
Irreducible polynomials with consecutive zero

coefficients

Theodoulos Garefalakis

Department of Mathematics, University of Crete, 71409 Heraklion, Greece

Abstract

Let q be a prime power. We consider the problem of the existence of monic irre-

ducible polynomials over Fq with consecutive coefficients fixed to zero. We show that

asymptotically, there exist monic irreducible polynomials of degree n over Fq with

roughly n/3 consecutive coefficients fixed to zero.
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1 Introduction

Let Fq be a finite field with q elements, of characteristic p. We denote by
A = Fq[T ] the ring of polynomials over Fq. It is well-known that asymptotically,
the number of irreducible polynomials in A of degree n is approximately qn/n.
However, much less is known about the number, or even the existence of
irreducibles of certain form, for instance with some coefficients fixed to given
values.

Given an integer n > 1, it has been proved independently by S.D. Cohen [2]
and R. Ree [13], that for all large enough q, there always is an irreducible poly-
nomial over Fq of the form T n +T +a. However, much less is known when q is
fixed and n large. In [10], T. Hansen and G.L. Mullen conjecture that given in-
tegers n > m ≥ 0 there exists a monic irreducible polynomial over Fq of degree
n with the coefficient of T m fixed to any given element a ∈ Fq. Of course, a 6= 0
if m = 0. By considering primitive polynomials with given trace, S.D. Cohen
[4] proves that the conjecture is true for m = n − 1. In [15], D. Wan settles
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the conjecture subject to the condition that either q > 19 or n ≥ 36, leaving
a finite number of cases to be checked. By machine assisted computations,
K.H. Ham and G.L. Mullen have verified the conjecture for these remaining
cases in [9]. Prior to this work, E.N. Kuz’min [12] determined the number of
monic irreducibles of degree 4 with the coefficients of T 3, T 2, T fixed to given
values. Special attention is given to the case where the coefficients of T 3 and
T 2 are zero. Similar results on the number of polynomials of given degree n of
given factorization pattern which satisfy an additional property, such as that
certain coefficients are prescribed, have been obtained by S.D. Cohen in [3].
The analogous problem for primitive polynomials has also attracted consider-
able attention. The analogue of Wan’s result has been proved to be true by
S.D. Cohen [5]. A survey on the subject by S. Gao, J. Howell and D. Panario,
including experimental results as well as some applications can be found in
[8].

It is natural to ask, and in fact to expect, that much more than the above
is true. Namely, one would expect that irreducible polynomials exist with
many coefficients fixed to given values. The objective of this work is to show
that monic irreducible polynomials of degree n over Fq exist with up to ⌊cn⌋
consecutive coefficients fixed to zero, where 0 < c < 1 and the condition
(1 − 3c)n ≥ 2 + 8 logq n is satisfied. Such irreducibles are called sparse and
have many practical applications, see [6,7]. The proof of the main theorem is
based on an estimate of a weighted sum, which is very similar to the one that
D. Wan considers. The main tool is Weil’s bound for character sums.

We record the following elementary lemma, which will be useful later. Let
f(T ) =

∑n
i=0 aiT

i ∈ Fq[T ] and denote by f ∗(T ) =
∑n

i=0 an−iT
i its reciprocal.

Lemma 1 Let f(T ) =
∑n

i=0 aiT
i ∈ Fq[T ] with ana0 6= 0. The polynomial f is

irreducible over Fq if and only if f ∗ is irreducible over Fq.

2 Character sums

It is well known that Dirichlet’s theorem for primes in arithmetic progression
has an analogue in A. Let f, h ∈ A relatively prime. We reserve the letter P
to denote a monic irreducible polynomial in A. Let

Sn(h, f) = {P ∈ A | P ≡ h (mod f), deg(P ) = n}.

We denote by πn(h, f) the cardinality of Sn(h, f). The following asymptotic
version of Dirichlet’s theorem is well-known, see for instance [14].
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Theorem 1 πn(h, f) =
1

Φ(f)

qn

n
+ O

(

qn/2

n

)

.

Here Φ(f) is the order of the group (A/fA)∗, and the degree of f is assumed
to be constant (not depending on n).

Let f = T m ∈ A and h ∈ A with deg(h) ≤ m − 1. Then Sn(h, f) contains
all irreducibles with the lower m coefficients fixed to those of h. For m fixed,
Theorem 1 gives an estimate of the number of irreducibles with the lower m
coefficients fixed to any values. Lemma 1 then implies that the same estimate
holds if the upper m coefficients are fixed.

It is well-known that the truth of the Riemann hypothesis for function fields
leads to effective versions of Theorem 1, see for instance [15]. The basic tools
are bounds for character sums, sometimes referred to as Weil character sums.
We recall here the main notions and results for future reference.

Let χ be a character of the group (A/fA)∗, that is, a homomorphism from
(A/fA)∗ to C

∗. The character χ extended to A by zero is called a Dirichlet
character mod f . The trivial character, that maps all polynomials prime to f
to 1 is denoted by χo. Define the sum

cn(χ) =
∑

d|n

∑

deg(P )=d

dχ(P n/d),

where the inner sum is over all monic irreducible polynomials of degree d. It
will be convenient to express, as in [15], cn(χ) in terms of the von Mangolt
function Λ, which is defined on A as follows: Λ(h) = deg(P ) if h = P e for
some irreducible P and an integer e, and is zero otherwise. It’s rather easy to
see that

cn(χ) =
∑

deg(h)=n

Λ(h)χ(h),

where the sum is over all monic polynomials of degree n. Further, we define

c′n(χ) =
∑

deg(P )=n

χ(P ),

where the sum is over monic irreducibles of degree n. We denote by πn the
number of irreducible polynomials of degree n in A. It is well-know that
∑

d|n dπd = qn. The Moebius inversion formula then implies that

nπn =
∑

d|n

µ(d)qn/d = qn +
∑

d|n,d>1

µ(d)qn/d.
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Since

|
∑

d|n,d>1

µ(d)qn/d| ≤
∑

0≤d≤n/2

qd ≤ 2qn/2,

it follows that
∣

∣

∣

∣

πn − qn

n

∣

∣

∣

∣

≤ 2

n
qn/2.

The following theorem follows from the Riemann hypothesis for function fields,
see [15].

Proposition 1 If χ 6= χo then

(1) |cn(χ)| ≤ (deg(f) − 1)qn/2,
(2) |c′n(χ)| ≤ 1

n
(deg(f) + 1)qn/2.

Also, cn(χo) = qn and c′n(χo) = πn.

Using Proposition 1 it is not hard to show the following effective version of
Dirichlet’s theorem for A.

Theorem 2 (Theorem 5.1 of [15]) Let f, h ∈ A, with (f, h) = 1. Then

∣

∣

∣

∣

∣

πn(h, f) − qn

nΦ(f)

∣

∣

∣

∣

∣

≤ m + 1

n
qn/2.

Theorem 2, applied with f = T m, immediately implies that there always exists
a monic irreducible polynomial of degree n with the coefficients of roughly
n/2 − logq n lower coefficients fixed (provided that the constant term is not
zero). Lemma 1 then ensures the existence of a monic irreducible of degree n
with roughly n/2− logq n higher coefficients fixed. More precisely we have the
following corollary.

Corollary 1 Let n > m ≥ 1 be integers satisfying qn/2 ≥ (m+1)qm. For any
β0, β1, . . . , βm−1 ∈ Fq with β0 6= 0, there exists a monic irreducible polynomial
P = T n +

∑n−1
i=0 aiT

i in A of degree n, with ai = βi, 0 ≤ i ≤ m−1. Also, there
exists a monic irreducible polynomial with an−i = βi, 1 ≤ i ≤ m − 1.

Irreducibles of degree n with roughly n/2 leading or trailing coefficients pre-
scribed can by found effectively: heuristic arguments and experimental results
suggest that one may prescribe up to n−2 logq n leading or trailing coefficients,
and an irreducible still exists. This set polynomials is of reasonable size – poly-
nomial in n, log q – and can therefore be searched exhaustively. This method
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of course depends on unproven assumptions. To the author’s knowledge, there
is no method that provably constructs the irreducibles of Corollary 1.

We note that Theorem 2 and Corollary 1 are classical. Generalizations have
been obtained by M. Car [1] and C-N. Hsu [11]. It follows from these gener-
alizations that irreducible polynomials of degree n exist with the leading n1

and trailing n2 coefficients are fixed to given values, subject to the condition
n1 + n2 is less than roughly n/2. Unfortunately, the above results do not give
us any information about irreducibles with some of the middle coefficients
fixed.

3 Irreducible polynomials with consecutive zero coefficients

Let n ≥ m > l > 1 be integers, and denote by Hl−1 the set of monic primary
polynomials of A of degree l − 1. We recall that a polynomial in A is called
primary if it is a power of an irreducible polynomial of A. We define

w(n, m, l) =
∑

h∈Hl−1

Λ(h)
∑

P≡h (mod T m)

1, (1)

where the inner sum is over monic irreducibles of degree n with stated prop-
erty. Proving that w(n, m, l) > 0 implies that there is a monic irreducible
polynomial P = T n +

∑n−1
i=0 aiT

i of degree n with the coefficients ai = 0 for
l ≤ i ≤ m − 1.

Theorem 3 With the above notation,

∣

∣

∣

∣

∣

w(n, m, l) − ql−mπn

q − 1

∣

∣

∣

∣

∣

<
m2 − 1

n
q(n+l−1)/2.

PROOF. First we rewrite the sum defining w(n, m, l) as

w(n, m, l) =
1

Φ(Tm)

∑

χ

∑

h∈Hl−1

Λ(h)
∑

deg(P )=n

χ(P )χ̄(h),

where the first sum is over the Dirichlet characters mod T m and the third sum
is over monic irreducibles of degree n. Separating the term corresponding to
χo and rearranging we have

w(n, m, l) − ql−1πn

Φ(Tm)
=

1

Φ(Tm)

∑

χ 6=χo

∑

deg(P )=n

χ(P )
∑

h∈Hl−1

Λ(h)χ̄(h).
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Therefore,

∣

∣

∣

∣

∣

w(n, m, l) − ql−1πn

Φ(Tm)

∣

∣

∣

∣

∣

≤ 1

Φ(Tm)

∑

χ 6=χo

∣

∣

∣

∣

∣

∣

∑

deg(P )=n

χ(P )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

h∈Hl−1

Λ(h)χ̄(h)

∣

∣

∣

∣

∣

∣

=
1

Φ(Tm)

∑

χ 6=χo

|c′n(χ)||cl−1(χ̄)|

<
m + 1

n
qn/2(m − 1)q(l−1)/2

=
m2 − 1

n
q(n+l−1)/2,

where we used the estimates of Proposition 1, and the fact that there are
Φ(Tm) distinct characters of (A/TmA)∗. 2

Corollary 2 Let n > m > l > 1 such that qn+l−2m ≥ qm4. Then there exists
a monic irreducible polynomial P = T n +

∑n−1
i=0 aiT

i ∈ A of degree n such that
am−1 = · · · = al = 0.

PROOF. From Theorem 3 it follows that

w(n, m, l) >
ql−mπn

(q − 1)
− m2 − 1

n
q(n+l−1)/2.

Since πn ≥ qn

n
− 2qn/2

n
, we have

w(n, m, l) >
qn+l−m

n(q − 1)
− 2qn/2+l−m

n(q − 1)
− (m2 − 1)q(n+l−1)/2

n
. (2)

It suffices to prove that under the condition of the corollary, the right-hand-
side is non-negative. Indeed, the right-hand-side is at least

1

n

(

qn+l−m−1 − m2q(n+l−1)/2 +

(

q(n+l−1)/2 − 2qn/2+l−m

q − 1

))

≥ q(n+l−2)/2

n

(

q(n+l)/2−m −√
qm2

)

≥ 0

where the first inequality holds since q(n+l−1)/2 ≥ 2qn/2+l−m

q−1
for 1 < l < m. 2

Corollary 2 can be used to show that there exist irreducible polynomials with
a large number of consecutive coefficients fixed to zero.
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Corollary 3 Let 0 < c < 1 and n a natural number such that (1 − 3c)n ≥
2+8 logq n. Then, there exists a monic irreducible polynomial of degree n over
Fq with any ⌊cn⌋ consecutive coefficients, other than the first and the last, fixed
to zero.

PROOF. We apply Corollary 2 to fix

m − l = ⌊cn⌋ (3)

coefficients. First, we observe that it suffices to consider the case

m + l ≤ n. (4)

The case m + l > n follows from this by an application of Lemma 1. We also
record that the conditions in Eq. (3) and Eq. (4) imply that

2m ≤ n + ⌊cn⌋. (5)

The corollary will follow if

qn−⌊cn⌋−m ≥ qm4 ⇐⇒
n − ⌊cn⌋ − 1 − 4 logq m≥m.

Given Eq. (5), the last condition is satisfied if

2n − 2⌊cn⌋ − 2 − 8 logq n≥n + ⌊cn⌋ ⇐⇒
n − 3⌊cn⌋≥ 2 + 8 logq n.

The last inequality is clearly satisfied, under the assumption of the corol-
lary. 2

The corollary shows that for any ǫ > 0 there exist monic irreducible polyno-
mials of degree n with up to ⌊(1/3 − ǫ)n⌋ coefficients fixed to zero, provided
that n is large enough. As an example, we show the following corollary.

Corollary 4 Let q be a prime power, and n a positive integer. Then there
exists a monic irreducible polynomial of degree n over Fq with any ⌊n/4⌋ coef-
ficients fixed to zero for prime powers 2 ≤ q ≤ 59 and the ranges for n shown
in the table below, and for q ≥ 60 and n ≥ 37.
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q n q n q n

2 ≥ 266 13 ≥ 59 32 ≥ 43

3 ≥ 155 16 ≥ 55 37 ≥ 41

4 ≥ 119 17 ≥ 53 41 ≥ 40

5 ≥ 100 19 ≥ 51 43 ≥ 40

7 ≥ 81 23 ≥ 48 47 ≥ 39

8 ≥ 75 25 ≥ 47 49 ≥ 38

9 ≥ 70 27 ≥ 45 53 ≥ 38

11 ≥ 64 31 ≥ 44 59 ≥ 37

PROOF. This is a consequence of Corollary 3 for c = 1/4. We have to show
that

n/4 ≥ 2 + 8 logq n (6)

for the parameters in the table. The function yq(t) = t−8−32 logq t is increas-
ing for t ≥ 32/ log q. For various values of q, we compute the single zero of yq(t)
numerically, and conclude that for t greater of equal to the zero yq(t) ≥ 0. The
ranges of t for each value of q are shown in the table above. Since yq′(t) ≥ yq(t)
for q′ ≥ q, we conclude that Eq. (6) holds for any q ≥ 60 and n ≥ 38. 2

4 Concluding Remarks

We have proved that there exist monic irreducible polynomials of degree n over
Fq with roughly n/3 coefficients fixed to zero. This is only a partial extension
of the result of D. Wan [15], which shows that (under the mild technical
condition that either q > 19 or n ≥ 36) there exist monic irreducible of degree
n with any one coefficient can be fixed to any value. It would be interesting to
extend the present result, and show that for n large enough, there exist monic
irreducibles of degree n with roughly n/3 coefficients fixed to any values.
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