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Abstract

We show that Gk(IFy) acts on the set of irreducible polynomials o¥gr We study this action
and compute the cardinality of the set of fixed points of éersubgroups of Gh(F,). Our
results include enumeration of irreducible polynomiakstthre invariant under the substitution
X+ X+ b and under the substitutiofi— aX. From those results follow enumeration formulas
for the set of fixed points of any element of ordewherer is a prime divisor ofjorq— 1. The
results are combined to provide enumeration formulas ferfitked points of upper triangular
matrices.
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1. Introduction

Given a finite fieldFy and a natural numben, there is a unique extension Bf of degreen
within a fixed algebraic closure, denotig. Such an extension is algebraically generated over
IFy by a rootd of any irreducible polynomiaP e Fy[X] of degreen.

Any special properties of the irreducibieare naturally reflected in its root§', 0 < j <
n— 1. Such properties, that have been investigated, includetpity, normality, having certain
codficients fixed to given values, combinations of those propgrtror a survey of results in this
line of research, we refer to [1] and the references therein.

Given a polynomialff e Fy[X], it reciprocal fR is defined asfR(X) = X990 f(1/X). One
class of polynomials that has been invesitgated [2, 3, 4s Hjat of self-reciprocal irreducible
polynomials, that is, irreducible polynomials that satiBR(X) = P(X). Besides the theoretical
interest in their existence and density, self-reciprocaducible polynomials have been useful
in application, and in particular in the construction ofagrcorrecting codes [6, 7].

In this work, we observe that the group &E;) acts on the set of irreducible polynomials
over [, of degree at least 2. The “reciprocal” operator is given, um setting, as the action
of the matrixR = ( 2 é ) Our objective is to characterize the sets of fixed pointshef t
action of single elements of G(If,) (or equivalently of cyclic subgroups) on the $gbf monic
irreducibles of degrea, and to compute their cardinalities. It is well known thag trder of
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GLo(Fy) is (g — 1)*(q + 1). We show that the set of fixed points of the action of any efem

of a p-Sylow subgroup Gk(F;), wherep is the characteristic dfy, relates to irreducibles that
are invariant under the substitutidh— X + b, and we compute its cardinality. Further, for any
divisor ¢ of q — 1, we express the substitutioh— aX, as the action of a matrix of ordérand
compute the cardinality of the set of fixed points this mat#g a corollary, we obtain the number
of even irreducible polynomials of given degree. Finallg @btain enumeration formulas for the
number of fixed points of any upper triangular matrix. We rtbe the irreducible polynomials
that remain invarian under additive and multiplicativenstations have been studied, byfdient
methods, in [8] and [9] respectively. Methods similar togadn the present paper have been used
in [10] to study the action of subgroups of &IF,) on irreducible polynomials.

2. Group Action on Irreducibles

Let I denote the set of irreducible polynomialsligf X] of degreen having leading coé-
cient equal tol. For simplicity we denoté, the setl} of monic irreducibles of degree The set
of all irreducibles of degrer is denoted by;,. We denote byP, the set of polynomials iifig[ X]
of degreen that do not have roots iy, and letP = UpoPy.

The group GL(F,) acts on the se? by the rule

aX+hb a b
m) WhereA_( c d )eGLz(IFq).

fA = (cX + d)?e90 f (
Itis a simple calculation to show that the above rule defimesction of GLx(IF;) onP, the crucial
point being that iff = 3. f;X', then the leading cdicient of fA is f,a" if ¢ = 0 andc"f(a/c) if
c # 0. SinceAis invertible andf does not have roots i, the leading coicient is non-zero in
either case. It follows that the action preserves the degseawe get an action dhy,, forn > 2.

Lemma 1. Let Ae GLy(IFy) and Pe I, n > 2. Then P ¢ 1 for somel € Fy. Further, 4 is a

root of P if and only if(—dé + b)/(co — a) is a root of P}, where A= ( 2 g )

Proor. Letn = degP), 6 be aroot ofP and le{g = (—d6+b)/(cHd—a). Note thajs is well defined
sinced does not belong t&,. Thend = (a3 + b)/(c8 + d) and we compute

as+b
cB+d

Sopis aroot ofPA. If mis the degree of the minimal polynomial@bverlF,, thenFy = Fy(8) <
Fy(0) = Fgn, which implies thatmn. Converselyg = (a8 + b)/(¢8 + d) so thatly € Fyn, which
implies thatnm. It follows thatm = n = degP”) andP* is irreducible. Finally, note that if
B = (-dé + b)/(co — a) is a root of P* then B + d)"P(d) = 0. Sinces does not belong td,,
¢8 +d # 0 and it follows thatP(6) = 0. O

PAG) = (68 + d)“P( ) _ (8 +d)"P(e) = O,

From Lemma 1 it follows that the rule — P* defines an action of Gi(F;) on|;, for n > 2.
The following lemma is evident.

Lemma 2. Letd € F; and Pe I}, n= 2. Then(AP)* = APA.
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Our objective is to compute the fixed points, lip of certain subsets of GIIFy). If S C
GLy(IFy), we denote
C,(S)={Pel,: VAeS,P*=P}.

Lemma 3. Let A B € GL,(F;) be conjugate. Thei€, (A)| = IC,,(B)I.

Proor. SinceA andB are conjugate, there exists soldes GL,(F,), such thaB = U1AU. We
define the map

v:C, (A — GC,(B)
P — P

wherep is the unique element ifﬁ(;‘ that makesipPY monic. The map is well defined since
ApPY € 1, by the definition of1p, and using Lemma 2, we have

(ApPY)B = 4pPYYTAY = 1pPAY = 1pPY.

The map is one-to-one, sinc’e.‘»lP&J = Aszg, by applyingU~! to both sides, implies that
Ap,P1 = Ap,P2. SinceP; and P, are monic, we conclude thap, = Ap, andP; = P,. The
injectivity of y implies that|C, (A)| < |Cy,(B)|. The reverse inequality and the result follow by
symmetry.[]

Lemma 4. Leta € Fy and A€ GLo(F). If n =0 (mod ordq)), then G (A) = C;,(AA).

Proor. We first note that foP € I,,, P** = A"PA. The extra assumption on the degree, implies
thatP'A = PA. ThereforeP € C, (A) if and only if P € C;_(1A).

3. The substitutionX » X + b

LetA= ( é ? ) € GLy(IFy), b # 0. In this section, we consider the fixed points|jnof A.
SincePA(X) = P(X + b), we call the polynomials that are fixed Byperiodic. The order oAin
GL(F,) is equal to the characteristicof Fy. ThereforgA) is generated by ang, 0 < j < p.
Noting thatA maps monic irreducibles of degree= 2 to monic irreducibles of the same degree,
we see that

PA=P — PY=P
forany O< j < p.

Proposition 1. Let[Fy be of characteristic p, B C,,(A), n > 2 and6 a root of P. Then r= pm
for some me N. Further, the sefse N : 67 = 9 — b} is non-empty and & rp = min{se N :
69 = 6 — b} satisfied < r < pm and n.

Proor. SinceP € C, (A) andn > 2 it follows from Lemma 1 tha# — b is a root ofP. Therefore,
69 = 6 — b for some 0< s < n (note thats # 0 otherwise we would havie = 0). Thus the
set{se N : 69 = 9 — b} is non-empty. Thus = rp exists and, by its definitiorgd = 6 — b,
0 <r < n. ltis easy to see then, th@f = 6 — jb, so tha®" = 6. It follows thatn|pr. If p h, we
would haven|r, which is impossible, since @ r < n. Thusn = pmfor somem € N. Sincen|pr
andn = pmwe obtain thatn|r. [
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Itis clear that the intega® depends only on the polynomi| and not on the roat.

Definition 1. LetP € C; (A), me N, 6 aroot of P, andrp = min{s € N : ¢ = 6—b}). The
integerntp = rp/mis called the type oP.

Clearly, the typep of a polynomialP € C, (A) liesin{1,...,p~-1}. In particulartp # O
(modp). ForO0O< j < p, we denote(:l(gn(A) = {P € G, (A : tp = j}. The next proposition
shows that the polynomials @, (A) are distributed equally with respect to their type.

Proposition 2. Forme Nand0 < j < p, |C|(i2n(A)| = |C|(§;(A)|.

Proor. We fix some O< j < p and considet); = ( J 8) € GLy(Iy), and observe that

UA = AlU,. If P e C,‘ii(A) andé is one of its roots, thed = 6 — b and by induction

69" = 0 — jb. DefineQ = j=PMPYi = j=PMP(jX), so thatQ is monic. The polynomia® is fixed
by A since
QM = (jPMPYIA = jPMPAY; = mPmpU; -
By Lemma 18 = 6/] is a root ofQ. We compute,
o o™
g = HT =?—b=,8—b.

Since O< j < p, it follows thatQ is of type j, so thatQ € Cl(izn(A). We have shown that the map
p:cP@) — c@
P — jPmPYi

is well defined. The same argument as in the proof of Lemmaw@sttwmty is injective. Finally,

if Qe C,‘iiﬂ(A), thenP = jP"QYi" is fixed by Al, and therefore fixed by, and has type 1.
Therefore, it is an element @Ifii(A) andy(P) = Q. So the map is surjective. It follows that
I (Al = IcPA)1. O

The set£|(i2n(A), 0< j < pforma partition ofC,  (A). Therefore,
ICipn(AI = D ICP (A = (p-DIC (A)], foranyj=1,...,p-1.
=1
DenotingNa(pm) = |C,, (A)l, we have
1 i .
Na(pm) = pT1|C|(:,?n(A)|, foranyj=1,....,p-1 1)
Theorem 1. Lety be of characteristic p, k N, Fyp = X¥—X+be Fy[X], and Pe I, n> 2.

Then P divides k, if and only if
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1. PeC(A),

2. n= pm, for some ne N.
3. mk,

4. & =tp 20 (modp).

Proor. Suppose thal dividesFyp, and leté be a root ofP. Thené® = 6 — b, which implies
thatd — b is a root ofP. SinceP” is irreducible, by Lemma 1, this forcé®\|P. SinceP andP”
are monic irreducibles, this implies, by induction, tRPdt= P, so thatP € C;_(A). The equality
¢4 = 9—bimplies tha® = 6 — jb for j € N, so thap®™ = 6. It follows thatn|pk. If we assume
thatp fnthen we would havelk which would imply thap® = 6, that isb = 0, a contradiction.
Thusn = pmfor somem € N. Sincen = pmpkwe getmlk. Finally, sinceP” = P, Proposition 1
implies that? = 6—bwithr = rp = tpmand O< tp < n. It follows thaté? = 69, which implies
thatk = r (mod n), and thereforek/m = tp (mod p).

Conversely, suppose thate C,, (A), andd is aroot ofP. Then by Proposition " = g-b.
The assumptiok/m = tp (mod p) implies thak = tom (mod n), and we have® = ¢9°" = 9—b.
It follows that is a root ofFy, SOP|Fyp. O

We note, that the necessary andfisient conditions in Theorem 1 can be writtenrgk and
Pe Cl(?m(A), with t = k/m (mod p). From this together with the fact that all the rootsqjf, are
simple, which can be checked using the derivative, we obtain

x¥-x+b=[][]P )
dk P

where the inner product is over irreducibleﬂﬁm(A) with t = k/m (mod p).

We can use Eq.(2) and Eq.(1) to comphig pm) for anym € N.
Theorem 2. Letne N. If n 2 0 (mod p), then Ny(n) = 0. If n = pm, me N, then M\(pm) =
ICi,.(A)| satisfies

-1
Napm) = 2= " ™.
P dm
d#£0 (mod p)

Proor. From Eq.(2), comparing degrees, we have

d=>" > pdc® (A,

dk P

where the inner sum is over polynomiéls C,‘?m(A), wheret is the remainder df/d on division
with p. Since|CfS?ﬂ(A)| =0 and|C|(i2n(A)| = ﬁNA(pm) for0 < j < p, by Eqg.(1), we have
k _ p
o = ;} 5 7ANA(PO.
k/d#0 (mod p)
Mobius inversion now yields
p k/d
——KkNa(pK) = .
S 7kNA(PK > ud)a

dik
dz0 (mod p)



The following corollary gives an estimate Ni(pm).

Corollary 1. Letme N. Then

m
2

qz.

_p—l' p-1 q
Na(pm) pm < pm g1

Proor. From Theorem 2 we have

_Pp-1 ma_ P=Lom, P-1 md
Na(pmy = == D) u@d™ = Somdh e S D) (™

dm dm
d£0 (mod p) d£0 (mod p)
d>1
It follows that
p-1 p-1 m/d
Na(pm) — ' < q
ml < pm
d#£0 (mod p)
d>1
[m/2]
p-1 i
= — q
pm ;
< p- 1 q qm/Z
pmqgq-1

A matrix of the form,( é 2 ) is a p-element of GL(F;). The set

T:{(é 2) : bqu},

is in fact a subgroup of Gi(FF,) of orderq. SincelGL(F,) = q(q— 1)(g? - 1), we see thaf is a
p-subgroup of Gk(F;) of maximal order, and thus it is gSylow subgroup. Consider now any
p-Sylow subgroufs of GLx(Fy) andD € S. ThenS andT are conjugate, sD is conjugate to
some element of . Lemma 3 implies the following corollary.

Corollary 2. Let S be a p-Sylow subgroup GL,(F;), B€ S, and ne N. If n £ 0 (modp),
then|C, (B)| = 0. If n = pm, me N, then

_ bl m
ConB =T D H@™

dim
dz0 (mod p)

4. The substitution X » aX

g (1) € GL(F,), a ¢ {0.1} on l,. We

denotel = ord(@) the order ofain Fy. Itis easy to see thdtis also the order 0B in GL(I).
6
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Proposition 3. Let Pe Cy (B), n > 2 andd a root of P. Then n= ¢m for some ne N. Further,
the set{s e N : 6 = g/a} is non-empty and &= rp = min{s € N : ¢9 = ¢/a} satisfies
O<r<ém,mr,and(r/m¢) = 1.

Proor. LetP e C; (B). ThenP® = P(aX) and the leading cdgcient of P2 is a". SinceP = PB

is monic, we hava" = 1, son = mfor somem € N. If 8 is a root ofP, thend/a is a root of
PB, sof/ais also a root oP. It follows thatd/a = 64 for some 0< r < n (note thatr # 0 since

a # 1). Therefore, the sés e N : 6% = g/a} is non-empty and its minimum satisfies the stated
bounds. Since the integers in the set are equivalent modthlere is a unique element in this set
that satisfies &< s < n, so the minimuntp is equal tor. By induction, we have® = ¢/al for
anyjeN. In particular,@q" = 6, thereforen = ém|¢r, which impliesmlr. Lett =r/m, (t,£) = u
and writet = uty, £ = ufy. Then

gqtm _ g N thmll LN
a al
ty(m 6 "
0 = E — a = 1 — f = fl,

where we used the fact theff™ = . It follows thatu = (r/m¢)=1.0

As in the previous section, we see thatdepends only o and not on the particular roét
which allows us to define its type.

Definition 2. Let P € C;, (B), 6 a root of P, andrp = min{s € N : ¢ = ¢/a}. The integer
tp = rp/mis called the type oP.

Itis clear from Proposition 3 that the typeof a polynomialP € C,,, (B) satisfies O< t, < £ and
(tp, €) = 1. We should emphasize that the type of a polynomial is defividdrespect to, and
depends on, the matrR. For instance, if we choose® j < ¢ with (j, ¢) = 1, then(B) = (BJ).
It follows thatC,_ (B) = C,,, (Bl). However, the type of a polynomi& e C,, (B) with respct to
B may, and in general will, be fierent from its type with respect .

Following the notation of the previous section, we let

c(B)={PeCy,(B): tp=tl.
The setS:,‘?n(B), 0<t<fm,(t ¢) = 1 form a partition ofC;,, (B).
Proposition 4. Let0 < j,t < n, with(j,£) = (t,£) = 1. Then
Cin(8)=Cl "(8),
where the superscript jt is computed modulé.

t
Proor. We start by noting thaB! = % 2 ) and ordf') = ¢, since ¢, ¢) = 1, thus Proposi-
tion 3 and Definition 2 apply to elements fixed By Let s be the inverse of modulo¢. Then

denotingd a root of P, we have

i jm 0 sm 0
Pe Cl((lz‘(Bt) — gqj = E — gqj = a_St
jsm 9 i
= "= 5 &= Pe c¥m). O



Theorem 3. Letke N, a € Fy of ordert > 1, Gya = Xd-1 l/ae Fy[X] and Pe In, n> 2.
Then ARGy, if and only if

1. PeC (B),

2. n=¢m, for some nz N.
3. mk,

4. £ =tp (mod ).

Proor. Suppose thalP dividesGy, andg is a root ofP. Thené® = g/a, which implies that
6/ais a root ofP. Sinced/a is a root of PB, which is irreducible, by Lemma 1, and the leading
codficient of PB is a", we havePB = a"P. The equality® = 6/a implies, by induction, that

0@ = g/al foranyjeN. (3)

In particular, we have?" = g/a". Sinces?™ = g, we obtaina® = 1. Thus,n = ¢m for some
m e N andPB = P, that is,P € C (B). From Eq.(3), forj = ¢ we haveg®™ = 6, which implies
thatn = ¢mi¢k, that ismk. SinceP e C,, (B), Proposition 3 implies that®™" = g/a. Forces
trm = k (mod ¢m), which implies thak/m = tp (mod ¢).

Conversely, suppose thBte C,,, (B) andé is a root ofP. Theng®"" = §/a. Sincek/m = tp
(mod¢), we havek = tpm (mod ¢m) and therefored = ¢4°". This implies tha® is root of Gy 4,
SOP|Gka. O

tpm

The polynomialGy 4 has simple roots, as can be seen using the derivative. Thediie
equivalent to the following factorization &y ,.

Gka = qu*1—§= [1 [l P 4)

dk pect®m)
(5.0=1"14

where the superscrifd is computed modulé.
In view of the comments after Definition 2, we see that we canyaq.(4) to the polyno-
mialsGya, 0 < t < ¢, (t, £) = 1 that correspond to the matricBS to obtain

Ga=[] [] P foro<t<eto=1
dik ) 0
(5.0=1PCg B)
This equality can be rewritten, using Proposition 4, as

Gia = ]_[ ]_[ P, for 0O<t<¢,(t¢) =1
k

ARG

d
(5.0=1P<Ciq



Putting all factorizations together, we have

[I 11 11 »

O<t<l O<t<t dk (‘érl)
(t,0)=1 (t.0)=1 (5 =1 PECW (B)

[I[] 1+

dk O<t<t k-1
\ (gt >(B)
led

(5,0=1(t0=1PeC
[TIT 1>

dk 0<t<¢ pec® (B
(5,0=10=1 iy (B)

P

dk PeCy,(B)
(§.0=1

—]
@
g
[

where we used the facts that tasuns through Z/¢Z)* so does'a‘t‘1 and that the set@,‘Z(B),
0<t<{, (t,¢) =1 form a partition ofC, ,(B). Taking degrees, we have

s -1)= ) €dCi,(B)l

dik
(5.0=1
DenotingNg(¢d) = |C,,,(B)|, we have
o
K-1= —Ng(¢d). 5
q % 5 Ne (5)
(k.0=1

Theorem 4. Letne N. If n £ 0 (mod¢), then Ns(n) = 0. If n = fm, me N, then

Ne(em) = 20 S et - 1),
(déé";zl

whereg is Euler’s function.

Proor. From Eq.(5) we have

koo 3 _y ('ﬁ
d-1= 3 e = 3 SN 5)

(5.0=1

wherey is the principal Dirichlet character modufoDenotingg(k) = o -1, f(K) = ;—'g)NB(Zk)
we can writeg = f = y1, wherex is Dirichlet multiplication. The Dirichlet inverse q%l IS w1,
sincey is completely multiplicative, and we hage: uy1 = f, thatis

0= Y u@a@a(5) = Y uda(g). O

dk dk
(d,0)=1
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The proof of the following &ective bounds oNg(¢m) is similar to that of Corollary 1.

Corollary 3. Letme N. Then

$(O) o _ 20(0) o
= T 4

Ng(¢m) —

One interesting special case arisesdot —1. In this case{ = 2 and the polynomials that

_Ol 2 ) are even polynomials. The results of this section, apphied i
this case, are summarized in the following corollary.

are fixed by the matri

Corollary 4. The evenirreducible polynomialslig[X] have even degree. The numbesgdr(2m)
of even irreducibles of degreé is given by

1 m
Nevert2m) = o > u(d)(q? - 1)
ddl)ncrj]d

and satisfies

1
< —
< mq

[NIE]

1
'Never(zm) ~om "

Remark 1. A polynomial f is called odd iff (X) = —f(-X). Clearly, any odd polynomial has
constant term zero, therefore odd irreducible polynonuéldegree at least two do not exist.

This is reflected in the fact th&E, (B)| = 0 for B = ( _01 2 ) andn odd. Indeed, consider the
matrixC = ( (1) _01 , and note that foP € |, P¢ = (=1)"P(~X). Thus, the fixed points ¢

of even degree are even irreducibles and the fixed poir@saffodd degree are odd irreducibles.
HoweverR!BR= CforR= 2 (1) )and Lemma 3 implies th&t, (B)| = |C,,(C)|. Fornodd,
we know thaiC, (B)| = 0.

Proposition 5. Let r be an odd prime divisor of g 1 and D = ( g 8 ) withd =b" =1,
maxord(@), ord(b)} = r. Then
1. Ifa=Dh,
ND(”):{ ||2| :;228 Eﬂggg
2. Ifa#b,
. o , ?fn £0 (modr)
No(n) = { T 2 gm w@@F =1 ifn=rm

Proor. Assume first, thaa = b. ThenD = al, and forP € I,, PP = a"P. Clearly,|C, (D)| = 0
forn# 0 (modr) and|C, (D)| = |In| forn=0 (modr).
Next, suppose that # b. Since



b 0

Lemma 3 implies that the set of fixed point og 8 and 0 a have the same cardinali-

ties. So we may assume that niaxd(@), ord()} = ord(@) = r. ForP € I, the leading coicient
of PP = b"P(aX/b) is a". This implies thatC, (D)| = 0 forn # 0 (modr). Forn= 0 (modr),

~1
we haveD = bB, with B = at()) (1) ) Lemma 4 implies that,, (D) = C,,(B), and the result
follows from Theorem 40
Theorem 5. Let r be an odd prime divisor of g 1. Then for any Ec GL,(F,) of order r the
following statements hold.

1. Ifn £ 0 (modr), then N:(n) = 0.
2. Ifn=rm, E = al, for some a K, then

Ne(rm) = > ().

dirm

3. If n =rm, E # al for every ac [, then

r-1 m
Ne(m) = ——= > u(d)(q? - 1).
dm
(d.n)=1

Proor. We writeq — 1 = r®s, with (r, s) = 1. The set

_ a 0} . . e e
S_{(O b).a,beIF,a =hb _1}

is a subgroup of GL(IF,) of orderr?, and is arr-Sylow subgroup of G(F;). Any E € GL,(F)

of orderr belongs to am-Sylow subgroup and therefore it is conjugate to some el¢wies,
necessarily of order. The elements of orderin S are the matrices described in Proposition 5.
The result follows once we notice that the only conjugatalds al itself. O

5. Upper triangular matrices

In this section, we combine the results we have to obtain enaton formulas for the num-
ber of irreducible polynomials that are fixed by upper trialag matrices.

a b
0d
[F. Then the following statements hold.

1. If n £ 0 (mod¢y) then Ny(n) = 0.
2. Ifn=0 (mod¢;) and a+ d, then

Theorem 6. Let U = ) € GLo(IFy) and let¢1 be the order of a and, the order of dain

0 ,ifnz0 (mod¢y)
Nu(m =3 &2 4 ud)af-1) .ifn=tm
(d,2)=1
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3. Ifn=0 (mod¢;) and a= d, then

[lnl ,ifb=0
Nuy(n) = 0 ,ifb#0,nz0 (modp)
PLS gm u(dq™ | ifb#0, n=pm
(d.p=1

Proor. We start by noting that foP ¢ |, the codficient of the leading term oY is a". It
follows that a necessary condition fBrto be fixed byU isn = 0 (mod¢). We assume that
n = fmfor someme N.

We consider the case+ d. Then
b 1\'(a b b 1\ (d 0
d-a 0 0 d d-a 0) {0 a

From Lemma 4, follows tha¥ly (n) = Ny, (n), where

dal 0
Ulz(% 1).

The stated result follows from Theorem 4.

For the casa = d, we note that

PR

If b =0 we haveNy(n) = |I,]. If b # 0, the result follows from Lemma 4 and Theoreni2.

Remark 2. The characteristic polynomiahy € Fy[X] of any matrixA € GLy(Iy) has degree
2. Therefore, eithemy splits overl, or it is irreducible. Ifma splits, it follows from Schur’s
Lemma thatA is similar to an upper triangular matrix. Thus, Theorem 6ligsgo matrices with
all their eigenvalues iff.
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