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Abstract

In this paper, we find a lower bound for the order of the group (8 + @) C Fq* , where
«a € [, 6is a generic root of the polynomial F4 (X) = bXT+! —gX9 +dX - c €
IF,[X] and ad — bc # 0.
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1. Introduction

Let [, be the field with g elements, where ¢ is a power of a prime p. Given

a positive integer 7, it is natural to ask how to find elements of very high order in

E;Z([i()]) , where f(x) is an irreducible polynomial of degree

n. Elements of this type are used in the AKS algorithm (see [1]), for determining
primality in polynomial time. This question is closely related to the problem of ef-
ficiently constructing a primitive element of a given finite field, which has practical
applications in Coding Theory and Cryptography. This last problem has been con-
sidered by many authors: In [4], Gao gives an algorithm for explicitly constructing
elements for a general extension [« of the field I, with order bounded below by a

2
function of the form exp (c(p)%

teristic of the field. In [2], Cheng shows how to find, given g and N, an integer n in

the multiplicative group (

), where ¢(p) depends only on the charac-
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the interval [N, 2gN1], and a € in the field [F;» with order larger than 5.8nloga/logn 1,
[7] and [8], Popovych considers the case where f(X) = ®@,(X), the r-th cyclotomic
polynomial, and f(X) = X" — a are irreducible polynomials in [,[X] and finds a
lower bound of the order of {6+ c), where 8 is a root of f(X) = 0. Finally in [6], the
authors consider the same problem with the polynomial f(X) = X? - X +c € F,[X].

On the other hand, in [10], Stichtenoth and Topuzoglu show that, given a matrix

[A] = [(Ccl Z)} € PGL,(FF,), every irreducible factor f of F4 ,(X) = bX4 1 —aX? +

dX —c in [F,[X] is invariant by an appropriate natural action of [A] and reciprocally,
every irreducible polynomial f, invariant by the action of [A], is a factor of F4 ,(X)
for some r > 0. This relation is used in [10] to estimate, asymptotically, the number
of irreducible monic polynomial of given degree and invariant by [A] and they
conclude that, in general, the irreducible factors of F4 (X) has degree Dr, where
D is the order of [A] in PGLy(IF).

In this paper we study the problem of finding elements of high order arising
F[X]

from fields (W) , where f(X) is an irreducible factor of F4 ,.(X) and we obtain

the following:

Theorem 1.1. Let a € F;, A € GLy(IF)), [A] # [I] and 6 be a generic root of
Fa,, e 0 € I satisfies dim]Fq I,[6] = Dr where D = ord([A]) and r > 2. The
multiplicative order of 0 + « is bounded below by

1 F +2\E (5 Pd "
Voo Vr+2 \o—22) “P\"24p 12 —4)

in the case that (1,0) and (0, 1)A’ are linearly independent for all j and

V2 7 (44 1yH\2 1 572+5r+2
() el ) e

D\ r+1 rr 12D P+r

otherwise.

Remark 1.2. For every € > 0 and r > R, the lower bound (1) is greater than

1
\/EHD

and the lower bound (2) is greater than

\2
D

(e — ©)(r +2)”

(e — €)(r + 1)P/2.



Remark 1.3. We note that, 6 is a root of Fa, if and only if 8 + « is root of Fg,,

where
a+ ba b

B= ¢ +da - aa — ba? d—ba/)EGLZ(EI)’
and the matrices A and B have the same eigenvalues, hence their multiplicative
order are the same. Since our bounds essencially depend of the order of A and r, in
the following, unless otherwise stated, we assume that « = 0. In particular, when
b # 0, taking & = —ab™" we can find a better bound for the order of the element
0 — ab™'; the case r = 1 implies the bound found by Cheng, Gao and Wan (see

Theorem 2.4 of [3]).

We also note that the element 6 is implicitely defined, as a root of a “generic”

irreducible factor of F4,. In practice, construction of the field (]?([—;)]) requires

computation of the irreducible polynomial f. A straitforward factorization of Fy ,
requires time polynomial in ¢". It would be desirable to have an algorithm that
costructs the field F» in time polynmial in r, D,log g. As the value of D can be of
the same order of magnitude as g, see Remark 2.6, we see that for D = Q(¢°) (for
any fixed € > 0) and small values of r, most notably for r = 1, the straitforward
factorization of F4 , does indeed take time polynomial in D. The general case, that
is, for arbitrary » and D, remains an interesting open problem.

In addition, in the case when A is a triangular matrix this lower bound can also
be improved, see Remark 3.5.

2. Preliminaries

Throughout this paper, I, is the finite field with g elements, where g is a power
. . . b . .
of a prime p; given a matrix A = (Ccl d) € GLy(IF)), [A] denotes its class in

PGL;(I;) and D = ord([A]). Observe that, in the case det(A) = 1 and A is diagonal-
ord
(OrdVTQ)

and then AP = (-=1)P*!]. In addition, for each non-negative integer r, F »(X) de-
notes the polynomial bX9 *! —aX? + dX — c. For any integer n, we will refer to the
rows of the matrix A" by (a,, b,) and (c,,d,) for the first and second row respec-
tively. By this convention, we note that (a,, b,) = (1,0)A" and (c,, d,) = (0, 1)A".

There is an action of the general linear group GL,(I;) on the set of irreducible
polynomials of degree at least 2, which was studied in [5, 10]. In this work, we
adopt the notation of [10].

izable, the eigenvalues of A are y and y‘l and we have that D = ord([A]) =

Definition 2.1. Let A = ( a b
c d

f(X) € F,[X] of degree n > 2 and 6 € Fq \ F,, define

) € GLy(F,). For an irreducible polynomial



X
L. (Ao f)(X) := (bX + d)" 'f(Zx:l)'

2. [Alo f(X) := the unique monic polynomial g(X) such that (Ao f)(X) = Ag(X)
for some A € I,.

do —c

-bb+a’

It turns out that the above rules define actions of GL,(I,) on the set of irre-

3. [A]lof=Ao0f:=

ducible polynomials of degree at least 2 in IF,[X] and on F, \ I, respectively and
these actions are closely related: from Lemma 2.7 in [10], it follows that 6 is a root
of fifandonlyif Ao fisarootof Ao f.

One of the goals of [10] is the characterization and counting the monic irre-
ducible polynomials that are fixed by the action of a given matrix. The following
theorems provide such a characterization.

Theorem 2.2 ([10], Theorems 4.2 and 4.5 ). Let f(X) € F,[X] be a monic irre-
ducible polynomial of degree n > 2. The following are equivalent:

L [Alef=f

2. f| Fa, for some non-negative integer r < n.

In addition, every irrreducible factor of F 4, has degree < 2 or Dk, where k|r and
ged(£, D) = 1.

Expecifically, denoting

bl

Ny y(n) = ’{f € F,[X] : f monic, irreducible , deg(f) = n, fIFA,,}

it follows that

Theorem 2.3 ([10], Theorems 5.2). Let A € GL, () and ord([A]) = D > 2. Then
1. Ngo,(n)=0,ifDtn n>2.

:
2. Na,(Dr) ~ %, asr — oo,

that is, all non-linear irreducible factors of Fa, have degree divisible by D and
almost all have degree Dr, as r tends to infinity.

In order to bound the order of a generic root 8 of the polynomial Fyu (X), i.e.

6 is a root of Fy (X) such that dimg, F,[6] = Dr, it is enough to find a set J/ ¢ N

such that 8" # 6/ for every i # j elements of J and thus ord(#) > |J|. In order to

find such set, observe that @ satisfies the relation 8¢ = A o 6, and inductively we
obtain that _

07" = Al 0@, for je Zsy. (3)



The main idea lies on the construction of an appropriate set J having elements of
the form ug + u;q" + - - - + uD_lqr(D‘l), with some restriction on u; € Z, and use the
relation (3) to show that the elements in {#/, j € J} are all different.
In order to prove Theorem 1.1, we need the following technical lemmas:
b _

Lemma 2.4. Let A = ( Ccl J ) € GLy(F,), with det(A) = 1 and bc # 0. Let
us denote (ay, b,) and (c,,d,) the first and second row, respectively, of A", n € N.
Then Ior any 0 < k < n < D, the vectors (a,, by), (ax, by) are linearly independent
over If,. The same holds for the vectors (c,, dy), (ci, d).

Proof. Let us suppose that A is a diagonalizable matrix and denote by a, @' the
two eigenvalues of A. Since A is a diagonalizable matrix, we can write

A:M(a QI)M_I, where Mz(t u)
0 «a vow

is an invertible matrix . The assumption bc # 0 implies fuvw # 0.
By direct calculation, we have that

A" = ( o(twa" —uva™)  OSut(a™ —a")

ovw(@" —a™  Swta™ — uva") )’ neN.

where 6 = (tw —uv)~! = (det(M)):l. Let us suppose that (a,, b,) = y(ax, b) for
some 0 < k < n < D and some y € [F,, then

wa" —uwa™ = y(twak — uvaF)
ut@™ —a" = yut(@™* - o),
which implies
w(@" —ya®) = uwv(@™" —ya )
" —yadk = a7 —ya*

If o # yo/‘, we obtain tw = uy, a contradiction since M is invertible. Therefore

" = yaf and @™ = ya*, hence o?" 7 = 1, i.e., ord(e) divides 2(n — k). If ord(a)

is even, then 2D = ord(a) and 0 < 2(n — k) < 2D. If ord(e) is odd, then ord(a)

divides (n—k), D = ord(a) and O < n—k < D. Both cases lead us to a contradiction.

The proof of the linear independence of (c,, d,) and (cy, di) follows similarly.
When A is non diagonalizable matrix, then

A:M‘l(1 O)M, where M:(t u)
1 1 vV ow

5



and

1 —nétu  —ndu?
n _
A _( not? 1+n(5tu)’ neN.
By the same process of the diagonalizable case, we conclude the proof. O
Lemma 2.5. Let A = ( ccl 2 ) € GLZ(E) with ¢ # 0 and (cy,, d,) as in the previous

lemma. Then for_any 0 < k < n < D, the vectors (cp,dy), (c,dy) are linearly
independent over I,

Proof. By a direct calculation, we have that

a 0
n_ .
A" = (calr;:zn d") ifa * d

and
a’ 0 .
A" = (nca"‘ 1 a") ifa=d.

Let us suppose that (c,, d,) = y(ck,dy) for some 0 < k < n < D and some y € F, ,
in the case a # d, it follows that y = "% and

n_ jn k _ gk
at—d _ gk d.
a—d a—d

C

Since ¢ # 0, we obtain that "% = ¢"* and therefore A" * = @"*I, which is
impossible since 0 < n — k < D. The second case is similar. O

a 0

Remark 2.6. When A = ( e d ) € GLQ(EI) is a triangular matrix, [A] # [1],

then

ord(LA]) - {Ord(g) ifad
p ifa=dandc #0.

In the case that det(A) = 1 and A has eigenvalues vy,y~' € F, \ F;, we have
ord([A]) = ord(y)/(ord(y),2). Moreover, y~' = y4, so that the order of y has to
divide q + 1. The converse is also true: any element y € F» \ F; of order dividing
g + 1 is a root of an irreducible polynomial of the form X*> —cX + 1 € I, [X].
Therefore, any matrix A with tr(A) = c and det(A) = 1 will have eigenvalues
v,y~ L. It follows, that for matrices of this type the maximum possible value for
ord([A]) is €(q + 1), where € = 1 for q even and € = 1/2 for q odd.



d
first and second row, respectively, of A", n € N. Assume that (cy, dn) = y(a, by) for
some O < k,n < D andy € F,. Then, denoting g = n — k, we have

(ci,d}) = gy(ai—g,bi—g), 0<i<D-1,

Lemma 2.7. Let A = ( z b ) € GLz(EI) and denote by (ay, b,) and (c,,d,) the

where €; € {—1, 1} and the indexes are computed modulo D.
Proof. By definition, (ag, by) = (1,0)A* and (c,, d,) = (0, 1)A”, hence (0, 1)A8 =
¥(1,0), where g = n — k. Therefore (0, 1)A%*" = y(1,0)A’, that is,
(Cgrirdgri) = ¥(ai, b)), Vi=0. “4)
Assume k < n. From this it follows that
(cgrirdgsi) = v(ap,b), i=0...,D-g—1,
(¢cp+irdp+i) = y(ap-g+isbp-g+i), i=0,...,8—1,
where the second identity follows by changing D — g + i for i in Eq. (4). Now,
since AP = (=1)P*!T we have that (cpi;, dpsi) = (0, DAP* = (=1)P*(¢;, d)), so
we have
(civd) = y(=1)"ap_gribpgi), i=0,...,8-1,
(Ci’di) = Y(ai—g,bi—g), l:ga’D_ 1

If k > n the computation is entirely similar and the case k = n is not possible since
(ag, by) and (c, di) are linearly independent. O]

Remark 2.8. If p is the smallest prime factor of D and g is defined as in Lemma
2.7, it is clear that

(8,D)<Dfp
and this bound is sharp: for instance, suppose that q is not a power of p, let € I,
1 1
be a 2pn-th primitive root of the unity and a = 8" . Consider M = (a ofl) and
_ 1B 0

w0
Observe that ord([A]) = pn and if g is the minimum positive integer such that

2g _ WV _ @ gon

A tw a! A

then g =n = %, where t,u,v and w are defined as in Lemma 2.4. In the proof of

our main result we use the general bound (g, D) < L%J.



3. Bounds for the order of (6) C ﬁq
Before the proof of our main result, as in [6], we need the following definition:

Definition 3.1. For each s,t,m € N, m < D, define the set

2 ui<s, 3 |lujl<t and
u;>0 u;j<0

Is,t,m = {(”0, ...,Up-1) € ZD

the first m coordinates are zero

Lemma 3.2. Let I, be as in the Definition 3.1. Then

s eml = DZH (D i m)(f)(D _ mr_ " t)'

i=0

. D—m
In particular, fort > ==

Lom y \(2D - 2m
D-m)\ D-m )

[ tm| > (

Proof. Let us denote R = D — m. Notice that, foreach0) < i < Rand 0 < j <
R — i there are (‘?)(R;") different ways to select j coordinates of u,...,up_1 to
be negative and i coordinates to be positive. In addition, the number of positive
solutions of x; + xp +--- + x; < s1iS (f) and the number of positive solutions of
Xy +xp++x; < tis (i) Thus, for each pair i, j, there exist (If)(RJ_’)(f)(;) elements
of Is;,,. Summing over all i and j, we obtain

=S -Z00 ) e

An easy calculation gives (f)(R+’_i) = (R)(R_I?’)Q. In particular, if s = t we get

! i 0]

([0

\11m]

|
M=
—_—
=
(3]
=
S
+
—_

Il
N —
M=

\%

v

—_

(Sl
= +
~—
—_——
> 5
~



where the last inequality follows from the fact that I'y(x) := (;f,) is a convex func-
tion for all x > N. O]

Proposition 3.3. For every D > 2 and r > 3 the following inequalities are hold

D
)i T [r=1 (4G +1y*")? 1 57+3
a r r . €X _——_— .
L5150 V2D Vr+1 \(r=1y-1 P\™T2p 2.1
D
a

by |7 > 1 r=2 ((r+2)y*? o 5 r+4
LFILEL " N rv2 \o—22) “P\"24p 2 —4)
V2 [ (4(r+ 1)r+1)9 o ( 1 5r2+5r+2)

O Mgepzp 2|l > 5\ 71 12D 21r

Proof. The steps of the proof are essentially the same that ones used to prove The-
orem 2.3 in [6]. In fact,

galron_B+%-D .= ro2 p.sp2
D
2

rr

D

From Corollary 1 in [9]

re2 \D
Delrony_r-2 | 2 () [y, 16
p T2 \=mZ (7] Vb T\ D\ T
()
2 \D
1 r—2 ((r+2)% ( P2+ 12 )
= . expl-————+|.
vzb Vr+2 4o —22) TP\ 12D02 -4
Finally, from Lemma 3.2 and inequality (Zg ) > % exp (—%), we conclude that

! D412\ (2D _ (2 +52 -1\ (2D
M ory ool 2 : 2 '
7013 D D D D

D
. 1 r=2 ((r+2)y*2\* 5 r*+4
. €X - — .
v Vr+2 \—22) “P\724p 21

By the same process we obtain items a) and c). ]

The main result of this paper is consequence of following theorem

Theorem 3.4. Let A € GLy(F,), [A] # [I] and 6 be a generic root of Fa,. Then

the map
A Is,t,m — <0>
D-1 _
(ug, ..., up-1) +— l_l g i7"
j=0



is one to one in the following cases:

1) Ais a triangular matrix, m = 0 and s +t < Dr.

2) A is not a triangular matrix, (0, 1)A’ and (1,0)A’ are linearly independent for
alli,jm=0and s+t < %’

3) Ais not a triangular matrix, there exists 0 < g < D such that (1,0) and (0, 1)A8
are linearly dependent, m = gcd(g, D) and s +t < Dr.

Proof. Clearly Is;, C I, forany 1 < g < D. For (u, ...,up_1) € I;, we compute
p-1 Dol .
Aug, ..., up_1) = (qu ) T = (AJ o 9) !
Jj=0 j=0

For any matrix B in the class [A] € PGLZ(E), we have A/ 0 § = B/ 0 6, so we
may substittute A with 57'A, where 6> = det(A). This allows us to assume that
det(A) = 1, with A € GLy(F,2). We have

ﬁ l—[] dif—cj \"
Aug, ..., up_q) = Al 00 ( ) .
j=0 i=0 —bif +a;

Consider now (ug,...,up-1),(Vg,...,Vp_1) € I, and let Aug,...,up-1) =
A(vg,...,vp-1). Then we have

1_[ (djg - Cf)uj 1_[ (_bje + “J')_uj 1_[ (djg - Cj)_vj l_[ (—bje + aj)vj

0<j<D-1 0<j<D-1 0<j<D-1 0<j<D-1
Llj>0 uj<0 Vj<0 Vj>0

= dif—c;)” bio+aj) dig—c;) " bi6+a;)’

= [ (@o=c)" T] (oova)” [T (@o-c)” [] (bio+a)”.
0<j<D-1 0<j<D-1 0<j<D-1 0<j<D-1
Vj>0 Vj<0 u_,~<0 u_,~>0

So, 6 is a root of F(X) — G(X), where

Foo = ] @x-of' [] (oxra)® [T @x-e)” [] (orea)

0<j<D-1 0<j<D-1 0<j<D-1 0<j<D-1
uj>0 uj<0 Vj<0 Vj>0
_ vj —vj —uj uj
GX) = l_[ (de—Cj) l_l (—ij+aj) 1_[ (de—Cj) l_[ (—ij+aj) .
0<j<D-1 0<j<D-1 0<j<D-1 0<j<D-1
v;i>0 v;<0 u;<0 u;>0

We consider the following three cases:
Case 1: Suppose that A is a triangular matrix. Observe that if 6 is root of

F4 +(x), then 61 is root of the polynomial Fg,(x) where B = (Z 2) Therefore,

10



changing 6 by 6~!, we can suppose, without loss of generality that A is lower
triangular matrix. Thus b; = O for all j and the degrees of the polynomials F(X)
and G(X) are respectively

Zuj—Zvj$s+t and Zvj—Zuj£s+t.

u;j>0 v;<0 v;20 u;<0

Since deg(F(X)) < s+t < Dr and deg(G(X)) < s+t < Dr and F(X) - G(X) is
divisible by the minimal irreducible polynomial that 6 is root, that has degree Dr,
it follows that F(X) = G(X). According to Lemma 2.5, the binomials d;X - c;
(0 £ j £ D —1) are pair-wise distinct. It follows from the unique factorization
property of [, [X] that (u, ...,up-1) = (vo,...,vp-1), thatis, A is injective.

Case 2: The argument in this case is analogous to that of case 1, using Lemma 2.4
instead of Lemma 2.5. According to Lemma 2.4, the binomials —b;X +a; (0 <
J < D — 1) are pair-wise distinct. The same holds for the binomials d;X — c;
(0 < j<D-1). The binomials =b;X + a;, d;X — c; (0 < j < D — 1) are pair-wise
distinct by the assumption of case 2.

Case 3: There exist 0 < k,n < D, such that (c,,d,) = y(a, by), for some
y € IF;Z. Let us define g = n — k and m = ged(g, D). In this case, it turns out that
we have to restrict A to the set I, to maintain injectivity. Indeed, by Lemma 2.7,
we have

diX—cj=¢€ybj¢X—-aj,), for 0<j<D-1

and we obtain

FX) = ey [ [bx —ap™ [ [0X =ap” [ [j-eX = aj-o | [bj-eX —aj-p)™

Mj<0 Vj>0 uj>0 Vj<0

G(X)

Vj<0 uj>0 Vj>0 Mj<0

where e, €6 € {=1, 1}, er = Xy s0uj = 2y,<ovjand eg = 3,50 Vj = 2uj<o Uj- B
the definition of I, ,,, again we have deg(F), deg(G) < Dr, so that F(X) = G(X),
and we obtain

D-1 D-1
E,yeG—EF r[(ij _ aj)uj—ujJrg - (bJX _ aj)Vj—Vj+g,
Jj=0 j=0

with € € {—1, 1}. By Lemma 2.4, we obtain
Uj—Ujg =Vj—Vjyg, 0 j<D-1.
Let us define x; = uj—v;, 0 < j < D. Then we have x;;, = x; for j > 0 (where we

take the indices mod D). Let J = {j : x; = 0}. We know that {0,...,(g,D) - 1} C

11

6y | X —apy™ [ |0;X = ap [ |(j-eX —aj-g) | [bjeX - aj)™,



J and the recursion gives us that {a +ig : 0<a<(gD),i> O} C J. Itis easy to
see that J = Zp, therefore (uy, ...,up-1) = (vo,...,vp-1) and A is injective. O]

Remark 3.5. If A is a triangular matrix, from Theorem 3.4 (s =t = I_%J, m=20)
and (a) of Proposition 3.3 we have that a generic root 6 of F4 , has multiplicative
order bounded below by

1 [r=1 4(r+l)’+1§ex 15243
\2zD Vr+1 \ (r=1y-1 P 12D r2-1)°

For every € > 0 and r > R., this bound is greater than ﬁ@(e —e)(r+ 1)

a b
c d
Fa, as in Theorem 1.1. The multiplicative order of @ — ab™" is bounded below by
gyl

Proof. By Remark 1.3, it is equivalent to bound the order of a generic root o of

Fa,inthe case A = ((c) —1d) € GLy (), i.e., Fa, (X) = X7+ — dX — ¢. Therefore

Corollary 3.6. Let A = ( ) € GL,(IFy) with b # 0 and let 6 be a generic root of

ir d i+ Ci
"= LT o< j<D,
dj_]a/ +Cj
wheredy = 1,¢90=0,dy =d,c1 = c¢,dp-1 = cp = 0and dp = cp_. It follows
that (1,0) and (0, DAP~! are linearly dependent and then m = ged(D,D — 1) = 1.
The corollary follows from Theorem 3.4. O

For D > 1862 and r small, the following table gives a lower bound Lp , for
g gl

rl vt o2 | 3 | 4 | 5 |
Lp, | 587 | 11.03P | 16367 | 21.73P | 27.117 |

In particular, observe that the case r = 1 of the corollary above implies Theorem
2.4 1n [3].
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