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ABSTRACT. We present a key-recovery attack against the Digital Signature
Algorithm (DSA). Our method is based on the work of Coppersmith [7], and
is similar in nature to the attacks of Boneh et al ([5], [9]) which use lattice
reduction techniques to determine upper bounds bounds on the size of an RSA
decryption exponent under which it will be revealed by the attack. This work
similarly determines provable upper bounds on the sizes of the two key pa-
rameters in the DSA for which the system can be broken. Specifically if about
half of the total number of bits in the secret and ephemeral keys, assuming
contiguous unknown bits in each key, are known, the system can be shown to
be insecure. The same technique shows that if about half of the total number
of bits in two ephemeral keys are known, again assumed contiguous unknown
bits in each key, but with no knowledge of the secret key, the system can be
shown to be insecure.

1. INTRODUCTION

The use of lattices and their reduction techniques is now a well established tool
for attacking a variety of cryptosystems with many significant successes. The tech-
niques generally rely on the so-called LLL ([14]) reduction method, outlined in the
following section, which produces a short vector, that is a vector of relatively small
Euclidean norm, in the lattice. The production of such a vector is known to be a
hard problem although the LLL algorithm works well in practice for surprisingly
large parameters. The ingenuity in applying this technique to a particular problem,
such as showing the weakness of a cryptographic system, often lies in translating
the equations governing the system, to a short-vector lattice problem.

The next section introduces the notion of lattices and their reduction and a
discussion of the main properties of interest of the bounds on the sizes of the
vectors in the reduced lattice. As an example of the use of this LLL algorithm, the
determination of small solutions of univariate and bivariate modular polynomial
equations, and the use of these results in showing certain weaknesses of the RSA
system is discussed as the techniques are of interest in the attack on the DSA
considered here in section 5. Section 4 considers the DSA algorithm as well as two
previous attacks of Howgrave-Graham and Smart [13] and Nguyen and Shparlinski
[18]. The attack on the DSA given here is somewhat different than that work
and rather complements the work of Boneh et al ([3], [4], [5]) for RSA decryption
exponents. The results show that if the sum of the unknown bits in the secret and
ephemeral keys, assumed contiguous in each key, is less than half of the total number
number of bits, then the system can be broken. The same result applies to the case
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where the secret key is completely unknown and the total number of unknown bits
in two ephemeral keys, assumed contiguous in each key, is less than approximately
half of the total number of bits. It is unlikely that such a large number of bits,
especially in a secret/ephemeral key combination, would be leaked. Nonetheless,
the results are of interest and show, along with the results of the cited work, that
great care should be taken in ensuring that the choice of secret and ephemeral keys
leaks no information. We note that our proof is based on the unproven assumption
that the second shortest vector of the reduced lattice is sufficiently short. This
assumption was checked in practice and found true in all cases tried.

A few observations on this technique are given in the final section, along with
other comments. Our approach requires careful estimates of certain parameters
and sufficient background material is given in the next two sections to yield these.

2. LATTICES AND LLL REDUCTION

Let R™ denote the n-dimensional real Euclidean space with an inner product
<zy >= 31", 2y, ¢,y € R* and norm |z|? =< z,z >. A lattice £ will be a
discrete subgroup of this space, consisting of the Z-linear combinations of a set of
basis vectors B = {wy, -+ ,wp} i.e.

E(B) = {i oW, 0 € Z}

We assume all lattices considered span R™. In particular, any subgroup of Z" is a
lattice (an integer lattice) and this will be the case of interest in subsequent sections.
There are an infinite number of bases for a lattice, related by unimodular matrices,
and all have the same Gram determinant whose (i, j) element is < w;,w; >. The
positive square root of the Gram determinant is sometimes referred to as vol(L)
or, equivalently, det(£). Of course if B is the matrix whose ith column is the basis
vector w; then B is nonsingular and the Gram matrix of the basis is BTB.

There are several important problems on lattices that are purported to be dif-
ficult and perhaps the following two are of the most interest in applications. For
a given lattice £ and basis B, the The shortest vector problem (SVP) is to deter-
mine the lattice vector with minimum non-zero length. The closest vector problem
(CVP) is, given an arbitrary vector v € R™, determine the lattice vector closest to
v. The article of Cai [6] discusses the complexity of these problems. Ajtai [1] has
shown that the SVP is NP-hard under randomized reductions. It is also known that
CVP is NP-hard, even to determining it to within any constant factor ([2], [10],
[16]). The article of Cai [6] discusses the complexity of these problems in greater
detail.

The aim of basis reduction algorithms is to derive a new set of basis vectors that
achieve minimization according to some criteria. In the case of the LLL algorithm
[14] a ‘short’ vector appears as the first output basis vector and the columns are
made as mutually orthogonal as possible. However, as noted, there is no efficient
algorithm to find the shortest non-zero vector of a lattice.

If £ is a lattice of full rank with a basis matrix B, then if B is the basis matrix
after reduction by the LLL algorithm, with columns (basis vectors) b;, and if Ay is
the length of the shortest non-zero vector of £ then the LLL algorithm acting on
B/ produces a basis {by,- - ,bn} with the following properties:
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i) by,---,by, is a basis of L.

i) || < 200=0/2)

iii)  |by| < 22=D/2(det (L))"

iv) [ba] < 27/2(det(£)) /()

v)  det(£) < T, [bi] < 27" D/2det(L)

Thus the algorithm will produce a short vector in the lattice. The algorithm
often performs better in practice than the above constants might indicate. It has
been extensively investigated and many variants of it now exist.

The LLL algorithm provides a partial solution to SVP. It runs in polynomial
time and approximates the shortest vector in the lattice to within a factor of 27/2.
Schnorr [19] improved this constant to (1 + €)™.

3. LLL AND ZEROS OF MODULAR POLYNOMIAL EQUATIONS

It is noted in ([7]) that while solving a polynomial over the integers is an easy
problem, finding modular roots of either univariate or bivariate polynomials tends
to be more difficult. The results of Coppersmith [7] and Howgrave-Graham [12]
are used below for the applications of interest here. Although it will turn out
that the bivariate polynomial derived for our system is linear in each variable, it
is nonetheless convenient to use the results available for more general bivariate
polynomials. Their work strengthened the earlier work of Hastad [11] and Vallée
et al [20]. The discussion in [17] summarizes the situation nicely. Observe that
finding a root of the equation

z°—c=0 (mod n)

for some positive encryption exponent e is thought to be as difficult as factoring
the modulus n, and indeed the ability to solve the equation for e = 2 is provably
equivalent to factoring n where n is known to be the product of two primes, in the
sense noted in [15]. However the theorem of Coppersmith below shows that small
roots of such equations can be determined more efficiently by using LLL reduction:

Theorem 1 (Coppersmith). Let P be a monic integer polynomial in one variable
of degree d modulo an integer n of unknown factorization. Then one can find all
integer roots of the equation P(xzo) = 0 (mod n), |zo| < n'/? in time polynomial
in (log(n),2%).

The technique is to observe that a suitably small solution to the modular poly-
nomial equation is also a solution to the integer equation. However, the solution
to the integer equation is, by construction of the lattice problem, equivalent to a
short vector in the integer lattice. The technique for achieving this is encapsulated
in the following lemma, where for a(z) = ", a;2° € Z[z], ||a(z)|| = (¥, a?)'/%:
Lemma 1. Let a(xz) € Z[z] be a polynomial of degree d and let X be a positive
integer. Let ||a(zX)|| < n"/Vd. Then if a(xo) = 0 (mod n") with |zo| < X, then
a(zg) = 0 holds also over the integers.

The lemma is shown by a certain polynomial linearization technique that pro-
duces the appropriate lattice in which a small vector corresponds to a solution of
the integer polynomial equation. The application of this lemma to RSA decoding
is immediate [7].

The bivariate case has a similar approach. For the bivariate polynomial a(z,y) =
i aijz'y’ € Z[z,y], we have the result:
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Lemma 2 (Coppersmith, Howgrave-Graham). Suppose a(z,y) € Z[z,y] is a poly-
nomial which is a sum of at most r monomials. Suppose that a(zg,y0) = 0
(mod n") for some integer n of unknown factorization, where |zo| < X, |yo| <Y
and ||la(zX,yY)|| < n"/\/r. Then a(zo,yo) =0 holds over the integers.

Boneh and Durfee [4] apply this result to the case of RSA decryption, briefly
described here. The attack on the digital signature algorithm of the next section is
similar to the approach of this work. Let the RSA parameters be n = pq, for two
odd primes p, g and let the encryption and decryption exponents respectively be
e, d where ed = 1 (mod ¢(n)/2) where it is assumed that ged(p — 1,¢ — 1) = 2.
Since ¢(n) =n — (p + q) + 1 there exists an integer k such that

n+1l p+gq

2 2
Since e, n are public and p, ¢, d are private, if we let z =k, y = —(p+ ¢)/2 and
A = (n + 1)/2 the equation reduces to

z(A+y)=1 (mod e).

The exponent e is typically on the order of n® for « close to 1 while |y| is usually
on the order of n%% ~ €%, If for a given value of § < 0.5 all the small solutions
to the above equation, with |y| < €°®, |z| < € can be found, then for decryption
exponents d < n® the RSA system is shown to be insecure. Currently for § <
1—1/+/2 ~ .292 such a solution can efficiently be found using the lattice reduction
techniques noted.

ed + k(

4. THE DIGITAL SIGNATURE ALGORITHM

In this section, we briefly describe DSA. A detailed presentation of the algorithm
can be found in [15].

DSA bases its security on the presumed intractability of the discrete logarithm
problem in the multiplicative group of finite fields, and in prime order subgroups.
In the initialization phase, the following quantities are chosen:

e a prime p of size between 512 and 1024 bits in increments of 64;

e a prime q of size 160 bits, such that g|p — 1;

e 3 hash function h mapping messages to the subgroup of order ¢

e 3 secret integer a in the subgroup of order q.

The parameters specify the finite field F,, and its unique subgroup G of order gq.
Assume a generator of this group is g, G =< g >. Since 1996 a prime p of at least
768 bits has been recommended [15].

To sign a message m, Alice performs the the following steps:

(1) Choose k € {1, ...,q} uniformly at random.

(2) Compute 7 = (¢* mod p) mod gq.

(3) Compute s = k~1(h(m) +a-r) (mod q).

(4) Send (r,s) as the digital signature of the message m.
In this procedure the key a is referred to as the secret key, intended to be chosen
only once, and k is the ephemeral key, often referred to as a nonce, chosen differently
for each message.

The assumption here is that the only way to break this signing algorithm — and

be able to forge signatures — is to recover either the secret key a, or the ephemeral
key k. Notice that if one could find the discrete logarithm of r to retrieve k then it
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is a simple matter to find a from s and break the system. Indeed, if this is possible,
then anyone could sign documents impersonating Alice. However, the parameters
of the system were chosen in such a way that computing discrete logarithms in F;
and in G is computationally infeasible and the system is considered secure.

The authors are aware of two previous attacks on the DSA using lattice tech-
niques ([13], [18]). Howgrave-Graham and Smart [13] consider the case where for
some number of different signatures, a small fraction of the bits of the (distinct)
parameters k are revealed. Under certain conditions they give an attack (using a
CVP algorithm due to Babai, based on the LLL algorithm) that reveals the secret
key a. The work considers the numbers of bits of k£ revealed in each signature
and the number of signatures and uses certain heuristic assumptions to analyze the
performance of this algorithm.

Nguyen and Shparlinski [18] consider a similar scenario where it assumed that
if for a polynomially bounded number of messages, about logé/ 2(q) of the least
significant bits of the ephemeral keys are known, then under certain conditions one
can in polynomial time recover the signer’s secret key a. The results are provable.

Our approach here is in a sense the inverse. We determine how large the keys
a and k can be in order for them to be revealed by this attack by considering a
single signature. In this respect, as has been noted, it is more similar in spirit to
the results of [4] for the RSA decryption exponents. In essence we will show that
if 41 of the most significant bits of the secret key are known and ¢ of the most
significant bits of the ephemeral key are known, not necessarily zero, ¢1 +¢> < log,gq,
the system is insecure. Additionally it will be argued, by using exactly the same
procedure, that if no bits of the secret key are known but approximately half of the
most significant bits of two ephemeral keys are known, the system is insecure. It is
also noted that it is sufficient for the unknown bits to be contiguous for the above
statements to hold concerning the numbers of known bits required for the attack
to succeed.

The results also imply, for example, that even if a much larger subgroup than
one of size 160 bits (as for DSA) is chosen, if |a| < ¢*/? and |k| < ¢*/2, then while
computing a as the discrete logarithm of the public key may still be infeasible (say,
for log,(g) = 600), the method shows that a and k can be computed easily using
LLL, and the system would be insecure.

5. THE ATTACK

In this section, we describe our attack against DSA. Our approach is not to
recover the secret key by solving the related discrete logarithm problem directly.
Instead, we take advantage of the form of the equation in step (3) of the signing
procedure.

We note that step (3) alone does not reveal any information about a or k.
However, as we will show, the equation in step (3) together with the assumption
that a and k are of relatively small size, is enough to break the system.

By rearranging terms in Equation (3), we have

r h(m)\ _
(1) k+(—g) a+ (‘T) =0 (mod q).
That is, the pair (a, k) satisfies a modular equation of the form
(2) flz,y) =0 (mod q),



6 TAN F. BLAKE AND THEODOULOS GAREFALAKIS

where, in our case,
f(z,y) =y + Az + B,
with
A=-" and B= _h(m)_
s s
It is assumed the solution we are looking for is small, i.e., |a] < X, and |k| < Y,
for some bounds X,Y that we specify later.

Given a modular polynomial equation such as Equation (2), which is known (or
assumed) to have a small solution, Lemma, 2 gives us an idea as to when this small
modular solution is a solution to the integer equation. Since our Equation (2) has
three monomials of degree at most one, define the polynomials

g00(z,y) =q, goa(z,y) = f(z,y) =y + Az + B and g1 o(z,y) = qz

leading to the basis matrix of

q 0 0
0 gX O
B AX Y

The matrix has determinant ¢>XY. Combining the estimate of the length of a
short reduced vector from the properties of an LLL reduced basis and the estimate
in the Lemma, 2, guarantees a solution of the integer equation if

.

2w/2det(L)Y/v <
et(L) < /e

or, as w, the dimension of the matrix, is 3 and ¢ the power of the modulus, is 1,
then
23/2(2xY)/3 < L
("XY) 7" < Ve

If we let now X = ¢® and Y = ¢#, substituting these values and manipulating the
equations gives

4.5 log,(3) 6.877

e T3 )T g

If condition (3) is satisfied, then the shortest vector of the reduced basis is guar-
antied to yield a polynomial Hy(x,y) with the desired root over the integers. How-
ever, in order to actually obtain this solution, we need one more ‘small’ equation.
For this, we use the second shortest vector. If the bound

(3) a+p<1l-

q
|b2| < \/g
holds for the size of the second shortest vector, we obtain a second polynomial
Hs(z,y). Tt is important to note that Hi(z,y) and Hs(x,y) are linear in z and v,
and are linearly independent. Thus, solving the linear system we would provably
obtain the values.
We proceed now to show that indeed the second shortest vector is short enough.
It is well-known (see [4]), that the size of the second shortest vector in the reduced
basis is bounded by

1
(4) [ba]” < [B517 + 7o *
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We need to give an upper bound for |b5|. As shown in [4],

det(L)

b3 < 4 ,
|2| = |b1|

which is equivalent to
q2+a+ﬂ
[b1]

In order for the second basis vector to also meet the bound of Lemma 2 we need
|ba| < q/+/3 and in order for this to be true, from the above estimate, we need

b3]* < 4

|b1| > 16>,

which is sufficient for applying Lemma 2, allowing the same small solution to the
first equation to satisfy this relation also. With two linearly independent solutions,
the solution can be obtained.

The previous discussion is captured by the following proposition for the specific
case of DSA.

Proposition 1. Let a,8 be real numbers in the range [0,1]. Let L be the 3-
dimensional lattice defined above. If the shortest vector of the LLL-reduced basis has
length at least 16¢®15, then the attack described here will break the DSA, provided
the secret key a satisfies |a| < ¢%, and the secret exponent k satisfies |k| < ¢, with
a+f <1-6.877/(logy(q)). Forlog,(q) ~ 160 the bound for a+ 3 becomes = 0.957.

It is interesting to note that the larger ¢ gets, the closer to 1 the sum «a +
is allowed to be. It is not clear how much this bound can be improved with the
approach used here. The results indicate that some care must be taken in choosing
the secret and ephemeral keys in the DSA, a and k. As far as the authors are aware,
this is the first attack of this nature on DSA.

6. EXTENSIONS

The above attack tacitly assumed the unknown bits were the least significant for
both keys. It is immediately clear that if the unknown bits are contiguous anywhere
in the keys, then the key = can be written z' + 8 and the key y can be written as
y' + & where 2z’ and 4’ represent the unknown bits and the constants the known
bits. Multiplying these quantities appropriately and further adjusting the constants
of the equation, yields quantities " and 3" representing the unknown quantities
where the unknown bits are in the least significant positions and all other bits zero.
The original equation

y+Az+B=0 (mod q)

is then easily transformed through multiplies and additions to
y"'+A'z" + B'=0 (mod q)

and the same technique of finding small solutions applies.

Similarly if two signatures are available, the two equations can be used to elim-
inate the secret key and the resulting equation relating the two ephemeral keys is
of the same form. Thus earlier statements about secret and ephemeral keys also
apply to two ephemeral keys.
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7. COMMENTS

The attack described here was programmed in NTL on a 500MHz PC and the
secret key a was obtained in a few seconds for parameters of the size of the DSA
parameters. Even for much larger size parameters, for instance, log,(¢) = 500, it
took no longer than 5 seconds to recover the secret key.

It should be reiterated that the attacks of Howgrave-Graham and Smart [13] and
Nguyen and Shparlinski [18] are much more likely to be effective in practice, since
many fewer bits of the ephemeral keys need to known. The tradeoff is that we only
need 2 signatures, instead of polynomially many, and that the number of bits that
are leaked in each key need not be individually bounded. Instead, the total number
needs to be about half the bits.

It is not clear how the attack described can be improved if additional signa-
tures with known bits were available. It would be of interest if this method could
be extended to a higher dimensional lattice problem as the number of signatures
increased, but at this point it is not clear how this might be achieved.
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given two signatures, the same results apply for two ephemeral keys. The authors
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