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Abstract

We consider a generalization of the Hidden Number Problem for general
moduli N , and prove that it can be solved with high probability if roughly
2(logN)1/2 aproximations of quality at least (log N)1/2 are given, and the mul-
tipliers are chosen uniformly at random from ZZ/NZZ. We prove a similar result
in the case that the multipliers are chosen uniformly at random from (ZZ/NZZ)×

and N is the product of two distinct primes. The last result holds in the more
general case when N is squarefree and a technical condition related to the prime
factors of N holds. The condition is related to the distribution of the solutions
of a linear equation modulo N . The Hidden Number Problem modulo the
product of two primes, with multipliers chosen from (ZZ/NZZ)×, is related to
the bit security of the most significant bits of the RSA and Rabin functions.
Our solution of the Hidden Number Problem implies that computing roughly
(log(N))1/2 bits of the RSA and Rabin functions is equivalent to computing
the entire values.

Keywords Hidden number problem, exponential sums, lattice basis reduction.

Classification 11Y16, 11B50, 11T23

1 Introduction

Let p be a prime, α ∈ ZZ/pZZ, and µ > 0. For any integer t we denote by ⌊t⌋p the

remainder of the division of t by p. The Hidden Number Problem (HNP) can be

defined as follows: Given d elements ti, i = 1, . . . , d chosen uniformly at random

from a subgroup V of (ZZ/pZZ)× and d integers si, i = 1, . . . , d such that

|⌊αti⌋p − si| ≤ p2−µ, i = 1, . . . d
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compute α.

The problem was introduced by Boneh and Venkatesan [1] in connection with

the bit security of the Diffie-Hellman key, and solved it for µ ∼ √
log p and V =

(ZZ/pZZ)×. For specific applications one wishes to solve HNP for µ and the order

of V as small as possible. In all subsequent works, the best value of µ is ∼ √
log p.

Considering proper subgroups of (ZZ/pZZ)× of as small order as possible is math-

ematically challenging and relevant to the bit security problem. González Vasco and

Shparlinski [12] solved the problem for subgroups of order p1/3+ǫ and proved that

the method works for groups of order pǫ for almost all primes p. Finally, Shparlinski

and Winterhof [10] showed that the mathod works for subgroups of order as small

as log p/(log log p)1−ǫ for every prime p. Several variants of HNP have been con-

sidered, see for instance [8, 11, 3, 5, 9], with applications to the security of a variety

of cryptosystems such as XTR and LUC.

In this work, we consider the Hidden Number Problem for general modulus N .

Using lattice basis reduction techniques, we extend the results of [1] to non-prime

moduli. Our results are stated in terms of the parameters d, the number of given

approximations, and δ, the quality of the approximations. In our notation, we are

given integers vi, i = 1, . . . , d and integers si i = 1, . . . , d such that

|αvi − uiN − si| ≤ N1−δ, i = 1, . . . , d

for some integers ui, i = 1, . . . , d. We call the si aproximations of quality δof

αvi−uiN . The values αvi−uiN need not be the residues of αvi modulo N , although

this generalization is not deep. We consider two different situations regarding the

distribution of the multipliers vi. If they are chosen uniformly at random from

ZZ/NZZ, we solve the problem for any N and roughly δ ≥ 1
d + d

4n . When they are

chosen from (ZZ/NZZ)× we solve the problem for N squarefree subject to a technical

condition needed to ensure that the solutions of a linear equation modulo N are

uniformly distributed. In this case, the algorithm works for roughly the same value

of δ as before. Our results lead to a straightforward reduction of the problem of
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computing the values of the RSA and Rabin functions to that of computing the

∼ √
log n most significant bits, where n is the RSA modulus. We note that result on

the bit security of the RSA and Rabin functions is not the best known. Indeed, the

best known results in this direction are given in [2], where the security every single

bit is proved. Our intention is to show that the Hidden Number Problem which

initially was considered in connection to the security of the Diffie-Hellman mapping

has immediate implications to the security of two other well-known cryptographic

functions.

The paper is organized as follows: In section 2, we prove two technical lemmas

regarding the distribution of the solutions of linear congruences modulo N , that are

needed in the proof of the main theorems. In Section 3, we prove that the natural

generalization of the algorithm of [1, 12] works in this setting with high probability.

In the next two sections we give the connection to the well known version of HNP
and to the bit security of the RSA and Rabin functions. We conclude with some

comments for further work.

2 Distribution modulo N

We state the following simple lemma that will be used in the proof of Lemma 5. Let

λ, r and ℓ be integers. We denote by Nλ(r, ℓ) the number of integers x ∈ [0,N − 1]

such that λx ≡ y (mod N) with y ∈ [r + 1, r + ℓ].

Lemma 1. Suppose that gcd(λ,N) = g < N . The number Nλ(r, ℓ) of solutions

x ∈ ZZ/NZZ to the congruence

λx ≡ y (mod N), with r + 1 ≤ y ≤ r + ℓ

satisfy

max
0≤r,ℓ≤N−1

|Nλ(r, h) − ℓ| ≤ g.

The following technical lemma is needed in the proof of Lemma 3.
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Lemma 2. Let s be a squarefree integer. Then

∑

a∈(ZZ/sZZ)×

exp (2πia/s) = (−1)ω(s),

where ω(s) is the number of distinct prime divisors of s.

Proof. We proceed by induction on the number of prime divisors of s. If s is prime,

then
∑

a∈(ZZ/sZZ)×

exp (2πia/s) = −1

and the base case holds. Suppose the statement is true for any squarefree integer

with k prime factors. Consider any integer s with k + 1 prime factors and write

it as p · t. From the squarefreeness we have (t, p) = 1 and the Chinese Remainder

Theorem yields

∑

a∈(ZZ/ptZZ)×

exp (2πia/pt) =
∑

b∈(ZZ/pZZ)×

∑

c∈(ZZ/tZZ)×

exp (2πi(bs + cp)/pt)

=
∑

b∈(ZZ/pZZ)×

exp (2πib/p)
∑

c∈(ZZ/tZZ)×

exp (2πic/t)

= (−1) · (−1)ω(t) = (−1)ω(s),

where the last equation holds since ω(t) = k + 1 and ω(s) = k. ⊓⊔

We denote by Mλ(r, ℓ) the number of solutions of the equation λx ≡ y (mod N),

with x ∈ [0, N − 1] with (x,N) = 1, and y ∈ [r + 1, r + ℓ].

Lemma 3. Let N be a positive squarefree integer, λ ∈ ZZ and let gcd(λ,N) = g < N .

The number Mλ(r, ℓ) of solutions x ∈ (ZZ/NZZ)× to the congruence

λx ≡ y (mod N), with r + 1 ≤ y ≤ r + ℓ

satisfies

max
0≤r,ℓ≤N−1

∣

∣

∣

∣

Mλ(r, ℓ) − φ(N)ℓ

N

∣

∣

∣

∣

≤ φ(g) log N
∏

p|N/g

(

2 − 1

p

)

,

where the product is extended over all prime divisors of N/g.
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Proof. We write N = gm and λ = gµ, (µ,N) = 1.

Mλ(r, ℓ) =
1

N

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

N−1
∑

c=0

exp (2πic(λx − y)/N)

=
ℓφ(N)

N
+

1

N

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

N−1
∑

c=1

exp (2πic(λx − y)/N) ,

therefore

Mλ(r, ℓ) − ℓφ(N)

N
=

1

N

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

N−1
∑

c=1

exp (2πic(λx − y)/N)

=
1

N

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

∑

h|m

∑

1≤c<N

(c,m)=h

exp (2πic(λx − y)/N) .

We write c = dh, m = sh with (d, s) = 1 and rearranging we get

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

∑

h|m

∑

1≤c<N

(c,m)=h

exp (2πic(λx − y)/N)

=
∑

h|m

∑

1≤d<gs

(d,s)=1

∑

x∈(ZZ/NZZ)×

exp (2πidµx/s)

r+ℓ
∑

y=r+1

exp (−2πidy/gs) .

Since N = gh · s and (gh, s) = 1, using the Chinese Remainder Theorem we have

∑

x∈(ZZ/NZZ)×

exp (2πidµx/s) =
∑

a∈(ZZ/sZZ)×

∑

b∈(ZZ/ghZZ)×

exp (2πidµ(agh + bs)/s)

=
∑

a∈(ZZ/sZZ)×

exp (2πidµagh/s)
∑

b∈(ZZ/ghZZ)×

exp (2πidµb)

= φ(N/s)
∑

a∈(ZZ/sZZ)×

exp (2πidµagh/s)

= φ(N/s)
∑

a∈(ZZ/sZZ)×

exp (2πia/s) ,

since (dµgh, s) = 1. Lemma 2 now shows that

∣

∣

∣

∣

∣

∣

∑

x∈(ZZ/NZZ)×

exp (2πidµx/s)

∣

∣

∣

∣

∣

∣

= φ(N/s).
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The elementary estimate

∑

1≤d<gs

(d,s)=1

∣

∣

∣

∣

∣

∣

r+ℓ
∑

y=r+1

exp (−2πidy/gs)

∣

∣

∣

∣

∣

∣

≤ gs log(gs),

yields the bound

1

N

∣

∣

∣

∣

∣

∣

∑

x∈(ZZ/NZZ)×

r+ℓ
∑

y=r+1

N−1
∑

c=1

exp (2πic(λx − y)/N)

∣

∣

∣

∣

∣

∣

≤ 1

N

∑

h|m
φ(gh)

N

h
log

(

N

h

)

≤ φ(g) log N
∑

h|m
φ(h)/h

= φ(g) log N
∏

p|N/g

(

2 − 1

p

)

.

which concludes the proof.

⊓⊔

3 Lattices

Let {b1, . . . ,bt} be a set of linearly independent vectors of IRt. Then the set of

vectors

L =

{

v =

t
∑

i=1

mibi : m1, . . . ,mt ∈ ZZ

}

is called a t-dimensional lattice of full rank. The set {b1, . . . ,bt} is called a basis of

L. It is well known that the basis is not unique. We will need the following result

that is based on the lattice basis reduction of Lenstra, Lenstra, and Lovász [4]. We

note that a somewhat stronger version of the result we state here holds, as has been

shown in [6, 7].

Lemma 4. There exists a polynomial time algorithm which, given a t-dimensional

lattice L and a vector s = (s1, . . . , st) computes a lattice vector x = (x1, . . . , xt) that

satisfies,

‖x − s‖≤ 2
t−1

4 min {‖v − s‖: v ∈ L} .
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Our problem is very similar to the Hidden number problem of [1] – only the

modulus is not prime. So we use the same technique as in [1, 12]. Let v1, . . . , vd be

integers in the interval [0, N −1]. We denote by LN (v1, . . . , vd) the d+1 dimensional

lattice generated by the rows of the following (d + 1) × (d + 1) matrix















N 0 0 . . . 0 0
0 N 0 . . . 0 0

...
...

0 0 0 . . . N 0
v1 v2 v3 . . . vd 1/N















Lemma 5. Let δ > 0 and N, d ∈ IN, n = log N , d ≥ 2, and δ ≥ 1/d + (3 + 2/d)/n.

Let Q be a fixed integer in [1,N −1]. Choose integers v1, . . . , vd uniformly at random

in the interval [0, N −1]. Suppose that the vector s = (s1, . . . , sd, 0) ∈ IRd+1 satisfies

(

d
∑

i=1

(Qvi − Nui − si)
2

)1/2

≤ N1−δ,

for some integers u1, . . . , ud. Then with probability at least 1 − 2−δ − 23d−(dδ−1)n,

any vector (x1, . . . , xd, xd+1) ∈ LN(v1, . . . , vd) satisfying

(

d
∑

i=1

(xi − si)
2

)1/2

≤ N1−δ (1)

is of the form

vP = (Pv1 − m1N, . . . , Pvd − mdN,P/N),

with P ≡ Q (mod N), and Pvi − miN = Qvi − uiN, i = 1, . . . , d.

Proof. As in [1], we define the modular distance modulo N of two integers A and

B as

dist N (A,B) = min
b∈ZZ

|A − B + bN | = min{⌊A − B⌋N ,N − ⌊A − B⌋N},

where ⌊A − B⌋N denotes the remainder of A − B upon division with N .

Any point in the lattice LN (v1, . . . , vd) is of the form

vP = (Pv1 − m1N, . . . , Pvd − mdN,P/N) with P,m1, . . . ,md ∈ ZZ.
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Let gcd(P −Q,N) = g. We denote by C the condition given by Eq.(1). We want to

estimate the probability

Pr (∀P ∈ ZZ C ⇒ P ≡ Q (mod N))

= 1 − Pr (∃P ∈ ZZ C ∧ gcd(P − Q,N) < N)

= 1 − Pr
(

∃P ∈ ZZ C ∧ (2N1−δ < gcd(P − Q,N) < N)
)

−Pr
(

∃P ∈ ZZ C ∧ (1 ≤ gcd(P − Q,N) ≤ 2N1−δ)
)

.

We proceed by estimating the two probabilities.

Suppose that 2N1−δ < g < N . Then for every 1 ≤ j ≤ d there is some bj ∈ ZZ

such that

dist N (Pvj , Qvj) = |(P − Q)vj − bjN |.

Suppose that (P−Q)vj−bjN = 0 for every 1 ≤ j ≤ d. Writing vj(P−Q)/g = bjN/g

we see that N/g divides vj for all j. This happens with probability at most 2−d.

Thus, with probability at least 1 − 2−d there exists at least one index j0 such that

|(P − Q)vj0 − bj0N | =

∣

∣

∣

∣

P − Q

g
vj0 − bj0

N

g

∣

∣

∣

∣

g ≥ g,

which implies that

dist N (Pvj0, Qvj0) ≥ g.

Then we have
(

d
∑

i=1

(Pvi − miN − si)
2

)1/2

≥ |Pvj0 − mj0N − sj0|

≥ |Pvj0 − Qvj0 − (mj0 − uj0)N | − |Qvj0 − uj0N − sj0|

≥ dist N (Pvj0 , Qvj0) − |Qvj0 − uj0N − sj0|

≥ g − N1−δ

> N1−δ,

which contradicts our assumption on vP . We note that the probability is over the

random choice of the vi and has nothing to do with P . We conclude that

Pr
(

∃P ∈ ZZ C ∧ (2N1−δ < g < N)
)

≤ 2−d
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Suppose now that 1 ≤ g ≤ 2N1−δ. We wish to estimate the probability that

max
1≤i≤d

dist N (Pvi, Qvi) > 2N1−δ (2)

holds for any P with gcd(P − Q,N) ≤ 2N1−δ. From Lemma 1 we see that for any

fixed i, and fixed P ,

dist N (Pvi, Qvi) ≤ 2N1−δ (3)

holds for at most

4N1−δ + g ≤ 6N1−δ

values of vi, which implies

Pr( dist N (Pvi, Qvi) ≤ 2N1−δ) ≤ 6N−δ.

Then

Pr(∀i, dist N (Pvi, Qvi) ≤ 2N1−δ) ≤ (6N−δ)d.

There are at most N possible values for P , so the probability that Eq. (3) holds for

at least one value of P is

Pr(∃P ∀i, dist N (Pvi, Qvi) ≤ 2N1−δ) ≤ N(6N−δ)d.

If Eq.(2) holds, then

(

d
∑

i=1

(Pvi − miN − si)
2

)1/2

≥ max
1≤i≤d

|Pvi − miN − si|

≥ max
1≤i≤d

min
b∈ZZ

(|(P − Q)vi − bN | − |Qvi + uiN − si|)

≥ max
1≤i≤d

( dist N (Pvi, Qvi) − |Qvi + uiN − si|)

> N1−δ,

which again contradicts the assumption on the vector vP . Therefore condition C can

hold in this case only if Eq.(3) holds for some P and all 1 ≤ i ≤ d, which happens

with probability at most N(6N−δ)d, that is

Pr
(

∃P ∈ ZZ C ∧ (gcd(P − Q,N) ≤ 2N1−δ)
)

≤ 23d−(dδ−1) log N ,
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and the statement about the probability follows. Finally, to see that Pvi − miN =

Qvi −uiN, i = 1, . . . , d, it suffices to note that if Pvj −mjN 6= Qvj −ujN for some

1 ≤ j ≤ d, then the vector vP − s would have norm at least N − N1−δ > N1−δ,

which contradicts the assumption on vP . ⊓⊔

A similar result holds if the numbers v1, . . . , vd are chosen uniformly at random

from (ZZ/NZZ)×.

Lemma 6. Let δ > 0 and N, d ∈ IN, N = pq, q < p < N1−2δ primes, n = log N ,

d ≥ 2, and δ ≥ 1/d + 3/n. Let Q be a fixed integer in [1,N − 1]. Choose integers

v1, . . . , vd uniformly at random in (ZZ/NZZ)×. Let s = (s1, . . . , sd, 0) ∈ IRd+1 and

suppose that there exist integers u1, . . . , ud such that

(

d
∑

i=1

(Qvi − Nui − si)
2

)1/2

≤ N1−δ.

Then with probability at least 1−23d−(dδ−1)n, any vector (x1, . . . , xd, xd+1) ∈ LN (v1, . . . , vd)

satisfying
(

d
∑

i=1

(xi − si)
2

)1/2

≤ N1−δ (4)

is of the form

vP = (Pv1 − m1N, . . . , Pvd − mdN,P/N),

with P ≡ Q (mod N), and Pvi − miN = Qvi − uiN, i = 1, . . . , d.

Proof. The proof is similar to that of Lemma 5, and in fact a bit simpler due to the

special form of N . We outline the main points. As before, we want to estimate the

probability

Pr (∀P ∈ ZZ C ⇒ P ≡ Q (mod N))

= 1 − Pr
(

∃P ∈ ZZ C ∧ (2N1−δ < gcd(P − Q,N) < N)
)

−Pr
(

∃P ∈ ZZ C ∧ (1 ≤ gcd(P − Q,N) ≤ 2N1−δ)
)

.
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We denote (P −Q,N) = g. The case 2N1−δ < g < N leads to a contradiction here,

since for any b ∈ ZZ and any 1 ≤ j ≤ d we have

(

d
∑

i=1

(Pvi − miN − si)
2

)1/2

≥ |Pvj − mjN − sj|

≥ |Pvj − Qvj − (mj − uj)N | − |Qvj − ujN − sj|

≥ g − N1−δ

> N1−δ,

because

|Pvj − Qvj − (mj − uj)N | = g

∣

∣

∣

∣

P − Q

g
vj − (mj − uj)

N

g

∣

∣

∣

∣

> 2N1−δ,

and |P−Q
g vj − (mj − uj)

N
g | ≥ 1 since (vj ,N) = 1.

In the case 1 ≤ g ≤ 2N1−δ, we see from Lemma 6 that

dist N (Pvi, Qvi) ≤ 2N1−δ

holds for at most

φ(N)4N1−δ

N
+ O(p log N) = 4φ(N)N−δ + O(p log N)

elements vi ∈ (ZZ/NZZ)×, so this happens with probability at most

4N−δ + O

(

p log N

φ(N)

)

= 4N−δ + O

(

N1−2δ log N

N

)

= 4N−δ + O(N−2δ log N).

For N sufficiently large, we see that

Pr( dist N (Pvi, Qvi) ≤ 2N1−δ) ≤ 5N−δ.

The proof is now virtually identical to that of Lemma 5. ⊓⊔

Theorem 7. Let d,N,Q ∈ IN, with 1 ≤ Q < N and n = log N . There exist a

probabilistic polynomial time algorithm A such that given integers v1, . . . , vd chosen
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uniformly at random from [1,N − 1], and integers s1, . . . , sd ∈ [0,N − 1] such that

there exist integers u1, . . . , ud ∈ [1, Q − 1] that satisfy

|Qvi − Nui − si| < N1−δ i = 1, . . . , d

with

δ ≥ 1

d
+

3 + 2/d

n
+

d

4n
+

log(d + 1)

2n
,

computes Q with probability at least 1−2−d−23d−(dη−1)n, where η = δ− d
4n−

log(d+1)
2n .

Proof. The argument is essentially the same as in [1, 12]. We consider the lattice

LN (v1, . . . , vd), and observe that there exist integers u1, . . . , ud such that the vector

vQ = (Qv1 −u1N, . . . ,Qvd −udN,Q/N) ∈ LN (v1, . . . , vd) is very close to the vector

s = (s1, . . . , sd). Specifically,

(

d
∑

i=1

(Qvi − uiN − si)
2

)1/2

≤
√

dN1−δ.

Lemma 4 asserts that we can compute in polynomial time a vector x in LN (v1, . . . , vd)

such that

(

d
∑

i=1

(xi − si)
2

)1/2

≤ ‖x − s‖ ≤ 2
d
4 min {‖v − s‖: v ∈ LN (v1, . . . , vd)}

≤ 2
d
4 ‖vQ − s‖

≤ 2
d
4

√
d + 1N1−δ

= N1−η,

with

η = δ − d

4 log N
− log(d + 1)

2 log N
.

If the condition

η ≥ 1

d
+

3 + 2/d

n
⇐⇒ δ ≥ 1

d
+

3 + 2/d

n
+

d

4n
+

log(d + 1)

2n

is satisfied, then Lemma 5 applies, and we see that with probability at least 1−2−d−
23d−(dη−1)n, the vector x is of the form (Pv1 − m1N, . . . , Pvd − mdN,P/N) with
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P ≡ Q (mod N). So the denominator Q can be recovered from the last coordinate

of the computed vector. ⊓⊔

The same argument, using Lemma 6 yields the following theorem.

Theorem 8. Let d,N,Q ∈ IN, with N = pq, q < p < N1−2δ primes, 1 ≤ Q < N

and n = log N . There exist a probabilistic polynomial time algorithm A such that

given integers v1, . . . , vd chosen uniformly at random from (ZZ/NZZ)×, and integers

s1, . . . , sd ∈ [0, N −1] such that there exist integers u1, . . . , ud ∈ [1, Q−1] that satisfy

|Qvi − Nui − si| < N1−δ i = 1, . . . , d

with

δ ≥ 1

d
+

3

n
+

d

4n
+

log(d + 1)

2n
,

computes Q with probability at least 1 − 23d−(dη−1)n, where η = δ − d
4n − log(d+1)

2n .

4 Connection to the hidden number problem

The hidden number problem with approximation parameter µ (HNP) can be de-

scribed as follows. Fix a prime p and denote with ⌊α⌋p the remainder of of the

division of α with p. We call an approximation of an integer 0 ≤ v < p any integer

u that satisfies |v − u| ≤ p/2µ. Fix an (unknown) integer 0 ≤ α < p. Given ap-

proximations u1, . . . , ud to d integers ⌊αt1⌋p, . . . , ⌊αtd⌋p, with ti, i = 1 . . . , d known,

we wish to compute α. We want to do this for as small a value of µ as possible.

The problem was first defined and studied in [1] for the case when the ti are uni-

formly distributed in (ZZ/pZZ)×, and was extended in [12] to the case when the ti

are uniformly distributed to subgroups of (ZZ/pZZ)× of appropriately large size.

From the definition of the approximations, and writing ati = vip + ⌊αti⌋p we

have

|αti − vip − ui| ≤
p

2µ
= p1−δ for i = 1, . . . , d, (5)

for δ = µ/ log p. This can be seen to be a special case of the problem considered in

Theorem 7.
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5 Bit security of RSA

We consider the RSA cryptosystem with modulus n = pq, encryption exponent a

and decryption exponent b, where ab ≡ 1 (mod n). Let

f : (ZZ/nZZ)× −→ (ZZ/nZZ)×

c mod n 7→ cb mod n

be the RSA decryption function. We make the assumption that the classes of

(ZZ/nZZ)× are represented by the standard reduced residue system, that is, by the

set of integers {0 ≤ k < n | (k, n) = 1}. We denote the remainder of an integer t

upon division with n with ⌊t⌋n.

The main result of this section is that the problem of computing the first roughly

(log n)1/2 bits of the values of f is equivalent to the problem of computing all the

bits. For any µ > 0, we define a µ-approximation of t, APPRµ(t), to be any integer

s such that

|⌊t⌋n − s| ≤ n2−µ.

Let On,µ be an oracle which, given an integer t outputs APPRµ(tb).

Theorem 9. Let µ = ⌈√log n⌉ + ⌈log log n⌉ and (n, a) an RSA public key, where

n = pq, q < p < n1−3/
√

log n primes, and a−1 ≡ b (mod n). There exists a prob-

abilistic polynomial time algorithm, which given the public key (n, a) and a value

c ∈ (ZZ/nZZ)× makes O(
√

log n) calls to the oracle On,µ and computes the value
⌊

cb
⌋

n
correctly with probability at least 1 − 2−

√
log n, for n sufficiently large.

Proof. The goal of the algorithm is to compute
⌊

cb
⌋

n
, which we denote by Q. The

algorithm selects ui uniformly at random from (ZZ/nZZ)× and computes ⌊ua
i c⌋n, for

i = 1, . . . , d. For each computed value, it queries the oracle to obtain approximations

of

(ua
i c)

b ≡ uic
b ≡ uiQ (mod n).

14



More precisely it obtains values s1, . . . , sd such that

|⌊uiQ⌋n − si| ≤ n2−µ ≤ n1−δ, i = 1, . . . , d,

where δ = µ/ log n. Then, choosing d = 2⌈√log n⌉ we see that the conditions of

Theorem 8 are satisfied, and therefore the value Q can be computed with probability

at least 1 − 2−
√

log n, for n sufficiently large. ⊓⊔

Clearly the same proof, with a = 2, gives a result about the computational

difficulty of computing the
√

log n most significant bits of the Rabin function.

6 Conclusion

We presented a generalization of the Hidden Number Problem with a non-prime

modulus. In the case that the multipliers are chosen from [1,N − 1] the problem

can be solved with high probability for any N . In the case that the multipliers are

chosen from (ZZ/NZZ)× we presented a solution in the case that N is the product

of two primes. A slight modification of Lemma 6 holds in the case of squarefree

integers subject a condition that ensures that the error term of Lemma 3 is not too

large. For instance, insisting that the number of prime divisors of N is bounded by

log log N is sufficient for Lemma 6 to hold for δ ≥ 1/d + log log N/ log N . It would

interesting, to extend the result in the case that the multipliers are chosen from a

subgroup of (ZZ/NZZ)×. We conclude this work by showing how the solution of the

Hidden Number Problem implies the security of the ∼ √
log n most significant bits of

the RSA encryption, where n is the RSA modulus. A very important open problem

is to prove Theorem 8 for as small δ as possible. Any significant improvement in that

direction would have immediate implications to the security of the most significant

bits of the RSA and Rabin functions.
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