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Abstract. A semilinear elliptic partial differential equation problem that models the static (zero
voltage) behavior of a Josephson window junction is considered. A priori estimates and differential
properties of the solution are obtained. The existence of the solutions is shown and iterative methods
for solving this problem are analyzed. Experimental numerical data that couple with the theoretical
results are presented. Useful physical information is extracted from our analysis
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1. Introduction. A Josephson junction is a weak link between two supercon-
ducting films separated by a thin oxide layer enabling the tunneling of Cooper pairs
of electrons. The steady state operation under the action of an external magnetic
field and bias with a constant external current is described by a semilinear elliptic
partial differential equation (PDE) with a sinusoidal nonlinearity which arises from
the Josephson tunneling current. The quantity that completely describes the elec-
tromagnetic properties of such a device is the difference φ(x, y) of the phases of the
superconducting order parameters in the two films. The response of the junction to
an external current and magnetic field depends crucially on the ratio of the junction
dimensions L (length) and W (width) to the characteristic length of the problem, the
Josephson penetration depth λj . Short junctions for which L,W < λj are widely used
in the static case (zero voltage) for magnetic field detection. When φ becomes time
dependent the governing equation is of hyperbolic type, and such small junctions are
used for voltage standard, while long junctions (L > λj > W) are very high frequency
oscillators (> 100 GHz) used in astrophysical measurements. An in-depth presenta-
tion of the physics and the technological applications of Josephson junctions can be
found in [2].

The main difficulty of the resonant fluxon operation of a long junction is its low
energy output compounded by a strong impedance mismatch at the boundaries. The
coupling of the Josephson junction to a cavity in the so-called window design allows a
better impedance matching [6, 4]. It is also interesting for tailoring the static or zero
voltage behavior of the device for specific purposes [10] like increasing the maximum
allowed bias current in the absence of magnetic field. An extension of this model to
inhomogeneous critical current density can be relevant for high Tc superconducting
materials with grain boundaries [7]. Finally static solutions can be considered as
fixed points and play an important role in computing the solutions of the associated

∗Received by the editors March 13, 2002; accepted for publication (in revised form) July 24,
2002; published electronically May 12, 2003. This work was supported in part by a French–Greek
collaboration agreement and PENED grant 2028.

http://www.siam.org/journals/sima/34-6/30367.html
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hyperbolic time-dependent problem. In [4] we proposed a semilinear PDE problem
which accurately and effectively modeled the static behavior of a window Josephson
junction. This model enabled us to predict specific effects depending on the size of
the cavity, such as the rescaling of λj and the increase of the maximum current for
zero magnetic field [5].

If an annular geometry is considered, the periodic boundary conditions are ap-
propriate and in this case an exhaustive classification and stability analysis of the
solutions has already been carried out in one and two space dimensions including
time [8]. For this geometry one is limited only to solutions with integer number of
fluxons. Note, however, that this eliminates many of the interesting physical solutions
that arise due to the finite size and the possibility of continuously introducing flux
from the boundaries as we vary the magnetic field H.

The static two-dimensional Josephson junction problem was solved numerically
by Barone et al. [1] only in the homogeneous junction case by introducing a damping
term. This transforms the equation into a semilinear diffusion equation which can be
discretized using explicit finite differences. A careful choice of the initial condition can
lead to stable static solutions, but this cannot be guaranteed in general. In particular
the junction with inhomogeneous properties requires special care. In all cases the
multiplicity of solutions makes the choice of initial conditions very important, so that
we need to address the static problem directly. Notice also that both the proof of the
existence of a solution and some regularity estimates can be obtained easily in this
time-dependent case but that these results cannot be extended to the static limit,
which turns out to be a more difficult problem.

The derivation of this PDE model together with preliminary numerical experi-
ments was presented in [4] and is briefly discussed in section 2, where comments on
several mathematical peculiarities inherent in our problem are also included. In par-
ticular the periodic nonlinear right-hand side and the Neumann boundary conditions
lead to an obvious nonuniqueness of the solution. Note also that the coefficients of
the operator are nonsmooth. Using the additional variable method proposed in [11]
and [17, 18], we first obtain a priori estimates on the gradient of the solution that
are of physical interest. We then prove, under certain assumptions, the existence and
uniqueness of the solution and the convergence of a fixed point linearization method.
The study of the stability of the solutions is under way and will not be considered
here. In particular we obtain in section 3 a priori estimates of the gradient of the
solution of φ and show that the gradients are Hölder continuous functions. Based
on these estimates we prove in section 4 the existence of the solution and show that
a generalized second derivative exists in L2. Assuming that the domain is narrow
enough, we show, in the case of zero Neumann boundary conditions in one direction,
that the solution does not depend on the associated variable. In section 5 we obtain
additional estimates for the solution and its first derivatives only in terms of the ex-
ternal current and the magnetic field applied to it. Furthermore, assuming that the
solution is in a given interval, we improve our a priori estimates. In section 6 we prove
the convergence of an iterative method for linearizing the semilinear PDE problem.
Numerical results that couple with our theoretical results are presented in section 7,
which also discusses their physical relevance. Our conclusions are given in section 8.

2. The mathematical Josephson window junction model. Figure 2.1 shows
a window junction for the case where the window Ωj is a rectangle of size �×w cen-
tered in Ω. The spatial variation of the difference φ of the superconducting phases in
both superconductors is modeled accurately in the case where the surface inductances
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Fig. 2.1. A window Josephson junction.

are equal in the junction and the idle region by the equation

∂2φ

∂x2
+

∂2φ

∂y2
= Ij(x, y) sin(φ) in Ω ≡

(
−L
2
,
L
2

)
×
(
−W

2
,
W
2

)
,(2.1)

coupled with the boundary conditions

∂φ

∂x

∣∣∣∣x=−L
2
= H − α1,

∂φ

∂x

∣∣∣∣
x=L

2

= H+α2,
∂φ

∂y

∣∣∣∣y=−W
2
= −δ1,

∂φ

∂y

∣∣∣∣
y=W

2

= δ2,(2.2)

where all lengths have been normalized by λj . Physically Ij in (2.1) is the indicator
function of the domain Ωj and is discontinuous. Although in the derivation of the
results that will follow we have assumed that Ij is continuous, we will see that all our
results are independent of the smoothness of Ij .

The model given in (2.1) can be made more realistic by including the difference
in the surface inductances in the superconducting and junction regions, which leads
to the equation

∂

∂x

(
1

L̃(x, y)

∂φ

∂x

)
+

∂

∂y

(
1

L̃(x, y)

∂φ

∂y

)
= Ij(x, y) sin(φ),

where L̃ is the normalized surface inductance. We believe that the analysis presented
below can be extended to cover the case where L̃(x, y) is strictly positive and differ-
entiable.

The boundness of the right-hand side of (2.1) determines the maximum allowed
values for α1, α2, δ1, and δ2. To see this, integrate both sides of (2.1) and use Green’s
theorem to obtain∫

Ωj

sinφdxdy =

∫
Ω

∇(∇φ)dxdy =

∫
∂Ω

∂φ

∂n
ds = (α1 + α2)W + (δ1 + δ2)L,

from which we have that

|(α1 + α2)W + (δ1 + δ2)L| ≤ µ(Ωj),(2.3)
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Fig. 2.2. Allowed values for α’s and δ’s.

where µ(Ωj) is the measure of the window domain Ωj . From (2.3) we easily see that
our PDE problem has no solutions if the α’s and δ’s are outside the rhombus shown
in Figure 2.2.

Physically H corresponds to an external magnetic field applied in the y-direction
which induces a gradient of φ along the x-direction. α’s and δ’s are current densities
flowing through the device along the x- and y-directions, respectively. They can be
assumed to be positive and constant. As can be seen in Figure 2.2 the sum of these
currents cannot exceed the maximum critical current of the junction, which is the
measure of Ωj .

Notice also that if φ is a solution of the problem, then φ + 2kπ, k ∈ Z, is also a
solution. This defines an equivalence class, so that solutions can be classified in terms
of their fluxon content nf� defined by

nf� ≡
(
sup
Ω

φ− inf
Ω

φ

)
/(2π).

We also define the oscillation of φ(x, y) with respect to the variable x (and similarly
for the variable y) as

oscxφ ≡ sup
y

(
sup
x

φ− inf
x

φ

)
.(2.4)

Depending on the boundary conditions we can have (see [4]) a one-fluxon solution
where the oscillation is between 0 and 2π, a two-fluxon solution where the oscillation
is between 0 and 4π, and so on. These different solutions will have different regions
of existence and different stability properties with respect to a perturbation of the
boundary conditions, and as the current is increased only one will subsist. This
solution gives the maximum current at zero voltage of the junction, which can be
observed experimentally to indicate the quality of the junction. In the inline config-
uration α1 = α2 = α, δ1 = δ2 = 0, in the absence of an idle region (Ωj = Ω), Owen
and Scalapino showed that the maximum current for H = 0 is 4W [15]. For that
they reduced the problem to one dimension and wrote the solution in terms of elliptic
functions. In the same geometry but with the overlap design for which α1 = α2 = 0
δ1 = δ2 = δ, the problem can be reduced to a one-dimensional equation only for
W < 2 [3], yielding a maximum current for H = 0 of L × W. When W > 2 the
current for H = 0 saturates, as expected, to 4× L, and transverse modes are needed
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for the description [3]. The presence of an idle region (Ωj �= Ω) has important effects
on the behavior of the junction. In particular the characteristic length is larger than
λJ ≡ 1, which leads to an increase of the maximum current for H = 0.

An important case is when the device is symmetric with respect to the center.
Then if δ1 = δ2, one can assume the solution to be symmetric with respect to the
horizontal middle line, and if the x boundary conditions are antisymmetric, i.e., α1 =
α2 and H = 0, the solution will be symmetric with respect to the vertical middle line,
so that just a quarter of the device might be considered. A priori estimates have been
derived for these cases also.

Notice also that the solution of the PDE problem is a minimum of the free energy
functional

F =

∫
Ω

[
1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂y

)2

+ Ij (1− cosφ))

]
dxdy

−
∫ W

2

−W
2

[
(H − α1)φ

(
−L
2
, y

)
− (H + α2)φ

(L
2
, y

)]
dy

−
∫ L

2

−L
2

[
−δ2φ

(
x,

W
2

)
− δ1φ

(
x,−W

2

)]
dx.

Due to the multiplicity of solutions there are several minima. In the simple case where
the boundary conditions are nonzero only in x or y and Ω ≡ Ωj , the y or x dependence
can be neglected and the last term of the free energy can be significantly simplified.

3. A priori estimates of the gradient. The main objective of this section
is to obtain estimates of the gradient of the solution that are of practical interest
in either proving the existence of the solution or measuring the gradient in terms
of physical quantities. Estimates of the gradient in terms of the maximum of the
solution are easily obtained from well-known results [13, 9]. In this section we obtain
a priori estimates for the gradient of a classical solution of the proposed PDE model
only in terms of the size of the domain and the physical parameters of the problem.
Note that the estimates obtained below are independent of the solution and cannot
be obtained from classical results [13, 9].

We start by homogenizing the problem (2.1)–(2.2) by setting u ≡ φ− f with

f ≡ Hx+
α1

2L
(
x− L

2

)2

+
α2

2L
(
x+

L
2

)2

+
δ1
2W

(
y − W

2

)2

+
δ2
2W

(
y +

W
2

)2

to get from (2.1) and (2.2) that

∂2u

∂x2
+

∂2u

∂y2
= Ij sin(u+ f)− α1 + α2

L − δ1 + δ2
W in Ω(3.1)

and

∂u

∂x

∣∣∣∣
x=±L

2

=
∂u

∂y

∣∣∣∣
y=±W

2

= 0.(3.2)

In what follows, without explicitly stating, we assume that the indicator function
Ij is smooth. This assumption is set only to guarantee the existence of a classical
solution of the problem and does not affect the result of the lemmas since we do
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not have any smoothness requirements. In practice these indicator functions are
discontinuous (i.e., Ij(x, y) is 1 if (x, y) ∈ Ωj and 0 otherwise). To treat such Ij we
can consider a continuously differentiable function Iδ

j ∈ C1
(
Ω
)
, 0 ≤ Iδ

j ≤ 1, such

that Iδ
j → Ij *weak in L∞ for which the analysis that will follow is valid. Therefore

in what follows and for simplicity in the notation we will use the symbol Ij instead
of Iδ

j .
Lemma 3.1. For any classical solution u(x, y) of the problem (3.1)–(3.2) we have

that

|ux| ≤ L, |uy| ≤ W.(3.3)

Proof . We start by writing (3.1) at a point (ξ, y) ∈ Ω with ξ �= x as

∂2u(ξ, y)

∂ξ2
+

∂2u(ξ, y)

∂y2
= Ij(ξ, y) sin (u(ξ, y) + f(ξ, y))− α1 + α2

L − δ1 + δ2
W .(3.4)

Now define the function v(x, y, ξ) ≡ u(x, y)− u(ξ, y), for which, by subtracting (3.4)
from (3.1), we have

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
= Ij(x, y) sin (u(x, y) + f(x, y))− Ij(ξ, y) sin (u(ξ, y) + f(ξ, y)) ,

and thus

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −2.(3.5)

Now consider the prism

P1 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, x− ξ > 0

}

and the ordinary differential equation problem

h′′(τ) = −1, with h(0) = 0 and h′(L) = ε,(3.6)

where ε is a positive constant. The solution of (3.6) is given by h(τ) = − τ2

2 +τ(L+ε).
Define the function ω(x, y, ξ) ≡ v(x, y, ξ)−h(x− ξ) and take into account (3.5) to get
that

∂2ω

∂x2
+

∂2ω

∂y2
+

∂2ω

∂ξ2
≥ 0,(3.7)

from which, using the strong maximum principle (see Lemma 3.5 in [9]), we conclude
that ω does not achieve its maximum value in P1 unless it is a constant function. On
the boundary sector defined by x = L

2 , |y| ≤ W
2 , and −L

2 ≤ ξ < L
2 we have that

∂ω(L2 , y, ξ)
∂x

=
∂u(L2 , y)

∂x
− h′

(L
2
− ξ

)
= −h′

(L
2
− ξ

)
< 0.

Since x is the outward normal to the domain, ω does not achieve its maximum on
this part of the boundary. On the boundary sector defined by ξ = −L

2 , |y| ≤ W
2 , and

−L
2 < x ≤ L

2 we have that

∂ω(x, y,−L
2 )

∂ξ
= −∂u(−L

2 , y)

∂ξ
+ h′

(
x+

L
2

)
= h′

(
x+

L
2

)
> 0,
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and since ξ is the inward normal we conclude that the maximum of ω is not achieved
on this part of the boundary either. On the planes y = ±W

2 , |x| < L
2 , and |ξ| < L

2 we
have that

∂ω(x,±W
2 , ξ)

∂y
=

∂u(x,±W
2 )

∂y
− ∂u(ξ,±W

2 )

∂y
= 0,

and assuming that ω is not a constant function we have, from Lemma 3.4 in [9],
that ω does not achieve its maximum on these boundary planes either. Therefore,
the maximum is achieved at x = ξ, and since ω(x, y, ξ)|x=ξ = 0 we have that the
inequality

u(x, y)− u(ξ, y) ≤ h(x− ξ)

holds in Ω, which, as can be easily seen, becomes an equality if ω is a constant
function.

Subtracting relation (3.1) from (3.4) and applying the above analysis we obtain
that

u(ξ, y)− u(x, y) ≤ h(x− ξ),

and hence

|u(x, y)− u(ξ, y)| ≤ h(x− ξ) for x > ξ.

Working in a similar way (or directly obtained by symmetry) for x < ξ we easily see
that

|u(x, y)− u(ξ, y)| ≤ h(|x− ξ|)− h(0).

By dividing the last relation by |x−ξ| and taking the limit, we have that
∣∣∂u
∂x

∣∣ ≤ h′(0)
and finally obtain the first of the following inequalities (when ε → 0), while the second
can be obtained similarly.

sup
(x,y)∈Ω

∣∣∣∣∂u(x, y)∂x

∣∣∣∣ ≤ L, sup
(x,y)∈Ω

∣∣∣∣∂u(x, y)∂y

∣∣∣∣ ≤ W.

Remark 3.1. As a direct consequence of the above lemma, we easily get the
following estimates for the gradient of the solution of the problem (2.1)–(2.2):

−L+H +
α1 + α2

L x+
α2 − α1

2
≤ ∂φ

∂x
≤ L+H +

α1 + α2

L x+
α2 − α1

2
(3.8)

and

−W +
δ1 + δ2
W y +

δ2 − δ1
2

≤ ∂φ

∂y
≤ W +

δ1 + δ2
W y +

δ2 − δ1
2

.(3.9)

It is worth noting here that as it follows from (3.8) φx > 0 in the case of large magnetic
field H. This is consistent with the physical properties of Josephson junctions [2].

Next we obtain sharper estimates by making certain assumptions, on typical
junction’s size, on the domain.
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Lemma 3.2. (a) Suppose that Ij depends only on the variable y. If L < 2, then
for any classical solution u(x, y) of the problem (2.1)–(2.2) we have

|ux| ≤ L2f1

4− L2
,(3.10)

where f1 = max |fx(x, y)|.
(b) Suppose that Ij depends only on the variable x. If W < 2, then for any

classical solution u(x, y) of the problem (2.1)–(2.2) we have

|uy| ≤ W2f2

4−W2
,(3.11)

where f2 = max |fy(x, y)|.
Proof. Arguing in the same manner as in the proof of Lemma 3.1, for v(x, y, ξ) =

u(x, y)− u(ξ, y) we obtain

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
= Ij(y) (sin (u(x, y) + f(x, y))− sin (u(ξ, y) + f(ξ, y))) ,(3.12)

and thus (from Lemma 3.1 we already have that |ux| ≤ L)

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −L(x− ξ) for x > ξ.(3.13)

Consider the prism

P1 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, x− ξ > 0

}
,

and let h1(τ) be a solution of the problem

h′′
1(τ) = −L+ f1

2
τ, h1(0) = 0, and h′

1(L) = ε > 0.(3.14)

Obviously for h1 = h1(x− ξ) we have

∂2h1

∂x2
+

∂2h1

∂y2
+

∂2h1

∂ξ2
= −(L+ f1)(x− ξ).(3.15)

Subtracting (3.15) from (3.13) for ω(x, y, ξ) ≡ v(x, y, ξ)− h1(x− ξ) we obtain that

∂2ω

∂x2
+

∂2ω

∂y2
+

∂2ω

∂ξ2
≥ 0.(3.16)

Arguing analogously to the proof of Lemma 3.1 we have

|ux(x, y)| ≤ h′
1(0) =

L+ f1

4
L2 + ε,

and passing to the limit when ε → 0,

|ux(x, y)| ≤ L+ f1

4
L2 ≡ L1.
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Returning back to (3.12) and taking into account that now |ux| ≤ L1 we obtain

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −(L1 + f1)(x− ξ) for x > ξ.(3.17)

Construct the function

h′′
2(τ) = −L1 + f1

2
τ, h2(0) = 0, and h′

2(L) = ε.(3.18)

In a similar manner as above we conclude that

|ux(x, y)| ≤ h′
2(0) =

L1 + f1

4
L2 + ε,

and letting ε → 0 we have

|ux(x, y)| ≤ L1 + f1

4
L2 =

(L
2

)4

(L+ f1) +

(L
2

)2

f1 ≡ L2.

Continuing this procedure we obtain the sequence of the bounds for |ux|,

Ln =

(L
2

)2n

L+ f1

[(L
2

)2n

+

(L
2

)2(n−1)

+ · · ·+
(L
2

)4

+

(L
2

)2
]
.

If L < 2, then
(L

2

)2n L → 0 when n → ∞, and the second term

f1

[(L
2

)2n

+ · · ·+
(L
2

)2
]
→ f1

L2

4− L2
.

This concludes the proof of part (a); the proof of part (b) is similar.
Remark 3.2. Recall that u ≡ φ − f and use the above lemma to obtain the

following estimates in terms of φ:

− L2f1

4− L2
+H+

α1 + α2

L x+
α2 − α1

2
≤ ∂φ

∂x
≤ L2f1

4− L2
+H+

α1 + α2

L x+
α2 − α1

2
.(3.19)

In particular, if f1 = H = α1 = α2 ≡ 0, then ∂φ
∂x ≡ 0.

− W2f2

4−W2
+

δ1 + δ2
W y +

δ2 − δ1
2

≤ ∂φ

∂y
≤ W2f2

4−W2
+

δ1 + δ2
W y +

δ2 − δ1
2

.(3.20)

In particular, if f2 = δ1 = δ2 ≡ 0, then ∂φ
∂y ≡ 0.

Remark 3.3. If δ1 = δ2 = 0, Ij = Ij(x), and W < 2, then our problem becomes
one-dimensional: φ(x, y) = φ(x) and (2.1)–(2.2) take the form

φ′′(x) = Ij(x) sinφ(x), φ′
(
−L
2

)
= H − α1, φ′

(L
2

)
= H + α2.(3.21)

Lemma 3.3. The first order derivatives of the classical solution of problem (2.1)–
(2.2) are Hölder continuous with the Hölder coefficient and exponent depending only
on ||∂φ∂x ||L2(Ω), ||∂φ∂y ||L2(Ω), and α1, α2, δ1, δ2,L, and W .

The bounds on the Hölder norm of the gradient follow from Theorem 9.11 in [9].
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4. Existence and uniqueness. In this section we show, under certain condi-
tions, the existence and the uniqueness of a solution of the PDE problem (3.1)–(3.2)
(and therefore of the problem (2.1)–(2.2)). We start by giving the definition of the
generalized solution.

Definition 4.1. We call a function u(x, y) ∈ C1,α(Ω) ∩ W 2
2 (Ω) a generalized

solution of the PDE problem (3.1)–(3.2) if it satisfies the integral identity∫
Ω

(uxx + uyy − Ij sin(u+ f)− g)ψdxdy = 0 ∀ψ ∈ L2(Ω)(4.1)

and the boundary conditions (3.2), where g ≡ −α1+α2

L − δ1+δ2
W .

4.1. Existence. We start by assuming that Ij is smooth and consider the aux-
iliary problem

∆v = κIj
(
sin(v + f)− 1

µ(Ωj)

∫
Ωj

sin(v + f)dxdy

)
in Ω,(4.2)

∂v

∂n
= 0 on ∂Ω,(4.3)

and

1

µ(Ω)

∫
Ω

vdxdy = ζ,(4.4)

where κ ∈ [0, 1] and ζ is an arbitrary fixed real number. Recall that by µ(Ω) we
denote the measure of Ω. We will show that a solution v ∈ C1,γ(Ω̄) ∩ C3(Ω) of the
auxiliary problem (4.2)–(4.4) exists. For this we define ψ ≡ v− ζ and write the above
problem in the following equivalent form:

∆ψ = κIj
[
sin(ψ + ζ + f)− 1

µ(Ωj)

∫
Ωj

sin(ψ + ζ + f)dxdy

]
in Ω,(4.5)

∂ψ

∂n
= 0 on ∂Ω,(4.6)

and ∫
Ω

ψdxdy = 0.(4.7)

As we easily see, the only difference between (3.1) and (4.5) is a bounded constant term
on the right-hand side. Hence the estimates obtained in the lemmas in the previous
section hold for (4.5)–(4.6) too. We can also observe that ψ becomes zero at least at
one point in Ω so that using the estimate of the gradient (which are independent of
the max |ψ|) we can obtain a bound for the maximum of |ψ| in the domain Ω̄. We
are in the position now to use the Leray–Schauder theorem [9, Theorem 11.3] (see the
appendix) to prove the existence of the generalized solution of problem (4.2)–(4.4).

Leray–Schauder theorem. Let T be a compact mapping from a Banach space
B to itself, and suppose there exists a constant M such that ||u||B < M for all u ∈ B
and κ ∈ [0, 1] satisfying u = κTu. Then T has a fixed point.
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We now address the case of a nonsmooth function Ij .
Lemma 4.2. For the classical solution of the PDE problem (4.2)–(4.4) for ζ = 1

the following inequality holds:

∫
Ω

[(
∂2v

∂x2

)2

+ 2

(
∂2v

∂x∂y

)2

+

(
∂2v

∂y2

)2
]
dxdy ≤ 4µ(Ωj).(4.8)

Proof. We square both sides of (4.2), integrate them two times (using integration
by parts for the second term on the left-hand side). Then the use of the boundary
conditions easily gives the above bound.

Obviously the classical solution v satisfies the integral identity (4.1), i.e.,

∫
Ω

(
∂2v

∂x2
+

∂2v

∂y2
− Iδ

j sin(v + f) +
1

µ(Ω)

∫
Ωj

sin(v + f)dxdy

)
ψdxdy = 0 ∀ψ ∈ L2(Ω).

(4.9)
Taking the limit, as δ → 0 we readily obtain the existence of the generalized solution.

Let us fix arbitrarily ζ = ζ0. For this ζ0 we find the generalized solution of the
problem (4.2)–(4.4) for κ = 1. In order to obtain the existence of the original problem
we need to find boundary conditions such that

R(c) = c,(4.10)

where

c ≡ µ(Ωj)

(
α1 + α2

L +
δ1 + δ2
W

)

and

R(c) ≡
∫

Ωj

sin(v + f)dxdy.

Note that R satisfies the inequality |R| < µ(Ωj), and observe, assuming that R
continuously depends on c, that it is impossible to have R < c for c varying from
µ(Ωj) to −µ(Ωj). Hence there exists such c0 that verifies (4.10). For this c0 the
solution of the auxiliary problem (4.2)–(4.4) coincides with the solution of the original
one (2.1)–(2.2). Mark that the assumption on the continuity of R is satisfied in the
cases of the uniqueness of the solution of the auxiliary problem. Such uniqueness can
be proved following an analysis similar to the one presented in Theorem 4.4. From
the above we readily obtain the following theorem.

Theorem 4.3. If the solution of the problem (4.2)–(4.4) is unique, then for any
ζ ∈ R we can find values for H,α1, α2, δ1, and δ2 for which there exists a generalized
solution φ of the problem (2.1)–(2.2) such that

1

µ(Ω)

∫
Ω

(φ− f)dxdy = ζ.(4.11)

Let us note that Theorem 4.3 also holds if condition (4.11) is replaced by

(φ− f)|(x0,y0)
= ζ, (x0, y0) ∈ Ω.

To prove this, one has to carry out an analysis similar to the above, which is lengthy
and tedious and so will not be presented here.
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4.2. Uniqueness. It has been observed both numerically and experimentally
[2, 3, 4] and it is intuitively expected that our PDE problem might have more than
one nontrivial solution. In the case when L < 2 and W < 2 we can easily see from
Lemma 3.2 that the only solution is nπ, n = 0,±1,±2, . . . . An extensive theoretical
and experimental bifurcation analysis is under way and will be presented elsewhere.
Nevertheless, as we show below, under certain conditions only one solution exists.

Theorem 4.4. Assume that either
(a) L < 2, w <

√
2, Ij = Ij(y), and H = α1 = α2 = 0, or

(b) W < 2, � <
√
2, Ij = Ij(x), and δ1 = δ2 = 0.

Then the generalized solution u of (3.1)–(3.2) satisfying the condition

1

µ(Ω)

∫
Ω

udxdy = ζ,(4.12)

where ζ is an arbitrarily given constant, is unique.
Proof. From Lemma 3.2 it follows that ux ≡ 0. Thus we have

uyy = Ij(y) sin(u+ f)− δ1 + δ2
W in Ω,(4.13)

uy

(
±W

2

)
= 0,(4.14)

and ∫ W
2

−W
2

udy = ζ.(4.15)

Suppose now that there exist two different solutions u and v, both satisfying
condition (4.15), i.e.,

∫ W
2

−W
2

udy =

∫ W
2

−W
2

vdy.(4.16)

This implies that u and v cross each other. Now let σ ≡ u− v and observe that

σyy = Ij(y) (sin(u(y) + f(y))− sin(v(y) + f(y))) = Ij(y)σ cos θ.(4.17)

Suppose that u and v intersect at a point y0. Consider the two cases

(α) y0 /∈
[
−w

2
,
w

2

]
, (β) y0 ∈

[
−w

2
,
w

2

]
.(4.18)

In (α) consider the case y0 ∈ (−W
2 , w

2

]
. In the interval

(−W
2 , y0

)
we have σyy = 0

and σy(−W
2 ) = σ(y0) = 0. Hence σ ≡ 0 ∈ (−W

2 , y0

)
. Therefore, due to the analyticity

of σ in
(−W

2 , w
2

]
we have σ ≡ 0 ∈ (−W

2 , w
2

]
. Similarly we can consider the case

y0 ∈ [w2 , W
2

)
.

Consider now the (β) case. Multiplying (4.17) by σ and integrating by parts we
get

∫ W
2

y0

σ2
ydy ≤

∫ W
2

y0

Ijσ2dy =

∫ w
2

y0

σ2dy.(4.19)
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Applying the Poincaré inequality we obtain

∫ w
2

y0

σ2
ydy ≤

∫ W
2

y0

σ2
ydy ≤

∫ w
2

y0

σ2dy ≤ w2

2

∫ w
2

y0

σ2
ydy.(4.20)

Due to the assumption w <
√
2 we have

∫ w
2

y0
σ2
ydy = 0, and therefore σy ≡ 0. Since

σ(y0) = 0 we have σ ≡ 0 and u ≡ v.
We note that there are other cases where one might be able to show this unique-

ness. For example, we have shown that if we assume that the window is such that
� <

√
2 and w <

√
2, then the generalized solution u of (3.1)–(3.2) satisfying the

condition

1

µ(Ω)

∫
Ω

udxdy = ζ,(4.21)

where ζ is an arbitrarily given constant, is unique. The proof of this statement is
similar to the proof of the previous theorem. Since it is rather technical, tedious, and
lengthy it is not included here.

In a manner similar to the above theorem it can be shown that there exist cases
where the solution of the auxiliary problem is unique.

5. Additional estimates. In this section we obtain estimates of the gradient
of the solution of the problem in some special cases that are of physical interest. As
discussed in section 2 it is useful [3, 4, 5] to characterize the solutions of (2.1)–(2.2) by
their oscillations, defined by (2.4). In what follows we derive estimates of the gradient
of the solution as a function of its oscillations in the x- and y-directions.

Lemma 5.1. For any classical solution φ(x, y) of the problem (2.1)–(2.2) we have
that ∣∣∣∣∂φ∂x

∣∣∣∣ ≤√2oscxφ+ (H + α2)2(5.1)

and ∣∣∣∣∂φ∂y
∣∣∣∣ ≤

√
2oscyφ+ δ2

2 .(5.2)

Proof. We follow the analysis of Lemma 3.1, with the main difference being in
the construction of the barrier h. Specifically we set v(x, y, ξ) ≡ φ(x, y)− φ(ξ, y) and
define h(τ) as the solution of the problem

h′′(τ) = −1, h(0) = 0, h(τ∗) = oscxφ,

where τ∗ will be defined later. We need to compare the functions v and h(x − ξ) in
the prism P2 ∩ {x− ξ < L}, where

P2 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, τ∗ > x− ξ > 0

}
,

whose cross-section along the y-axis is given in Figure 5.1. Obviously (see (3.7)) we
have ∆(v − h) ≥ 0 in P2 ∩ {x − ξ < L}, and hence the maximum is not achieved in
the interior of P2 ∩ {x − ξ < L}. We need to check the boundary. When x = ξ and
y ∈ [−W

2 , W
2 ] we have v − h = 0.
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L/2

τ∗
τ∗

τ∗

x

ξ

-L/2
L/2

-L/2

Fig. 5.1. A cross-section of domain P2 along a plane in the y-direction.

For x − ξ = τ∗ we obtain v − oscxφ ≤ 0 for y ∈ [−W
2 , W

2 ]. For x = L
2 , ξ ∈

(−τ∗ + L
2 ,

L
2 ), and y ∈ [−W

2 , W
2 ] we have that

∂(v − h)

∂x

∣∣∣∣x=L
2
= H + α2 − h′

(L
2
− ξ

)
.

Similarly if ξ = −L
2 , x ∈ (−L

2 ,−L
2 + τ∗), and y ∈ [−W

2 , W
2 ], then

∂(v − h)

∂ξ

∣∣∣∣ξ=−L
2
= −(H − α1) + h′

(
x+

L
2

)
.

Therefore if h′ > H + α2 (note that H,α1, α2, δ1, δ2 are positive constants), then

∂(v − h)

∂x

∣∣∣∣x=L
2
< 0,

∂(v − h)

∂ξ

∣∣∣∣
ξ=−L

2

> 0,

and hence we do not have a maximum on these parts of the boundary of P2. Fur-
thermore, since for y = ±L

2 , x ∈ (−L
2 ,

L
2 ), and for ξ ∈ (−L

2 ,
L
2 ) and ξ ∈ (−L

2 ,
L
2 ) and

0 < x − ξ < τ∗ we have ∂(v−h)
∂y = 0, we conclude (see Lemma 3.4 in [8]) that we do

not have a maximum here either. It remains to choose τ∗ such that h′(τ) > H + α2

for τ ∈ [0, τ∗]. For this we get

τ∗ < −(H + α2) +
√
(H + α2)2 + 2oscxφ.

As previously we have that

|φx(x, y)| ≤ h′(0) =
oscxφ

τ∗
+

τ∗

2
.

It can be seen that the minimum of h′(0) with respect to τ∗ is achieved when τ∗ =
−(H + α2) +

√
(H + α2)2 + 2oscxφ, from which we obtain relation (5.1).
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For τ∗ ≥ L the only difference is the absence of the boundary x − ξ = τ∗, and
the boundaries x = L

2 , ξ ∈ (−τ∗ + L
2 ),

L
2 , y ∈ [−W

2 , W
2 ] become x = L

2 , ξ ∈ (−L
2 ,

L
2 ,

y ∈ [−W
2 , W

2 ], and ξ = −L
2 , x ∈ (−L

2 ,−L
2 + τ∗), y ∈ [−W

2 , W
2 ] become ξ = −L

2 ,

x ∈ (−L
2 ,

L
2 ), y ∈ [−W

2 , W
2 ]. We work similarly for the case τ∗ < L

One can obtain relation (5.2) working similarly for the y variable.
Remark . We conclude the discussion in this section by observing that in the

case where α1 = α2 = α and δ1 = δ2 = δ the numerical experiments that we have
conducted, shown in section 7, indicate that a solution of the PDE problem (2.1)–
(2.2) is symmetric along the axis y = 0. To obtain this solution one can reduce the
PDE problem (2.1) to the domain defined by (−L

2 ,
L
2 ) × (−W

2 , 0) together with the

boundary conditions ∂φ(x,y)
∂x = H ± α on x = ±L/2, ∂φ(x,y)

∂y = δ on y = −W/2, and
∂φ(x,y)

∂y = 0 on y = 0. The solution to the original problem is obtained by applying

symmetry across the y-axis. For the reduced problem the estimates (3.9) and (4.8)
obtained above can be improved to become

−W
2

− 2δ

W y ≤ ∂φ(x, y)

∂y
≤ W

2
− 2δ

W y(5.3)

and ∫ L
2

−L
2

∫ 0

−W
2

[(
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂y

)2

+

(
∂2φ

∂y2

)2
]
dxdy

≤ 1

2
µ(Ωj)

[
1 + 4

(
α

L +
δ

W
)]

+ 2α
HW
L + 5δ2 L

W + 2αδ,(5.4)

respectively.
In the particular case when H = δ = 0 and the junction is placed symmetrically

inside Ω, we have observed the existence of a solution for which the phase is equal
to a constant along the line x = 0 (see the top of Figure 7.2). Although we are
unable to prove their existence, such solutions have been observed in practice, and
their physical justification is well established in the case where no extra fluxons have
entered the interior of the window [4, 5]. For this type of solution we are able to
obtain the following estimations of its size.

Lemma 5.2. For any classical solution φ(x, y) of the problem (2.1)–(2.2) with
H, δ = 0 and αi = a, for which φ = k, k is a constant, at x = 0, we have that

k +
x2

2
+

(L
2
− α

)
x ≤ φ ≤ k − x2

2
−
(
α+

L
2

)
x for − L

2
≤ x ≤ 0,(5.5)

k +
x2

2
−
(L
2
− α

)
x ≤ φ ≤ k − x2

2
+

(L
2
+ α

)
x for 0 ≤ x ≤ L

2
.(5.6)

Proof. To obtain relation (5.5) we consider the domain Ω1 ≡ (−L
2 , 0)× (−W

2 , W
2 ),

and from (3.1) we have

−β − 1 ≤ ∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
≤ −β + 1,

where β = 2α
L . We define now the function g(x) ≡ 1−β

2 (x + L
2 )

2 + εx, where ε > 0
and v ≡ u− g. Obviously we have that

∂2v(x, y)

∂x2
+

∂2v(x, y)

∂y2
≤ 0;
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thus v does not achieve its minimum in Ω1 (unless it is a constant). It does not
achieve it on the boundary lines x = −L

2 , y ∈ [−W
2 , W

2 ] (since the derivative in the

x-direction is negative) and y = ±W
2 for x ∈ (−L

2 , 0) (see Lemma 3.4, p. 34 in [9])
either. So, we conclude that the minimum of v occurs at x = 0, and we have that

v ≥ min (u− g)|x=0 = k − L2

8
,

and therefore

u ≥ k +
1− β

2
x2 + (1− β)

L
2
x− β

8
L2 + εx.

We now set v̂ ≡ u− ĝ, where ĝ(x) ≡ −β+1
2 (x+ L

2 )
2 − εx, where ε > 0, from which we

have that

∂2v̂(x, y)

∂x2
+

∂2v̂(x, y)

∂y2
≥ 0.

Using arguments similar to those above we can show that v̂ ≤ max v̂|x=0 to obtain

u ≤ k − β + 1

2
x2 − (β + 1)

L
2
x− β

8
L2 − εx.

To conclude the proof of relation (5.5) we simply repeat the above analysis for the
domain (0, L

2 ) × (−W
2 , W

2 ), use the fact that ε is an arbitrary positive constant, and
simply go from the function u to the function φ.

6. Linearization. For the numerical solution of the semilinear elliptic PDE
problem (2.1)–(2.2) one can linearize the PDE equation by means of the following
fixed point iteration scheme:

Lφ(i) ≡ ∆φ(i) − Ijrφ(i) = Ij
(
sin(φ(i−1))− rφ(i−1)

)
, i = 1, 2, . . . ,(6.1)

where r ≡ r(x, y) is a relaxation function to accelerate the convergence, and it can
be any nonzero function. We start these iterations using an initial guess u(0) of the
solution u obtained using one of the approaches described in [4], and we terminate
them when the max-norm of the difference of two successive approximations of the
solution vector (||φ(i) − φ(i−1)||∞) or the max-norm of the residual of the problem
(||∆φ(i) − I sinφ(i)||∞) is less than a given tolerance. Two obvious choices for that
parameter are r(x, y) = c (constant function) and r(x, y) = cos(φ(i−1)(x, y)). With
the latter one, the iteration scheme (6.1) reduces to the well-known Newton iterative
method [14]. The implementation and the performance of this quadratically converg-
ing method is given in [4], and its convergence analysis is under way and will be
presented elsewhere. For the convergence of (6.1) when r is a positive constant we
have the following theorem.

Theorem 6.1. If c ≡ c(r) is the measure of the smallest eigenvalue of the
operator L, then the iterative method (6.1) converges, from any initial guess φ(0), to
the solution of (3.1)–(3.2) if

1

c

(
1

2
+ r

)
< 1.(6.2)
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Proof. If we denote by e(i) ≡ φ − φ(i) the error at the ith iteration, we see that
for i = 1, 2, . . . we have

Le(i) = Ij
[
cos

(
e(i−1)

2
+ φ

)
sin

(
e(i−1)

2

)
− re(i−1)

]
,

from which we obtain

||Le(i)|| ≤
∥∥∥∥cos

(
e(i−1)

2
+ φ

)
sin

(
e(i−1)

2

)∥∥∥∥+ r||e(i−1)||.

By expanding the sine term and dropping the cosine term in the above relation we
have for i = 1, 2, . . . that

||Le(i)|| ≤
(
1

2
+ r

)
||e(i−1)||,

from which relation (6.2) can be easily obtained by requiring the amplification factor
to be less than 1.

It is worth pointing out here that the lack of convergence, as one increases the cur-
rent, of the Newton iterative scheme defined above reflects the dynamical instability
of the static solution in the time-dependent sine-Gordon system.

7. Numerical experiments and physical relevance. Using the proposed
PDE model we have built a powerful simulation tool that accurately and effectively
models window Josephson junctions. Our implementation, described in detail in [4],
is based on the ELLPACK infrastructure [16], and its basic components are as follows:
a uniform discretization of the domain Ω using a tensor product of n × n grid lines,
the Newton linearization scheme, and the discretization of the PDE problem (3.1)–
(3.2) using the standard 5-point-star finite difference method. For all experiments we
have used a junction Ω = [0, 12] × [0, 3], and unless otherwise stated the window Ωj

has sizes � = 10 and w = 1 in the x- and y-direction, respectively, and is placed in
the center of Ω. The boundary conditions were selected such that α1 = α2 ≡ α and
δ1 = δ2 ≡ δ.

In Figure 7.1 we present the properties of the Newton linearization scheme with
which we obtained all the numerical data reported here. On the left we see the history
of convergence during the first four iterations. Specifically we plot, in log–log scale,
the quantity ||φ(i) − φ(i−1)||∞ versus the iteration number i for i = 1, 2, 3, 4 with
n = 20, 40, and 60, and we easily see the quadratic rate of convergence. To measure
the accuracy obtained in the fourth iteration, we plot in the middle panel the infinity
and the L2 norms of the residual (∆φ − Ij sinφ) versus n in semilog scale. The
theoretically expected [16] second order convergence, with respect to discretization
stepsize, of the 5-point-star discretization scheme used to solve the linear problems at
every step in (6.1) can be easily verified. The time complexity of the Newton iterative
algorithm is presented in the right panel, where we plot the per-iteration CPU time
required versus n. As is easily seen this is approximately n3.

To understand the structure of the solutions for various boundary conditions and
confirm the obtained barrier functions, we give in Figures 7.2 and 7.3 a series of
contour and three-dimensional plots of the computed solutions and their gradients
for three different boundary conditions. Figure 7.2 corresponds to a situation where
H = 0, δ ≡ 0, and α ≡ 0 in the top plate and bottom plate, respectively. In this case
the solution has an oscillation in x smaller than 2π.



ANALYSIS OF STATIC SOLUTIONS OF JOSEPHSON JUNCTIONS 1373

1 1.5 2 2.5 3 3.5 4
10

–8

10
–7

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

iteration

N
o
rm

s
 o

f 
th

e
 d

if
fe

re
n
c
e

n=20

n=60

n=40

10
1

10
2

10
–3

10
–2

10
–1

n

N
o

rm
s
 o

f 
th

e
 r

e
s
id

u
a

l

L2

infinity

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

n

E
la

p
s
e

 C
P

U
 t

im
e

Fig. 7.1. Log–log plot of the infinity norm of the difference of two successive iterants of Newton
method for discretization parameter n = 20, 40, 60 versus the iteration number (left), semilog plot of
the infinity and L2 norms of the residual versus the discretization parameter n (middle), and plot
of the per-iteration CPU time versus the discretization parameter n (right).
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Table 7.1
A priori bounds for the gradients of the solution associated with the PDE problems considered

in Figures 7.2 and 7.3.

Figures Lemma 3.1 Lemma 5.1

7.2 top ∂φ
∂x

≤ 12 + 0.055(x− 6) ∂φ
∂x

≤ 0.448

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.14

7.2 bottom ∂φ
∂x

≤ 12 ∂φ
∂x

≤ 0.223

∂φ
∂y

≤ 3 + 0.00553y ∂φ
∂y

≤ 0.173

7.3 top ∂φ
∂x

≤ 13.1 + 0.00833(x− 6) ∂φ
∂x

≤ 3.72

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.447

7.3 bottom ∂φ
∂x

≤ 13.1 + 0.055(x− 6) ∂φ
∂x

≤ 6.43

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.447

For a larger value of the magnetic field H = 1.1, shown in Figure 7.3, the os-
cillation in x of the solution increases. The existence of more than one solution for
certain values of the boundary conditions is confirmed here. The first solution pre-
sented in the top plate has an oscillation of less than 2π (one-fluxon solution) while
the oscillation of the second one is between 4π and 6π (three-fluxon solution).

For the PDE problems considered in Figures 7.2 and 7.3 we present in Table 7.1
the a priori estimates for the gradients of the solution theoretically obtained using
Lemmas 3.1 and 5.1, respectively. The confirmation of these lemmas can be readily
obtained by comparing the entries of the table with the associated plots in the figures.
We also easily see the improvement of the estimates in the x-direction obtained in
section 5. To confirm the theoretically obtained estimates in Lemma 5.2 of the solution
(in the special case where it has a constant value on the line x = 0) we have computed
using this lemma the upper and lower bounds of φ for the problems considered in the
top of Figure 7.2,

5.967(x− 6) + 0.5(x− 6)2 ≤ φ ≤ −6.033(x− 6)− 0.5(x− 6)2 for 0 ≤ x ≤ 6

and

−5.967(x− 6) + 0.5(x− 6)2 ≤ φ ≤ 6.033(x− 6)− 0.5(x− 6)2 for 6 ≤ x ≤ 12,

and in the top of Figure 7.3,

5.95(x− 6) + 0.5(x− 6)2 ≤ φ ≤ −6.05(x− 6)− 0.5(x− 6)2 for 0 ≤ x ≤ 6

and

−5.95(x− 6) + 0.5(x− 6)2 ≤ φ ≤ 6.05(x− 6)− 0.5(x− 6)2 for 6 ≤ x ≤ 12.

As is easily seen these estimates agree with the numerical data presented in the
associated figures.

As mentioned in section 2 an important question from both a theoretical and a
practical point of view is, For what values of H, α, and δ does the solution to our PDE
problem exist? Or, equivalently, Which is the maximum current It = 2(αW + δL)
that the device can carry for a given magnetic field? We have numerically determined
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Fig. 7.4. Allowed values for magnetic field and current for the inline geometry (δ ≡ 0).

Table 7.2
Oscillations for the solutions corresponding to the branches of Figure 7.4 for several values of

the magnetic field H.

H It oscx oscy

10−2 6.65 3.73 0.21

0.41 4.37 4.28 0.21

0.47 0.52 7.75 0.21

0.81 2.13 5.51 0.21

1.01 1.97 11.54 0.20

1.21 1.23 12.89 0.19

the relation between the magnetic field and the maximum current for the case where
δ = 0, and we present it graphically in Figure 7.4. It is important to note that for
pairs of currents and magnetic fields below each (starting from the leftmost) of the
three “maximum lines” shown, there exist one-fluxon, two-fluxon, and three-fluxon
solutions, respectively. Above them no solutions exist. The overlap of the branches
corresponding to one fluxon and three fluxons is consistent with the observation made
from Figure 7.3 on the coexistence of a one-fluxon solution and three-fluxon solution
for H = 1.1. Notice also that in this case the maximum current which is obtained for
H = 0 is significantly lower than the bound given by (2.3), which is l × w = 10.

We have calculated the oscillations in the x- and y-directions for the solutions
corresponding to the maximum current for several values of the magnetic field and
reported them in Table 7.2. An initial observation is that the oscillations in the y-
direction are small and do not vary significantly as a function of H for the values
considered. This indicates that a one-dimensional description of this problem could
be possible; such a heuristic approach based on an appropriate rescaling of a one-
dimensional sine-Gordon equation is currently under way. In turn the oscillations in
the x-direction vary from π to 6π and correspond to the different fluxon branches
described in the introduction. Notice, however, that the oscillation for the solution
at the right-hand tip of the first branch is larger than 2π, contrary to what happens
for the pure one-dimensional sine-Gordon equation. This is due to the fact that the
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Fig. 7.5. Allowed values for magnetic field and current for the overlap geometry (α ≡ 0).

Table 7.3
Oscillations for the solutions corresponding to the branches of Figure 7.5 for several values of

the magnetic field H.

H It oscx oscy

10−2 9.75 0.91 0.54

0.41 6.94 3.05 0.45

0.81 3.45 5.43 0.33

0.87 1.50 9.43 0.24

1.11 1.94 11.87 0.27

1.61 1.27 18.75 0.21

junction domain is smaller than Ω. The case of a very small domain Ω = [0, 3]× [0, 3]
and a window Ωj = [1, 2] × [1, 2] is presented in the inset of Figure 7.4. Another
interesting feature is that the branches do not overlap and that their graph is very well

approximated by
∣∣∣ sin H

2
H
2

∣∣∣, a feature that is well known for small Josephson junctions

[2]. In this situation, the maximum current for H = 0 is l × w = 1, corresponding to
a solution equal to π

2 inside the junction.

Returning to the long junction, we have calculated the maximum current when
the distribution is of the overlap type (α = 0) and present it in Figure 7.5. In this
case the maximum current for H = 0 is very close to the theoretical bound l×w = 10,
indicating that the solution inside the junction is very close to π

2 . As in the inline
case the branches overlap, indicating a multiplicity of solutions. The oscillations are
reported in Table 7.3. Contrary to the inline case discussed above the oscillation in
the y-direction varies significantly, indicating a stronger two-dimensional variation of
the solution. As expected the values of the magnetic field corresponding to the zeros
of the current coincide in Figures 7.4 and 7.5.

It is possible to use the bounds obtained on ∂φ
∂x and ∂φ

∂y in section 5 to obtain an

estimate of the total current It. To do this notice by integrating the PDE (2.1)–(2.2)



ANALYSIS OF STATIC SOLUTIONS OF JOSEPHSON JUNCTIONS 1377

over the domains Ωj and Ω that

It = 2(αW + δL) =
∫

Ωj

sinφdxdy =

∫
∂Ωj

∇φnds =

∫
∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds,(7.1)

where the last integral is a flux integral taken on the boundary of the junction ∂Ωj ,
and n = (nx

ny
) is the normal vector associated to this boundary. This integral can be

bounded in the case of a junction with arbitrary shape and perimeter P ,∣∣∣∣∣
∫
∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds

∣∣∣∣∣ ≤
(
max

∣∣∣∣∂φ∂x
∣∣∣∣+max

∣∣∣∣∂φ∂y
∣∣∣∣
)
P,

so that using Lemma 5.2 one obtains the following inequality for α and δ assumed
positive:

It
2
= αW + δL ≤ P

2

(√
2oscx + (H + α)2 +

√
2oscy + δ2

)
.(7.2)

In the case of a rectangular junction centered in the domain Ω, this estimate can be
improved by separating the integrals on the parts of the boundary ∂Ωj parallel to the
x- and y-directions to obtain

∫
∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds =

∫ l
2

− l
2

[
∂φ

∂y

(
x,

w

2

)
− ∂φ

∂y

(
x,−w

2

)]
dx

+

∫ w
2

−w
2

[
∂φ

∂x

(
l

2
, y

)
− ∂φ

∂x

(
− l

2
, y

)]
dy.

Recall that l and w are the length and width of the junction domain Ωj , respectively.
One can then bound the absolute values of the above integrals using Lemma 5.2 and
obtain

It
2
= αW + δL ≤

√
2oscx + (H + α)2w +

√
2oscy + δ2l.(7.3)

This upper bound for the current is not as sharp as (2.3). For example, for the case
of Figure 7.4 for H = 0.41 we find It = 4.37 corresponding to α = 0.728. Using
the values of the oscillations given by Table 7.2 we obtain for the right-hand side
of the inequality (7.3) 9.62, which corresponds to a total current of 19.24, while the
maximum current allowed is l × w = 10.

8. Conclusions and future work. Josephson junctions have already proved
themselves to be technologically useful, and it is our belief that their importance
will increase significantly in the near future. Many recent reports and books have
been dedicated to the analysis of the one-dimensional case, where one can usually
give the solution of the associated boundary value problem analytically in terms of
elliptic functions. Our report is, to the best of our knowledge, the first to try to theo-
retically analyze the semilinear PDE problem that effectively and accurately models
two-dimensional window Josephson junctions. Specifically we established the exis-
tence of solutions and obtained regularity and a priori estimates for the derivatives of
the solution. We had to use a specific method to establish these estimates instead of
the well-known theory for elliptic PDEs [9] because the solution is defined modulo a
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multiple of 2π due to the periodicity of the nonlinearity and the Neumann boundary
conditions, and therefore its norm cannot be bounded.

From the practical point of view this study validates the practical observation that
for a pure junction (Ωj ≡ Ω) of small dimensions L < 2, W < 2 and zero boundary
conditions the only solutions are the constants nπ, where n is an integer. Another
important practical result is that if Ij depends only on x and δ ≡ 0 and if W < 2,

then ∂φ
∂y ≡ 0. It is interesting to notice that in both results, the value 2 comes up.

The same value appears in the one-dimensional reductions of the problem, where it
corresponds to the maximum of ∂φ

∂x for the separatrix of the pendulum phase space.
The theoretical analysis of two-dimensional window Josephson junctions is by no

means complete. Below are some of the issues that are of practical interest (and as
such some experimental analysis has already been carried out), and their theoretical
analysis will be mathematically challenging.

Notice that all a priori estimates obtained are independent of the window Ωj . This
is due to the fact that we bound | sin(φ)| by 1 very early in our analysis. Therefore,
although these estimates seem to be very generous for the PDE problems considered
in Table 7.1, they are sharp for large windows. Nevertheless, since many important
physical properties of Josephson junctions depend on the size and the geometry of
the window [4, 5] new a priori estimates which sense the geometrical parameters of
the window would be of importance.

The maximum current that a Josephson junction can carry for a given configura-
tion of α’s and δ’s and for a given H is another point of interest, and its theoretical
estimation is a challenging and difficult problem. One approach for that is carry-
ing out a three-parameter stability analysis. These parameters are the values at the
boundary conditions and the size of the window. Such stability analysis to determine
the turning and bifurcation points and eigenvalues corresponding to the different so-
lutions is under way.

The method of Newton proved to be a very reliable and efficient linearization
tool. We believe that the proof of its quadratic convergence at continuum level (PDE
analysis) or discrete level (numerical analysis) is another interesting mathematical
problem. This problem does not have a unique solution and is therefore ill-posed in
the Hadamard sense.

Appendix. Proof of existence of the generalized solution for the aux-
iliary problem. To apply the Leray–Schauder theorem we consider the Banach
space B,

B =

{
u ∈ C1(Ω̄) and

∫
Ω

udxdy = 0

}
,

and construct the mapping

κT : ∀u ∈ B −→ w,

where w is the solution of the problem

∆w = κ

[
Ij sin(u+ ζ + f)− 1

µ(Ω)

∫
Ωj

sin(u+ ζ + f)dxdy

]
≡ F(x, y) in Ω,

∂w

∂n
= 0 on ∂Ω.
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Note that we have formed the right-hand side F so that the solution of the above
linear PDE problem exists up to a constant and, as it can be easily seen using the
a priori estimates obtained in section 3, it belongs to C1,γ(Ω̄). From this class of
infinitely many solutions, we can select (by choosing the appropriate constant) the
one that satisfies relation (4.7). Therefore we have constructed a mapping from B
to Bγ , where Bγ =

{
u ∈ C1,γ(Ω̄) and

∫
Ω
udxdy = 0

}
. The mapping T : B −→ Bγ is

bounded and hence T : B −→ B is compact. To apply the Leray–Schauder theorem,
and therefore to prove the existence of a fixed point of T , we need only show that for
every solution of w = κTw, κ ∈ [0, 1] we have that ||w||C1(Ω) is bounded. This is a

direct consequence of the a priori estimates we have already obtained. Note that from
Schauder estimates we also have that the above-mentioned solution belongs to C3(Ω).
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