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Abstract

Let IF, be a finite field of p elements, where p is prime. The
bit security of the Diffie-Hellman function over subgroups of IF; and
of an elliptic curve over IF,, is considered. It is shown that if the
Decision Diffie-Hellman problem is hard in these groups, then the two
most significant bits of the Diffie-Hellman function are secure. Under
the weaker assumption of the computational (rather than decisional)
hardness of the Diffie-Hellman problems, only about (log p)'/? bits are
known to be secure.
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1 Introduction

Let G be a finite cyclic group of cardinality #G = t with generator g. The
computational Diffie-Hellman problem, or CDH problem, in G is the problem
of computing ¢% from known values of g% and ¢° for two randomly chosen
integers a, b € [0,¢— 1]. Similarly, computing the function g%° from g and g°
is referred to as the Diffie-Hellman function. A related problem to the CDH
problem is the decision Diffie-Hellman problem, or DDH problem, which is
the problem of deciding whether ¢ = ab (mod t) for a given triple (g ¢°, g°).
It is believed that in most groups of cryptographic interest, the DDH prob-
lem is not easier than the CDH problem (obviously it is not harder). This
principle has however to be applied with caution, see [11].

These DH and the related discrete logarithm (DL) problems are of cen-
tral importance to cryptography and in particular, to cryptographic protocols
such as the DH key exchange and DL based encryption schemes. Much re-
search has been devoted to establishing the precise nature of their complexity
and relationships.

One aspect of the relationship is to note that even though the CDH or
DDH problems may be hard in a certain group, it does not necessarily follow
that some information on the problems, such as a few bits of the result
sought, are hard to obtain. The motivation to study this question comes
from private key derivation techniques. Typically, ¢? is hashed to a rather
short bit string which constitutes the actual private key. Various approaches
have been considered in the literature, and the reader is referred to [6] which
establishes important results on this very question.

One however may ask what happens if instead of these sophisticated tech-
niques one simply uses several of the most significant bits of an appropriate
encoding of ¢g?°. For example, if it is only intended to use the 64 or 128 most
significant bits of the Diffie-Hellman function as a key, it is of some impor-
tance to establish the difficulty of obtaining such partial information. It is
vital to make sure that there is no loss of security in this procedure. Thus,
it is natural to ask whether deriving some nontrivial information about the
Diffie-Hellman function ¢? is as hard as computing the whole value ¢g®. The
above property of hardness of computing some bits of information about g
is called bit security.

Two specific groups which are used in cryptography for which the prop-
erty of bit security is of special interest, are subgroups of IF} of prime order
and subgroups of the group of points on certain elliptic curves, again of prime



order.

Let IF), be a finite field of p elements, where p is prime. Let £ be an
elliptic curve over IF,, p > 3, given by an affine Weierstrass equation of the
form

y* = 2° + Az + B,

with coefficients A, B € IF,, such that 443 + 27B% # 0. We write every
finite point P € £(IF,) as P = (z(P),y(P)) and recall that the set £(IF,)
of IF,-rational points on any elliptic curve € forms an Abelian group (with
a point at infinity as the neutral element) and the cardinality of this group
satisfies the Hasse—Weil bound

[#E(F,) —p— 1] < 2p'/2, (1)

see [2, 18] for this and some other general properties ofelliptic curves. Ele-
ments of IF', are denoted by the integers from the set {0,...,p — 1}.

The study of bit security of the Diffie-Hellman function ¢g® has been
pioneered by Boneh and Venkatesan [4]. Their work [4] has introduced an
ingenious link between this problem and the closest vector problem in lattices,
which has been used in many other works on this subject, see [1, 3, 7, 8, 9,
14, 15, 16, 17] and references therein. In order to give a brief notion of the
genesis of this work, we note that [4] assumes the group of interest is the
entire I that is, of order p — 1.

The results required equidistribution results for the solutions of certain
equations and for smaller groups these are harder to establish. Gonzalez
Vasco and Shparlinski [9] have shown how the equidistribution properties
can be proved in much smaller groups, specifically in subgroups of I"; of size
at least 7 > p'/3*¢, which has been a significant step forward. The proof
of this result depended on obtaining suitable bounds for certain exponential
sums over subgroups of I of interest.

In summary, the results of [4, 9, 17] show that about (logp)'/? most
significant bits of the Diffie-Hellman key are hard to recover if the CDH
problem is hard. Certainly it is natural to try to reduce the number of bits
which are hard to compute. In this direction, Blake and Garefalakis [1] have
shown that already two bits are hard, however under a stronger assumption
of the hardness of the DDH problem.

The proof of the central result of [1], showing that if the DDH problem is
hard (in IF)) then finding two bits of the Diffie-Hellman function is also hard,
relied on the distribution result of [9] and hence the restriction on the size
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of the group to T > p'/3*+¢ carried over to that work. Various improvements
have been obtained on the size of the subgroup until the following surprising
result of Bourgain and Konyagin [5]. This result asserts that there exist
positive constants C; and Cy such that for any € > 0 and any subgroup G of
I with #G > p®, we have

Z exp(2micu/p)

ueg

=0 (#9r7), (2)

max
celry

where v = exp(C} /e%?)

This result on exponential sums can be carried over directly to extend
equidistribution results, in particular of [9]. Here we use this result on smaller
subgroups to reformulate and extend the results of [1] on two bits to smaller
subgroups in a way that allows us to use the full power of the method of [1].
Thus the restriction in [1] to groups of size T' > p'/**¢ is replaced by T > p°.
Certainly this is close to the natural threshold beyond which the problem
becomes void: if T" is very small then CDH can be solved by the classical
methods of Shank and Pollard.

We also obtain analogues of the results of [1] for subgroups G of point
groups of elliptic curves, that is, it is shown that an oracle O, capable of
returning 7 of the most significant bits of x(abQ) can resolve the DDH prob-
lem in k calls with probability at least 1 — 2-=D*  This result, however,
still requires an elliptic curve subgroup size of T' > p*/?*¢. We remark that
for the Diffie-Hellman function on elliptic curves a bit security result of a
slightly different flavor is given in [3].

In order to simplify the arguments and emphasize the new elements of
the work, it is assumed the subgroups G are of prime order, which is certainly
the most interesting case for cryptographic applications.

2 Distribution of Cyclic Subgroups of Finite
Fields and Elliptic Curves

Let ¢ € IF) be a fixed element of order 7. Given an element A € IF, and
positive integers 7, h, we denote by Ny(r, h) the number of solutions to the
congruence

A" =v  (mod p), 0<u<T-1,r+1<v<r+h.
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Similarly for elliptic curves, let @) € £(IF,) be a fixed point of order 7'
Given a point L € £(IF,) and positive integers r, h, we denote by Mp(r,h)
the number of solutions to the congruence

r(u@Q + L) —z(u@Q) =v (mod p), 0<u<T-1,r+1<v<r+h.

Results showing that both N,(r,h) are M (r,h) are close to their ex-
pected values are needed to establish the results of interest.

The following bound can be obtained from the results of [5] by using
exactly the same technique of Lemma 2.1 in [9] (see also [15]) except that
instead of the bound of exponential sums from [10, 13] the bound (2) is used,
which applies to elements ¥ € IF') of extremely small orders).

Lemma 1. For any ¢ > 0 there exists 0 > 0 such that for any element
v € IF) of order T > p° we have

Ny(r,h) — Tf = O(T"™).

max Imax
rh ged(Ap)=1

For elliptic curves a similar result follows from the bound of exponential
sums of [12]. Let O denote the point on infinity on an elliptic curve &€ defined
over IF),.

Lemma 2. For any € > 0 there exists 6 > 0 such that for any point ) €
E(IF,) of order T > p'/**¢ we have

Thi 15
max max ML(r,h)—7 =0(T 7).
Proof. Let 'H be the subgroup of £(IF,) generated by (). We have
T —2)h
My (r,h) — {=2h
p
r+h p—1

Z Z Z exp(2mic(z(P + L) — x(P) —v)/p).

1
p _ _
PEH—{O,~L} v=r+1 c=1

It follows from [12] that

Z exp(2mic(x(P 4 L) — z(P))/p)| = O(p'/?),

PEH—{0,~L}



and

p—1| r+h
Z Z exp(2mic(—v)/p)| < p(1 + logp).
c=1 |v=r+1

Therefore we get the bound

Th
'ML(T> h) — 1= O (p'*logp)

and since 7' > p'/?*¢_ the result follows. 0

3 Main Results

For integers ¢, denote by [Z], the remainder of ¢ on division by p.
For a real > 0, denote by APPR, () any integer u which satisfies the
inequalities
—1—
|[t], —ul <p2777. (3)

Thus, roughly speaking, when 7 is large, APPR, (%) is the integer defined by
the approximately n most significant bits of [¢] . However, this definition is
more flexible and better suited to our purposes. In particular we remark that
7 in the inequality (3) need not be an integer. In fact in our applications 7
can be an arbitrary small positive number (although to establish meaningful
probability bounds we will require > 1).

For example, if p is an n-bit prime, and we consider that all residues mod-
ulo p have n-bit long representations (starting with extra zeros, if necessary),
then two leading bits by, by of any residue ¢ can be used to find APPR4(¢):

|[£], — (2" "by + 2" %by 4 277%)| < 2"7F < p/a.

since 2"t < p < 2™,

As in [1], we note that if, for example, p = 2" +1 is a Fermat prime or any
other prime just a little larger than 2", then the traditional most significant
bit of almost all residues is zero and thus carries almost no information.

Fix an element g € IF). For a real n > 0 denote by DH, an oracle,
which given |¢g|, and Lgbjp, outputs APPR, (¢g%). We now show that such
an oracle can be used to solve the DDH problem for the group G of smaller
order than previously established [1], generated by g¢.



Theorem 3. Let € > 0 be an arbitrary fized real number. Assume g € IF),
1s an element of multiplicative order T" > p® which is prime. There exists
a probabilistic polynomial time algorithm, which for any triplet (a,b,c) €
(L, TP, given [g°],,, Lgbjp, Lg°],,, makes k calls to the oracle DH,, and decides
if ab = ¢ (mod T) with error probability (1 + o(1))2~~Lk,

Proof. Denote o = [g“bjp, and v = [¢°| . We wish to decide if a = . The
following steps are repeated k times.

1. Choose a random u € [1,T — 1] and compute yg®.
2. Query the oracle DH,, on input (¢**, ¢°).
3. Accept if and only if DH,(¢°"", ¢°) = APPR,,(v¢™).

Clearly, if a = ~ then Lagbujp = hgbujp for every u € {1,...,7— 1} and
the algorithm always answers correctly in this case.

We now show that if a # 7 the probability (taken over the random choices
ofu € {l,...,T—1}) that the algorithm errs is small. Indeed, the algorithm
makes the wrong decision only if the approximations of Longujp and hgbujp
are the same, which implies that

199", = lag™],| < p27 (4)
The inequality (4) is equivalent to
(@ —7)g"™ =v (mod p), lv| < p27".

Since the decision problem is trivial for b = T we assume that 1 < b < T, so
g has order T. Using Lemma 1, we see that the number of solutions to the
last congruence is 721" + O(T*~%) for some § > 0. Thus, the probability of
error is 217" + O(T 7).

Repeating the above experiment k times, with values of u chosen indepen-
dently, and accepting if and only if every run accepts, we conclude that the
probability of error is 20="% 4 O(20=DET=%k)  Given the bound T' > p° the
probability becomes 21"k 4 O (20=Dkp=e%k) which finishes the proof. O

The application of the technique of [1] is now used to establish a similar
result for subgroups of points on an elliptic curve. Fix a point € £(IF,) on
an elliptic curve & defined over IF,,. For a real n > 0 we denote by ECDH,, an
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oracle, which, given |z(a@Q)], and [2(bQ)],, outputs APPR,(z(abQ)). We
now show that such an oracle can be used to solve the DDH problem for the
group G generated by Q).

Theorem 4. Lete > 0 be an arbitrary fizved real number. Assume Q) € E(IF),)
is a point of order T > p'/?*¢ which is prime. There exists a probabilis-
tic polynomial time algorithm, which for any triplet (a,b,c) € [1,T]3, given
Q,aQ,bQ, cQ, makes k calls to the oracle ECD'H,, and decides if ab = ¢
(mod T) with error probability (1 + o(1))2~ =Dk,

Proof. Let a,b,c € [1,T], where T is prime. Then ab = ¢ (mod T) if and
only if ab@Q) = ¢Q. If r € [1,T] then obviously abQ) = c@ is equivalent to
u@ + L = u@ where L = abQ) — cQ) and u@) = c@) + rbQ, and clearly L is
fixed (for any given values of a,b and ¢) and u runs through [1,7] as r runs
through the same set.

If ab = ¢ (mod p) then u@ + L = u@ and therefore z(u@ + L) = x(uQ)
(mod p) for every value of u € [1,T]. If, on the other hand, ab # ¢ (mod T')
then z(u@Q+L) # x(u@) (mod p) except for one value of u (for which 2u@) =
—L since then z(uQ) = z(—uQ) = z(u@ + L) (mod p)). One would expect
this inequality to be reflected in the most significant bits of z(u@) + L) and
z(u@) for many values of u. The important observation is that the point
u@ + L can be realized as the Diffie-Hellman function, and an approximation
of its z-coordinate can be given by the oracle.

Assume now that ab #Z ¢ (mod p), which implies that L # O. Considering
the values of u € [1,T] for which APPR, (z(u@ + L)) = APPR, (z(uQ)) = B

we have
r(u@ +L)=v; (modp) and z(u@)=vs (mod p),
where

lv1 — B
vy — B

p27 "
p2~' ",

(VANVAN

and we have

r(u@Q + L) — x(uQ) =v (mod p),
0<u<T—1, —p27"T<ov<p27".



Lemma 2 now implies that the number of v and v in the above range that
satisfy (5) is 7217+ O(T*~?). Since v is uniquely determined by u, if r (and
therefore u) is chosen uniformly at random from [1,7 — 1] the probability
that v is in the range [—p2", p27] is 2177 + O(T~°).

The basic steps of the algorithm are

1. Choose r € [1,T] and compute Q1 = cQ + rbQ).
2. Query the oracle ECDH,, on input (z(aQ + rQ), z(bQ)).
3. Accept if and only if ECDH,(z(aQ + rQ), x(bQ)) = APPR,,(2(Q1)).

Repeating the above experiment k times, with values of  chosen indepen-
dently, and accepting if and only if every run accepts, we conclude that the
probability of error is 2% - O(21=DFT=9%) " Given the bound T > p'/?*+¢
the probability becomes 2(!="F + O (201=Dkp=(1/2+)3k) which finishes the
proof. O

4 Comments
This paper has significantly extended the results of [1] in two directions:

e It is observed that the elegant result of Bourgain and Konyagin [5] on
bounds for exponential sums over small subgroups, can be directly ap-
plied to obtain the necessary equidistribution results and hence extends
the result of [1] to almost arbitrary subgroups of IF}, in particular to

groups of size T > p° rather than T > p'/3*¢ as in [1].

e Given the equidistribution result on elliptic curves, implied by [12], the
technique of [1] is used to establish a similar result to resolve the DDH
problem with high probability, that is, given an oracle that returns the
17 > 1 most significant bits of the xz-coordinates of ab@), on input a@)
and bQ).

It seems not known at this point how to reduce the group size for the
elliptic curve problem, from T' > p'/?*¢ as is done for the case of IF,. On
the other hand, one can easily obtain similar results for y-coordinates and
for many other natural functions on points on elliptic curves.



It seems clear that the technique of [1] can also be applied to other related
Diffie-Hellman variants such as XTR and LUC. The bit security of these
is considered in [14] where, in particular, the security of the log'/? p most
significant bits is proved for the XTR variant of the Diffie-Hellman protocol.
The techniques of this work carry over to establish similarly improved results
for that case. Combining the approach of [1] with the method of [8], one can
consider the case of so-called noisy oracles which output a correct result only
with certain probability.

Finally, it would be interested to obtain analogues of the above results for
the case of binary fields IF5» or other extension fields of small characteristic.
In this case, a slightly different technique can be applied (see [7, 16]).
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