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a b s t r a c t

The initial boundary value problem for the generalized Burgers equation with nonlinear
sources is considered. We formulate a condition guaranteeing the absence of the blow-up
of a solution and discuss the optimality of this condition.
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1. Introduction and main results

Consider the following equation

ut + g(t, x, u) · ∇u = ε∆ u + λ f (u) in QT = (0, T ) × Ω, Ω ⊂ Rn (1.1)

coupled with initial and boundary conditions

u = φ for (t, x) ∈ ΓT = ∂Q T \ {(T , x) : x ∈ Ω}. (1.2)

Here ε > 0 and λ are constants, g = (g1, . . . , gn), gi = gi(t, x, u), i = 1, . . . , n. Assume that

g1 = a(t, x)uq
+ b(t, x) and min

Q T

|a(t, x)| = a0 > 0,

where a, b ∈ C0(Q T ) and the positive constant q is such that yq ∈ R for any y ∈ R. If the solution is nonnegative the last
assumption is unnecessary. Concerning the nonlinear source f (u) we assume that

|f (ξ)| ≤ f (η) for all ξ and η such that |ξ | ≤ η. (1.3)

In particular, functions f (u) = |u|p−1u, p ≥ 0 (or f (u) = up if defined) and f (u) = eu satisfy this condition.
Eq. (1.1) with f (u) = up arises in many applications (see, for example, [1, Eq. (136)], [2,3] and the references in [4]).
There is an enormous number of papers devoted to this problem if g ≡ 0 (see, for example [5] and the references

therein) and it is well known that if f (u) is superlinear the phenomenon of the solution blowing up may occur. Our goal is
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to investigate the preventive influence of the convective term (a uq
+ b) ux1 . Concerning the preventive effect of the linear

gradient term (i.e. q = 0 or a ≡ 0), see [6,7]. Due to the fact that the parameter ε is often small we will not take into account
the helpful influence of the diffusing term ε∆u; concerning the preventive effect of linear and nonlinear diffusion, see [7,8].

Let us formulate our result. Denote

b1 = max
QT

|b(t, x)|, m = max
ΓT

|u|,

here ΓT is the parabolic boundary of QT i.e. ΓT = ∂Q T \{(T , x) : x ∈ Ω}. Without loss of generality suppose that the domain
Ω is lying in the strip −l1 < x1 < l1. We will prove the global (i.e. for arbitrary T > 0) classical solvability of problem (1.1),
(1.2) under the following assumption:

there exists a constantM ≥ m such that 2l1 |λ|f (2M) + b1 M ≤ a0 Mq+1. (1.4)

One can easily see that this condition does not depend on ε.

Theorem. Assume that φ ∈ C0(ΓT ), gi(t, x, u) ∈ C1(QT ×(−2M, 2M)), f (u) ∈ C1(−2M, 2M). If conditions (1.3) and (1.4) are
satisfied then for an arbitrary T > 0, there exists a unique classical solution of problem (1.1), (1.2) such that

|u(t, x)| ≤ 2M. (1.5)

Remark. In the one dimensional case in order to prove the existence it is sufficient to impose the following (less restrictive)
smoothness assumptions on the coefficients: gi(t, x, u) ∈ Cβ(QT × (−2M, 2M)), f (u) ∈ Cβ(−2M, 2M) for some β ∈ (0, 1).

The next example demonstrates the optimality of condition (1.4). For simplicity we restrict ourselves with the one
dimensional case which can be easily extended to the multidimensional one.

Example. Consider the most typical case (we omit subscript 1 in l1 and x1): a(t, x) ≡ α ≠ 0, b(t, x) ≡ 0, f (u) = up:

ut + α uq ux = ε uxx + λ up in QT = (0, T ) × (−l, l). (1.6)

We assume here that up is defined, otherwise we take |u|p−1u. It is known (see [9–13]) that there exists a global solution
of problem (1.6), (1.2) without smallness restrictions on initial data for p ≤ q + 1, φ ≥ 0 and zero boundary conditions,
moreover if p > q + 1 then a finite time blow up occurs if the initial data is sufficiently large. Let us apply our Theorem to
Eq. (1.6). Condition (1.4) takes the form

∃M ≥ m such that 2p+1l |λ|Mp
≤ |α|Mq+1. (1.7)

If p < q + 1 then condition (1.7) is always fulfilled with

M = max

m,


2p+1

|λ|l
|α|

 1
q+1−p


and as a consequence for arbitrary data there exists a global solution satisfying the estimate |u| ≤ 2M .

Suppose that p > q + 1. Condition (1.7) becomes a smallness restriction. In fact, rewrite (1.7) in the form

∃M ≥ m such that Mp−q−1
≤

|α|

2p+1l |λ|
.

Obviously if

m ≤


|α|

2p+1l |λ|

 1
p−q−1

then (1.7) is fulfilled with M = m and there exists a global solution such that |u| ≤ 2m.
Consider the critical case p = q + 1:

ut + α uq ux = ε uxx + λ uq+1. (1.8)

For the function v = u e−µ x with µ = λ/α we have

vt + (α vqeqµx
− 2µ ε)vx = ε vxx + εµ2 v, (1.9)

v = φe−µx for (t, x) ∈ ΓT = {t = 0, |x| ≤ l} ∪ {0 < t ≤ T , x = ±l}.

Condition (1.4) for Eq. (1.9) takes the form

∃M ≥ me|µ|l such that 4lεµ2M + 2ε|µ|M ≤ |α|e−q|µ|lMq+1.
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Obviously this condition is fulfilled with

M = max


me|µ|l,


4ε lµ2

+ 2ε|µ|

|α|

1/q

e|µ|l


, µ =

λ

α

and the estimate

|v(t, x)| ≤ 2M

is obtained. As a consequence the Theorem guarantees the global solvability of problem (1.8), (1.2) and the solution satisfies
the estimate

|u(t, x)| ≤ 2Meµx.

2. Proof of the Theorem

Introduce the following cut-off function

f M(z) =

f (2M), z > 2M,
f (z), |z| ≤ 2M,
f (−2M), z < −2M.

Obviously, due to (1.3),

− f (2M) ≤ f M(u) ≤ f (2M). (2.1)

Consider the auxiliary equation

ut + g · ∇u = ε ∆u + λ f M(u) in QT = (0, T ) × Ω. (2.2)

The classical solvability of problem (2.2), (1.2) follows, for example, from [14]. In the one dimensional case (see Remark
in the Introduction) it is sufficient to require only Hölder continuity of the coefficients; see, for example, [15].

Our goal is to obtain the a priori estimate |u(t, x)| ≤ 2M for a solution of problem (2.2), (1.2) and by this to show that
Eqs. (2.2) and (1.1) coincide.

We start from the case a(t, x) ≥ a0 > 0.
Put

h(x1) ≡
M
2l1

(l1 + x1) + M, w ≡ u − h, L ≡
∂

∂t
− ε∆.

Obviously

Lw = −g · ∇u + λ f M(u).

Suppose that at a point N ∈ Q T \ ΓT the function w attains its positive maximum. Then at this point we have

w > 0, ∇w = 0 so u > h ≥ M (uq > Mq) and ux1 = h′
= M/2l1, uxi = 0, i = 2, . . . , n

thus

Lw


N
= −(a uq

+ b)
M
2l1

+ λf M(u)

N
< −a0

Mq+1

2l1
+ b1

M
2l1

+ |λ|f (2M) ≤ 0

which is impossible (the last inequality is due to (1.4)). Taking into account that w ≤ 0 on ΓT we conclude that w ≤ 0 in
QT , hence

u ≤ h ≤ 2M in QT .

Let us obtain now the estimate from the below.
(i) Assume that (−1)q = −1. Consider the function

ω ≡ u + h(−x1) = u +
M
2l1

(l1 − x) + M.

Suppose that at a point N1 ∈ Q T \ ΓT function ω attains its negative minimum. Then at this point we have

ω < 0, ∇ω = 0 i.e. u < −M (and uq < −Mq), ux1 =
M
2l1

, uxi = 0, i = 2, . . . , n.
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Thus (due to (2.1))

Lω


N1

= −(a uq
+ b)

M
2l1

+ λf M(u)

N1

> a0
Mq+1

2l1
− b1

M
2l1

− |λ|f M(u)

N1

≥ a0
Mq+1

2l1
− b1

M
2l1

− |λ|f (2M) ≥ 0

which is impossible. Taking into account that ω ≥ 0 on ΓT we conclude that ω ≥ 0 in QT and

u ≥ −
M
2l1

(l1 − x1) − M ≥ −2M.

(ii) Now consider the case when (−1)q = 1. Instead of ω we take the function

ω̃ ≡ u + h(x1).

Suppose that at a point N2 ∈ Q̄T \ ΓT function ω̃ attains its negative minimum. Then at this point we have

ω̃ < 0, ω̃x = 0 i.e. u < −M (and uq > Mq), ux1 = −
M
2l1

, uxi = 0, i = 2, . . . , n.

Thus (due to (2.1))

Lω̃

N2

= (a uq
+ b)

M
2l1

+ λf M(u)

N2

> a0
Mq+1

2l1
− b1

M
2l1

− |λ|f (2M) ≥ 0.

Similarly to the previous case we conclude that ω̃ ≥ 0 in QT or

u ≥ −h(x1) = −
M
2l1

(l1 + x1) − M ≥ −2M.

Finally

|u(t, x)| ≤ 2M.

Let us turn to the case a(t, x) ≤ −a0 < 0. Here in order to obtain the estimate u ≤ 2M instead of w = u− h(x1) we take

w ≡ u − h(−x1)

and repeat the same procedure as in the previous case.
For the establishment of the estimate from the below u ≥ −2M for q such that (−1)q = −1 we take

ω ≡ u + h(x1)

instead of ω = u + h(−x1) and for q satisfying (−1)q = 1 we consider

ω̃ = u + h(−x1)

instead of ω̃ = u + h(x1) and then repeat the same approach.
The Theorem is proved.
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