 1, 2 and Corollary 1.4 it follows that the gradient blow-up cannot occur
neither in the interior of the domain nor on the left side (x ¼ �1=2) of the parabolic
boundary. So we can guarantee that if the gradient blow-up takes place it may occur only
on the right side of the parabolic boundary (i.e. x ¼ 1=2). In [32] it was shown that for
U ¼ p=2 and for arbitrary initial function u0ðxÞmaxjuxðt; 1=2Þj ! þy as t goes to the
proper value t�.

On the other hand, we also can represent the right hand side as a sum of
f1 ¼ �ðx þ 1=2Þðux þ UÞ3 and f2 ¼ 0. Then from the results of Section 1 it follows that if

Ðþy

0

r dr

ðrþ jU jÞ3
> oscðuÞ;ð3:4Þ

i.e. ð2jU jÞ�1 > oscðuÞfmaxjuj (because there exists a point where u ¼ 0), then we have the
global estimate of the gradient. Condition (3.4) gives us some values of U in order to obtain
the global a priori estimate of ux. Note that if U ¼ p=2, then for arbitrary initial function
u0ðxÞ condition (3.4) fails. In fact, for U ¼ p=2 we have

Ðþy

0

r dr

ðrþ jU jÞ3
¼ 1

p

and maxjuj > 1

p
(see [32]).

Consider now the following problem:

ut ¼ uxx þ gðuÞjuxjm�1
ux in ð0;TÞ � ð�1; 1Þ;ð3:5Þ

uð0; xÞ ¼ u0ðxÞ; uðt;G1Þ ¼ AG; u0ðG1Þ ¼ AG;ð3:6Þ

where Aþ;A� are some constants, m > 2. Here ugðuÞ > 0 when juj > 0, g 0ðuÞ > 0 for
0 < juj < e and g A C1ðRÞ. In [1] it was shown that if AG satisfy the relation

I ¼
ÐAþ

A�

�
ðm � 2Þ

Ðy
0

gðsÞ ds

	1=ðm�2Þ
dy > 2;ð3:7Þ

then the gradient of the bounded solution blows-up in the interior of the domain in finite
time for any initial compatible data. Note that according to [1] the relation I e 2 does not
guarantee the boundedness of the gradient. In order to simplify calculations we will con-
sider the case when gðuÞ ¼ u, AG ¼GA, u0ðxÞ ¼ Ax, where Af 0. Hence (3.7) gives us
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I ¼
ÐA
�A

�
ðm � 2Þ

Ðy
0

s ds

	1=ðm�2Þ
dy

¼
�
ðm � 2Þ=2

� 1
m�2

1 þ 2=ðm � 2Þ ½A
1þ2=ðm�2Þ � ð�AÞ1þ2=ðm�2Þ�

¼ 2

�
ðm � 2Þ=2

� 1
m�2

1 þ 2=ðm � 2Þ A
m

m�2:

Thus (3.7) takes the form

A
m

m�2 >
1 þ 2=ðm � 2Þ�
ðm � 2Þ=2

� 1
m�2

:

It is clear that when m ! y, then A ! 1 from above. Thus we obtain that the su‰cient
condition for the existence of blow-up of the gradient for arbitrary m is A > 1.

One can easily see that f2 ¼ gðuÞjuxjm�1
ux does not satisfy conditions (0.10), (0.11),

so we can not guarantee that the blow-up of the gradient will not occur in the interior of the
domain. For the function v ¼ u � Ax problem (3.5), (3.6) takes the form

vt ¼ vxx þ ðv þ AxÞjvx þ Ajm�1ðvx þ AÞ;ð3:8Þ

vð0; xÞ ¼ vðt;G1Þ ¼ 0:ð3:9Þ

Consider now the representation f1 ¼ ðv þ AxÞjvx þ Ajm�1ðvx þ AÞ, f2 ¼ 0. One can easily
obtain the estimate jujeA. It is clear that

jðv þ AxÞjvx þ Ajm�1ðvx þ AÞjeAðjvxj þ AÞm:

Note that if in (0.14) we will take as cðrÞ ¼ Aðjvxj þ AÞm, then the global a priori estimate
of jvxj and hence of ux will take place if

Ðþy

0

r dr

Aðrþ AÞm ¼
Ðy
0

dr

Aðrþ AÞm�1
�

Ðy
0

dr

ðrþ AÞm

¼ A1�m

m � 2
� A1�m

m � 1
¼ 1

ðm � 2Þðm � 1ÞAm�1
f 2Af oscðvÞ:

So we have the global gradient estimate of a bounded solution of problem (3.5), (3.6) in the
case gðuÞ ¼ u, u0ðxÞ ¼ Ax when

Ae
1

½2ðm � 2Þðm � 1Þ�1=m
;

where A ! 1 from below when m ! y.

Consider the generalized KPZ (Kardar-Parisi-Zhang [17]) equation (see [4], [13], [18])
which arises in the evolution of the profile of growing interfaces
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ut ¼ uxx þ ljuxjb; bf 1;

where l is an arbitrary constant. From Lemmas 1, 2 it follows that the second and the third
boundary value problems for the KPZ equation are solvable in the classical sense for any
bf 0.

Consider now the equation of curvature evolution for capillary surfaces

ut ¼
uxx

1 þ u2
x

þ kuð1 þ u2
xÞ

1=2;ð3:10Þ

where uðt; xÞ is a liquid surface and the constant k is positive or negative according to
whether the gravitation field is acting upward or downward. Obviously the Bernstein-
Nagumo’s condition is violated because

jkuð1 þ p2Þ1=2je 1

1 þ p2
cðjpjÞ where cðrÞ1 jkjmaxjujð1 þ r2Þ3=2:

From Lemmas 1–3 it immediately follows that if k e 0, then we have global gradient
estimates for all boundary value problems. In fact, f2 ¼ kuð1 þ p2Þ3=2 satisfies conditions
(0.10)–(0.12). Moreover if u0xðxÞ1 0, then uxðt; xÞ1 0 (see (1.19), (1.21)).

In [2] it was shown that if k is positive constant then for problem (3.10), (0.4), (0.5)
the interior blow-up is possible to occur. Represent the right hand side as a sum of
f1 ¼ kuð1 þ u2

xÞ
3=2 and f2 ¼ 0. Then from the results of Section 1 it follows that if

Ðþy

0

r dr

cðrÞ ¼
Ðþy

0

r dr

k maxjujð1 þ r2Þ3=2
> oscðuÞ;

i.e. ðkMÞ�1 > oscðuÞ, then we have a global estimate of the gradient. Here M ¼ maxjuj. If
M ¼ oscðuÞ, then this condition takes form kM 2 < 1. Note that maxjuj stays bounded for
any constant k.

Finally let us consider the Hamilton-Jacobi equation

ut ¼ f2ðt; x; u; uxÞ;ð3:11Þ

where f2 satisfies conditions (0.10), (0.11) and (0.12). In order to obtain the viscosity solu-
tion of the Dirichlet problem for (3.11) (see [8]) consider the regularized problem:

ue
t ¼ eue

xx þ f2ðt; x; ue; ue
xÞ:ð3:12Þ

For the solution of problem (3.12), (0.4), (0.5) the following estimates hold:
jue

xjeK ¼ maxju 0
0ðxÞj (see (1.21)) and juejemaxju0j. These estimates imply the Hölder

continuity of ue with respect to t:

jueðt1; xÞ � ueðt2; xÞje ~CCjt1 � t2j1=2;
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where the constant ~CC does not depend on e (see [19]). Hence there exists a subsequence
en ! 0 such that uen converges uniformly to u. Passing to the limit when en ! 0 in equation
(3.12) we obtain a viscosity solution. Moreover uen

x ! ux *weakly in LyðQTÞ and, from
equation (3.12), uen

t ! ut *weakly in LyðQTÞ. Hence the obtained viscosity solution is
Lipschitz continuous function and satisfies (3.11) almost everywhere. The other boundary
value problems can be considered similarly.
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