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Abstract

We consider the Dirichlet problem for a class of anisotropic degenerate elliptic equations. New a priori
estimates for solutions and for the gradient of solutions are established. Based on these estimates sufficient
conditions guaranteeing the solvability of the problem are formulated. The results are new even in the
semilinear case when the principal part is the Laplace operator.
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0. Introduction and main results

In the present paper we consider the following quasilinear degenerate elliptic equation

−
n∑

i=1

μi

(|uxi
|pi uxi

)
xi

= c(x)g(u) + f (x) in Ω ⊂ Rn, (0.1)

coupled with homogeneous Dirichlet boundary condition

u = 0 on ∂Ω. (0.2)
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Here constants μi > 0 and pi � 0. Without loss of generality we assume that

Ω ⊂ {x: −li � xi � li , i = 1, . . . , n}.
Concerning the function g we suppose that

g(0) = 0, g(z) > 0 if z > 0 and
∣∣g(z)

∣∣ � g(C) for |z| � C, (0.3)

where C is an arbitrary positive constant. For example, functions g(u) = ln(|u| + 1) and
g(u) = uq with arbitrary q � 0 satisfy (0.3). In the case that g(u) = uq is defined only for u � 0
one can take its odd or even continuation of the form g(u) = |u|q−1u, g(u) = |u|q . On the other
hand, it is obvious that (0.3) does not restrict us only to odd or even functions. For example
g(u) = eu − 1, which is neither odd nor even, satisfies condition (0.3).

For the equation

−
n∑

i=1

μi

(|uxi
|pi uxi

)
xi

= f (x) in Ω ⊂ Rn

with condition (0.2) the existence of the unique generalized solution follows from [8]. In [8]
the initial boundary value problem for the related parabolic equation was considered, but the
method proposed there can be easily applied to the elliptic case. From [8] it follows that if
f ∈ W−1,p0(Ω) (where p0 = max1�i�n{p′

i}, 1/pi + 1/p′
i = 1), then there exists a unique gen-

eralized solution such that u ∈ L2(Ω) and uxi
∈ Lpi

(Ω).
The existence and nonexistence of positive solutions for equation

−
n∑

i=1

μi

(|uxi
|pi uxi

)
xi

= λuq, λ > 0 is constant,

coupled with boundary condition (0.2) was considered in [3]. The existence result was proved in
the subcritical case and nonexistence result in the at least critical case.

In [7] the regularity question for the equation

n∑
i=1

μi

(|uxi
|pi uxi

)
xi

= 0,

was considered. It was proved that each component of the gradient is bounded in L∞ norm under
the assumption that the solution is bounded.

Our goal is to obtain sufficient conditions for the solvability of problem (0.1), (0.2). The
results obtained in the present paper are new even for the semilinear case, i.e. for p1 = p2 =
· · · = pn = 0.

Assume that there exists a positive constant M such that

(
c0g(M) + f0

)(3l2 + 2l

2

)p+1

< μ(p + 1)Mp+1. (0.4)

Here p = pi0 = max{p1, . . . , pn}, μ = μi0 , l = li0 , c0 = supΩ |c(x)| and f0 = supΩ |f (x)|.
Below we will give several examples concerning this condition.
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Remark 1. Instead of (0.4) we can take one of the following two assumptions.
1. Suppose that there exists a positive constant M such that

(
c0g(M) + f0

)(3l̃2 + 2l̃

2

)p̃+1

< μ̃(p̃ + 1)Mp̃+1. (0.41)

Here l̃ = li1 = min{l1, . . . , ln}, μ̃ = μi1 , p̃ = pi1 .
2. Suppose that there exists a positive constant M such that

(
c0g(M) + f0

)(3l̂2 + 2l̂

2

)p̂+1

< μ̂(p̂ + 1)Mp̂+1. (0.42)

Here μ̂ = μi2 = max{μ1, . . . ,μn}, l̂ = li2 , p̂ = pi2 .

Definition 1. We say that function u(x) is a generalized solution of problem (0.1), (0.2) if u(x) ∈
W 1,∞(Ω), u(x) = 0 for x ∈ ∂Ω and

∫
Ω

n∑
i=1

μi |uxi
|pi uxi

φxi
(x) dx =

∫
Ω

(
c(x)g(u) + f (x)

)
φ(x) dx ∀φ ∈ ◦

W
1,r (Ω), 1 � r < +∞.

Theorem 1.

(i) Suppose that c(x) and f (x) are bounded in Ω̄ , g(u) is a Hölder continuous function on
[−M,M] and conditions (0.3), (0.4) are fulfilled. If the domain Ω ⊂ Rn is strictly convex,
then there exists a generalized solution of problem (0.1), (0.2) such that

‖u‖L∞(Ω) � M0 and ‖uxi
‖L∞(Ω) � (1 + 2li )

(
Φ0

μi(1 + pi)

) 1
pi+1

, i = 1, . . . , n,

where M0 = inf{M: M satisfies (0.4)} and

Φ0 = max
Ω̄×[−M0,M0]

∣∣c(x)g(u) + f (x)
∣∣.

(ii) If in addition c(x) � 0 and g(u) is a nondecreasing function then the solution is unique.

Example 1. Consider the following equation

−
n∑

i=1

μi

(|uxi
|uxi

)
xi

= c(x)u4 + f (x) in Ω. (0.5)

Here p = 1 and g(u) = u4. Let c0 > 0, then inequality (0.4) takes the following form

c0M
4 − 8μ

2 2
M2 + f0 < 0
(3l + 2l)
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or for M̄ = M2

c0M̄
2 − 8μ

(3l2 + 2l)2
M̄ + f0 < 0. (0.6)

Obviously, M̄ > 0 satisfying (0.6) exists if

f0 � 16μ2

c0(3l2 + 2l)4
. (0.7)

Thus if the function f (x) satisfies condition (0.7), then Theorem 1 guarantees the existence of a
generalized solution of problem (0.5), (0.2) satisfying inequalities

‖u‖L∞(Ω) � M0 and ‖uxi
‖L∞(Ω) � (1 + 2li )

(
c0M

4
0 + f0

2μi

) 1
2

, i = 1, . . . , n,

with

M0 =
(

4μ

c0(3l2 + 2l)2
−

(
16μ2

c2
0(3l2 + 2l)4

− f0

c0

) 1
2
) 1

2

.

Example 2. If g(u) = uq (or g(u) = |u|q−1u or g(u) = |u|q ) and p + 1 > q then for arbitrary
bounded f (x) one can find a positive M satisfying condition (0.4) and as a consequence obtain
the existence of a generalized solution by Theorem 1.

Example 3. If c0 = 0, then (as in the previous case) one can always find positive M satisfying
(0.4) and obtain the existence of a generalized solution for any bounded f (x). In this case

‖u‖L∞(Ω) � M0 = 3l2 + 2l

2

(
f0

μ(p + 1)

) 1
p+1

,

‖uxi
‖L∞(Ω) � (1 + 2li )

(
f0

μi(1 + pi)

) 1
pi+1

, i = 1, . . . , n.

Consider now the semilinear equation (pi = 0 for all i). For simplicity suppose that μi = μ

for all i:

−μ�u = c(x)g(u) + f (x) in Ω ⊂ Rn. (0.8)

In this case the use of (0.41) is appropriate, for pi = 0 it takes the form

(
c0g(M) + f0

)3l̃2 + 2l̃

2
< μM. (0.9)

In [9] it was shown that problem (0.8), (0.2) with f ≡ 0 and c(x) ≡ const has a nontrivial solu-
tion. It is natural to expect that problem (0.8), (0.2) with arbitrary f may have no solution. Let us
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mention here that many papers have recently appeared (see [1,2,10] and the references there)
where for the problem

−�u = |u|q−1u + f (x) in Ω, u = 0 on ∂Ω,

different sufficient conditions on existence are formulated.

Theorem 2.

(i) Suppose that c(x), f (x) ∈ Cγ (Ω̄), g(u) ∈ Cγ ([−M,M]), ∂Ω ∈ C2+γ , γ ∈ (0,1). If (0.9)
is fulfilled then there exists a classical solution of problem (0.8), (0.2) u(x) ∈ C2+γ (Ω̄) such
that

max
Ω

|u| � M0,

where M0 = inf{M: M satisfies (0.9)}.
(ii) If in addition c(x) � 0 and g(u) is a nondecreasing function then the solution is unique.

Remark 2. In order to prove Theorem 1 we need to obtain a priori estimates for u and ∇u. To
prove the estimate for ∇u we will use the convexity of the domain. In order to prove Theorem 2
we need to obtain a priori estimates only for u where we do not need the convexity of the domain.
If the domain in Theorem 2 is strictly convex then we additionally have

max
Ω

|uxi
| � (1 + 2li )

Φ0

μ
, i = 1, . . . , n.

Example 4. Consider the equation

−μ�u = λu2 + f (x), where λ is constant. (0.10)

Condition (0.9) takes the form

|λ|M2 − 2μ

3l̃2 + 2l̃
M + f0 < 0.

From Theorem 2 we have that there exists a classical solution if

f0 � μ2

|λ|(3l̃2 + 2l̃)2
,

and in this case

max
Ω

|u| � M0 = μ

|λ|(3l̃2 + 2l̃)
−

(
μ2

λ2(3l̃2 + 2l̃)2
− f0

|λ|
) 1

2

.

If the domain is strictly convex then in addition

max
Ω

|uxi
| � (1 + 2li )

|λ|M2
0 + f0

μ
, i = 1, . . . , n.
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Example 5. Consider

−μ�u = λeu. (0.11)

Here g(u) = eu − 1 and f = λ. Condition (0.9) takes the form: there exists M > 0 such that

eM − CM < 0,

where

C = 2μ

|λ|(3l̃2 + 2l̃)
.

This fact is equivalent to say that the minimum of the function ex − Cx must be negative, that is

2μ

|λ|(3l̃2 + 2l̃)
> e. (0.12)

From Theorem 2 we have that there exists a classical solution of (0.11), (0.2) if (0.12) is fulfilled
and for this solution we have

max
Ω

|u| � M0 = lnC. (0.13)

If the domain is strictly convex then in addition

max
Ω

|uxi
| � (1 + 2li )

|λ|elnC

μ
= 2(1 + 2li )

3l̃2 + 2l̃
, i = 1, . . . , n. (0.14)

Recall that in [4] for the problem

−�u = eu in Ω ⊂ Rn, u|∂Ω = 0 (0.15)

it was shown that there exists a positive number κ depending on the dimension n such that if
the diameter of Ω is less than κ there exists (at least one) solution of problem (0.15). From
Example 5 it follows that there exists (at least one) solution of problem (0.15) if the size of the
domain Ω at least in one direction is small enough (independently of the dimension) namely

3l̃ 2 + 2l̃ <
2

e
.

Finally let us mention that similarly to problem (0.11), (0.2) we can show that if (0.12) is
fulfilled then there exists a classical solution of the problem

μ�u = λeu in Ω, u|∂Ω = 0

satisfying inequality (0.13) (and, if Ω is strictly convex, inequality (0.14)). Moreover from The-
orem 2 it follows that the solution is unique.

The paper consists of two sections. In the first section we obtain the a priori estimate for the
regularized problem and in the second based on these a priori estimates we prove Theorems 1, 2.
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1. A priori estimates for the regularized problem

Let us start from problem (0.1), (0.2). Consider the regularized equation

−
n∑

i=1

μi

((
uα

xi
+ ε

)pi/αuxi

)
xi

= cε(x)gM(u) + fε(x). (1.1)

Here the constant α ∈ (0,1) is such that (uα
xi

)pi/α = |uxi
|pi (for example α = 2/3); con-

stant ε > 0, cε(x), fε(x) are Hölder continuous functions such that

cε(x) → c(x) and fε(x) → f (x) in L∞ norm, when ε → 0,

where without loss of generality we assume that

max
∣∣cε(x)

∣∣ = c0, max
∣∣fε(x)

∣∣ = f0, max
∣∣cε(x)g(u) + fε

∣∣ = Φ0;

and finally

gM(z) =
{

g(z), for |z| � M,

g(M), for z > M,

g(−M), for z < −M.

(1.2)

Obviously from (0.3) we have −g(M) � gM(u) � g(M).
The first step is to obtain the estimate |u| � M for a solution of problem (1.1), (0.2). After this

in (1.1) instead of gM(u) we can take g(u) (due to (1.2)).

Lemma 1. If (0.3) and (0.4) are fulfilled, then for any classical solution of problem (1.1), (0.2)
the following estimate is valid

∣∣u(x)
∣∣ � M.

Proof. Without loss of generality we assume that i0 = 1, i.e. p = p1, l = l1, μ = μ1. Rewrite
Eq. (1.1) in nondivergent form

−
n∑

i=1

aiε(uxi
)uxixi

= cε(x)gM(u) + fε(x), (1.3)

where

aiε(z) = μi

(
zα + ε

) pi
α

−1(
(pi + 1)zα + ε

)
.

Define the function h(x1):

h(x1) = M̃

(
l2 − x2

1 + (1 + l)(l + x1)

)
,

2
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where

M̃ = 2M

3l2 + 2l
.

Obviously for

Lu ≡ −
n∑

i=1

aiε(uxi
)uxixi

we have

Lu = cε(x)gM(u) + fε(x) (1.4)

and

Lh = −
n∑

i=1

aiε(hxi
)hxixi

= −a1ε(hx1)hx1x1

= μ
(
h′α + ε

) p
α
−1(

(p + 1)h′α + ε
)
M̃ � μ(p + 1)M̃p+1. (1.5)

Here we use the fact that h′(x1) � M̃ , h′′(x1) = −M̃ and α < 1. One can easily see that if
α ∈ (0,1) then for any p � 0 the expression μ(h′α +ε)

p
α
−1((p+1)h′α +ε)M̃ is a nondecreasing

with respect to ε function. For the function

v(x) ≡ u(x) − h(x1)

we have

Lu − Lh = −
n∑

i=1

aiε(uxi
)uxixi

+
n∑

i=1

aiε(hxi
)hxixi

= −
n∑

i=1

aiε(uxi
)vxixi

+ (
a1ε(hx1) − a1ε(ux1)

)
hx1x1 .

On the other hand, due to (1.4), (1.5) we have

Lu − Lh = cε(x)gM(u) + fε(x) − Lh � cε(x)gM(u) + fε(x) − μ(p + 1)M̃p+1.

Hence

−
n∑

i=1

aiε(uxi
)vxixi

�
(
a1ε(ux1) − a1ε(hx1)

)
hx1x1

+ cε(x)gM(u) + fε(x) − μ(p + 1)M̃p+1. (1.6)
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Suppose that at the point N ∈ Ω̄ \ ∂Ω the function v(x) attains its positive maximum. At this
point we have v > 0 and vxi

= 0 or u > h � 0 and ux1 = h′ � M̃ , uxi
= 0 for i = 2, . . . , n

(in particular a1ε(ux1) − a1ε(hx1) = 0). Thus

−
n∑

i=1

aiε(uxi
)vxixi

∣∣∣
N

� cε(x)gM(u) + fε(x) − μ(p + 1)M̃p+1
∣∣
N

� max
∣∣cε(x)

∣∣g(M) + max
∣∣fε(x)

∣∣ − μ(p + 1)M̃p+1

= c0g(M) + f0 − μ(p + 1)

(
2M

3l2 + 2l

)p+1

. (1.7)

Here we use the fact that for positive u we have 0 � gM(u) � g(M). Hence due to (0.4)

−
n∑

i=1

aiε(uxi
)vxixi

∣∣∣
N

< 0.

This contradicts the assumption that v(x) attains its positive maximum at N . Due to the homo-
geneous boundary conditions, on ∂Ω we have v = −h � 0. Taking into account that v(x) cannot
attain its positive maximum in Ω̄ \ ∂Ω we conclude that

v(x) � 0 or u(x) � h(x1) in Ω̄.

Now let us obtain the estimate from the below.
For the function w(x) ≡ u(x) + h(x1) we have

Lu + Lh = −
n∑

i=1

aiε(uxi
)uxixi

−
n∑

i=1

aiε(hxi
)hxixi

= −
n∑

i=1

aiε(uxi
)wxixi

− (
a1ε(hx1) − a1ε(ux1)

)
hx1x1 .

On the other hand,

Lu + Lh = cε(x)gM(u) + fε(x) + Lh � cε(x)gM(u) + fε(x) + μ(p + 1)M̃p+1.

Thus

−
n∑

i=1

aiε(uxi
)wxixi

�
(
a1ε(hx1) − a1ε(ux1)

)
hx1x1 + cε(x)gM(u) + fε(x) + μ(p + 1)M̃p+1.

Suppose that at the point N1 ∈ Ω̄ \ ∂Ω the function w(x) attains its negative minimum. At
this point we have w < 0 and wxi

= 0 or u < −h � 0 and ux1 = −hx1 � −M̃ , uxi
= 0 for

i = 2, . . . , n. Therefore (due to the fact that aiε(z) = aiε(−z))
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−
n∑

i=1

aiε(uxi
)wxixi

∣∣∣
N1

� cε(x)gM(u) + fε(x) + μ(p + 1)M̃p+1
∣∣
N1

� −c0g(M) − f0 + μ(p + 1)

(
2M

3l2 + 2l

)p+1

. (1.8)

Here we use the inequality

cε(N1)gM

(
u(N1)

)
� −c0g(M).

If cε(N1) � 0, then the last inequality follows from the fact that gM(u) � −g(M). If cε(N1) < 0,
then the inequality follows from the fact that gM(u) � g(M). Hence from (1.8) (due to (0.4)) we
obtain

−
n∑

i=1

aiε(uxi
)wxixi

∣∣∣
N1

> 0.

This contradicts the assumption that w(x) attains its (negative) minimum at N1.
Due to the homogeneous boundary condition, on ∂Ω we have w = h � 0. Taking into account

that w(x) cannot attain its negative minimum in Ω̄ \ ∂Ω we conclude that

w(x) � 0 or u(x) � −h(x1) in Ω̄.

Consequently

−h(x1) � u(x) � h(x1). (1.9)

Now taking h̃(x1) ≡ h(−x1) instead of h(x1) we obtain

−h̃(x1) � u(x) � h̃(x1). (1.10)

This estimate can be easily established in the same way as (1.9) because h̃′α � M̃α and
h̃′′ = −M̃ . The first inequality (h̃′α � M̃α) follows from −h̃′ � M̃ � 0 due to the choice of α

(α = 2/3).
From (1.9) and (1.10) we conclude that

∣∣u(x)
∣∣ � h(0) = h̃(0) = 3l2 + 2l

2
M̃ = M. �

Remark 3. Represent M for a sufficiently small ε as M = M0 + ε, where M0 = inf{M:
M satisfies (0.4)}. Passing to the limit when ε → 0 we obtain the estimate

∣∣u(x)
∣∣ � M0.

Let us turn to the estimate of the derivatives. First in Lemma 2 we will obtain the auxiliary
result which actually is the boundary gradient estimate. Then in Lemma 3 we will obtain the
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global gradient estimate. We additionally suppose now that Ω is strictly convex and that the
parts of ∂Ω lying in the half spaces xi � 0 and xi � 0 can be expressed as

xi = Fi and xi = Gi, i = 1, . . . , n,

respectively. Here the functions Fi and Gi depend on all variables except of xi . Due to the
convexity we have

Fkxixi
� 0, Gkxixi

� 0, k = 1,2, . . . , n, i = 1,2, . . . , n.

Define the function hk(τ ) by the following

hk(τ ) = −Ck

τ 2

2
+ [

Ck(1 + 2lk) + ε
]
τ, τ ∈ [0,2lk], (1.11)

where

Ck =
(

Φ0

μk(pk + 1)

) 1
pk+1

.

Recall that Φ0 = maxΩ̄×[−M,M] |cε(x)g(u) + fε(x)|. Obviously

h′′
k = −Ck, h′

k � Ck + ε > Ck.

Lemma 2. If conditions (0.3), (0.4) are fulfilled and Ω is strictly convex then for any classical
solution of problem (1.1), (0.2) the following estimates are valid

∣∣u(x)
∣∣ � hk(Gk − xk),

∣∣u(x)
∣∣ � hk(xk − Fk), k = 1, . . . , n, in Ω̄.

Proof. We will prove these estimates for k = 1, the other cases can be considered similarly. Let
us start from the first inequality. Introduce the function

v(x) ≡ u(x) − h1(ζ ), where ζ = G1(x2, x3, . . . , xn) − x1.

We have

Lu(x) ≡ −
n∑

i=1

aiε(uxi
)uxixi

= cε(x)g(u) + fε(x),

Lh1(ζ ) = −
n∑

i=1

aiε

(
h1xi

(ζ )
)
h1xixi

(ζ )

= −a1ε

(
h′

1(ζ )
)
h′′

1(ζ ) −
n∑

aiε

(
h′

1(ζ )G1xi

)(
h′′

1(ζ )G2
1xi

+ h′
1(ζ )G1xixi

)
.

i=2
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Due to the convexity of Ω we have G1xixi
� 0 and taking into account that h′′

1 � 0, h′
1 � 0 we

conclude that

h′′
1(ζ )G2

1xi
+ h′

1(ζ )G1xixi
� 0

and hence

Lh1(ζ ) � −a1ε

(
h′

1(ζ )
)
h′′

1(ζ ) = C1a1ε

(
h′

1(ζ )
)
. (1.12)

Thus

Lu(x) − Lh1(ζ ) � cε(x)g(u) + fε(x) − C1a1ε

(
h′

1(ζ )
)
. (1.13)

On the other hand,

Lu(x) − Lh1(ζ ) = −
n∑

i=1

aiε(uxi
)vxixi

−
n∑

i=1

[
aiε(uxi

) − aiε

(
h1xi

(ζ )
)]

h1xixi
(ζ ). (1.14)

Hence, from (1.13), (1.14) we obtain

−
n∑

i=1

aiε(uxi
)vxixi

�
n∑

i=1

[
aiε(uxi

) − aiε

(
h1xi

(ζ )
)]

h1xixi
(ζ )

+ cε(x)g(u) + fε(x) − C1a1ε

(
h′

1(ζ )
)
. (1.15)

Suppose that at the point N ∈ Ω̄ \ ∂Ω the function v(x) attains its maximum. At this point we
have vxi

= 0 or uxi
(x) = h1xi

(ζ ) (in particular aiε(uxi
) − aiε(h1xi

(ζ )) = 0, i = 1, . . . , n) and
hence

−
n∑

i=1

aiε(uxi
)vxixi

∣∣∣
N

� cε(x)g(u) + fε(x) − C1a1ε

(
h′

1(ζ )
)∣∣

N

< cε(N)g
(
u(N)

) + fε(N) − μ1(p1 + 1)C
p1+1
1 � 0.

This contradicts the assumption that v(x) attains its maximum at the internal point of the do-
main Ω . Due to the fact that v = −h1 � 0 on ∂Ω we conclude that

v(x) � 0 or u(x) � h1(G1 − x1) in Ω̄.

Next we obtain a lower bound. Introduce the function w(x) ≡ u(x)+h1(ζ ). Similarly to (1.13)
and (1.14) we obtain

Lu(x) + Lh1(ζ ) � cε(x)g(u) + fε(x) + C1a1ε

(
h′

1(ζ )
)

and

Lu(x) + Lh1(ζ ) = −
n∑

aiε(uxi
)wxixi

+
n∑[

aiε(uxi
) − aiε

(
h1xi

(ζ )
)]

h1xixi
(ζ ).
i=1 i=1
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Hence

−
n∑

i=1

aiε(uxi
)wxixi

� −
n∑

i=1

[
aiε(uxi

) − aiε

(
h1xi

(ζ )
)]

h1xixi
(ζ )

+ cε(x)g(u) + fε(x) + C1a1ε

(
h′

1(ζ )
)
. (1.16)

Suppose that at the point N1 ∈ Ω̄ \ ∂Ω the function w(x) attains its minimum. At this point we
have wxi

= 0 or uxi
(x) = h1xi

(ζ ) (in particular aiε(uxi
) − aiε(h1xi

(ζ )) = 0, i = 1, . . . , n) and
hence

−
n∑

i=1

aiε(uxi
)wxixi

∣∣∣
N1

� cε(x)g(u) + fε(x) + C1a1ε

(
h′(ζ )

)∣∣
N1

> cε(N)g
(
u(N)

) + fε(N) + μ1(p1 + 1)C
p1+1
1 � 0.

This contradicts the assumption that w(x) attains its minimum at the internal point of the do-
main Ω . Due to the fact that w = h1 � 0 on ∂Ω we conclude that

w(x) � 0 or u(x) � −h1(G1 − x1) in Ω̄.

Thus the estimate |u(x)| � h1(G1 − x1) in Ω̄ is proved.
Now introduce functions ṽ(x) ≡ u(x) − h1(η) and w̃(x) ≡ u(x) + h1(η) where η = x1 −

F1(x2, x3, . . . , xn). Similarly to (1.12) we obtain

Lh1(η) = −
n∑

i=1

aiε

(
h1xi

(η)
)
h1xixi

(η)

= −a1ε

(
h′

1(η)
)
h′′

1(η) −
n∑

i=2

aiε

(
h′

1(η)F1xi

)(
h′′

1(η)F 2
1xi

− h′
1(η)F1xixi

)
.

Due to the convexity of Ω we have F1xixi
� 0 and taking into account that h′′

1 � 0, h′
1 � 0 we

conclude that

h′′
1(ζ )F 2

1xi
− h′

1(ζ )F1xixi
� 0

and hence

Lh1(η) � −a1ε

(
h′

1(η)
)
h′′

1(η) = C1a1ε

(
h′

1(η)
)
.

Furthermore similarly to (1.15) and (1.16) we obtain

−
n∑

i=1

aiε(uxi
)ṽxixi

�
n∑

i=1

[
aiε(uxi

) − aiε

(
h1xi

(η)
)]

h1xixi
(η)

+ cε(x)g(u) + fε(x) − C1a1ε

(
h′

1(η)
)
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and

−
n∑

i=1

aiε(uxi
)w̃xixi

� −
n∑

i=1

[
aiε(uxi

) − aiε

(
h1xi

(η)
)]

h1xixi
(η)

+ cε(x)g(u) + fε(x) + C1a1ε

(
h′

1(η)
)
.

Now in the same manner as in the previous case we obtain the estimate |u(x)| � h1(x1 − F1)

in Ω̄ .
Lemma is proved. �

Lemma 3. If conditions (0.3), (0.4) are fulfilled and Ω is strictly convex, then for any classical
solution of problem (1.1), (0.2) the following estimates are valid

∣∣uxi
(x)

∣∣ � (1 + 2li )

(
Φ0

μi(1 + pi)

) 1
pi+1

, i = 1, . . . , n.

Proof. We will prove the estimate for i = 1, for i = 2, . . . , n the proof is similar. Consider the
equations

−a1ε

(
ux1(x)

)
ux1x1(x) −

n∑
i=2

aiε

(
uxi

(x)
)
uxixi

(x) = cε(x)g
(
u(x)

) + fε(x), (1.17)

−a1ε

(
uξ (x̃)

)
uξξ (x̃) −

n∑
i=2

aiε

(
uxi

(x̃)
)
uxixi

(x̃) = cε(x̃)g
(
u(x̃)

) + fε(x̃), (1.18)

where x = (x1, x2, . . . , xn) and x̃ = (ξ, x2, . . . , xn). Subtracting Eq. (1.18) from (1.17) for

v(ξ,x) ≡ u(x) − u(x̃)

we obtain

−a1ε

(
ux1(x)

)
vx1x1 − a1ε

(
uξ (x̃)

)
vξξ −

n∑
i=2

[
aiε

(
uxi

(x)
)
uxixi

(x) − aiε

(
uxi

(x̃)
)
uxixi

(x̃)
]

= cε(x)g
(
u(x)

) + fε(x) − cε(x̃)g
(
u(x̃)

) − fε(x̃).

Rewrite this equation in the following form

−a1ε

(
ux1(x)

)
vx1x1 − a1ε

(
uξ (x̃)

)
vξξ −

n∑
i=2

aiε

(
uxi

(x)
)
vxixi

=
n∑

i=2

[
aiε

(
uxi

(x)
) − aiε

(
uxi

(x̃)
)]

uxixi
(x̃)

+ cε(x)g
(
u(x)

) + fε(x) − cε(x̃)g
(
u(x̃)

) − fε(x̃). (1.19)
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Consider (1.19) in the domain

Q = {
(ξ,x): ξ ∈ (F1,G1), x1 ∈ (F1,G1), x1 > ξ, (x2, . . . , xn) ∈ Ω1

}
,

where Ω1 is a projection of Ω on the hyperplane x1 = 0. For

w(ξ,x) = v(ξ,x) − h1(x1 − ξ)

we have

−a1ε

(
ux1(x)

)
wx1x1 − a1ε

(
uξ (x̃)

)
wξξ −

n∑
i=2

aiε

(
uxi

(x)
)
wxixi

=
n∑

i=2

[
aiε

(
uxi

(x)
) − aiε

(
uxi

(x̃)
)]

uxixi
(x̃)

+ cε(x)g
(
u(x)

) + fε(x) − cε(x̃)g
(
u(x̃)

) − fε(x̃) + (
a1ε

(
ux1(x)

) + a1ε

(
uξ (x̃)

))
h′′

1

�
n∑

i=2

[
aiε

(
uxi

(x)
) − aiε

(
uxi

(x̃)
)]

uxixi
(x̃) + 2Φ0 − C1

(
a1ε

(
ux1(x)

) + a1ε

(
uξ (x̃)

))
.

(1.20)

Suppose that at the point N ∈ Q̄ \ ∂Q the function w(ξ,x) attains its maximum. At this point we
have wξ = wxi

= 0, i = 1, . . . , n, or

ux1(x) = uξ (x̃) = h′
1 and uxi

(x) = uxi
(x̃) for i = 2, . . . , n.

Hence from (1.20) we have

−a1ε

(
ux1(x)

)
wx1x1 − a1ε

(
uξ (x̃)

)
wξξ −

n∑
i=2

aiε

(
uxi

(x)
)
wxixi

∣∣∣
N

� 2
(
Φ0 − C1

(
μ1

(
h′

1

)p1(p1 + 1)
))∣∣

N
< 2(Φ0 − Φ0) = 0.

This contradicts the assumption that w(ξ,x) attains its maximum at the internal point of the
domain Q.

Now consider w(ξ,x) on ∂Q. The boundary of Q consists of three parts (recall that x1 > ξ ):

(1) x1 = ξ ;
(2) ξ = F1, x1 ∈ [F1,G1], x2, . . . , xn ∈ Ω̄1;
(3) x1 = G1, ξ ∈ [F1,G1], x2, . . . , xn ∈ Ω̄1.

On the first part we obviously have w = −h1(0) = 0. On the second and the third parts, due
to Lemma 2, we have respectively

w = u(x) − h1(x1 − F1) � 0
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and

w = −u(x̃) − h1(G1 − ξ) � 0.

Consequently w(ξ, x) � 0 in Q̄, which means

u(x) − u(x̃) � h1(x1 − ξ) in Q̄.

Similarly, taking the function ṽ ≡ u(x̃) − u(x) instead of v, we obtain v � −h1(x1 − ξ) in Q̄.
By the symmetry of the variables x1 and ξ , we consider the case ξ > x1 in the same way.

As a result we obtain that for x1 ∈ [F1,G1], ξ ∈ [F1,G1], (x2, . . . , xn) ∈ Ω1, |x1 − ξ | > 0 the
following inequality holds:

|u(x) − u(x̃)|
|x1 − ξ | � h1(|x1 − ξ |) − h1(0)

|x1 − ξ | ,

which in turn implies the estimate |ux1(x)| � h′
1(0) = (1 + 2l1)C1 + ε. Passing to the limit when

ε → 0 we conclude that

∣∣ux1(x)
∣∣ � (1 + 2l1)

(
Φ0

μ1(p1 + 1)

) 1
p1+1

.

The lemma is proved. �
Remark 4. When proving Lemma 3 we use the idea of S.N. Kruzhkov [6] of introducing a new
spatial variable for the one-dimensional quasilinear parabolic equations (see also [12] and the
references there). The extension of this method to a class of multidimensional elliptic equations
in convex domains was presented in [11,13]. In [11] (as well as in [6]) the right-hand side must
vanish at the points where the principal part becomes zero. Of course Eq. (0.1) does not satisfy
such restrictions. In [13] (as well as in [12]) it was shown that the a priori gradient estimate for
the degenerated equation can be established under specific restrictions on the right-hand side
which in our case look like

c(x)g(u) + f (x) − c(x′)g(v) + f (x′) � 0 for u > v,

where x′ = (x′
1, x2, x3, . . . , xn) with x1 > x′

1, if we need the estimate of ux1 ; x′ = (x1, x
′
2, x3,

. . . , xn) with x2 > x′
2, if we need the estimate of ux2 and so on. In the present paper we have

succeeded to obtain the needed estimate for (0.1) with arbitrary c(x)g(u) + f (x) due to the
specific form of the principal part. Note that in [6,11–13] the existence of classical solutions is
proved.

Let us turn now to problem (0.8), (0.2).
Consider the regularized equation

−μ�u = c(x)gM(u) + f (x). (1.21)

Recall that here we suppose that c and f are Hölder continuous functions. The proofs of the
following two lemmas are similar to the proofs of Lemmas 1 and 3.



392 Al.S. Tersenov, Ar.S. Tersenov / J. Differential Equations 235 (2007) 376–396
Lemma 4. If (0.3) and (0.4) are fulfilled, then for any classical solution of problem (1.21), (0.2)
the following estimate is valid ∣∣u(x)

∣∣ � M.

Lemma 5. If conditions (0.3), (0.4) are fulfilled and Ω is strictly convex, then for any classical
solution of problem (1.21), (0.2) the following estimates are valid

∣∣uxi
(x)

∣∣ � (1 + 2li )

(
Φ0

μi(1 + pi)

) 1
pi+1

, i = 1, . . . , n.

2. Existence and uniqueness

Proof of Theorem 1. Consider equation

−
n∑

i=1

μi

((
uα

εxi
+ ε

)pi/αuεxi

)
xi

= cε(x)g(uε) + fε(x). (2.1)

The classical solvability of problem (2.1), (0.2) follows from [5].
Our goal is to pass to the limit (ε → 0) in (2.1) based on the a priori estimates obtained in

previous section. Due to Lemmas 1 and 3 there exists a subsequence which we denote again by
uε such that

uε(x) → u(x) uniformly in C0 norm (2.2)

and

uεxi
(x) → uxi

(x) ∗ weakly in L∞(Ω), i = 1,2, . . . , n. (2.3)

From (2.2) it immediately follows that

fε ≡ cε(x)g(uε) + fε(x) → f ≡ c(x)g(u) + f (x) strongly in L∞ norm.

Define Aε(uε) and A(u) elements from W−1,s(Ω) (linear functionals on
◦

W
1,r (Ω), 1

r
+ 1

s
= 1)

by the following

〈
Aε(uε), v

〉 = n∑
i=1

∫
Ω

μi

(
uα

εxi
+ ε

)pi/αuεxi
vxi

dx ∀v ∈ ◦
W

1,r (Ω),

〈
A(u), v

〉 = n∑
i=1

∫
Ω

μi |uxi
|pi uxi

vxi
dx ∀v ∈ ◦

W
1,r (Ω).

From Lemma 3 it follows that μi(u
α
εxi

+ ε)pi/αuεxi
is bounded in L∞(Ω) and hence in Ls(Ω)

for any s. Thus

Aε(uε) → χ weakly in W−1,s(Ω).
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Our goal is to prove that

χ = A(u).

One can easily see by direct calculations that

〈
A(uε) − A(v),uε − v

〉
� 0.

Hence

〈
Aε(uε) − A(v),uε − v

〉
�

〈
Aε(uε) − A(uε), uε − v

〉
. (2.4)

Rewrite (2.4) as following

〈
Aε(uε), uε

〉 − 〈
Aε(uε), v

〉 − 〈
A(v),uε − v

〉
�

〈
Aε(uε) − A(uε), uε − v

〉
. (2.5)

Multiplying (2.1) by uε and then integrating by part we obtain

〈
Aε(uε), uε

〉 = n∑
i=1

∫
Ω

μi

(
uα

εxi
+ ε

)pi/αu2
εxi

dx =
∫
Ω

fεuε dx ≡ (fε, uε).

Hence from (2.5) it follows that

(fε, uε) − 〈
Aε(uε), v

〉 − 〈
A(v),uε − v

〉
�

〈
Aε(uε) − A(uε), uε − v

〉
. (2.6)

Passing to the limit when ε → 0 we obtain (see Remark 5 below)

(f, u) − 〈χ,v〉 − 〈
A(v),u − v

〉
� 0. (2.7)

Now multiplying (2.1) by u and integrating by parts we have

〈
Aε(uε), u

〉 = n∑
i=1

∫
Ω

μi

(
uα

εxi
+ ε

)pi/αuεxi
uxi

dx =
∫
Ω

fεudx = (fε, u).

Passing to the limit when ε → 0 we obtain

〈χ,u〉 = (f, u).

Substituting this in (2.7) we have

〈χ,u〉 − 〈χ,v〉 − 〈
A(v),u − v

〉
� 0 or

〈
χ − A(v),u − v

〉
� 0. (2.8)

Select v ≡ u − λw, where λ is a positive constant and w ∈ ◦
W

1,∞(Ω). From (2.8) we conclude
that

λ
〈
χ − A(u − λw),w

〉
� 0 or

〈
χ − A(u − λw),w

〉
� 0.
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Passing to the limit when λ → 0 (this is possible due to the Lebesgue theorem) we obtain

〈
χ − A(u),w

〉
� 0 ∀w ∈ ◦

W
1,∞(Ω).

Hence the functional χ − A(u) is zero, i.e.

χ = A(u).

Thus we can pass to the limit when ε → 0 in〈
Aε(uε),φ

〉 = (
cεg(uε) + f,φ

)
(2.9)

to obtain 〈
A(u),φ

〉 = (
cg(u) + f,φ

)
. (2.10)

Obviously (2.9) and (2.10) are equivalent to

∫
Ω

n∑
i=1

μi

(
uα

εxi
+ ε

)pi/αuεxi
φxi

dx =
∫
Ω

(
cε(x)g(uε) + fε(x)

)
φ dx

and

∫
Ω

n∑
i=1

μi |uxi
|pi uxi

φxi
dx =

∫
Ω

(
c(x)g(u) + f (x)

)
φ dx,

respectively.
The existence is proved.
Let us pass to the uniqueness. Suppose that there exist two solutions u1 and u2. We have〈

A(u1) − A(u2), u1 − u2
〉 = (

c(x)g(u1) − c(x)g(u2), u1 − u2
)
. (2.11)

The left-hand side of (2.11) is nonnegative, hence∫
Ω

c(x)
(
g(u1) − g(u2)

)
(u1 − u2) dx � 0.

Due to the assumptions of Theorem 1 concerning the uniqueness, the last inequality takes place
only if u1 − u2 ≡ 0.

Theorem 1 is proved. �
Remark 5. When passing to the limit in (2.6) we use the fact that μi(u

α
εxi

+ ε)pi/αuεxi
and

μi(u
α
εxi

)pi/αuεxi
= μi |uεxi

|pi uεxi
have the same weak limit. In fact, suppose that

μi

(
uα

εxi
+ ε

)pi/αuεxi
→ χ1 ∗ weakly in L∞,

μi |uεxi
|pi uεxi

→ χ2 ∗ weakly in L∞.
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Let |uεxi
| � Ci . Define the function fi(ξ, η) ≡ (ξα + |η|)pi/αξ

fi : [−Ci,Ci] × [−1,1] → R.

For any φ ∈ L1, we have∣∣∣∣
∫
Ω

(
fi(uεxi

, ε) − fi(uεxi
,0)

)
φ dx

∣∣∣∣ →
∣∣∣∣
∫
Ω

(χ1 − χ2)φ dx

∣∣∣∣ when ε → 0.

Since the function fi is continuous, for any σ > 0 there exists δ(σ ) such that |fi(ξ, η) −
fi(ξ,0)| � σ for all ξ ∈ [−Ci,Ci], whenever |η| � δ. Therefore, for arbitrary σ > 0 and for
ε � δ(σ ) we obtain ∣∣∣∣

∫
Ω

(
fi(uεxi

, ε) − fi(uεxi
,0)

)
φ dx

∣∣∣∣ � σ

∫
Ω

|φ|dx.

Thus ∣∣∣∣
∫
Ω

(χ1 − χ2)φ dx

∣∣∣∣ = lim
ε→0

∣∣∣∣
∫
Ω

(
fi(uεxi

, ε) − fi(uεxi
,0)

)
φ dx

∣∣∣∣ � σ

∫
Ω

|φ|dx.

Hence, χ1 = χ2.

Proof of Theorem 2. The existence follows from Lemma 4. In fact, from Lemma 4 we have
that Φ(x) ≡ c(x)g(u) + f (x) is a bounded function. This implies the a priori estimate of the
solution in C1+β norm (for some β ∈ (0,1)) depending only on Φ0 and n (see, for example, [5,
Section 3.4]). The a priori estimate in C1+β norm implies the existence of the required solution
(see, for example, [5]).

The uniqueness can be proved by standard arguments based on the maximum principle. �
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