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guarantee the existence and uniqueness of a global weak solution to the problem. A similar
result is proved for the parabolic p-Laplace equation.
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1. Introduction and main results

Let Ω be a bounded domain in Rn and QT = Ω × (0, T ) with an arbitrary T ∈ (0,∞). By x = (x1, . . . , xn) we denote
points inΩ and by t the time variable that varies in the interval [0, T ]. The goal of the present paper is to prove the solvability
of the following quasilinear parabolic equation

ut −
n∑
i=1

(|uxi |
piuxi)xi = λg(u)+ f in QT , (1.1)

coupled with the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω × (0, T ) (1.2)

and the initial condition

u(x, 0) = u0(x) inΩ. (1.3)

Here u = u(x, t) is the unknown function that has to be found, the function f = f (x, t) is prescribed, pi > −1, i = 1, . . . , n
and λ are constants, the function g will be discussed later.
The unique solvability of problem (1.1)–(1.3) with g ≡ 0 was proved in [1, Ch. 2]. It is well known that the solution of

this problem can blow-up in finite time if g 6= 0 (see [2] and the references there for the case pi = 0, i = 1, . . . , n and [3,4]
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for the general case). Anisotropic elliptic and parabolic equations have received much attention in recent years, see [5–16].
The goal of the present paper is to obtain sufficient conditions guaranteeing the global solvability of problem (1.1)–(1.3) in
general case. We will look for bounded weak solutions. Before we give the definition of the weak solution let us introduce
some notations. Denote

p∗ = max{p1, p2, . . . , pn}, p∗ = min{p1, p2, . . . , pn}.
Without loss of generality we may suppose that p1 = p∗. Let l be a positive constant such thatΩ ⊂ {x ∈ Rn | −l ≤ x1 ≤ l}.
Besides the usual Lebesgue and Sobolev function spaces, we will use spaces that are specific for our problem. For

i = 1, . . . , n, we introduce the Banach space Ui(Ω) as the closure of C∞0 (Ω) with respect to the norm ‖u‖Ui(Ω) =
‖u‖L2(Ω) + ‖uxi‖Lpi+2(Ω). Define the space

U(Ω) =
n⋂
i=1

Ui(Ω)

with the norm ‖u‖U(Ω) = maxi=1,...,n ‖u‖Ui(Ω). Clearly, the trace of function from U(Ω) at ∂Ω exists and is equal to zero.
We denote by U∗i (Ω) the space adjoint (topologically) to Ui(Ω). Notice that U

∗(Ω) =
∑n
i=1 U

∗

i (Ω) (the sum in the space of
distributions C∞0 (Ω)

∗).
We shall meet spaces of functions depending on t . Let us introduce the following Banach space

V (QT ) =
n⋂
i=1

Lpi+2(0, T ;Ui(Ω)).

Its adjoint is

V ∗(QT ) =
n∑
i=1

Lqi+2(0, T ;U∗i (Ω)),

where qi is such that (pi + 2)−1 + (qi + 2)−1 = 1. It is not difficult to see that

Lp
∗
+2(0, T ;U(Ω)) ⊂ V (QT ) ⊂ Lp∗+2(0, T ;U(Ω))

and, by duality,

Lq∗+2(0, T ;U∗(Ω)) ⊂ V ∗(QT ) ⊂ Lq
∗
+2(0, T ;U∗(Ω)),

where q∗ and q∗ are such that (q∗ + 2)−1 + (p∗ + 2)−1 = 1 and (q∗ + 2)−1 + (p∗ + 2)−1 = 1.

Definition 1. We say that a function u : QT → R is a weak solution of problem (1.1)–(1.3) if

u ∈ L∞(QT ) ∩ V (QT ) ∩ C
(
[0, T ]; Ls(Ω)

)
for all s ∈ [1,∞), ut ∈ V ∗(QT )

and the following integral identity∫
QT

(
uφt −

n∑
i=1

|uxi |
piuxiφxi + λg(u)φ + f φ

)
dxdt = −

∫
Ω

u0φ0dx

holds for an arbitrary smooth function φ : QT → Rwhich is equal to zero for x ∈ ∂Ω and for t = T (here φ0(x) = φ(x, 0)).
Let us denote
m = ‖u0‖L∞(Ω), f ∗ = ‖f ‖L∞(QT ),

M =

{
M ∈ (0,∞) | f ∗ + |λ|g(M +m) < (p∗ + 1)

(
2M

3l2 + 2l

)p∗+1}
,

M∗ = infM.
We shall prove the existence of a weak solution to the problem under the following assumptions on g:
the function g : R→ R is continuous; (1.4)
|g(ξ)| ≤ g(η) for all ξ and η such that |ξ | ≤ η; (1.5)
M 6= ∅. (1.6)

For example, functions g(u) = log(|u|+1), g(u) = |u|q−1u (or g(u) = uq if defined) with an arbitrary q ≥ 0, g(u) = |u|q,
and g(u) = eu satisfy (1.4) and (1.5). Condition (1.6) will be discussed in examples below.

Theorem 1. Suppose that Ω satisfies the exterior sphere condition, u0 ∈ L∞(Ω), f ∈ L∞(QT ) and conditions (1.4)–(1.6) are
fulfilled. Then for an arbitrary T > 0, there exists a weak solution of problem (1.1)–(1.3) such that

‖u‖L∞(QT ) ≤ M∗ +m. (1.7)

If, in addition, g is Lipschitz continuous function, then the solution is unique.
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Now let us give several examples concerning assumption (1.6).

Example 1. It is not difficult to see that for g(u) = ln(|u| + 1) as well as for the functions g(u) = |u|q−1u, g(u) = |u|q
and g(u) = uq (if defined) with 0 ≤ q < p∗ + 1 one can always find a positive M that belongs to M. That is M 6= ∅.
As a consequence, Theorem 1 guarantees the existence of a global (i.e., for an arbitrary T > 0) weak solution to problem
(1.1)–(1.3) with such functions g and arbitrary bounded u0 and f .

Example 2. Suppose that f ≡ 0, λ 6= 0, g(u) = |u|q−1u and q = p∗ + 1. In this case, the setM consists of numbersM that
satisfy the following inequality

M +m
M

<
2

3l2 + 2l

(
q
|λ|

)1/q
which is equivalent to

m
M
<

2
3l2 + 2l

(
q
|λ|

)1/q
− 1.

Obviously, if the right-hand side is strictly positive, thenM 6= ∅. Thus, if

3l2 + 2l < 2

(
q
|λ|

)1/q
, (1.8)

then there exists a global weak solution of the problem. Condition (1.8) is the restriction on the size of the domain Ω but
only in one direction (in the direction of x1). Notice that this condition does not depend on ‖u0‖L∞(Ω).
Instead of g(u) = |u|q−1u, we can take g(u) = |u|q (or g(u) = uq if defined).

Example 3. Let us take g(u) = u4, f ≡ 0, λ = 1, and pi = 1 for all i = 1, . . . , n. The setM is described by the following
inequality

(M +m)4 <
8M2

(3l2 + 2l)2

that can be rewritten as

M2 + 2

(
m−

√
2

3l2 + 2l

)
M +m2 < 0.

Therefore,M 6= ∅ if

‖u0‖L∞(Ω) = m <
1

√
2(3l2 + 2l)

. (1.9)

This is the smallness condition which guarantees the existence of a global weak solution of problem (1.1)–(1.3).

Example 4. Similarly to the previous example, direct calculations show that condition (1.9) guarantees the existence of a
global weak solution of problem (1.1)–(1.3) with g(u) = u, f ≡ 0, λ = 2−5/4, and pi = −1/2 for all i = 1, . . . , n.

Example 5. Let us take g(u) = eu, f ≡ 0, λ = 1, and pi > −1 for all i = 1, . . . , n. The setM consists of numbers M such
that

eM+m < (p∗ + 1)

(
2M

3l2 + 2l

)p∗+1
.

This condition can be rewritten as follows

eM < C Mp
∗
+1, C =

(p∗ + 1)2p
∗
+1

em(3l2 + 2l)p∗+1
.

If the constant C is sufficiently large, then there existsM > 0 that satisfies the last inequality, i.e.,M 6= ∅. Actually, this is
the smallness condition.

Example 6. If λ = 0, then

M =

{
M ∈ (0,∞) | f ∗ < (p∗ + 1)

( 2M
3l2 + 2l

)p∗+1}
.
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This set is always nonempty and

M∗ =
3l2 + 2l
2

(
f ∗

p∗ + 1

)1/(p∗+1)
.

The approach developed in this paper can be easily extended to the p-Laplace equation. Consider the following parabolic
equation

ut − div(|∇u|p∇u) = λg(u)+ f (x, t), (1.10)

in QT = Ω × (0, T ), coupled with conditions (1.2) and (1.3).

Definition 2. We say that a function u : QT → R is a weak solution of problem (1.10), (1.2) and (1.3) if

u ∈ L∞(QT ) ∩ Lp+2
(
0, T ;W 1,p+20 (Ω)

)
∩ C

(
0, T ; L2(Ω)

)
,

ut ∈ Lq+2
(
0, T ;W−1,q+2(Ω)

)
, (p+ 2)−1 + (q+ 2)−1 = 1,

and ∫
QT

(
uφt − |∇u|p∇u · ∇φ + λg(u)φ + f φ

)
dxdt = −

∫
Ω

u0φ0dx

for an arbitrary smooth function φ : QT → Rwhich is equal to zero for x ∈ ∂Ω and for t = T (φ0 = φ(x, 0)).

Let us introduce the following set

N =

{
M ∈ (0,∞) | f ∗ + |λ|g(M +m) < (p+ 1)

( 2M
3l2
∗
+ 2l∗

)p+1}
,

where m and f ∗ are the same as in the definition of the setM, l∗ = min{l1, . . . , ln} and numbers l1, . . . , ln are such that
Ω ⊂ {x : |xi| ≤ li}. Denote N∗ = inf N.

Theorem 2. Suppose that Ω , u0 and f are the same as in Theorem 1, N 6= ∅ and the function g satisfies conditions (1.4) and
(1.5). Then for an arbitrary T > 0 there exists a weak solution of problem (1.10), (1.2) and (1.3) such that

‖u‖L∞(QT ) ≤ N∗ +m.

If, in addition, g is Lipschitz continuous function then the solution is unique.

Similarly to problem (1.1)–(1.3) (see Examples 1–5), we can show that Theorem 2 guarantees the existence of a weak
solution of problem (1.10), (1.2) and (1.3) for arbitrary T > 0 in the following cases:

1. g(u) = ln(|u|+1) and g(u) = |u|q−1u or g(u) = |u|q or g(u) = uq (if defined) with 0 ≤ q < p+1 and arbitrary bounded
u0, f ;

2. f ≡ 0, λ 6= 0, g(u) = |u|q−1u (or uq if defined) with q = p+ 1 and

3l2
∗
+ 2l∗ < 2

(
q
|λ|

) 1
q

with arbitrary bounded u0;
3. f ≡ 0, g(u) = u4, λ = 1, p = 1 (or f ≡ 0, g(u) = u, λ = 2−5/4, p = −1/2) and

‖u0‖L∞(Ω) = m <
1

√
2(3l2

∗
+ 2l∗)

;

4. f ≡ 0, g(u) = eu, λ = 1, p > −1 and

eM <
(p+ 1)2p+1

em(3l2
∗
+ 2l∗)p+1

Mp+1

for some N ∈ N.
Let us compare the assertion of Theorem 2 with known results concerning the global solvability of problem (1.10), (1.2)

and (1.3). From [17] it follows that if

|λg(u)+ f | ≤ C0(1+ |u|q)

with q < p + 1 then the global weak solution exists. The same conclusion follows from Theorem 2 (see case 1.). If the
measure of the domain is sufficiently small then [17] guarantees the existence of the global weak solution for q = p+1 (the
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critical case). For the critical case, Theorem 2 guarantees the existence of the global weak solution under the assumption
that the domain is small enough only in one direction (see case 2.). In [3,4], the problem was considered with the source
g(u) = |u|q−1u or g(u) = uq. It was shown there that the global weak solution exists if q < p+ 1. For q > p+ 1 the global
existence was established for small initial data. Theorem 2 guarantees the global weak solvability of the problemwith small
initial data for a wide class of nonlinear sources which grow up faster than up+1 (see cases 3. and 4.).
For large initial data and q > p+ 1, the finite time blow-up of the solution was proved in [3,4]. The finite blow-up of the

solution for q = p+ 1 in arbitrary domain (without smallness restriction on the measure of the domain) was demonstrated
in [17]. The case q = p+ 1 was also considered in [18]. It was shown that global solutions exist only if λ ≤ λ1, where λ1 is
the first eigenvalue of the problem

div(|∇ψ |p∇ψ)+ λ|ψ |pψ = 0 inΩ, ψ |∂Ω = 0.

Obviously, for λ small enough Theorem 2 guarantees the existence of global weak solution to problem (1.10), (1.2) and (1.3).
The paper is organized as follows. Sections 2 and 3 are devoted to the proof of Theorems 1 and 2, respectively. In both

cases, we first obtain a priori estimates for the regularized problem and then pass to the limit in order to obtain the required
result. Finally, in Appendix we prove some auxiliary statements used in the proofs.

2. Proof of Theorem 1

2.1. Regularized problem

We regularize the functions f and u0 by sequences of smooth functions fε : Q T → R and u0ε : Ω → R such that
fε(x, t) → f (x, t) as ε → 0 for almost all (x, t) ∈ QT and u0ε(x) → u0(x) as ε → 0 for almost all x ∈ Ω . Besides,
we suppose that max(x,t)∈Q T |fε(x, t)| ≤ f

∗ and maxx∈Ω |u0ε(x)| ≤ m for all ε. It is not difficult to prove the existence of
such sequences. Indeed, extend the function u0 by zero outside of Ω . Clearly u0ε → u0 in Ls(Ω) for any s ∈ [1,+∞)
where u0ε is a standard mollification of u0. Hence, there exists a subsequence u0εk → u0 almost everywhere in Ω and
maxx∈Ω |u0εk(x)| ≤ m for all εk. The function f can be treated in the same way.
Let {gε} be a sequence of continuously differentiable functions such that

(iε) gε → g as ε→ 0 uniformly on every compact subset of R;
(iiε) for every ε > 0, function gε satisfies (1.5): |gε(ξ)| ≤ gε(η) for all real ξ and η such that |ξ | ≤ η.

We prove the existence of such a sequence {gε} in Appendix A.1.

Lemma 2.1. For every compact subset Mc of M there exists ε0 > 0 such that

f ∗ + |λ|gε(M +m) < (p∗ + 1)

(
2M

3l2 + 2l

)p∗+1
for all M ∈Mc and ε ∈ (0, ε0).

Proof. Let us introduce the following functions

G(ξ) = f ∗ + |λ|g(ξ +m)− (p∗ + 1)

(
2ξ

3l2 + 2l

)p∗+1
,

Gε(ξ) = f ∗ + |λ|gε(ξ +m)− (p∗ + 1)

(
2ξ

3l2 + 2l

)p∗+1
.

ThenM = {ξ | G(ξ) < 0}. For every compactMc ⊂ M, there exists δ > 0 such that G(ξ) ≤ −δ for ξ ∈ Mc . According to
(iε), there exists ε0 > 0 such that |G(ξ)− Gε(ξ)| < δ and, as a consequence, Gε(ξ) < 0 for all ξ ∈ Mc and ε ∈ (0, ε0). The
lemma is proved. �

Let us make two remarks concerning the previous lemma. First, if we have found ε0 corresponding a compact setMc , we
can take a smaller ε0 in the formulation of the lemma. Second, sinceM is the union of all its compact subsets,

M∗ = inf
Mc⊂M

min{M | M ∈Mc}. (2.1)

Let us fix an arbitrary compact setMc ⊂ M and a positive number ε0 that corresponds toMc according to Lemma 2.1.
For all ε ∈ (0, ε0) and for arbitraryM ∈Mc , we introduce the following cut-off function

ḡε(z) =

{gε(−M −m), z < −M −m,
gε(z), |z| ≤ M +m,
gε(M +m), z > M +m,
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and consider the following regularized problem

uεt −
n∑
i=1

((uαεxi + ε)
pi/αuεxi)xi = λḡε(uε)+ fε in QT , (2.2)

uε = 0 on ∂Ω × (0, T ), (2.3)
uε(x, 0) = u0ε(x) inΩ, (2.4)

where α ∈ (0, 1) is a constant such that α = r/m with positive integers r andm, r < m, and r is even. In the singular case
p∗ ∈ (−1, 0), we additionally require that α satisfies the following conditions:

α > p∗ + 1 and (α − p∗ + 1)

(
2M

3l2 + 2l

)α
≥ ε0. (2.5)

For example, if p∗ ≥ 0, one can take α = 2/3; if p∗ = −1/2, one can also take α = 2/3; if p∗ = −1/3, one can put α = 4/5.
Clearly, condition (2.5) can always be satisfied, if one takes ε0 small enough.
These conditions on α are motivated by two reasons. The first one is that for such α

(zα)pi/α = |z|pi and zα = (−z)α,

since α is a rational number with an even numerator. The second reason is that, for such α, the function a1(ε, z) which is
defined below is nondecreasing with respect to ε on the interval (0, ε0). This property of this function will be used in the
proof of Lemma 2.2.
Concerning the existence of a classical solution uε of problem (2.2)–(2.4) see Appendix A.2. Our goal in this section is to

obtain uniform estimates on this solution which would enable us to pass to the limit as ε → 0. First we obtain a uniform
estimate on uε in L∞ norm.

Lemma 2.2. For every compact set Mc ⊂M and for every ε ∈ (0, ε0), the classical solution of problem (2.2)–(2.4) satisfies the
following estimate:

‖uε‖L∞(QT ) ≤ m+Mc,

where Mc = min{M | M ∈Mc} and ε0 is the positive number corresponding toMc according to Lemma 2.1.

Proof. In order to simplify the notation, we shall write u instead of uε . Let us take an arbitraryM ∈Mc and rewrite Eq. (2.2)
in the non-divergent form:

ut −
n∑
i=1

ai(uxi , ε)uxixi = λḡε(u)+ fε (2.6)

with

ai(z, ε) = (zα + ε)
pi
α −1((pi + 1)zα + ε).

Define a function h = h(x1) as follows:

h(x1) = M̃

(
l2 − x21
2
+ (1+ l)(l+ x1)

)
+m,

where

M̃ =
2M

3l2 + 2l
.

Let us introduce the following nonlinear differential operator

Lu = ut −
n∑
i=1

ai(uxi , ε)uxixi .

With this notation, Eq. (2.2) can be rewritten as

Lu = λḡε(u)+ fε. (2.7)

Besides that, since h depends only on x1, (recall that p∗ = p1)

Lh = ht −
n∑
i=1

ai(hxi , ε)hxixi − a1(h
′, ε)h′′ = M̃a1(h′, ε). (2.8)
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Consider the function a1(z, ε). By direct calculations, we obtain

∂a1
∂ε
(z, ε) =

p∗

α
(zα + ε)

p∗
α −2

(
zα(p∗ + 1− α)+ ε

)
.

Due to the assumptions on α, we find that

∂a1
∂ε
(z, ε) ≥ 0 for ε ∈ (0, ε0) and z ≥ M̃.

Since h′ ≥ M̃ , (2.8) implies that

Lh ≥ M̃a1(h′, 0) = M̃(p∗ + 1)h′p
∗

≥ (p∗ + 1)M̃p
∗
+1. (2.9)

Let us denote v(x, t) = u(x, t)− h(x1). It is not difficult to deduce that

Lu− Lh = ut −
n∑
i=1

ai(uxi , ε)uxixi − ht +
n∑
i=1

ai(hxi , ε)hxixi

= vt −

n∑
i=1

ai(uxi , ε)vxixi +
(
a1(h′, ε)− a1(ux1 , ε)

)
h′′.

On the other hand, due to (2.7) and (2.9), we have

Lu− Lh = λḡε(u)+ fε − Lh ≤ λḡε(u)+ fε − (p∗ + 1)M̃p
∗
+1.

Hence,

vt −

n∑
i=1

ai(uxi , ε)vxixi ≤
(
a1(ux1 , ε)− a1(h

′, ε)
)
h′′ + λḡε(u)+ fε − (p∗ + 1)M̃p

∗
+1. (2.10)

Denote by ΓT the parabolic boundary of QT , i.e., ΓT = {(x, t) ∈ ∂QT | t 6= T }. Suppose that the function v attains its
positive maximum at the point N ∈ Q T \ ΓT . At this point, v > 0 and vxi = 0 or, in other words, u > h ≥ m and ux1 = h

′.
Thus, a1(ux1 , ε) = a1(h

′, ε) and consequently, due to (2.10), at the point N , we have

vt −

n∑
i=1

ai(uxi , ε)vxixi ≤ λḡε(u)+ fε − (p
∗
+ 1)M̃p

∗
+1

≤ |λ|ḡε(M +m)+ f ∗ − (p∗ + 1)M̃p
∗
+1

= |λ|gε(M +m)+ f ∗ − (p∗ + 1)

(
2M

3l2 + 2l

)p∗+1
.

We used the fact that 0 ≤ ḡε(z) ≤ gε(M +m) for positive z. Therefore, as it follows from Lemma 2.1,

vt −

n∑
i=1

ai(uxi , ε)vxixi < 0

at the point N . This inequality contradicts the assumption that v attains its maximum at N .
Due to (2.3), v = −h ≤ 0 on ∂Ω × (0, T ). Besides, v(x, 0) = u0ε(x)− h(x1) ≤ u0ε(x)− m ≤ 0. Thus, v ≤ 0 on ΓT . This

enables us to conclude that v ≤ 0 in Q T , i.e.,

u(x, t) ≤ h(x1) for (x, t) ∈ Q T .

In order to obtain a similar estimate from below, let us introduce the functionw(x, t) = u(x, t)+ h(x1). We have

Lu+ Lh = ut −
n∑
i=1

ai(uxi , ε)uxixi + ht −
n∑
i=1

ai(hxi , ε)hxixi

= wt −

n∑
i=1

ai(uxi , ε)wxixi −
(
a1(h′, ε)− a1(ux1 , ε)

)
h′′.

On the other hand, due to (2.7) and (2.9),

Lu+ Lh = λḡε(u)+ fε + Lh ≥ λḡε(u)+ fε + (p∗ + 1)M̃p
∗
+1.
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Thus,

wt −

n∑
i=1

ai(uxi , ε)wxixi ≥
(
a1(h′, ε)− a1(ux1 , ε)

)
h′′ + λḡε(u)+ fε + (p∗ + 1)M̃p

∗
+1.

Suppose that at the pointN1 ∈ Q T\ΓT the functionw attains its negativeminimum.At this pointwehavew < 0 andwxi = 0,
i.e., u < −h ≤ 0 and ux1 = −h

′. Therefore, a1(ux1 , ε) = a1(h
′, ε) (recall that, due to the choice of α, ai(z, ε) = ai(−z, ε))

and at the point N1,

wt −

n∑
i=1

ai(uxi , ε)wxixi ≥ λḡε(u)+ fε + (p
∗
+ 1)M̃p

∗
+1

≥ −|λ|gε(M +m)− f ∗ + (p∗ + 1)

(
2M

(3l2 + 2l)

)p∗+1
. (2.11)

Here, we used the inequality

λḡε(u(N1)) ≥ −|λ|gε(M +m)

which is true due to the following arguments. If λ ≥ 0, then this inequality follows from the fact that ḡε(u) ≥ −gε(M +m)
(see assumption (iiε)). If λ < 0, then the inequality follows from the fact that ḡε(u) ≤ gε(M + m). Inequality (2.11) and
Lemma 2.1 imply that

wt −

n∑
i=1

ai(uxi , ε)wxixi > 0

at the point N1. This contradicts the assumption thatw attains its minimum at N1.
Due to (2.3) and (2.4), w = h ≥ 0 on ∂Ω × (0, T ). Moreover w(x, 0) = u0ε(x) + h(x1) ≥ u0ε(x) + m ≥ 0. Taking into

account thatw cannot attain its positive maximum in Q T \ ΓT , we conclude thatw ≥ 0 in Q T and, as a consequence,

u(x, t) ≥ −h(x1) for (x, t) ∈ Q T .

Thus,

− h(x1) ≤ u(x, t) ≤ h(x1) for (x, t) ∈ Q T . (2.12)

Let us introduce the function h̃(x1) = h(−x1). Obviously h̃′ ≤ −M̃ and h̃′′ = −M̃ . Moreover, since−h̃′ ≥ M̃ ≥ 0, due to
the choice of α, we have h̃′α ≥ M̃α . Hence,

Lh̃ ≥ (p∗ + 1)M̃p
∗
+1.

Therefore, similarly to (2.12), we obtain

−h̃(x1) ≤ u(x, t) ≤ h̃(x1) for (x, t) ∈ Q T .

This estimate together with (2.12) implies that

−min{h(x1), h̃(x1)} ≤ u(x, t) ≤ min{h(x1), h̃(x1)} for (x, t) ∈ Q T .

Since min{h(x1), h̃(x1)} ≤ h(0), we have

|u(x, t)| ≤ h(0) = M̃
3l2 + 2l
2
+m = M +m for (x, t) ∈ Q T .

The assertion of the lemma follows now from the fact that M is an arbitrary number from the set Mc . Lemma 2.2 is
proved. �

Remark 1. The estimate in Lemma 2.2 is weaker that the similar one in Theorem 1. The latter will be obtained in the limit
as ε → 0. Nevertheless, Lemma 2.2 gives us a uniform estimate of ‖uε‖L∞(QT ) and this is enough to obtain other estimates
and to perform the passage to the limit. Besides that, this estimate enables us to replace ḡε by gε in (2.2).
Let us estimate the derivatives of uε .

Lemma 2.3. Let Mc and ε0 be as in Lemma 2.2. There exists a constant C such that∫
QT
|uεxi(x, t)|

pi+2dxdt ≤ C, i = 1, . . . , n,

for every ε ∈ (0, ε0).
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Proof. As in the proof of the previous lemma, we shall write u instead of uε . Multiplying Eq. (2.2) by u and integrating by
parts we obtain∫

Ω

u2(x, t)dx+ 2
n∑
i=1

∫
QT
(uαxi + ε)

pi/αu2xidxdt = 2
∫
QT

(
λḡε(u)+ f

)
udxdt +

∫
Ω

u20dx.

Due to Lemma 2.2, this equality implies the following estimate∫
QT
(uαxi + ε)

pi/αu2xidxdt ≤ C1, i = 1, . . . , n, (2.13)

with a constant C1 that does not depend on ε.
First, we suppose that pi ≥ 0. In this case,

(
zα + ε

)pi/αz2 ≥ |z|pi+2 and consequently, from (2.13), we conclude that∫
QT
|uxi |

pi+2dxdt ≤ C1, i = 1, . . . , n.

Now, consider the case pi ∈ (−1, 0). Let (QT )ε be the subset of QT where uαxi > ε and (QT )ε = QT \ (QT )ε . Obviously,
uαxi + ε < 2u

α
xi in (QT )

ε and, since pi < 0,

C1 ≥
∫
(QT )ε

(uαxi + ε)
pi/α|uxi |

2dxdt > 2pi/α
∫
(QT )ε
|uxi |

pi+2dxdt.

At the same time,∫
(QT )ε
|uxi |

pi+2dxdt ≤ Tεpi+2 mesΩ.

Thus, ∫
QT
|uxi |

pi+2dxdt ≤ 2−pi/αC1 + Tεpi+2 mesΩ.

The lemma is proved. �

Let us prove the following auxiliary lemma.

Lemma 2.4. For any v ∈ L∞(Ω) ∩ Ui(Ω), i ∈ {1, . . . , n} there exists a constant C (depending on ‖vxi‖Lpi+2(Ω)) such that∣∣∣∣∫
Ω

(vαxi + ε)
pi/αvxiφxidx

∣∣∣∣ ≤ C‖φxi‖Lpi+2(Ω), i = 1, . . . , n,

for every function φ ∈ Ui(Ω) and for all ε ∈ (0, 1).

Proof. For a fixed ε ∈ (0, 1), denote byΩε the subset ofΩ , where vαxi > ε, and byΩε the subset ofΩ , where vαxi ≤ ε. Recall
that vαxi ≥ 0, since α has an even numerator. InΩ

ε , we have

(vαxi + ε)
pi/α|vxi | < 2

pi/α|vxi |
pi+1.

Therefore,∣∣∣∣∫
Ωε
(vαxi + ε)

pi/αvxiφxidxdt
∣∣∣∣ < 2pi/α ∫

Ωε
|vxi |

pi+1|φxi |dx

≤ 2pi/α
∫
Ω

|vxi |
pi+1|φxi |dx ≤ 2

pi/α‖vxi‖
pi+1
Lpi+2(Ω)

‖φxi‖Lpi+2(Ω).

The integral overΩε can be estimated as follows∣∣∣∣∫
Ωε

(vαxi + ε)
pi/αvxiφxidx

∣∣∣∣ ≤ (2ε)pi/αε1/α ∫
Ωε

|φxi |dxdt ≤ 2
pi/αε(pi+1)/α‖φxi‖L1(Ω).

The assertion of the lemma follows from these estimates. �

Lemma 2.5. Let Mc and ε0 be as in Lemma 2.2. There exists a constant C such that∣∣∣∣∫
QT
uεtφdxdt

∣∣∣∣ ≤ C‖φ‖V (QT )
for every function φ ∈ V (QT ) and for all ε ∈ (0, ε0).
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Proof. As earlier, we shall write u instead of uε . Multiplying (2.2) by an arbitrary function φ ∈ V (QT ) and integrating over
QT , we obtain that∣∣∣∣∫

QT
utφdxdt

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣∫
QT
(uαxi + ε)

pi/αuxiφxidxdt
∣∣∣∣+ ∫

QT

(
|λḡε(u)| + |f |

)
|φ|dxdt. (2.14)

From Lemmas 2.1 and 2.2 it follows that there exists a constant C1 such that∫
QT

(
|λ ḡε(u)| + |f |

)
|φ|dxdt ≤ C1‖φ‖L1(QT ). (2.15)

Consider the first term on the right-hand side of (2.14). Due to Lemmas 2.3 and 2.4, there exists a constant C2 such that∣∣∣∣∫
QT
(uαxi + ε)

pi/αuxiφxidxdt
∣∣∣∣ ≤ C2‖φxi‖Lpi+2(QT ), i = 1, . . . , n. (2.16)

The assertion of the lemma follows now from (2.14)–(2.16). �

2.2. Passage to the limit

We obtain a weak solution to problem (1.1)–(1.3) as a limit of the approximate solutions uε constructed in the previous
section. Let {εk} be a monotone sequence of positive numbers which tends to zero as k → ∞. In order to simplify the
notations, we shall omit the index k and shall write ε and ε→ 0.
The generalized formulation of the regularized problem (2.2)–(2.4) reads as follows∫

QT

(
uεφt −

n∑
i=1

(uαεxi + ε)
pi/αuεxiφxi + λgε(uε)φ + fεφ

)
dxdt = −

∫
Ω

u0εφ0dx, (2.17)

where φ0 = φ(x, 0) and φ is an arbitrary smooth function which vanishes on ∂Ω × (0, T ) and onΩ × {T }. Notice that we
replaced here ḡε by gε , which is explained in Remark 1 in the previous section.
First of all, by the definition of the sequences {fε} and {u0ε}we have that

fε → f in Ls(QT ), u0ε → u0 in Ls(Ω)

as ε→ 0 for all s ∈ [6,∞). This implies that∫
QT
fεφdxdt →

∫
QT
f φdxdt and

∫
Ω

u0εφ0dx→
∫
Ω

u0φ0dx (2.18)

as ε→ 0.
Let us investigate the convergence of the sequence {uε}. As it follows from Lemmas 2.2, 2.3 and 2.5, this sequence has a

subsequence which will be denoted again by {uε} such that

uε → u ∗ -weakly in L∞(QT ), (2.19)

uεxi → uxi weakly in L
pi+2(QT ), i = 1, . . . , n, (2.20)

uεt → ut ∗ -weakly in V ∗(QT ) (2.21)

as ε→ 0. Obviously (2.19) and (2.21) imply that∫
QT
uεφtdxdt →

∫
QT
uφtdxdt as ε→ 0. (2.22)

Our next step is the proof of the strong convergence of {uε} in Ls(QT ) for all s ∈ [1,∞). We shall do this by the
Aubin–Lions compactness theorem (see [1, Ch. 1.5] and [19]). Lemmas 2.2, 2.3 and 2.5 imply that the sequences {uε} and
{uεt} are bounded in the spaces Lp∗+2(0, T ;W

1,p∗+2
0 (Ω)) and Lq

∗
+2(0, T ;W−1,q

∗
+2(Ω)), respectively. Here, q∗ is such that

(q∗+ 2)−1+ (p∗+ 2)−1 = 1 andW−1,q
∗
+2(Ω) is the space adjoint toW 1,p

∗
+2

0 (Ω). The spaceW 1,p
∗
+2

0 (Ω) is compactly and
densely embedded into Lp

∗
+2(Ω), but it can occur that Lp

∗
+2(Ω) is not embedded intoW−1,q

∗
+2(Ω). However, we can take

a larger space instead of W−1,q
∗
+2(Ω). For instance, W−k,q

∗
+2(Ω) with k > max{n/(p∗ + 2), 1} is suitable. As if follows

from the embedding theorems, Lp
∗
+2(Ω) ⊂ W−k,q

∗
+2(Ω) andW−1,q

∗
+2(Ω) ⊂ W−k,q

∗
+2(Ω). Therefore, the Aubin–Lions

theorem implies that the sequence {uε} is compact in Lp∗+2(QT ). Thus, there exists a subsequence {uε} such that

uε → u almost everywhere in QT . (2.23)
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Moreover, since the sequence {uε} is bounded in L∞(QT ), the Lebesgue dominated convergence theorem yields that

uε → u in Ls(QT ) for all s ∈ [1,∞).

From (2.23), we can easily deduce that∫
QT
λgε(uε)φdxdt →

∫
QT
λg(u)φdxdt as ε→ 0. (2.24)

Indeed, there exists a constant M such that |uε(x, t)| ≤ M for all (x, t) ∈ QT and for all ε ∈ (0, ε0). At the same time,
property (iε) of the sequence {gε} implies that for every γ > 0 there exists εγ such that maxξ∈[−M,M] |gε(ξ)− g(ξ)| < γ for
ε ∈ (0, εγ ). Therefore, max(x,t)∈Q T |gε(uε(x, t))− g(uε(x, t))| < γ for ε ∈ (0, εγ ) and, as a consequence,∣∣∣∣∫

QT
λ
(
gε(uε)− g(u)

)
φdxdt

∣∣∣∣ ≤ ∫
QT

|gε(uε)− g(uε)| |λφ|dxdt +
∫
QT

|g(uε)− g(u)| |λφ|dxdt

≤ γ mes QT max
(x,t)∈QT

|λφ(x, t)| +
∫
QT

|g(uε)− g(u)| |λφ|dxdt.

Due to (2.23) and the Lebesgue dominated convergence theorem, the integral term on the right-hand side of the last
inequality tends to zero as ε→ 0. Since γ can be taken arbitrary small, (2.24) holds true.
Thus, in order to complete the passage to the limit in (2.17), we only have to prove that∫

QT

n∑
i=1

(uαεxi + ε)
pi/αuεxiφxidxdt →

∫
QT

n∑
i=1

|uxi |
piuxiφxidxdt as ε→ 0. (2.25)

For this purpose,we employ themonotonicitymethod described in [1, Ch. 2]. Notice thatwewill slightlymodify thismethod.
Namely, unlike in [1], we shall use the monotonicity of the approximate operator.
For i = 1, . . . , n, define nonlinear operators Aiε and Ai which act from Ui(Ω) to U∗i (Ω). For arbitrary functions v and w

from the space Ui(Ω), we put

〈Aiε(v), w〉 =
n∑
i=1

∫
Ω

(vαxi + ε)
pi/αvxiwxidx,

〈Ai(v), w〉 =
n∑
i=1

∫
Ω

|vxi |
pivxiwxidx,

where 〈 ·, · 〉 is the duality pairing between U∗i (Ω) and Ui(Ω). It is not difficult to see that the operators Aiε and Ai indeed
map Ui(Ω) into U∗i (Ω). For the operator Aiε it follows from Lemma 2.4, whereas for the operator Ai, this fact is the direct
consequence of the Hölder inequality:∫

Ω

|vxi |
pivxiwxidx ≤

(∫
Ω

|vxi |
pi+2dx

)(pi+1)/(pi+2)(∫
Ω

|wxi |
pi+2dx

)1/(pi+2)
.

For every v ∈ U(Ω)we denote

Aε(v) =
n∑
i=1

Aiε(v), A(v) =
n∑
i=1

Ai(v).

Clearly, operators Aε and A act from U(Ω) to U∗(Ω).
Thus, (2.25) is equivalent to the following assertion∫ T

0
〈Aε(uε), φ〉dt →

∫ T

0
〈A(u), φ〉dt as ε→ 0,

where 〈 ·, · 〉 is the duality pairing between U∗(Ω) and U(Ω).
Notice that, since the sequence {Aε(uε)} is bounded in V ∗(QT ) (Lemma 2.4), there exists χ ∈ V ∗(QT ) such that up to a

subsequence

Aε(uε)→ χ ∗ -weakly in V ∗(QT ). (2.26)

Our goal is to prove that χ = A(u).
Relations (2.18), (2.21), (2.24) and (2.26) imply that the limit function u satisfies the equation:

ut + χ = λg(u)+ f in V ∗(QT ).
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Obviously U(Ω) ⊂ L2(Ω) ⊂ U∗(Ω) and these embeddings are dense. Therefore, exactly as in [1] we obtain that

u ∈ C(0, T ; L2(Ω)) (2.27)

and ∫
QT

(
λg(u)+ f

)
udxdt +

1
2

∫
Ω

u20dx−
1
2

∫
Ω

u2(x, T )dx =
∫ T

0
〈χ, u〉dt. (2.28)

Multiplying Eq. (2.2) by uε and integrating over QT , we obtain∫ T

0
〈Aε(uε), uε〉dt =

∫
QT

(
λgε(uε)+ fε

)
uεdxdt +

1
2

∫
Ω

u20εdx−
1
2

∫
Ω

u2ε(x, T )dx. (2.29)

Operator Aε is monotone (see Appendix A.3), i.e.,

〈Aε(uε)− Aε(v), uε − v〉 ≥ 0

for an arbitrary v ∈ U(Ω) and for all t ∈ [0, T ]. This means that∫ T

0
〈Aε(uε), uε〉dt ≥

∫ T

0
〈Aε(uε), φ〉dt +

∫ T

0
〈Aε(φ), uε − φ〉dt

for an arbitrary φ ∈ V (QT ). Therefore, (2.29) yields∫
QT

(
λgε(uε)+ fε

)
uεdxdt +

1
2

∫
Ω

u20εdx−
1
2

∫
Ω

u2ε(x, T )dx−
∫ T

0
〈Aε(uε), φ〉dt −

∫ T

0
〈Aε(φ), uε − φ〉dt ≥ 0.

The passage to the limit as ε→ 0 in this inequality together with (2.28) implies that∫ T

0
〈χ − A(φ), u− φ〉dt ≥ 0. (2.30)

Here, we used the facts that (see Appendix A.4)∫
Ω

u2(x, T )dx ≤ lim inf
ε→0

∫
Ω

u2ε(x, T )dx (2.31)

and that

lim
ε→0

∫ T

0
〈Aε(φ), uε − φ〉dt =

∫ T

0
〈A(φ), u− φ〉dt.

From (2.30) by standard arguments ([1, Ch. 2]), we conclude that

χ = A(u).

The existence of a weak solution to the problem is proved.
As it follows from (2.21), for the constructed solution u we have ut ∈ V ∗(QT ). Inclusion u ∈ C([0, T ]; Ls(Ω)) follows

from (2.27) and (1.7) due to the Lebesgue dominated convergence theorem. Let us prove (1.7). Lemma 2.2 implies that
‖u‖L∞(QT ) ≤ m + Mc for every compact setMc ⊂ M. Taking now infimum in this inequality over allMc ⊂ M, we obtain
(1.7) thanks to (2.1).
In order to complete the proof of the theorem, we have only to establish the uniqueness of the weak solution. Suppose

that there exist two solutions u1 and u2. Then the functionw = u1 − u2 satisfies the following equation

V∗(Qt0 )
〈wt , w〉V (Qt0 ) +

∫ t0

0
U∗〈A(u1)− A(u2), u1 − u2〉Udt = λ

∫
Qt0

(
g(u1)− g(u2)

)
(u1 − u2)dxdt

with an arbitrary t0 ∈ (0, T ]. Taking into account the monotonicity of A, the Lipschitz continuity of g and the fact that
w(x, 0) = 0, we obtain the following inequality

1
2
‖w(t0)‖2L2(Ω) = V∗(Qt0 )

〈wt , w〉V (Qt0 ) ≤ 2|λ|C
∫ t0

0

1
2
‖w(t0)‖2L2(Ω)dt,

where the constant C is such that |g(u1)− g(u2)| ≤ C |u1 − u2|. Due to the Gronwall lemma this implies that u1 = u2.
Theorem 1 is proved.
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3. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. We regularize the problem, obtain uniform estimates and pass to
the limit. Consider the regularized equation

uεt − div
(
(|∇uε|α + ε)p/α∇uε

)
= λḡ(uε)+ fε, (3.1)

with boundary conditions (2.3) and (2.4). The functions gε , ḡε and fε are the same as in Section 2.1. If p ≥ 1 then we take
arbitrary positive ε and α = 2. If p ≤ 0 then we again take α = 2 but we require ε to be small enough, namely

0 < ε < (1− p)

(
2M

3l2
∗
+ 2l∗

)2
.

If p ∈ (0, 1)we require that, as in Section 2, α = r/mwith positive integers r andm such that r < m and r is even.
Notice that for every compact subsetNc ofN there exists ε0 > 0 such that

f ∗ + |λ|gε(M +m) < (p+ 1)

(
2M

3l2
∗
+ 2l∗

)p+1
for allM ∈ N and ε ∈ (0, ε0). This fact can be proved similar to Lemma 2.1. We shall say that ε0 corresponds toNc .
Let us estimate a classical solution uε of problem (3.1), (2.3) and (2.4) in L∞ norm. To simplify the notation, in the proofs

of Lemmas 3.1–3.4 we will omit the subscript ε.

Lemma 3.1. For every compact set Nc ⊂ N and for every ε ∈ (0, ε0), the classical solution of problem (3.1), (2.3) and (2.4)
satisfies the following estimate:

‖uε‖L∞(QT ) ≤ m+Mc,

where Mc = min{M | M ∈ Nc} and ε0 is the positive number corresponding toNc .

Proof. Without loss of generality suppose that l∗ = l1. Let us take an arbitrary M ∈ Mc . Define the function h(x1) by the
following:

h(x1) = M̃

(
l21 − x

2
1

2
+ (1+ l1)(l1 + x1)

)
+m,

where

M̃ =
M
d1
, d1 =

3l21 + 2l1
2

.

Define the operator L:

Lu ≡ ut − div
(
(|∇u|α + ε)p/α∇u

)
.

We have

Lu = |λ|ḡ(u)+ f (x, t)

and

Lh = ht − div
(
(|∇h|α + ε)p/α∇h

)
− (h′α + ε)(ε + (1+ p)h′α)h′′ = (h′α + ε)(ε + (1+ p)h′α)

M
d1
.

Consider function

E(ε) ≡ (h′α + ε)(p−α)/α(h′α(1+ p)+ ε).

Due to the assumptions on α and ε we conclude that

E ′(ε) =
p
α
(h′α + ε)

p−2α
α (h′α(1+ p− α)+ ε) ≥ 0.

This inequality implies that

E(ε) ≥ E(0)

and

Lh ≥ |h′|p(1+ p)
M
d1
≥

1+ p(M
d1

)p+1 .
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Now, similarly to the proof of Lemma 2.2, we deduce that

−h(x1) ≤ u(x, t) ≤ h(x1) in Q̄T

and

−h(−x1) ≤ u(x, t) ≤ h(−x1) in Q̄T .

As a consequence we conclude that

‖u(x, t)‖L∞(QT ) ≤ h(0) = M +m.

The assertion of the lemma follows now from the fact thatM is an arbitrary number fromNc . �

Remark 2. Due to the estimates in the previous lemmas, we can take g(u) instead of ḡ(u) in Eq. (3.1).

Let us turn now to integral estimates.

Lemma 3.2. Suppose that conditions of Lemma 3.1 are fulfilled, then for any classical solution of problem (3.1), (2.3) and (2.4)
the following estimate is valid∫

QT
|∇uε(t, x)|p+2dxdt ≤ C,

where the constant C is independent of ε.

Proof. Multiply Eq. (3.1) by u, integrating by parts and taking into account that |u| ≤ M +m, we find that∫
QT

(
|∇u|α + ε

)p/α
|∇u|2dxdt ≤ C1 (3.2)

for some independent of ε constant C1.
Suppose that p ≥ 0. In this case (zα + ε)p/αz2 ≥ |z|p+2 and consequently (3.2) implies that∫

QT
|∇u|p+2dxdt ≤ C1.

Consider the case p ∈ (−1, 0). Let
(
QT
)ε
be the subset of QT where |∇u|α > ε and

(
QT
)
ε
= QT \

(
QT
)ε
. Obviously,

|∇u|α + ε < 2|∇u|α in
(
QT
)ε
and, since p is negative,

C1 ≥
∫(
QT
)ε (|∇u|α + ε)p/α|∇u|2dxdt > 2p/α ∫(

QT
)ε |∇u|p+2dxdt.

At the same time∫(
QT
)
ε

|∇u|p+2dxdt ≤ Tεp+2 mesΩ.

Thus ∫
QT
|∇u|p+2dxdt ≤ 2−p/αC1 + Tεp+2 mesΩ.

Without loss of generality we can assume that ε ≤ 1, hence the lemma is proved. �

Let us prove the following auxiliary lemma.

Lemma 3.3. Let functionsw and φ be in W 1,p+20 (Ω), p > −1. Then∣∣∣∣∫
Ω

(|∇w|α + ε)p/α∇w · ∇φdx
∣∣∣∣ ≤ 2p/α(‖∇w‖p+1Lp+2(Ω) + ε(p+1)/α)‖∇φ‖Lp+2(Ω)

for all ε ∈ (0, 1).

Proof. For a fixed ε ∈ (0, 1), denote byΩε the subset ofΩ , where |∇w|α > ε, and byΩε the subset ofΩ , where |∇w|α ≤ ε.
InΩε , we have

(|∇w|α + ε)p/α|∇w| < 2p/α|∇w|p+1.
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Therefore,∣∣∣∣∫
Ωε
(|∇w|α + ε)p/α∇w · ∇φdxdt

∣∣∣∣ < 2p/α ∫
Ωε
|∇w|p+1|∇φ|dx ≤ 2p/α‖∇w‖p+1

Lp+2(Ω)
‖∇φ‖Lp+2(Ω).

The integral overΩε can be estimated as follows∣∣∣∣∫
Ωε

(|∇w|α + ε)p/α∇w · ∇φdx
∣∣∣∣ ≤ (2ε)p/αε1/α ∫

Ωε

|∇φ|dxdt ≤ 2p/αε(p+1)/α‖∇φ‖L1(Ω).

The assertion of the lemma follows from these estimates. �

Lemma 3.4. There exists a constant C such that∣∣∣∣∫
QT
uεtφdxdt

∣∣∣∣ ≤ C‖φ‖Lp+2(0,T ;W1,p+20 (Ω))

for every function φ ∈ Lp+2(0, T ;W 1,p+20 (Ω)) ∩ L(p+2)/(p+1)(QT ) and for all ε ∈ (0, ε0).

Proof. As earlier, we shall write u instead of uε . Multiplying (3.1) by an arbitrary smooth function φ(t, x) that is equal to
zero on ∂Ω and integrating over QT , we find that∣∣∣∣∫

QT
utφdxdt

∣∣∣∣ ≤ ∣∣∣∣∫
QT
(|∇u|α + ε)p/α∇u∇φdxdt

∣∣∣∣+ ∫
QT
|λḡε(u)+ fε||φ|dxdt. (3.3)

From Lemma 3.1, it follows that there exists a constant C1 such that∫
QT
|ḡε(u)+ f ||φ|dxdt ≤ C2‖φ‖L1(QT ) ≤ C3‖φ‖Lp+2(0,T ;W1,p+20 (Ω))

. (3.4)

Consider the first term on the right-hand side of (3.3). Due to Lemma 3.3, there exists a constant C2 such that∣∣∣∣∫
QT
(|∇u|α + ε)p/α∇u · ∇φdxdt

∣∣∣∣ ≤ C2‖∇φ‖Lp+2(QT ). (3.5)

The assertion of the lemma follows now from (3.4) and (3.5). �

Wehave obtained all estimates needed to pass to the limit as ε→ 0 in Eqs. (3.1), (2.3) and (2.4). It can be done absolutely
in the same way as in Section 2.2. The only difference is in the definition of operators Aε and A. We define operators acting
fromW 1,p+20 (Ω) toW−1,q+2(Ω)with (p+2)−1+ (q+2)−1 = 1. For arbitrary functions v andw from the spaceW 1,p+20 (Ω),
we put

〈Aε(v), w〉 =

∫
Ω

(|∇v|α + ε)p/α∇v · ∇wdx,

〈A(v), w〉 =

∫
Ω

|∇v|p∇v · ∇wdx,

where 〈 ·, · 〉 is the duality pairing betweenW−1,q+2(Ω) andW 1,p+20 (Ω).
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Appendix

A.1. Approximation of the function g

Let g : R→ R be a continuous function such that |g(ξ)| ≤ g(η) whenever |ξ | ≤ η. We want to prove that there exists
a sequence of functions gε : R→ R that satisfy the following conditions:

(1) they are continuously differentiable on every compact subset of R;
(2) |gε(ξ)| ≤ gε(η) for all real ξ and η such that |ξ | ≤ η;
(3) the sequence {gε} converges to the function g as ε→ 0 uniformly on every compact subset of R.
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Let us define

gε(ξ) =
1
2ε

∫ ξ+ε

ξ−ε

g(η)dη

and verify the properties formulated above. The first and the third properties are obvious. Moreover, gε is continuously
differentiable since the function g is continuous. Let us turn to the proof of the second property.
Note that the function g is nondecreasing and nonnegative on [0,∞). Let us prove that the function gε has the same

properties, which implies property (2) for ξ ≥ 0. Indeed, g ′ε(ξ) = (2ε)
−1
(
g(ξ + ε)− g(ξ − ε)

)
. If ξ ≥ ε, then g ′ε(ξ) ≥ 0. If

ξ ∈ [0, ε], then |g(ξ − ε)| ≤ g(|ξ − ε|) ≤ g(ξ + ε) and we have again g ′ε(ξ) ≥ 0. In order to prove that gε ≥ 0 on [0,∞),
it is enough to show that gε(0) ≥ 0. This fact is an obvious consequence of the following relations

gε(0) =
1
2ε

∫ ε

−ε

g(η)dη =
1
2ε

∫ 0

−ε

g(η)dη +
1
2ε

∫ ε

0
g(η)dη,∣∣∣∣∫ 0

−ε

g(η)dη
∣∣∣∣ ≤ ∫ 0

−ε

|g(η)|dη ≤
∫ 0

−ε

g(−η)dη =
∫ ε

0
g(η)dη.

Thus, gε(ξ) satisfies (2) for ξ ≥ 0.
For negative ξ , due to the monotonicity of the function gε on [0,∞), we have to prove that |gε(ξ)| ≤ gε(|ξ |) = gε(−ξ).

If ξ ∈ (−∞,−ε], then

|gε(ξ)| ≤
1
2ε

∫ ξ+ε

ξ−ε

|g(η)|dη ≤
1
2ε

∫ ξ+ε

ξ−ε

g(−η)dη

= −
1
2ε

∫
−ξ+ε

−ξ−ε

g(η)dη =
1
2ε

∫
|ξ |+ε

|ξ |−ε

g(η)dη = gε(|ξ |).

Finally, suppose that ξ ∈ (−ε, 0). Since
∫ ξ+ε
−ξ−ε

g(η)dη ≥ 0, we have

|gε(ξ)| =
∣∣∣∣ 12ε

∫ ξ+ε

ξ−ε

g(η)dη
∣∣∣∣ ≤ 1

2ε

∫
−ξ−ε

ξ−ε

|g(η)|dη +
1
2ε

∫ ξ+ε

−ξ−ε

g(η)dη

≤
1
2ε

∫
−ξ−ε

ξ−ε

g(−η)dη +
1
2ε

∫ ξ+ε

−ξ−ε

g(η)dη =
1
2ε

∫
−ξ+ε

ξ+ε

g(η)dη +
1
2ε

∫ ξ+ε

−ξ−ε

g(η)dη

=
1
2ε

∫
−ξ+ε

−ξ−ε

g(η)dη = gε(−ξ) = gε(|ξ |).

Thus, property (2) is entirely proved.

A.2. Proof of a classical solvability of the regularized problems

Regularized equation (3.1) is uniformly parabolic equation and the global solvability of problem (3.1), (2.3) and
(2.4) follows, for example, from [20].
Regularized equation (2.2) is strictly parabolic but not uniformly parabolic equation. In order to prove the global classical

solvability of problem (2.2)–(2.4) it is sufficient to prove the a priori estimate of |∇u|. After this, Eq. (2.2) can be considered as
uniformly parabolic and the required existence follows from [20]. In order to prove this estimate we will apply the classical
Bernstein method (see [21,20]), which involves differentiation of Eq. (2.2) with respect to xi, i = 1, . . . , n followed by
multiplication by uxi and summation over i. Themaximum principle is then applied to the resulting equation in the function
v = |∇u|2. For v we obtain

n∑
i=1

ai(uxi , ε)vxixi − vt +
n∑
i=1

∂ai(uxi , ε)
∂uxi

uxixivxi + 2

λg ′ε(u)+
n∑
i=1
fxiuxi

|∇u|2

 v ≥ 0.
If v ≥ 1 then there exists a constant K depending on g(M) and max |fxi | such that

2

λg ′ε(u)+
n∑
i=1
fxiuxi

|∇u|2

 < K .
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For ω = ve−Kt we obtain

n∑
i=1

ai(uxi , ε)ωxixi − ωt +
n∑
i=1

∂ai(uxi , ε)
∂uxi

uxixiωxi +

2
λg ′ε(u)+

n∑
i=1
fxiuxi

v

− K
ω ≥ 0,

from the classical maximum principle, we conclude that ω ≤ maxΓT ω where ΓT is the parabolic boundary of the domain,
and hence

v ≤ max{eKT max
ΓT

v, 1}.

Thus, it is sufficient to estimate max v on the set ∂Ω × (0, T ]. Recall thatΩ satisfies an exterior sphere condition at a point
x0 ∈ ∂Ω so that there exists a ball BR(y0) (with center at a point y0 6∈ Ω and radius R) such that x0 = ∂Ω ∩ B̄R(y0). Consider
the distance function r(x) ≡ |x− y0| − R. Letw = w(r) be a smooth function such thatw′(r) ≥ 1. We have

Lw(r) ≡
n∑
i=1

ai(wxi , ε)wxixi + λg(u)+ f − wt

= w′
n∑
i=1

ai(wxi , ε)rxixi +
w′′

w′2

n∑
i=1

ai(wxi , ε)r
2
xiw
′2
+ λg(u)+ f

≤ w′
n− 1
R

n∑
i=1

ai(wxi , ε)+
w′′

w′2

n∑
i=1

ai(wxi , ε)w
2
xi + |λ|g(M)+ f

∗.

Since |∇w| = |w′| = w′ ≥ 1, for sufficiently large µwe have

|∇w|

n∑
i=1

ai(wxi , ε) ≤ µ
n∑
i=1

ai(wxi , ε)w
2
xi ,

and

|λ|g(M)+ f ∗ ≤ µ
n∑
i=1

ai(wxi , ε)w
2
xi .

Hence

Lw(r) ≤

(
w′′

w′2
+ ν

)
n∑
i=1

ai(wxi , ε)w
2
xi ,

where ν = (1+ (n− 1)R−1)µ.
Consider the cylinder

Qx0,d = {(x, t) : 0 < r(x) < d, 0 < t ≤ T } ∩ QT ,
where the quantity dwill be defined below. Letw(r) be a solution of the problem

w′′ + νw′2 = 0, w(0) = 0, w(d) = M

such thatw′ ≥ 1. Obviously,

w(r) =
1
ν
ln
(
1+

eMν−1

d
r
)
.

In order to satisfy conditionw′ ≥ 1 we select d small enough (such that eMν(1− dν) ≥ 1).
In Qx0,d we have

Lw ≤ 0.

On the part of parabolic boundary of Qx0,d belonging to ∂Ω × (0, T ] we have u − w = −w < 0, on the part of parabolic
boundary of Qx0,d which is lying inside of the domain QT (t > 0) we have u − w = u − M ≤ 0. For t = 0 we obtain
the inequality u0 ≤ w by selecting d small enough (and as a consequence w′ will be big enough). So, due to the maximum
principle we obtain

u(x, t) ≤ w(r(x)) in Q̄x0,d.
Similarly we prove that

u(x, t) ≥ −w(r(x)) in Q̄x0,d,
from where we obtain the needed estimate

v(x0, t) = |∇u(x0, t)|2 ≤ w′2(0)n.
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A.3. Monotonicity of operators Aε and A

In this section, we prove that the operators Ai and Aiε are monotone. This will imply that the operators A and Aε are also
monotone. As it follows from Proposition 1.1 in [1, Ch. 2], it is sufficient to prove that these operators are Gateau derivatives
of convex functionals. Let us define functionalsΦi and Ψi : Ui(Ω)→ R as follows

Φi(u) =
∫
Ω

|uxi |
pi+2dx, Ψi(u) =

∫
Ω

Fi
(
|uxi |

2)dx,
where

Fi(η) =
∫ η

0
(ξα/2 + ε)pi/αdξ .

It is not difficult to see thatΦ ′i (u) = A(u) and Ψ
′

i (u) = Aε(u). Convexity of the functionalΦi is obvious. Convexity of Ψi will
be proved if we establish convexity of the function Fi(|ξ |2) with respect to ξ . However this fact is a direct consequence of
the following properties of the function Fi:

F ′i (η) ≥ 0 and F ′′i (η) ≥ 0 for η ≥ 0.

Similarlywe can prove here that the operatorsA andAε aremonotone.We have to prove that these operators are Gateau
derivatives of convex functionals. Let us define functionalsΦ and Ψ : W 1,p+20 (Ω)→ R as follows

Φ(u) =
∫
Ω

|∇u|p+2dx, Ψ (u) =
∫
Ω

F
(
|∇u|2

)
dx,

where

F(η) =
∫ η

0
(ξα/2 + ε)p/αdξ .

It is not difficult to see that Φ ′(u) = A(u) and Ψ ′(u) = Aε(u). Convexity of the functional Φ is obvious. Convexity of Ψ
will be proved if we establish convexity of the function ξ 7→ F(|ξ |2). But this fact is a direct consequence of the following
properties of the function F :

F ′(η) ≥ 0 and F ′′(η) ≥ 0 for η ≥ 0.

A.4. Proof of relation (2.31)

In order to prove (2.31), we consider the following equality∫
Ω

uε(x, T )v(x, T )dx =
∫ T

0

∫
Ω

(
uεtv + uεvt

)
dxdt +

∫
Ω

u0ε(x)v(x, 0)dx

with a smooth function v. Passing to the limit, we obtain

lim
ε→0

∫
Ω

uε(x, T )v(x, T )dx = V∗(QT )〈ut , v〉V (QT ) + V∗(QT )〈u, vt〉V (QT ) +
∫
Ω

u0(x)v(x, 0)dx

=

∫
Ω

u(x, T )v(x, T )dx.

Since C∞0 (Ω) is dense in L
2(Ω), uε(T , x) → u(T , x) weakly in L2(Ω). Thus, due to the weak lower semicontinuity of the

norm in L2(Ω), we obtain (2.31).
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