
A note on Kloosterman sums

Ian F. Blake

Department of Electrical and Computer Engineering University of Toronto,

Toronto, ON M5S 3G4, Canada

Theo Garefalakis

Department of Mathematics, University of Crete, 71409 Heraklion, Greece

Abstract

An expression for the number of times a certan trace function associated with a
Kloosterman sum, on an extension field assumes a given value in the base field is
given and its properties explored. The relationship of this result to the number of
points on certain elliptic curves and to the enumeration of certain types of irreducible
polynomials is considered.
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1 Introduction

Let Fq be the finite field of q elements of characteristic p, and Fqk its extension
of degree k. An additive character χ of Fq is a complex valued function of unit
magnitude with the property that χ(α + β) = χ(α)χ(β), α, β ∈ Fq. The
character [9] is called nontrivial if there exists at least one element of Fq for
which it is not of value 1. Any such character on a field of characteristic p can
be realized by the function

χ(α) = e2πiTrq|p(aα)/p

for some fixed element a ∈ Fq where Trq|p is the trace function of Fq over Fp.
Such a character is denoted by χa(·) and the number of distinct characters,
including the trivial one, is the order of the finite field. An arbitrary character
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on Fq will be denoted simply by χ(·). An excellent reference for properties
of characters and Kloosterman sums as discussed below, is [9], as well as the
original work of Carlitz [3] which established many of the properties which are
extended here.

Characters satisfy the orthogonality relations:

∑

c∈Fq

χa(c)χ̄b(c) = qδab and
∑

b∈Fq

χb(c)χ̄b(d) = qδcd

where δab is the Kronecker delta function, equal to one if a = b and 0 otherwise.

A character χ(·) over Fq can be ‘lifted’ to an extension field Fqk by

χ(k)(γ) = χ(Trqk|q(γ)) = exp(2πiTrqk|p(γ)/p) , γ ∈ Fqk

The sums

K1(a, b) = K(a, b) =
∑

α∈F∗
q

χ(aα+ bα−1) and Kk(a, b) =
∑

γ∈F
∗
qk

χ(k)(aγ + bγ−1)

for a, b fixed elements of Fq, are referred to as Kloosterman sums [9]. In the
sequel we assume that χ(·) is a fixed nontrivial character of Fq and ab 6= 0
since otherwise the sums are trivial. A fundamental result is that

Kk(a, b) = −ωk
1(a, b) − ωk

2(a, b) (1)

where ω1(a, b), ω2(a, b) (or simply ω1 and ω2 when the a, b are understood)
are complex numbers defined by

1 + K(a, b)z + qz2 = (1 − ω1(a, b)z)(1 − ω2(a, b)z).

It is immediate that

K(a, b) = −ω1(a, b) − ω2(a, b) and ω1(a, b) · ω2(a, b) = q.

It follows from the Riemann Hypothesis for function fields, that

|ω1(a, b)| = |ω2(a, b)| =
√

q,

so that
|K(a, b)| ≤ 2q1/2.

It is interesting to note that Kk(a, b) is entirely determined by the ground field
Fq, K1(a, b) and k.

Furthermore, since

ωk
1 + ωk

2 = (ω1 + ω2) · (ωk−1
1 + ωk−1

2 ) − q(ωk−2
1 + ωk−2

2 ) , k ≥ 2
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the following recursion is immediate [3,9]:

Kk(a, b) = −K1(a, b)Kk−1(a, b) − qKk−2(a, b) k ≥ 2, K0(a, b) = −2. (2)

which will prove useful in the sequel. More generally, by the same argument,
we have:

Kk(a, b) =−Ks(a, b)Kk−s(a, b) − qsKk−2s(a, b)

k ≥ 2, K0(a, b) = −2, 1 ≤ s ≤ ⌊k/2⌋. (3)

For k = 2ℓ the last equation gives

K2ℓ(a, b) = −K2
ℓ (a, b) + 2qℓ

We adopt the convention that Kk(a, a) = Kk(a). The ground field will be
assumed Fq and note that Kk(0, 0) = Kk(0) = qk − 1.

A further identity, which shows explicitly the dependence of Kk(a, b) only on
Fq and K1(a, b) (again, assuming a fixed nontrivial character χ(·)) is [3,9]

Kk(a, b) =
⌈k/2⌉
∑

j=0

(−1)k−j−1 k

k − j

(

k − j

j

)

qjKk−2j
1 (a, b), ab 6= 0. (4)

Such Kloosterman sums have been widely investigated for a variety of applica-
tions in coding, sequence design, equations over finite fields and many others
(see e.g [5,?,?]). In the next section we derive a formula that gives the num-
ber of times each element of Fq is assumed as a value of a Kloosterman sum
evaluated over Fqk . This adds, for example, to the work of Katz and Livné [6],
which gives results for the case q = 2 and 3. Such numbers will be shown to
have properties similar to those of the Kloosterman sums themselves.

Section 3 considers the interpretation of this result to two problems; (i) inter-
preting the result in terms of point counting on elliptic curves. (ii) enumerating
irreducible polynomials with a certain type of restriction on their coefficients.
The work is an extension of work initiated in [2].

2 A result on the values of Kloosterman sums

Consider first, for fixed a, b ∈ Fq, the set of elements γ in Fqk such that

Sk(β, a, b) = {γ ∈ Fqk |Trqk|q(aγ + bγ−1) = β} , a, b, β ∈ Fq
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and let nk(β, a, b) = |Skβ, a, b)| where Trqk|q(·) is the trace function of Fqk over
Fq. A few easy observations are recorded below.

Proposition 1 Let Fq be a finite field of characteristic p, a, b, c, β ∈ Fq. Then

(1) γ ∈ Sk(β, a, b) =⇒ γq ∈ Sk(β, a, b).
(2) nk(β, a, b) = nk(−β, a, b).
(3) If a 6= 0 then nk(β, a, a) = nk(βa−1, 1, 1).
(4) If c 6= 0 then nk(β, ca, cb) = nk(βc−1, a, b).
(5) nk(β

p, ap, bp) = nk(β, a, b).

While our main interest will later be in the quantities Kk(1, 1), proofs will be
given for the general case.

Theorem 1 Let a, b, c ∈ Fq, c 6= 0 and Kk(a, b) the Kloosterman sum associ-
ated to a non-trivial additive character χ of Fq. Then

1. Kk(ca, cb) =
∑

η∈Fq

nk(η, a, b)χ(cη). (5)

and

2. nk(β, a, b)=
1

q

∑

c∈Fq

χ̄(cβ)Kk(ca, cb) (6)

=−1

q

∑

c∈Fq

χ̄(cβ)(ω1(ca, cb)k + ω2(ca, cb)k) (7)

PROOF. For the first part of the Theorem, for c = 1, we see that

Kk(a, b) =
∑

γ∈F
∗
qk

χ(Trqk|q(aγ + bγ−1)) =
∑

β∈Fq

nk(β, a, b)χ(β).

More generally,

Kk(ca, cb) =
∑

β∈Fq

nk(β, ca, cb)χ(β)

=
∑

β∈Fq

nk(βc−1, a, b)χ(β)

=
∑

η∈Fq

nk(η, a, b)χ(cη),

where we used Proposition 1 in the second equality.
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For the second part of the theorem, to determine the quantities nk(β, a, b) let
χ(·) denote the a nontrivial character of Fq and consider the sum

∑

γ∈F
∗
qk

{
∑

c∈Fq

χ(c(Trqk|q(aγ + bγ−1) − β))} . (8)

If γ is such that Trqk|q(aγ + bγ−1) = β then the inner sum is q and otherwise
0. Thus the expression of Equation (8) is qnk(β, a, b) and so

nk(β, a, b)=
1

q

∑

γ∈F
∗

qk

{
∑

c∈Fq

χ(c(Trqk|q(aγ + bγ−1) − β))}

=
1

q

∑

γ∈F
∗
qk

∑

c∈Fq

χ(cTrqk|q(aγ + bγ−1)χ̄(cβ) (9)

=
1

q

∑

c∈Fq

χ̄(cβ)
∑

γ∈F
∗

qk

χ(cTrqk|q(aγ + bγ−1))

=
1

q

∑

c∈Fq

χ̄(cβ)
∑

γ∈F
∗
qk

χ(k)(c(aγ + bγ−1))

=
1

q

∑

c∈Fq

χ̄(cβ)Kk(ca, cb)

=−1

q

∑

c∈Fq

χ̄(cβ)(ω1(ca, cb)k + ω2(ca, cb)k),

where the last equation follows from the identities of Kloosterman sums noted
earlier, where

1 + K1(a, b)z + qz2 = (1 − ω1(a, b)z)(1 − ω2(a, b)z)

and K1(a, b) =
∑

η∈Fq
χ(aη + bη−1).

The last part of the theorem could have been obtained using the orthogonal-
ity of the characters but the above proof seems more illustrative. From the
theorem it is emphasized that the quantities nk(β, a, b) can be obtained using
only knowledge of K1(a, b) over Fq and k. Furthermore the sets of quantities
{nk(β, a, b), β ∈ Fq} and {Kk(ca, ηb), c ∈ Fq} are a type of transform of each
other via Equations 5 and 6.

The following Corollaries emphasize this point of view by emulating multpi-
cation and convolution in the two domains.

Corollary 1 Let a, b ∈ F
∗
q and c, β ∈ Fq. Then
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1

q

∑

c∈Fq

χ̄(cβ)K2
k(ca, cb) =

∑

η∈Fq

nk(η, a, b)nk(β − η, a, b), (10)

∑

β∈Fq

χ(cβ)n2
k(β, a, b) =

1

q

∑

d∈Fq

Kk(da, db)Kk((c − d)a, (c − d)b)). (11)

PROOF. To prove Equation (10), we compute

q
∑

η∈Fq

nk(η, a, b)nk(β − η, a, b)

= q
∑

η∈Fq

1

q

∑

c∈Fq

χ̄(cη)Kk(ca, cb)
1

q

∑

d∈Fq

χ̄(d(β − η))Kk(da, db)

=
1

q

∑

c∈Fq

∑

d∈Fq

χ̄(dβ)Kk(ca, cb)Kk(da, db)
∑

η∈Fq

χ̄((c − d)η).

The sum over η equals q when c = d and zero otherwise and the statement
follows. The proof of Equation (11) is completely analogous.

The following Corollary tries to emulate the recursion relations for the Kk(a, b)
of Equation (3).

Corollary 2 Let a, b ∈ F
∗
q and β ∈ Fq. Then for 1 ≤ s ≤ ⌊k/2⌋

nk(β, a, b)=−
∑

η∈Fq

nk−s(η, a, b)ns(β − η, a, b) + qsnk−2s(β, a, b)

+2qs−1(qk−s − 1), k ≥ 2, qn0(β, a, b) = −2, ab 6= 0.

PROOF. Although the proof is elementary, using standard transform tech-
niques, we give an outline of it, noting that to use Equation 3 we require
ab 6= 0:

nk(β, a, b)=
1

q

∑

c∈Fq

χ̄(cβ)Kk(ca, cb)

=
1

q

∑

c∈F∗
q

χ̄(cβ)Kk(ca, cb) +
1

q
(qk − 1)

=
1

q

∑

c∈F∗
q

χ̄(cβ) {−Ks(ca, cb)Kk−s(ca, cb) − qsKk−2s(ca, cb)} +
1

q
(qk − 1)

and
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nk(β, a, b)=−1

q

∑

c∈F∗
q

χ̄(cβ)Ks(ca, cb)Kk−s(ca, cb)

−qs−1
∑

c∈F∗
q

χ̄(cβ)Kk−2s(ca, cb) +
1

q
(qk − 1) (12)

The rest of the proof is repeated use of the the first part of Theorem 1 and
the fact that Kk(0, 0) = qk − 1. The second sum in Equation 12 is then:

−qs−1







∑

c∈Fq

χ̄(cβ)Kk−2s(ca, cb) − χ̄(0)Kk−2s(0, 0)







=−qsnk−2s(β, a, b) + qs−1(qk−2s − 1).

The first sum in Equation 12 is:

−1

q

∑

c∈F∗
q

χ̄(cβ)Ks(ca, cb)Kk−s(ca, cb)

=−1

q

∑

c∈F∗
q

χ̄(cβ)Ks(ca, cb)







∑

η∈Fq

nk−s(η, a, b)χ(cη)







=−1

q

∑

η∈Fq

nk−s(η, a, b)







∑

c∈Fq

χ(c(η − β))Ks(ca, cb) − χ(0)Ks(0, 0)







=
∑

η∈Fq

nk−s(η, a, b)







−1

q

∑

c∈Fq

χ̄(c(β − η))Ks(ca, cb)







+
1

q
(qs − 1)

∑

η∈Fq

nk−s(η, a, b)

=−
∑

η∈Fq

nk−s(η, a, b)ns(β − η, a, b) +
1

q
qs−1(qk−s − 1)

The sum of all three terms in the original equation gives the result of the
Corollary.

The result of the theorem for the case s = 1 is

∑

η∈Fq

nk−1(η, a, b)n1(β − η, a, b) + 2(qk−1 − 1).

The only other result of a similar nature known to the authors is that in [6]
which relates nk(β) to a summation of a certain function over orders in a
certain algebraic number field containing the ring of its integers for the case
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of q = 2 or 3. The generality and simplicity of these Corollaries however is
appealing.

Theorem 1 allows for good estimates for the values nk(β, a, b), which we state
as a corollary.

Corollary 3 Let, a, b, β ∈ Fq. Then

nk(β, 0, 0) =











qk − 1, if β = 0

0, if β 6= 0

|nk(β, a, b) − qk−1| ≤ 2q
k
2 , if ab 6= 0.

PROOF. The first statement follows immediately from the definition of Kloost-
erman sums. For the estimate in the case ab 6= 0, we use Theorem 1. The main
contribution comes from the term corresponding to c = 0 and the remaining
terms are bounded by 2q

k
2 .

The figures in the following example were used to illustrate and verify many
of these Corollaries.

Example: To illustrate the above computation, let β be a root of the ir-
reducible polynomial x3 + x + 1 ∈ F2[x] used to construct F8, q = 8. We
only consider the case a = b = 1 and as noted let Kj(β, 1, 1) = Kj(β) and
nj(β, 1, 1) = nj(β). The values for nk(β) were computed directly by computer
and the values for Kj(β) computed from K1(β) and the recursion (2). The
information in the following table is then readily verified:
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Fq 0 1 {β, β2, β4} {β3, β5, β6}

tr8|2 0 1 0 1

K1(β) 7 -5 -1 3

n1(β) 1 0 0 2

K2(β) 63 -9 15 7

n2(β) 15 12 4 8

K3(β) 511 -5 23 -45

n3(β) 55 90 66 56

K4(β) 4095 47 -97 79

n4(β) 511 440 520 528

K5(β) 32767 275 -281 123

n5(β) 4071 3910 4150 4112

K6(β) 262143 999 -495 -1001

n6(β) 32703 33204 32956 32456

3 Applications of the result

Two simple applications of the results of the previous secion are considered:
an interpretation of the set of solutions of an elliptic curve over an extension
field in terms of the solutions over the ground field and the enumeration of
irreducible polynomials over Fq whose coefficients satisfy certain condition.

Consider first the set of solutions of an elliptic curve over Fqk where the equa-
tion of the curve is defined over Fq. For this problem we assume fields Fq and
Fqk of characteristic two only. There are 2(q − 1) nonisomorphic curves over a
field of characteristic two which may be represented by equations of the form

y2 + xy = x3 + a2x
2 + a6, a2 ∈ Fq, a6 ∈ F

∗
q (13)

where a2 is chosen to have trace, over F2, of either 0 or 1. We assume a2 = 0
here. The zeta function for such curve is of the form

Z(T ) =
P (T )

(1 − T (1 − qT )
, P (T ) = 1 − c1T + qT 2 = (1 − ω1T )(1 − ω̄1T )

where the number of points of Equation (13) is #E(Fq) = q +1−c1. It is easy

9



to see that
#E(Fqk) = qk + 1 − ck = qk + 1 − ω1

k − ω̄1
k

where the ci satisfy the recursion cn = c1cn−1−qcn−2, c0 = 2. The relationship
between these facts and the corresponding Kloosterman sums is immediate.

We wish to make an elementary observation on these facts by using the results
of the previous section. Consider the Equation (13) with a2 = 0. Transform
the equation by letting y = xz, x 6= 0 and set x = 4

√
a6u (squaring in a field

of characteristic 2 is an isomporphism) to give the equation:

z2 + z = 4
√

a6u +

√
a6

u2
.

The equation will have two distinct solutions iff

Trqk|2(
4
√

u + u−1) = 0. (14)

and the total number of solutions will be 0 (mod 4). From the previous section
we have that

Sk(β, 1, 1) = Sk(β) = {γ ∈ Fqk |Trqk|q(γ + γ−1) = β}

and |Sk(β)| = nk(β, 1, 1) = nk(β). Now the trace of Equation (14) can be
realized in two steps, first Trqk|q and then Trq|2. Thus if we define

T0 = {α ∈ Fq | Trq|2(aα) = 0} , a =
√

a6.

It follows immediately from the transitivity of the trace function that

#E(Fqk) =
∑

β∈T0

nk(β).

In words we have that the number of solutions of the Equation (13) (a2 = 0) is
determined entirely by the quantities nk(β) and the set T0 and the only effect
of the constant a6 is to determine the set T0. This gives a direct observation
of how the number of points on the curve of Equation (13) over Fq determines
the number of points of the curve over Fqk .

The second application concerns the enumeration of certain irreducible poly-
nomials over Fq. The enumeration of irreducible polynomials such that certain
coefficients are chosen independently has been of great interest in receent lit-
erature (see [4] for a recent sumary of such results). Our purpose here is to
observe that the results of the previous section have an application here, al-
though the condition of interest is somewhat artificial. Suppose that

Xk + c1X
k−1 + · · ·+ ck−1X + ck ∈ Fq[X]

is irreducible over Fq and let γ be a root of the polynomial in Fqk . Note that
c1 + ck−1/ck = −Trqk|q(γ + γ−1). The set Sk(β) defined earlier is then the set
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of roots of all monic irreducible polynomials over Fq whose degrees divide k
with the property that the second coefficient plus the ratio of the last two
cefficients is β. While this condition is somewhat artificial in comparison to
setting the coefficients arbitrarily in Fq, it nonetheless seems of interest that
the enumeration of such polynoials follows directly from the previous results.

If γ ∈ Sk(β) is a root of a monic irreducible polynomial over Fq of degree d|k
then

Trqk|q(γ + γ−1) =
k

d
Trqd|q(γ + γ−1)

Let Rk(β) = {γ ∈ Sk(β) : deg(γ) = k} be the subset of Sk(β) of elements of
degree k. Then it is not hard to see that

Sk(β)=
⋃

d|k

Rd

(

d

k
β

)

, if (k, q) = 1

Sk(β)=
⋃

d|k

( k
d

,q)=1

Rd

(

d

k
β

)

, if (
k

d
, q) > 1 and β 6= 0

Sk(0)=
⋃

d|k

( k
d

,q)=1

Rd (0)
⋃

c∈Fq

⋃

d|k

( k
d

,q)>1

Rd(c) if (k, q) > 1

Denoting rd(β) = |Rd(β)|, we have

nk(β) =























































∑

d|k
rd

(

d
k
β
)

, if (k, q) = 1,

∑

d|k

( k
d

,q)=1

rd

(

d
k
β
)

, if (k, q) > 1 and β 6= 0

∑

d|k

( k
d

,q)=1

rd (0) +
∑

c∈Fq

∑

d|k

(k
d

,q)>1

rd(c), if (k, q) > 1 andβ = 0.

which is equivalent to

nk(β) =



































∑

d|k

( k
d

,q)=1

rd

(

d
k
β
)

, if β 6= 0

∑

d|k

( k
d

,q)=1

rd (0) +
∑

c∈Fq

∑

d|k

(k
d

,q)>1

rd(c), if β = 0.
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Suppose now that (k, q) = 1 and β = 0. Then

nk(0) =
∑

d|k

rd(0),

and the Möbius inversion formula gives

rk(0) =
∑

d|k

µ

(

k

d

)

nd(0).

Proposition 2 Let q be a prime power and k ∈ N with (k, q) = 1. The
number, Iq,k(0), of irreducible polynomials of degree k of the form f = Xk +
c1X

k−1 + · · · + ck−1X + ck ∈ Fq[X] with c1 + ck−1/ck = 0 is given by

Iq,k(0) =
1

k

∑

d|k

µ

(

k

d

)

nd(0) =
1

kq

∑

c∈Fq

∑

d|k

µ

(

k

d

)

Kd(c, c).

In particular,

∣

∣

∣

∣

∣

Iq,k(0) − qk−1

k

∣

∣

∣

∣

∣

≤ 3q
k
2

k
.

PROOF. It suffices to observe that Iq,k(0) = 1
k
rk(0), and make use of Theo-

rem 1. For the stated bound, we compute

Iq,k(0) =
1

kq

∑

c∈Fq

∑

d|k

µ

(

k

d

)

Kd(c, c)

=
1

kq





∑

d|k

µ

(

k

d

)

Kd(0, 0) +
∑

c∈F∗
q

∑

d|k

µ

(

k

d

)

Kd(c, c)





=
1

kq









qk − 1 +
∑

d|k
d<k

µ

(

k

d

)

Kk(0, 0) +
∑

c∈F∗
q

∑

d|k

µ

(

k

d

)

Kd(c, c)









.

Therefore,
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∣

∣

∣

∣

∣

Iq,k(0) − qk−1

k

∣

∣

∣

∣

∣

≤ 1

kq









1 +
∑

d|k
d<k

(qd − 1) + (q − 1)
∑

d|k

2q
d
2









≤ 1

kq



q
q

k
2 − 1

q − 1
+ 2(q − 1)

q
k
2
+1 − q

1
2

q − 1





≤ q
k
2

kq

2q2 − q

q − 1

≤ 3q
k
2

k
.

We note that the coefficient 3 is an upper bound for (2q−1)/(q−1). For q > 2
it can be substituted by 5/2.

Proposition 3 Let q be a power of p ∈ {2, 3}, k ∈ N, and β ∈ F
∗
q. Write

k = pem, (m, p) = 1. Then the number of irreducible polynomials of degree k
of the form f = Xk +c1X

k−1 + · · ·+ck−1X +ck ∈ Fq[X], with c1 +ck−1/ck = β
is given by

Iq,k(β) =
1

k

∑

d|m

µ
(

m

d

)

nped(β).

In particular,
∣

∣

∣

∣

∣

Iq,k(β) − qk−1

k

∣

∣

∣

∣

∣

≤ 3q
k
2

k
.

PROOF. We start from

nk(β) =
∑

d|k

( k
d

,q)=1

rd

(

k

d
β

)

.

Since we are in a field of characteristic 2 or 3, and (k
d
, q) = 1, we have k

d
β = ±β.

It is not hard to see that rped(−β) = rped(β). So the equation becomes

npem(β) =
∑

d|k

( k
d

,q)=1

rd (β) =
∑

d|m

rped(β)

and by Möbius inversion we get

rpem(β) =
∑

d|m

µ
(

m

d

)

nped(β),

13



which proves the first statement. For the second estimate, we compute

Ik(β) =
1

k
nk(β) +

1

k

∑

d|m
d<m

µ
(

m

d

)

nped(β).

The main contribution comes from 1
k
nk(β). Using the estimate of Corollary 3,

we get the stated bound.

4 Comments

The number of times a certain trace function over Fqk takes on a given value
in Fq has been investigated and shown to have interesting transform-like prop-
erties, in similarity to the Kloosterman sums themselves. These quantities are
used to give a direct interpretation of the number of points over Fqk of an ellip-
tic curve, defined over Fq. Additionally the result was related to determining
the number of irreducible polynomials over Fq that satisfy a certain condition
on certain of its coefficients.

Acknowledgement: The authors would like to thank Chris Studholme for
obtaining the figures in the example of Section 2, using NTL.
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