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Abstract

In this paper, we find a lower bound for the order of the group 〈θ + α〉 ⊂ F
∗

q , where
α ∈ Fq, θ is a generic root of the polynomial FA,r(X) = bXqr+1 − aXqr

+ dX − c ∈
Fq[X] and ad − bc , 0.
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1. Introduction

Let Fq be the field with q elements, where q is a power of a prime p. Given
a positive integer n, it is natural to ask how to find elements of very high order in

the multiplicative group
(
Fq[X]
f (x)

)∗
, where f (x) is an irreducible polynomial of degree

n. Elements of this type are used in the AKS algorithm (see [1]), for determining
primality in polynomial time. This question is closely related to the problem of ef-
ficiently constructing a primitive element of a given finite field, which has practical
applications in Coding Theory and Cryptography. This last problem has been con-
sidered by many authors: In [4], Gao gives an algorithm for explicitly constructing
elements for a general extension Fqn of the field Fq, with order bounded below by a

function of the form exp
(
c(p) log2 log q

log log log q

)
, where c(p) depends only on the charac-

teristic of the field. In [2], Cheng shows how to find, given q and N, an integer n in
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the interval [N, 2qN], and a θ in the field Fqn with order larger than 5.8n log q/ log n. In
[7] and [8], Popovych considers the case where f (X) = Φr(X), the r-th cyclotomic
polynomial, and f (X) = Xn − a are irreducible polynomials in Fq[X] and finds a
lower bound of the order of 〈θ+c〉, where θ is a root of f (X) = 0. Finally in [6], the
authors consider the same problem with the polynomial f (X) = Xp−X +c ∈ Fq[X].

On the other hand, in [10], Stichtenoth and Topuzoǧlu show that, given a matrix

[A] =

[(
a b
c d

)]
∈ PGL2(Fq), every irreducible factor f of FA,r(X) = bXqr+1−aXqr

+

dX−c in Fq[X] is invariant by an appropriate natural action of [A] and reciprocally,
every irreducible polynomial f , invariant by the action of [A], is a factor of FA,r(X)
for some r ≥ 0. This relation is used in [10] to estimate, asymptotically, the number
of irreducible monic polynomial of given degree and invariant by [A] and they
conclude that, in general, the irreducible factors of FA,r(X) has degree Dr, where
D is the order of [A] in PGL2(Fq).

In this paper we study the problem of finding elements of high order arising

from fields
(
Fq[X]
f (X)

)∗
, where f (X) is an irreducible factor of FA,r(X) and we obtain

the following:

Theorem 1.1. Let α ∈ Fq, A ∈ GL2(Fq), [A] , [I] and θ be a generic root of
FA,r, i.e. θ ∈ Fq satisfies dimFq Fq[θ] = Dr where D = ord([A]) and r > 2. The
multiplicative order of θ + α is bounded below by

1
√

2πD

√
r − 2
r + 2

·

(
(r + 2)r+2

(r − 2)r−2

) D
4

exp
(
−

5
24D

·
r2 + 4
r2 − 4

)
, (1)

in the case that (1, 0) and (0, 1)A j are linearly independent for all j and

√
2

πD

√
r

r + 1
·

(
4(r + 1)r+1

rr

) D
2

exp
(
−

1
12D

·
5r2 + 5r + 2

r2 + r

)
(2)

otherwise.

Remark 1.2. For every ε > 0 and r > Rε , the lower bound (1) is greater than

1
√

2πD
((e − ε)(r + 2))D

and the lower bound (2) is greater than
√

2
πD

(2(e − ε)(r + 1))D/2.
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Remark 1.3. We note that, θ is a root of FA,r if and only if θ + α is root of FB,r,
where

B =

(
a + bα b

c + dα − aα − bα2 d − bα

)
∈ GL2(Fq),

and the matrices A and B have the same eigenvalues, hence their multiplicative
order are the same. Since our bounds essencially depend of the order of A and r, in
the following, unless otherwise stated, we assume that α = 0. In particular, when
b , 0, taking α = −ab−1 we can find a better bound for the order of the element
θ − ab−1; the case r = 1 implies the bound found by Cheng, Gao and Wan (see
Theorem 2.4 of [3]).

We also note that the element θ is implicitely defined, as a root of a “generic”

irreducible factor of FA,r. In practice, construction of the field
(
Fq[X]
f (X)

)∗
requires

computation of the irreducible polynomial f . A straitforward factorization of FA,r

requires time polynomial in qr. It would be desirable to have an algorithm that
costructs the field FqrD in time polynmial in r,D, log q. As the value of D can be of
the same order of magnitude as q, see Remark 2.6, we see that for D = Ω(qε) (for
any fixed ε > 0) and small values of r, most notably for r = 1, the straitforward
factorization of FA,r does indeed take time polynomial in D. The general case, that
is, for arbitrary r and D, remains an interesting open problem.

In addition, in the case when A is a triangular matrix this lower bound can also
be improved, see Remark 3.5.

2. Preliminaries

Throughout this paper, Fq is the finite field with q elements, where q is a power

of a prime p; given a matrix A =

(
a b
c d

)
∈ GL2(Fq), [A] denotes its class in

PGL2(Fq) and D = ord([A]). Observe that, in the case det(A) = 1 and A is diagonal-
izable, the eigenvalues of A are γ and γ−1 and we have that D = ord([A]) =

ordγ
(ordγ,2)

and then AD = (−1)D+1I. In addition, for each non-negative integer r, FA,r(X) de-
notes the polynomial bXqr+1 −aXqr

+ dX− c. For any integer n, we will refer to the
rows of the matrix An by (an, bn) and (cn, dn) for the first and second row respec-
tively. By this convention, we note that (an, bn) = (1, 0)An and (cn, dn) = (0, 1)An.

There is an action of the general linear group GL2(Fq) on the set of irreducible
polynomials of degree at least 2, which was studied in [5, 10]. In this work, we
adopt the notation of [10].

Definition 2.1. Let A =

(
a b
c d

)
∈ GL2(Fq). For an irreducible polynomial

f (X) ∈ Fq[X] of degree n ≥ 2 and θ ∈ Fq \ Fq, define

3



1. (A ◦ f )(X) := (bX + d)n · f
( aX + c
bX + d

)
.

2. [A]◦ f (X) := the unique monic polynomial g(X) such that (A◦ f )(X) = λg(X)
for some λ ∈ Fq.

3. [A] ◦ θ = A ◦ θ :=
dθ − c
−bθ + a

.

It turns out that the above rules define actions of GL2(Fq) on the set of irre-
ducible polynomials of degree at least 2 in Fq[X] and on Fq \ Fq respectively and
these actions are closely related: from Lemma 2.7 in [10], it follows that θ is a root
of f if and only if A ◦ θ is a root of A ◦ f .

One of the goals of [10] is the characterization and counting the monic irre-
ducible polynomials that are fixed by the action of a given matrix. The following
theorems provide such a characterization.

Theorem 2.2 ([10], Theorems 4.2 and 4.5 ). Let f (X) ∈ Fq[X] be a monic irre-
ducible polynomial of degree n ≥ 2. The following are equivalent:

1. [A] ◦ f = f
2. f | FA,r for some non-negative integer r < n.

In addition, every irrreducible factor of FA,r has degree ≤ 2 or Dk, where k|r and
gcd( r

k ,D) = 1.

Expecifically, denoting

NA,r(n) =
∣∣∣∣{ f ∈ Fq[X] : f monic, irreducible , deg( f ) = n, f |FA,r

}∣∣∣∣ ,
it follows that

Theorem 2.3 ([10], Theorems 5.2). Let A ∈ GL2(Fq) and ord([A]) = D ≥ 2. Then

1. NA,r(n) = 0, if D - n, n ≥ 2.
2. NA,r(Dr) ∼ qr

Dr , as r → ∞,

that is, all non-linear irreducible factors of FA,r have degree divisible by D and
almost all have degree Dr, as r tends to infinity.

In order to bound the order of a generic root θ of the polynomial FA,r(X), i.e.
θ is a root of FA,r(X) such that dimFq Fq[θ] = Dr, it is enough to find a set J ⊂ N
such that θi , θ j for every i , j elements of J and thus ord(θ) ≥ |J|. In order to
find such set, observe that θ satisfies the relation θqr

= A ◦ θ, and inductively we
obtain that

θq jr
= A j ◦ θ, for j ∈ Z≥0. (3)
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The main idea lies on the construction of an appropriate set J having elements of
the form u0 + u1qr + · · ·+ uD−1qr(D−1), with some restriction on u j ∈ Z, and use the
relation (3) to show that the elements in {θ j, j ∈ J} are all different.

In order to prove Theorem 1.1, we need the following technical lemmas:

Lemma 2.4. Let A =

(
a b
c d

)
∈ GL2(Fq), with det(A) = 1 and bc , 0 . Let

us denote (an, bn) and (cn, dn) the first and second row, respectively, of An, n ∈ N.
Then for any 0 ≤ k < n < D, the vectors (an, bn), (ak, bk) are linearly independent
over Fq. The same holds for the vectors (cn, dn), (ck, dk).

Proof. Let us suppose that A is a diagonalizable matrix and denote by α, α−1 the
two eigenvalues of A. Since A is a diagonalizable matrix, we can write

A = M
(
α 0
0 α−1

)
M−1, where M =

(
t u
v w

)
is an invertible matrix . The assumption bc , 0 implies tuvw , 0.

By direct calculation, we have that

An =

(
δ(twαn − uvα−n) δut(α−n − αn)
δvw(αn − α−n) δ(wtα−n − uvαn)

)
, n ∈ N.

where δ := (tw − uv)−1 = (det(M))−1. Let us suppose that (an, bn) = γ(ak, bk) for
some 0 ≤ k < n < D and some γ ∈ Fq, then

twαn − uvα−n = γ(twαk − uvα−k)

ut(α−n − αn) = γut(α−k − αk),

which implies

tw(αn − γαk) = uv(α−n − γα−k)

αn − γαk = α−n − γα−k.

If αn , γαk, we obtain tw = uv, a contradiction since M is invertible. Therefore
αn = γαk and α−n = γα−k, hence α2(n−k) = 1, i.e., ord(α) divides 2(n− k). If ord(α)
is even, then 2D = ord(α) and 0 < 2(n − k) < 2D. If ord(α) is odd, then ord(α)
divides (n−k), D = ord(α) and 0 < n−k < D. Both cases lead us to a contradiction.
The proof of the linear independence of (cn, dn) and (ck, dk) follows similarly.

When A is non diagonalizable matrix, then

A = M−1
(
1 0
1 1

)
M, where M =

(
t u
v w

)
5



and

An =

(
1 − nδtu −nδu2

nδt2 1 + nδtu

)
, n ∈ N.

By the same process of the diagonalizable case, we conclude the proof.

Lemma 2.5. Let A =

(
a 0
c d

)
∈ GL2(Fq) with c , 0 and (cn, dn) as in the previous

lemma. Then for any 0 ≤ k < n < D, the vectors (cn, dn), (ck, dk) are linearly
independent over Fq.

Proof. By a direct calculation, we have that

An =

(
an 0

c an−dn

a−d dn

)
if a , d

and

An =

(
an 0

ncan−1 an

)
if a = d.

Let us suppose that (cn, dn) = γ(ck, dk) for some 0 ≤ k < n < D and some γ ∈ Fq,
in the case a , d, it follows that γ = dn−k and

c
an − dn

a − d
= cdn−k ak − dk

a − d
.

Since c , 0, we obtain that an−k = dn−k and therefore An−k = an−kI, which is
impossible since 0 < n − k < D. The second case is similar.

Remark 2.6. When A =

(
a 0
c d

)
∈ GL2(Fq) is a triangular matrix, [A] , [I],

then

ord([A]) =

ord( a
d ) if a , d

p if a = d and c , 0.

In the case that det(A) = 1 and A has eigenvalues γ, γ−1 ∈ Fq2 \ Fq, we have
ord([A]) = ord(γ)/(ord(γ), 2). Moreover, γ−1 = γq, so that the order of γ has to
divide q + 1. The converse is also true: any element γ ∈ Fq2 \ Fq of order dividing
q + 1 is a root of an irreducible polynomial of the form X2 − cX + 1 ∈ Fq[X].
Therefore, any matrix A with tr(A) = c and det(A) = 1 will have eigenvalues
γ, γ−1. It follows, that for matrices of this type the maximum possible value for
ord([A]) is ε(q + 1), where ε = 1 for q even and ε = 1/2 for q odd.
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Lemma 2.7. Let A =

(
a b
c d

)
∈ GL2(Fq) and denote by (an, bn) and (cn, dn) the

first and second row, respectively, of An, n ∈ N. Assume that (cn, dn) = γ(ak, bk) for
some 0 ≤ k, n < D and γ ∈ Fq. Then, denoting g = n − k, we have

(ci, di) = εiγ(ai−g, bi−g), 0 ≤ i ≤ D − 1,

where εi ∈ {−1, 1} and the indexes are computed modulo D.

Proof. By definition, (ak, bk) = (1, 0)Ak and (cn, dn) = (0, 1)An, hence (0, 1)Ag =

γ(1, 0), where g = n − k. Therefore (0, 1)Ag+i = γ(1, 0)Ai, that is,

(cg+i, dg+i) = γ(ai, bi), ∀i ≥ 0. (4)

Assume k < n. From this it follows that

(cg+i, dg+i) = γ(ai, bi), i = 0 . . . ,D − g − 1,

(cD+i, dD+i) = γ(aD−g+i, bD−g+i), i = 0, . . . , g − 1,

where the second identity follows by changing D − g + i for i in Eq. (4). Now,
since AD = (−1)D+1I we have that (cD+i, dD+i) = (0, 1)AD+i = (−1)D+1(ci, di), so
we have

(ci, di) = γ(−1)D−1(aD−g+i, bD−g+i), i = 0, . . . , g − 1,

(ci, di) = γ(ai−g, bi−g), i = g, . . . ,D − 1.

If k > n the computation is entirely similar and the case k = n is not possible since
(ak, bk) and (ck, dk) are linearly independent.

Remark 2.8. If ρ is the smallest prime factor of D and g is defined as in Lemma
2.7, it is clear that

(g,D) ≤ D/ρ

and this bound is sharp: for instance, suppose that q is not a power of ρ, let β ∈ Fq

be a 2ρn-th primitive root of the unity and α = βn . Consider M =

(
1 1
α α−1

)
and

A = M−1
(
β 0
0 β−1

)
M.

Observe that ord([A]) = ρn and if g is the minimum positive integer such that

β2g =
uv
tw

=
α

α−1 = β2n,

then g = n = D
ρ , where t, u, v and w are defined as in Lemma 2.4. In the proof of

our main result we use the general bound (g,D) ≤ bD
2 c.
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3. Bounds for the order of 〈θ〉 ⊂ Fq
∗

Before the proof of our main result, as in [6], we need the following definition:

Definition 3.1. For each s, t,m ∈ N, m < D, define the set

Is,t,m :=

(u0, . . . , uD−1) ∈ ZD

∣∣∣∣∣∣∣
∑

u j>0
u j ≤ s,

∑
u j<0
|u j| ≤ t and

the first m coordinates are zero


Lemma 3.2. Let Is,t,m be as in the Definition 3.1. Then

|Is,t,m| =

D−m∑
i=0

(
D − m

i

)(
s
i

)(
D − m − i + t

t

)
.

In particular, for t ≥ D−m
2

|It,t,m| >

(D−m
2 + t

D − m

)(
2D − 2m

D − m

)
.

Proof. Let us denote R = D − m. Notice that, for each 0 ≤ i ≤ R and 0 ≤ j ≤
R − i there are

(
R
i

)(
R−i

j

)
different ways to select j coordinates of um, . . . , uD−1 to

be negative and i coordinates to be positive. In addition, the number of positive
solutions of x1 + x2 + · · · + xi ≤ s is

(
s
i

)
and the number of positive solutions of

x1 + x2 + · · ·+ x j ≤ t is
(

t
j

)
. Thus, for each pair i, j, there exist

(
R
i

)(
R−i

j

)(
s
i

)(
t
j

)
elements

of Is,t,m. Summing over all i and j, we obtain

|Is,t,m| =

R∑
i=0

(
R
i

)(
s
i

) R−i∑
j=0

(
R − i

j

)(
t
j

)
=

R∑
i=0

(
R
i

)(
s
i

)(
R − i + t

t

)
. (5)

An easy calculation gives
(

s
i

)(
R+t−i

t

)
=

(
R
i

)(
R−i+t

R

) (s
i)

(t
i)

. In particular, if s = t we get

|It,t,m| =

R∑
i=0

(
R
i

)2(R − i + t
R

)
=

1
2

R∑
i=0

(
R
i

)2 [(
R − i + t

R

)
+

(
i + t

R

)]

≥
1
2

(
⌊

R
2

⌋
+ t

R

)
+

(⌈R
2

⌉
+ t

R

) R∑
i=0

(
R
i

)2

=
1
2

(
⌊

R
2

⌋
+ t

R

)
+

(⌈R
2

⌉
+ t

R

) (2R
R

)
≥

(R
2 + t

R

)(
2R
R

)
,
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where the last inequality follows from the fact that ΓN(x) :=
(

x
N

)
is a convex func-

tion for all x ≥ N.

Proposition 3.3. For every D ≥ 2 and r ≥ 3 the following inequalities are hold

a) |Ib Dr
2 c,b

Dr
2 c,0
| >

1
√

2πD

√
r − 1
r + 1

·

(
4(r + 1)r+1

(r − 1)r−1

) D
2

exp
(
−

1
12D

·
5r2 + 3
r2 − 1

)
.

b) |Ib Dr
4 c,b

Dr
4 c,0
| >

1
√

2πD

√
r − 2
r + 2

·

(
(r + 2)r+2

(r − 2)r−2

) D
4

exp
(
−

5
24D

·
r2 + 4
r2 − 4

)
.

c) |Ib Dr
2 c,b

Dr
2 c,b

D
2 c
| >

√
2

πD

√
r

r + 1
·

(
4(r + 1)r+1

rr

) D
2

exp
(
−

1
12D

·
5r2 + 5r + 2

r2 + r

)
.

Proof. The steps of the proof are essentially the same that ones used to prove The-
orem 2.3 in [6]. In fact,(D

2 + Dr
4 − 1

D

)
=

D
2 + Dr

4 − D
D
2 + Dr

4

·

(
D · r+2

4
D

)
=

r − 2
r + 2

·

(
D · r+2

4
D

)
From Corollary 1 in [9]

(D
2 + Dr

4 − 1
D

)
≥

r − 2
r + 2

·

√√
r+2

4

2π r−2
4


(

r+2
4

) r+2
4(

r−2
4

) r−2
4


D

1
√

D
exp

(
−

1
12D

(
1 +

16
r2 − 4

))

=
1
√

2πD

√
r − 2
r + 2

·

 (r + 2))
r+2

4

4(r − 2)
r−2

4

D

exp
(
−

r2 + 12
12D(r2 − 4)

)
.

Finally, from Lemma 3.2 and inequality
(
2D
D

)
> 4D
√
πD

exp
(
− 1

8D

)
, we conclude that

|Ib Dr
4 c,b

Dr
4 c,0
| ≥

(D
2 + bDr

4 c

D

)
·

(
2D
D

)
≥

(D
2 + Dr

4 − 1
D

)
·

(
2D
D

)
>

1
√

2πD

√
r − 2
r + 2

·

(
(r + 2)r+2

(r − 2)r−2

) D
4

exp
(
−

5
24D

·
r2 + 4
r2 − 4

)
.

By the same process we obtain items a) and c).

The main result of this paper is consequence of following theorem

Theorem 3.4. Let A ∈ GL2(Fq), [A] , [I] and θ be a generic root of FA,r. Then
the map

Λ : Is,t,m −→ 〈θ〉

(u0, . . . , uD−1) 7−→
D−1∏
j=0

θu jq jr
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is one to one in the following cases:

1) A is a triangular matrix , m = 0 and s + t < Dr.
2) A is not a triangular matrix, (0, 1)Ai and (1, 0)A j are linearly independent for

all i, j, m = 0 and s + t < Dr
2 .

3) A is not a triangular matrix, there exists 0 < g < D such that (1, 0) and (0, 1)Ag

are linearly dependent, m = gcd(g,D) and s + t < Dr.

Proof. Clearly Is,t,g ⊆ Is,t for any 1 ≤ g < D. For (u0, . . . , uD−1) ∈ Is,t, we compute

Λ(u0, . . . , uD−1) =

D−1∏
j=0

(
θq jr)u j

=

D−1∏
j=0

(
A j ◦ θ

)u j
.

For any matrix B in the class [A] ∈ PGL2(Fq), we have A j ◦ θ = B j ◦ θ, so we
may substittute A with δ−1A, where δ2 = det(A). This allows us to assume that
det(A) = 1, with A ∈ GL2(Fq2). We have

Λ(u0, . . . , uD−1) =

D−1∏
j=0

(
A j ◦ θ

)u j
=

D−1∏
j=0

(
d jθ − c j

−b jθ + a j

)u j

.

Consider now (u0, . . . , uD−1), (v0, . . . , vD−1) ∈ Is,t and let Λ(u0, . . . , uD−1) =

Λ(v0, . . . , vD−1). Then we have∏
0≤ j≤D−1

u j>0

(
d jθ − c j

)u j
∏

0≤ j≤D−1
u j<0

(
−b jθ + a j

)−u j
∏

0≤ j≤D−1
v j<0

(
d jθ − c j

)−v j
∏

0≤ j≤D−1
v j>0

(
−b jθ + a j

)v j

=
∏

0≤ j≤D−1
v j>0

(
d jθ − c j

)v j
∏

0≤ j≤D−1
v j<0

(
−b jθ + a j

)−v j
∏

0≤ j≤D−1
u j<0

(
d jθ − c j

)−u j
∏

0≤ j≤D−1
u j>0

(
−b jθ + a j

)u j
.

So, θ is a root of F(X) −G(X), where

F(X) =
∏

0≤ j≤D−1
u j>0

(
d jX − c j

)u j
∏

0≤ j≤D−1
u j<0

(
−b jX + a j

)−u j
∏

0≤ j≤D−1
v j<0

(
d jX − c j

)−v j
∏

0≤ j≤D−1
v j>0

(
−b jX + a j

)v j

G(X) =
∏

0≤ j≤D−1
v j>0

(
d jX − c j

)v j
∏

0≤ j≤D−1
v j<0

(
−b jX + a j

)−v j
∏

0≤ j≤D−1
u j<0

(
d jX − c j

)−u j
∏

0≤ j≤D−1
u j>0

(
−b jX + a j

)u j
.

We consider the following three cases:
Case 1: Suppose that A is a triangular matrix. Observe that if θ is root of

FA,r(x), then θ−1 is root of the polynomial FB,r(x) where B =

(
d c
b a

)
. Therefore,
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changing θ by θ−1, we can suppose, without loss of generality that A is lower
triangular matrix. Thus b j = 0 for all j and the degrees of the polynomials F(X)
and G(X) are respectively∑

u j≥0

u j −
∑
v j≤0

v j ≤ s + t and
∑
v j≥0

v j −
∑
u j≤0

u j ≤ s + t.

Since deg(F(X)) ≤ s + t < Dr and deg(G(X)) ≤ s + t < Dr and F(X) − G(X) is
divisible by the minimal irreducible polynomial that θ is root, that has degree Dr,
it follows that F(X) = G(X). According to Lemma 2.5, the binomials d jX − c j

(0 ≤ j ≤ D − 1) are pair-wise distinct. It follows from the unique factorization
property of Fq[X] that (u0, . . . , uD−1) = (v0, . . . , vD−1), that is, Λ is injective.

Case 2: The argument in this case is analogous to that of case 1, using Lemma 2.4
instead of Lemma 2.5. According to Lemma 2.4, the binomials −b jX + a j (0 ≤
j ≤ D − 1) are pair-wise distinct. The same holds for the binomials d jX − c j

(0 ≤ j ≤ D − 1). The binomials −b jX + a j, d jX − c j (0 ≤ j ≤ D − 1) are pair-wise
distinct by the assumption of case 2.

Case 3: There exist 0 ≤ k, n < D, such that (cn, dn) = γ(ak, bk), for some
γ ∈ F∗

q2 . Let us define g = n − k and m = gcd(g,D). In this case, it turns out that
we have to restrict Λ to the set Is,t,m to maintain injectivity. Indeed, by Lemma 2.7,
we have

d jX − c j = ε jγ(b j−gX − a j−g), for 0 ≤ j ≤ D − 1

and we obtain

F(X) = εFγ
eF

∏
u j<0

(b jX − a j)−u j
∏
v j>0

(b jX − a j)v j
∏
u j>0

(b j−gX − a j−g)u j
∏
v j<0

(b j−gX − a j−g)−v j

G(X) = εGγ
eG

∏
v j<0

(b jX − a j)−v j
∏
u j>0

(b jX − a j)u j
∏
v j>0

(b j−gX − a j−g)v j
∏
u j<0

(b j−gX − a j−g)−u j ,

where εF , εG ∈ {−1, 1}, eF =
∑

u j>0 u j −
∑

v j<0 v j and eG =
∑

v j>0 v j −
∑

u j<0 u j. By
the definition of Is,t,m, again we have deg(F), deg(G) < Dr, so that F(X) = G(X),
and we obtain

εγeG−eF

D−1∏
j=0

(b jX − a j)u j−u j+g =

D−1∏
j=0

(b jX − a j)v j−v j+g ,

with ε ∈ {−1, 1}. By Lemma 2.4, we obtain

u j − u j+g = v j − v j+g, 0 ≤ j ≤ D − 1.

Let us define x j = u j − v j, 0 ≤ j < D. Then we have x j+g = x j for j ≥ 0 (where we
take the indices mod D). Let J = { j : x j = 0}. We know that {0, . . . , (g,D) − 1} ⊆
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J and the recursion gives us that
{
a + ig : 0 ≤ a < (g,D), i ≥ 0

}
⊆ J. It is easy to

see that J = ZD, therefore (u0, . . . , uD−1) = (v0, . . . , vD−1) and Λ is injective.

Remark 3.5. If A is a triangular matrix, from Theorem 3.4 (s = t = bDr
2 c,m = 0)

and (a) of Proposition 3.3 we have that a generic root θ of FA,r has multiplicative
order bounded below by

1
√

2πD

√
r − 1
r + 1

·

(
4(r + 1)r+1

(r − 1)r−1

) D
2

exp
(
−

1
12D

·
5r2 + 3
r2 − 1

)
.

For every ε > 0 and r > Rε , this bound is greater than 1√
2πD

(2(e − ε)(r + 1))D.

Corollary 3.6. Let A =

(
a b
c d

)
∈ GL2(Fq) with b , 0 and let θ be a generic root of

FA,r as in Theorem 1.1. The multiplicative order of θ − ab−1 is bounded below by∣∣∣Ib Dr
2 c,b

Dr
2 c,1

∣∣∣
Proof. By Remark 1.3, it is equivalent to bound the order of a generic root α of

FA,r in the case A =

(
0 1
c −d

)
∈ GL2(Fq), i.e., FA,r(X) = Xqr+1 − dX − c. Therefore

αq jr
=

d jα + c j

d j−1α + c j−1
0 ≤ j ≤ D,

where d0 = 1, c0 = 0, d1 = d, c1 = c, dD−1 = cD = 0 and dD = cD−1. It follows
that (1, 0) and (0, 1)AD−1 are linearly dependent and then m = gcd(D,D − 1) = 1.
The corollary follows from Theorem 3.4.

For D > 1862 and r small, the following table gives a lower bound LD,r for∣∣∣Ib Dr
2 c,b

Dr
2 c,1

∣∣∣
r 1 2 3 4 5

LD,r 5.8D 11.03D 16.36D 21.73D 27.11D

In particular, observe that the case r = 1 of the corollary above implies Theorem
2.4 in [3].
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