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Abstract—In this paper, the Dirichlet problem for quasilinear elliptic equations is studied.
New a priori estimates of the solution and its gradient are obtained. These estimates are
derived without any assumptions on the smoothness of the coefficients and the right-hand side
of the equation. Moreover, an arbitrary growth of the right-hand side with respect to the
gradient of the solution is assumed. On the basis of the resulting estimates, existence theorems
are proved.
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INTRODUCTION

The present paper is devoted to the study of the Dirichlet problem for quasilinear elliptic equa-
tions. As is well known (see [1, 2]), the proof of the solvability of boundary-value problems and, in
particular, that of the Dirichlet problem, can be reduced to the derivation of an a priori estimate
of the solution u(x) , x = (x1 , . . . , xn) , in the norm of the space C1,α , α ∈ (0, 1) (we follow the
notation used in [2]). This procedure is divided into four stages: estimating max |u(x)| , estimat-
ing max |∇u(x)| on the boundary of the domain, carrying out a global estimate of max |∇u(x)|
(i.e., on the whole domain), and, finally, estimating |∇u(x)| in the norm of the space Cα , where
∇u = (ux1 , . . . , uxn) . The key role here is played by an estimate of max |∇u(x)| , since after its
derivation the solvability of the boundary-value problems follows without additional constraints on
the character of nonlinearity of the equation. As is well known, the following classical approach for
deriving the estimate of max |∇u(x)| is used in the general case (see [1–3]): the boundary estimate
of max |∇u(x)| is obtained by constructing barriers for u(x) near the boundary and the global
estimate by differentiating and applying the maximum principle to the function v(x) = |∇u(x)|2 .
This method dates back to Bernstein (see [4]). Obviously, such an approach requires the differen-
tiability of the coefficients and the right-hand side of the equation as well as the imposition of a
number of awkward constraints on the behavior of the first derivatives of the coefficients and of
the right-hand side (see [1, 2]). To derive both a boundary and a global estimate of the gradient,
it is necessary, in general, to require that Bernstein’s condition [4] be satisfied (see [1–3]). This
condition stipulates that the rate of growth of the right-hand side of the equation with respect to
|∇u(x)| as |∇u(x)| → +∞ must not must exceed the rate of growth of the principal part with
respect to |∇u(x)| by more than |∇u(x)|2 . It is well known (see, for example, [5]) that for the
equation ∆u = f(x, u,∇u) , where f(x, u, p) is a continuous function, Bernstein’s condition is
sufficient to ensure that an estimate of max |u| yields an estimate of max |∇u| . Pokhozhaev [6]
showed that if the requirement of the continuity of the function f is replaced by the weaker con-
dition f ∈ Lq(Ω) , q > n , for u ∈ W 2

q (Ω) , then Bernstein’s condition is no longer sufficient for
obtaining an estimate of max |∇u| from that of max |u| . A condition on the growth of the function
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f(x, u, p) with respect to p , for which an estimate of max |u| yields an estimate of max |∇u| ,
was stated in [6]. This condition depends on q and becomes Bernstein’s condition for q = +∞ .
As to an estimate of max |u(x)| , then there exist a number of sufficient conditions guaranteeing
such an estimate; see [1, 2, 7]. Note that parabolic equations were considered in [7]; however, the
results obtained there can easily be carried over also to the elliptic case.

The present paper is devoted to the derivation of a boundary and a global a priori estimate of
max |∇u(x)| for the case in which Bernstein’s condition is not satisfied. To derive a global estimate,
we use the additional variable method proposed by Kruzhkov (see [8]) for the study of quasilinear
parabolic equations with one space variable (for details of this method, see also [9–14]). On the basis
of Kruzhkov’s method, one can obtain a global a priori estimate for |∇u(x)| without differentiation
for a particular class of quasilinear elliptic equations with many independent variables. The specifics
of this class of equations consists, in particular, in the fact that the coefficients do not depend
explicitly on the solution itself and on part of the space variables. We assume that the domain in
which the Dirichlet problem is solved is convex. The main difference from a similar estimate in [12]
is that we assume arbitrary growth of the right-hand side with respect to |∇u(x)| independently of
the growth of the principal part of the equation. As an example, we present the following problem:

∆u = f1(x) + φ1(u)φ2(∇u) in Ω, u = 0 on ∂Ω. (1)

Here f1(x) is a bounded function in Ω, φ1(u) is a nondecreasing function, uφ1(u) ≥ 0 , and
φ2(∇u) ≥ 0 . For example, φ1 = u3 or φ1 = u|u|1/3 , while

φ2 = e|∇u|√|∇u|+ 1 or φ2 = |ux1 |k1 + · · ·+ |uxn |kn + k0 ,

where the ki are nonnegative real numbers.
As was shown by Ladyzhenskaya and Ural′tseva (see [1]), given estimates for max |u(x)| and

max |∇u(x)| , an estimate of |∇u(x)| in the norm of the space Cα can be obtained under certain
conditions on the smoothness of the coefficients and the right-hand side of the equation.

In Sec. 1, for simplicity, all the arguments are given for the equation ∆u = f(x, u,∇u) . Exis-
tence theorems based on the estimates obtained are given. In particular, the existence of a classical
solution of problem (1) is guaranteed if f1 ∈ Cα(Ω) , φ1 ∈ Cα(R) , and φ2 ∈ Cα(Rn) for some
α ∈ (0, 1) .

Equations with two independent variables are studied in Sec. 2. There we consider a general
two-dimensional equation and, moreover, we discuss the multidimensional quasilinear equation to
which the results of Sec. 2 can be extended.

1. THE MULTIDIMENSIONAL CASE

For simplicity, all arguments are presented for n = 3; the case n > 3 can be studied in a
similar way. Suppose that Ω ⊂ R

3 is a strictly convex domain and ∂Ω ∈ C2+α , where α ∈ (0, 1) .
Without loss of generality, we assume that, first, the point (0, 0, 0) belongs to Ω; second, the
parts of ∂Ω lying in the half-spaces x1 ≤ 0 , x1 ≥ 0 , can be expressed as

x1 = F1(x2 , x3), x1 = G1(x2 , x3),

while the parts of ∂Ω lying in the half-spaces x2 ≤ 0 , x2 ≥ 0 and x3 ≤ 0 , x3 ≥ 0 , can be
expressed as

x2 = F2(x1 , x3), x2 = G2(x1 , x3) and x3 = F3(x1 , x2), x3 = G3(x1 , x2),

respectively, where Fi and Gi are twice continuously differentiable functions; and, third, xi

changes between in the interval from −li to li , i = 1, 2, 3 .
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Consider the following Dirichlet problem:

∆u = f(x, u,∇u) in Ω ⊂ R
3 , (1.1)

u = 0 on ∂Ω, (1.2)

where f can be expressed as

f(x, u, p) = f1(x, u, p) + f2(x, u, p). (1.3)

Suppose that for x ∈ Ω, |u| ≤M and finite p = (p1 , p2 , p3) the function f1 satisfies the structural
constraint

|f1(x, u, p)| < ψ(|p1|), (1.4)

where ψ(ρ) > 0 is a continuously differentiable function such that∫ +∞

0

ρ dρ

ψ(ρ)
> µ1 ≡ max{M, osc(u)}, (1.5)

while the function f2 satisfies the relation

uf2(x, u, p) ≥ 0. (1.6)

We introduce the functions h1(x1) and h2(x1) ≡ h1(−x1):

h′′1 + ψ(|h′1|) = 0, h1(−l1) = 0, h1(−l1 + τ0) = µ1 ;

the constant τ0 will be chosen below. Let us express h1 in parametric form:

h1 = h1(q) =
∫ q1

q

ρ dρ

ψ(ρ)
, x1 = x1(q) =

∫ q1

q

dρ

ψ(ρ)
− l1 ,

where the parameter q lies in the interval [q0 , q1] , with q1 > q0 > 0 and

h1(q0) =
∫ q1

q0

ρ dρ

ψ(ρ)
= µ1.

This is possible by condition (1.5). Let

τ0 =
∫ q1

q0

dρ

ψ(ρ)
. (1.7)

Obviously, h′1 > 0 and h′2 < 0 .

Lemma 1.1. Suppose that u(x) is a classical solution of problem (1.1), (1.2) such that |∇u| < +∞
in Ω . Suppose that conditions (1.3), (1.4), and (1.6) are valid. Then

|u(x)| ≤ hk(ζk) ∀x ∈ Dk , k = 1, 2,

where ζ1 = x1 − F1 − l1 , ζ2 = x1 −G1 + l1 , and

D1 = {x : F1(x2 , x3) < x1 < F1(x2 , x3) + τ0 , (x2 , x3) ∈ Ω1} ∩ Ω,

D2 = {x : G1(x2 , x3)− τ0 < x1 < G1(x2 , x3), (x2 , x3) ∈ Ω1} ∩ Ω ;

here Ω1 is the projection of the domain Ω on the plane (x2 , x3) .

MATHEMATICAL NOTES Vol. 76 No. 4 2004



DIRICHLET PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS 549

Proof. If τ0 ≥ 2l1 , then ∂D1 = ∂D2 = ∂Ω and, by the boundary condition, u|∂Ω = 0 ≤ hk ,
k = 1, 2 .

If τ0 < 2l1 , then ∂D1 consists of two parts: Γ1 and Γ2 , where Γ1 ⊂ ∂Ω, and Γ2 is the part
of the surface x1 = F1(x2 , x3) + τ0 that lies in Ω. On Γ1 , we have u = 0 ≤ h1 , while on Γ2 we
obtain

h1(−l1 + τ0) = µ1 ≥ u.
Similarly, for τ0 ≤ 2l1 the surface ∂D2 = Γ3 ∪ Γ4 , where Γ3 ⊂ ∂Ω, while Γ4 is the part of the
surface x1 = G1(x2 , x3)− τ0 that lies in Ω. On Γ3 , we have u = 0 ≤ h2 , while on Γ4 we obtain
h2(l1 − τ0) = µ1 ≥ u . Therefore, |u(x)| ≤ hk(ζk) on ∂Dk .

In Dk , we have

∆hk(ζk) = h′′k + hkx2x2 + hkx3x3 ≤ −ψ(|h′k|), k = 1, 2,

since for i = 2, 3 the following relations hold:

h1xixi(ζ1) = −(F 2
1xi
ψ(|h′1(x1 − F1 − l1)|) + F1xixih

′
1(x1 − F1 − l1)) ≤ 0,

h2xixi(ζ2) = −(G2
1xi
ψ(|h′2(x1 −G1 + l1)|) +G1xixih

′
2(x1 −G1 + l1)) ≤ 0.

This can readily be verified if we recall that h′1 ≥ 0 and h′2 ≤ 0 , and, moreover, by the convexity
of the domain, we have F1xixi ≥ 0 , G1xixi ≤ 0 . Therefore, for v ≡ u− hk we obtain

∆v ≥ f(x, u,∇u) + ψ(|h′k|). (1.8)

If the function v attains its maximum at the point N ∈ Dk \ ∂Dk , then, at this point, v > 0 ,
vxi = 0, i.e., u > hk ≥ 0 , ∇u = ∇hk ; therefore, Eqs. (1.4), (1.6), and (1.8) imply

∆v|N ≥ f1(x, u,∇u) + ψ(|ux1 |) + f2(x, u,∇u)|N > 0.

This contradicts the assumption that the function v attains its maximum at the interior points of
the domain Dk . Therefore,

u(x) ≤ hk(ζk) in Dk , k = 1, 2.

Next, we obtain a lower bound. For w ≡ u+ hk , we have

∆w ≤ f(x, u,∇u)− ψ(|h′k)|). (1.9)

If the function w reaches its minimum at the point N1 ∈ Dk \ ∂Dk , then, at this point, u < 0
and ∇u = −∇hk , and, therefore, by (1.4) and (1.6), from (1.9) we obtain

∆w|N1 ≤ f1(x, u,∇u)− ψ(|ux1 |) + f2(x, u,∇u)|N1 < 0.

This contradicts the assumption that w attains its minimum at the interior points of the do-
main Dk . Therefore, u(x) ≥ −hk(ζk) in Dk , k = 1, 2 . The lemma is proved. �

Now, we derive a global estimate of |ux1 | . In addition, suppose that f2 satisfies the relations

f2(x1 , x2 , x3 , u, p1 , p2 , p3)− f2(ζ , x2 , x3 , v , p1 , p2 , p3) ≥ 0, (1.101 )

f2(ζ , x2 , x3 , u,−p1 , p2 , p3)− f2(x1 , x2 , x3 , v ,−p1 , p2 , p3) ≥ 0 (1.102 )

for x1 > ζ , u > v , p1 > 0 , and any p2 , p3 .
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Lemma 1.2. Suppose that the assumptions of Lemma 1.1 and conditions (1.10) hold. Then u(x)
satisfies the estimate

sup
Ω

|ux1 | ≤ C1 ,

where the constant C1 depends only on ψ and M .

Proof. Consider Eq. (1.1) at two different points of the domain Ω, namely, x = (x1 , x2 , x3) and
(ζ , x2 , x3) . We have

ux1x1 + ux2x2 + ux3x3 = f (x1) for u = u(x), (1.11)

uζζ + ux2x2 + ux3x3 = f (ζ) for u = u(ζ , x2 , x3), (1.12)

where f (z) ≡ f(z, x2 , x3 , u(z, x2 , x3),∇u(z, x2 , x3)) . Subtracting Eq. (1.12) from Eq. (1.11), for
the function v(x, ζ) ≡ u(x1 , x2 , x3)− u(ζ , x2 , x3) we obtain

∆x,ζv ≡ vx1x1 + vζζ + vx2x2 + vx3x3 = f (x1) − f (ζ).

Suppose that the function h(τ) ≡ h(x1 − ζ) is a solution of the problem

h′′ + ψ(|h′|) = 0, h(0) = 0, h(τ0) = µ1 ;

the quantity τ0 was defined in the construction of the barrier h1 (see (1.7)). Obviously,

∆x,ζh(x1 − ζ) = 2h′′ = −2ψ(|h′|).

For the function w ≡ v − h(x1 − ζ) , we obtain

∆x,ζw = f (x1) − f (ζ) − 2ψ(|h′|)
= f1(x, u(x),∇u(x))− ψ(|h′|)

− (f1(ζ , x2 , x3 , u(ζ , x2 , x3),∇u(ζ , x2 , x3))− ψ(|h′|))
+ f2(x, u(x),∇u(x))− f2(ζ , x2 , x3 , u(ζ , x2 , x3),∇u(ζ , x2 , x3)). (1.13)

Consider the domain Q:

Q = {(x, ζ) : x1 ∈ (F1 , G1), ζ ∈ (F1 , G1), 0 < x1 − ζ < τ0 , (x2 , x3) ∈ Ω1}

(recall that Ω1 is the projection of Ω on the plane (x2 , x3)) . If τ0 ≥ 2l1 , then we assume

Q = {(x, ζ) : x1 ∈ (F1 , G1), ζ ∈ (F1 , G1), 0 < x1 − ζ , (x2 , x3) ∈ Ω1}.

Suppose that the function w takes the largest value at an interior point N of the domain Q
(N ∈ Q \ ∂Q). Obviously, at the point N , we have w > 0 , ∇w = 0 and, therefore, u ≥ 0 ,
ux1(x) = h

′(x1 − ζ) , uζ(ζ , x2 , x3) = h′(x1 − ζ) , uxi(x) = uxi(ζ , x2 , x3) , i = 2, 3 , i.e.,

∇u(x)|N = ∇u(ζ , x2 , x3)|N .

Thus, from (1.4), (1.101 ) and (1.13) we obtain ∆x,ζw|N > 0 , which contradicts the assumption
that w attains its maximum at an interior point of the domain Q .

Let us show that w ≤ 0 on ∂Q .
(1) For x1 = ζ , we have v = h = 0.
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(2) For x1 − ζ = τ0 , we obtain h(τ0) = µ1 ≥ u(x)− u(ζ , x2 , x3) . This part of the boundary is
present only in the case τ0 < 2l1 .

(3) For ζ = F1(x2 , x3) , x1 ∈ [F1 , F1 + τ0] ∩ [F1 , G1] , (x2 , x3) ∈ Ω1 the relation

v − h = u(x)− h(x1 − F1)

holds. Let us now show that u(x) ≤ h(x1 − F1) . To do this, it suffices to obtain the equality
h(x1 − F1) = h1(x1 − F1 − l1) , and then apply Lemma 1.1. The required equality immediately
follows from the relations

h′′1(ζ1) + ψ(|h′1(ζ1)|) = 0, h1(−l1) = 0, h1(−l1 + τ0) = µ1 , ζ1 = x1 − F1 − l1 ,
h′′(η) + ψ(|h′(η)|) = 0, h(0) = 0, h(τ0) = µ1 , η = x1 − F1.

(4) For x1 = G1(x2 , x3) , ζ ∈ [G1 − τ0 , G1] ∩ [F1 , G1] , (x2 , x3) ∈ Ω0 , we obtain

v − h = −u(ζ , x2 , x3)− h(G1 − ζ).

Let us show that u(ζ , y) ≥ −h(G1(y)− ζ) . It suffices to verify h(G1 − ζ) = h2(ζ −G1 + l1) , and
then again apply Lemma 1.1. The last equality immediately follows that from the relations

h′′2(ζ2) + ψ(|h′2(ζ2)|) = 0, h2(l1 − τ0) = µ1 , h2(l1) = 0, ζ2 = ζ −G1 + l1 ,

h′′(η̃) + ψ(|h′(η̃)|) = 0, h(0) = 0, h(τ0) = µ1 , η̃ = G1 − ζ.

Thus, w ≤ 0 on ∂Q . In view of the fact that w cannot to attain its maximum in Q \ ∂Q we find
that

u(x)− u(ζ , x2 , x3) ≤ h(x1 − ζ) in Q.

Similarly, taking the function ṽ ≡ u(ζ , x2 , x3)− u(x) instead of v , we obtain v ≥ −h(x1 − ζ)
in Q (here we have used condition (1.102 )).

By the symmetry of the variables x1 and ζ , we consider the case ζ > x1 in the same way. As a
result, we see that for x1 ∈ [F1 , G1] , ζ ∈ [F1 , G1] , (x2 , x3) ∈ Ω1 , 0 < |x1 − ζ| < τ0 the following
inequality holds:

|u(x)− u(ζ , x2 , x3)|
|x1 − ζ| ≤ h(|x1 − ζ|)− h(0)

|x1 − ζ| ,

which, in turn, implies the estimate |ux1(x)| ≤ h′(0) = C1 . The lemma is proved. �

Next, let us state conditions ensuring the existence of an a priori estimate of ux2 .
Suppose that, for x ∈ Ω, |u| ≤ M , |p1| ≤ C1 , and finite p2 , p3 , the function f1 satisfies the

inequality
|f1(x, u, p)| < ψ(|p2|). (1.14)

Let us introduce the functions h3(x2) , h4(x2) as follows:

h4(x2) = h3(−x2), h′′3 + ψ(|h′3|) = 0, h3(−l2) = 0, h3(−l2 + τ0) = µ1.

The proof of the following lemma is similar to that of Lemma 1.1.

Lemma 1.3. Suppose that the assumptions of Lemmas 1.1, 1.2 and condition (1.14) are valid.
Then

|u(x)| ≤ hk(ζk) ∀x ∈ Dk , k = 3, 4,
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where ζ3 = x2 − F2 − l2 , ζ4 = x2 −G2 + l2 ,

D3 = {x : F2 < x2 < F2 + τ0 , (x1 , x3) ∈ Ω2} ∩ Ω,

D4 = {x : G2 − τ0 < x2 < G2 , (x1 , x3) ∈ Ω2} ∩ Ω,

and Ω2 is the projection of Ω on the plane (x1 , x3) .

In addition, suppose that

f2(x1 , x2 , x3 , u, p1 , p2 , p3)− f2(x1 , ζ , x3 , v , p1 , p2 , p3) ≥ 0, (1.151 )

f2(x1 , ζ , x3 , u, p1 ,−p2 , p3)− f2(x1 , x2 , x3 , v , p1 , −p2 , p3) ≥ 0, (1.152 )

for x2 > ζ , u > v , p2 > 0 , and any p1 , p3 .

Lemma 1.4. Suppose that conditions (1.15) and the assumptions of Lemmas 1.1–1.3 are valid.
Then u(x) satisfies the estimate

sup
Ω

|ux2 | ≤ C2 ,

where the constant C2 depends only on ψ and M .

The proof of this lemma is similar to that of Lemma 1.2.
Let us pass to an estimate of ux3 . Suppose that for x ∈ Ω, |u| ≤ M , |p1| ≤ C1 , |p2| ≤ C2 ,

and finite p3 , the function f1 satisfies the condition

|f1(x, u, p)| < ψ(|p3|). (1.16)

Let us introduce the functions h5(x3) , h6(x3) as follows:

h6(x3) = h5(−x3), h′′5 + ψ(|h′5|) = 0, h5(−l3) = 0, h5(−l3 + τ0) = µ1.

The proof of the following lemma is similar to that of Lemma 1.1.

Lemma 1.5. Suppose that the assumptions of Lemmas 1.1–1.4 and condition (1.16) are valid.
Then

|u(x)| ≤ hk(ζk) ∀x ∈ Dk , k = 5, 6,

where ζ5 = x3 − F3 − l3 , ζ6 = x3 −G3 + l3 ,

D5 = {x : F3 < x3 < F3 + τ0 , (x1 , x2) ∈ Ω3} ∩ Ω,

D6 = {x : G3 − τ0 < x3 < G3 , (x1 , x2) ∈ Ω3} ∩ Ω,

and Ω3 is the projection of Ω on the plane (x1 , x2) .

To obtain a global estimate of ux3 , we assume that

f2(x1 , x2 , x3 , u, p1 , p2 , p3)− f2(x1 , x2 , ζ , v , p1 , p2 , p3) ≥ 0, (1.171 )

f2(x1 , x2 , ζ , u, p1 , p2 ,−p3)− f2(x1 , x2 , x3 , v , p1 , p2 , −p3) ≥ 0 (1.172 )

for x3 > ζ , u > v , p3 > 0 , and any p1 , p2 .

Lemma 1.6. Suppose that conditions (1.17) and the assumptions of Lemmas 1.1–1.5 are valid.
Then u(x) satisfies the estimate

sup
Ω

|ux3 | ≤ C3 ,

where the constant C3 depends only on ψ and M .

The proof of this lemma is similar to that of Lemma 1.2.
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Remark 1.1. In Lemmas 1.2, 1.4, and 1.6, we have obtained estimates of |uxi | depending only
on M = max |u| and ψ , provided that ψ satisfies condition (1.5). It is readily verified that if
condition (1.5) is replaced by the following one:

∫ +∞

0

dρ

ψ(ρ)
> 2li , (1.18)

then we can find estimates of |uxi | depending only on ψ and li . To do this, it is necessary to
introduce some changes in the construction of the barriers hi(xi) and h(τ) . Namely, hi and h
must be the solutions of the problems

h′′i + ψ(|h′i|) = 0, hi(−li) = 0, hi(li) = H, i = 1, 3, 5,

h′′ + ψ(|h′|) = 0, h(0) = 0, h(2li) = H,
(1.19)

respectively. Let us express the solution of problem (1.19) in parametric form:

h(q) =
∫ q1

q

ρ dρ

ψ(ρ)
, τ(q) =

∫ q1

q

dρ

ψ(ρ)
.

The parameter q ∈ [q0 , q1] , and q0 , q1 are chosen so that 0 ≤ q0 < q1 < +∞ and τ(q0) = 2l1 ,
which is possible in view of (1.18). The estimate

|u(x)| ≤ hk(ζk), k = 1, . . . , 6,

is obtained just as in Lemma 1.1; note that in this case τ0 ≡ τ(q0) = 2li and Di = Ω, i = 1, . . . , 6 .
A global estimate is established just as in Lemma 1.2.

Let us state an existence and uniqueness theorem.

Theorem 1.1. Suppose that f ∈ Cα(Ω × R × R
3) for some α ∈ (0, 1) and conditions (1.3),

(1.4), (1.6), (1.10), and (1.14)–(1.17) are satisfied. Also, suppose that a condition ensuring the a
priori estimate |u| ≤ M holds. Then, in any strictly convex domain Ω such that ∂Ω ∈ C2,α ,
problem (1.1), (1.2) has at least one solution u(x) ∈ C2,α(Ω) . If the function f is increasing in
the variable u , then such a solution is unique.

Proof. The existence of such a solution follows from the a priori estimates obtained above and
Theorem 13.8 from [2]. In [2, Theorem 10.2], the uniqueness of the classical solution is proved
under the assumption that the function aij is independent from u , aij and f are differentiable
with respect to p , and the function f is decreasing in the variable u . Proceeding in the same way
as in the proof of Theorem 2.1 from [13], we can easily dispense with the differentiability condition
with respect to p .

Let us present two examples. First, we consider problem (1) stated in the Introduction. An
estimate of max |u| can be obtained, for example, from [7]. It is readily seen that conditions (1.4),
(1.6), and (1.10), (1.14)–(1.17) are satisfied. Thus, if

f1(x) ∈ Cα(Ω), f2 ≡ φ1(u)φ2(∇u) ∈ Cα(R4),

then Theorem 1.1 guarantees the existence of a solution of problem (1) belonging to the space
C2,α(Ω) .

Next, consider the following equation:

∆u = f1(x, u, ux1) + f2(x, u,∇u), (1.20)
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where |f1(x, u, p1)| ≤ K̃(1 + p21) for x ∈ Ω, |u| ≤ M and any p1 . For f2 we can take the
same function as in the previous example. For a classical solution of problem (1.20), (1.2) such
that |∇u| < +∞ , the estimates given in Lemmas 1.1–1.6 are valid. Condition (1.4) holds with
ψ(p1) = K1(1 + p21) , where K1 > K̃ . The estimate |ux1 | ≤ C1 is a consequence of Lemma 1.2
Conditions (1.14), (1.16) are satisfied with

ψ ≡ K2 > max{K̃ , F}, where F = max |f1(x, u, p1)|,

the maximum of the function |f1(x, u, p1)| , is taken over the set Ω × [−M,M ] × [−C1 , C1] .
Lemmas 1.4 and 1.6 yield the estimates |ux2 | ≤ C2 , |ux3 | ≤ C3 .

If in Eq. (1.20) f1 ∈ Cα(Ω × R × R) and f2 ∈ Cα(Ω × R × R
3) , then, by Theorem 1.1, there

exists a solution of problem (1.20), (1.2) belonging to C2,α(Ω) . �

2. THE TWO-DIMENSIONAL CASE

Consider the following Dirichlet problem:

a(x, y, u,∇u)uxx + 2b(x, y, u,∇u)uxy + c(x, y, u,∇u)uyy = f(x, y, u,∇u) in Ω ⊂ R
2 ,
(2.1)

u = 0 on ∂Ω, (2.2)

where ∇u = (ux , uy) . The functions a , b , c , and f are defined on the set Ω× R × R
2 and take

finite values for (x, y) ∈ Ω and finite u , ∇u . Suppose that

a ≥ a0 > 0, c ≥ c0 > 0, b2 − ac < 0 in Ω× R × R
2 , (2.3)

where a0 and c0 are constants. We assume that f can be expressed as (1.3), where

|f1(x, y, u, p)| < a(x, y, u, p)ψ(|p1|) (2.4)

for (x, y) ∈ Ω, |u| ≤M , and finite p = (p1 , p2) . The function ψ was defined in Sec. 1 (see (1.5)).

Lemma 2.1. Suppose that u(x, y) is a classical solution of problem (2.1), (2.2) for which
|∇u| < +∞ in Ω and conditions (2.3), (2.4), and (1.6) are valid. Suppose that

b(x, y, u,∇hk(ζk))hkxixj (ζk) ≤ 0, k = 1, 2, b(x, y, u, p) = b(x, y, u,−p). (2.5)

Then
|u(x, y)| ≤ hk(ζk) ∀(x, y) ∈ Dk , k = 1, 2,

where

D1 = {(x, y) : F1(y) < x < F1(y) + τ0 , −l2 < y < l2)} ∩ Ω,

D2 = {(x, y) : G2(y)− τ0 < x < G1(y), −l2 < y < l2} ∩ Ω.

The proof of this lemma is similar to that of Lemma 1.1. The functions hk , ζk were defined in
Sec. 2.

We now obtain a global estimate |ux| . Suppose that

f3(x, y, u, p1 , p2)− f3(ζ , y, v, p1 , p2) ≥ 0, (2.61 )

f3(ζ , y, u,−p1 , p2)− f3(x, y, v,−p1 , p2) ≥ 0 (2.62 )

for x ≥ ζ , u ≥ v , p1 ≥ 0 , and any p2 , f3 = f2/c .
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Lemma 2.2. Suppose that the assumptions of Lemma 2.1, condition (2.2), and the inequality

2b2 − ac < 0 in Ω× R × R
1 (2.7)

are valid. Then u(x, y) satisfies the estimate

sup
Ω

|ux| ≤ C4 ,

where the constant C4 depends only on ψ and M .

Proof. Let us rewrite (2.1) as follows:

a(x)

c(x)
uxx + 2

b(x)

c(x)
uxy + uyy =

f (x)

c(x)
, where g(z) ≡ g(z, y, u(z, y),∇u(z, y)).

Consider this equation at the point (x, ζ) ∈ Ω, ζ �= x:
a(ζ)

c(ζ)
uζζ + 2

b(ζ)

c(ζ)
uζy + uyy =

f (ζ)

c(ζ)
.

Subtracting this equation from the equation for u(x, y) , for the function

v(x, y, ζ) ≡ u(x, y)− u(ζ , y),
we obtain

L∗v ≡ a(x)

c(x)
vxx + 2

b(x)

c(x)
vxy +

a(ζ)

c(ζ)
vζζ + 2

b(ζ)

c(ζ)
vζy + vyy =

f (x)

c(x)
− f

(ζ)

c(ζ)
.

Condition (2.7) ensures the ellipticity of the operator L∗ . Indeed,

det




a(x)

c(x)

b(x)

c(x)
0

b(x)

c(x)
1

b(ζ)

c(ζ)

0
b(ζ)

c(ζ)

a(ζ)

c(ζ)


 =

1
2

(
a(x)

c(x)

[
a(ζ)

c(ζ)
− 2

(
b(ζ)

c(ζ)

)2]
+
a(ζ)

c(ζ)

[
a(x)

c(x)
− 2

(
b(x)

c(x)

)2])
> 0.

The end of the proof is similar to that of Lemma 1.2. �
Suppose that for (x, y) ∈ Ω, |u| ≤M , |p1| ≤ C4 , and finite p2 the following inequality holds:

|f1(x, y, u, p1 , p2)| < a(x, y, u, p1 , p2)ψ(|p2|). (2.8)

Lemma 2.3. Suppose that u(x, y) is a classical solution of problem (2.1), (2.2) for which
|∇u| < +∞ in Ω . Suppose that conditions (2.3)–(2.8) are valid. Then

|u(x, y)| ≤ hk(ζk) ∀(x, y) ∈ Dk , k = 3, 4,

where

D3 = {(x, y) : F2(x) < y < F2(x) + τ0 , −l1 < x < l1} ∩ Ω,

D4 = {(x, y) : G2 − τ0 < y < G2 , −l1 < x < l1)} ∩ Ω.

The proof of this lemma is similar to that of Lemma 1.1.
Let us state the conditions guaranteeing the existence of a global estimate of |uy| . Suppose that

f4(x, y, u, p1 , p2)− f4(x, ζ , v, p1 , p2) ≥ 0, (2.91 )

f4(x, ζ , u, p1 , −p2)− f4(x, y, v, p1 , −p2) ≥ 0 (2.92 )

for y ≥ ζ , u ≥ v , p2 ≥ 0 , and any p1 , f4 = f2/a .
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Lemma 2.4. Suppose that the assumptions of Lemma 2.3 and condition (2.9) are valid. Then
u(x, y) satisfies the estimate

sup
Ω

|uy| ≤ C5 ,

where the constant C5 depends only on ψ and M .

The proof of Lemma 2.4 is similar to that of Lemma 2.1.
Let us state the following existence theorem.

Theorem 2.1. Suppose that a, b, c, f ∈ Cα(Ω×R×R
2) for some α ∈ (0, 1) and conditions (2.3)–

(2.9) hold. Also, suppose that a condition guaranteeing the estimate |u| ≤ M is satisfied. Then,
in any strictly convex domain Ω , problem (2.1), (2.2) has at least one solution u(x, y) ∈ C2,α(Ω) .
If the function f is increasing in the variable u , and the functions a , b , c are independent of u ,
then such a solution is unique.

Proof. In view of the estimates obtained above and conditions (2.3), Eq. (2.1) can be regarded
as a linear strictly elliptic equation

ã(x, y)uxx + 2b̃(x, y)uxy + c̃(x, y)uyy = f̃(x, y)

with bounded coefficients ã , b̃ , c̃ , and bounded right-hand side of f̃ . It follows from Theo-
rem 11.4 [2] that the solution of the Dirichlet problem for this equation (with smooth boundary
conditions and smooth boundary) satisfies the inequality

|u|C1+δ(Ω) ≤ C
(
sup
Ω

|u|+ sup
Ω

( |f̃ |
λ

))
, δ ∈ (0, 1),

where λ is the minimal eigenvalue of the matrix of leading coefficients. The constant C depends
only on the upper bounds for the moduli of the coefficients and the right-hand side. It follows from
this estimate and Theorem 13.8 [2] that the required solution exists. �

In conclusion, we present an equation to which the results from Sec. 1. can be extended.
Consider the Dirichlet problem

aij(xi , xj ,∇u)uxixj = f(x, u,∇u) in Ω ⊂ R
3 , u = 0 on ∂Ω ; (2.10)

here aii = aii(xi ,∇u) . We assume that for x ∈ Dk , k = 1, 2 , |u| ≤ M , and arbitrary p , the
following inequality holds:

3∑
i,j=1,i �=j

aij(xi , xj ,∇hk(ζk))hkxixj (ζk) ≤ 0,

aij(xi , xj , p) = aij(xi , xj , −p) for i �= j ,

this is the multidimensional analog of condition (2.5). Moreover, it is necessary to require the
validity of the multidimensional analog of condition (2.7). This condition (stated in [12]) is very
awkward and will not be given here; we only note that it holds if aij ≡ 0 for i �= j . We assume
that aij ∈ C1(Ω× R

3) , f ∈ Cα(Ω× R × R
3) . The difficulties arising from the appearance of the

coefficients aij(xi , xj ,∇u) can be overcome in the same way as in [12].
Note that, as is seen from Theorem 2.1, the specifics of the two-dimensional case allows us to

consider equations with coefficients depending on all the variables. Moreover, the requirement of
the differentiability of the leading coefficients can be replaced by the condition of their continuity
in the sense of Hölder.
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