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Abstract

We show that GL2(Fq) acts on the set of irreducible polynomials overFq. We study this action
and compute the cardinality of the set of fixed points of certain subgroups of GL2(Fq). Our
results include enumeration of irreducible polynomials that are invariant under the substitution
X 7→ X+ b and under the substitutionX 7→ aX. From those results follow enumeration formulas
for the set of fixed points of any element of orderr, wherer is a prime divisor ofq or q− 1. The
results are combined to provide enumeration formulas for the fixed points of upper triangular
matrices.
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1. Introduction

Given a finite fieldFq and a natural numbern, there is a unique extension ofFq of degreen
within a fixed algebraic closure, denotedFqn. Such an extension is algebraically generated over
Fq by a rootθ of any irreducible polynomialP ∈ Fq[X] of degreen.

Any special properties of the irreducibleP are naturally reflected in its rootsθqj
, 0 ≤ j ≤

n− 1. Such properties, that have been investigated, include primitivity, normality, having certain
coefficients fixed to given values, combinations of those properties. For a survey of results in this
line of research, we refer to [1] and the references therein.

Given a polynomialf ∈ Fq[X], it reciprocal f R is defined asf R(X) = Xdeg(f ) f (1/X). One
class of polynomials that has been invesitgated [2, 3, 4, 5] is that of self-reciprocal irreducible
polynomials, that is, irreducible polynomials that satisfy PR(X) = P(X). Besides the theoretical
interest in their existence and density, self-reciprocal irreducible polynomials have been useful
in application, and in particular in the construction of error-correcting codes [6, 7].

In this work, we observe that the group GL2(Fq) acts on the set of irreducible polynomials
over Fq of degree at least 2. The “reciprocal” operator is given, in our setting, as the action

of the matrixR =

(

0 1
1 0

)

. Our objective is to characterize the sets of fixed points of the

action of single elements of GL2(Fq) (or equivalently of cyclic subgroups) on the setIn of monic
irreducibles of degreen, and to compute their cardinalities. It is well known that the order of
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GL2(Fq) is q(q − 1)2(q + 1). We show that the set of fixed points of the action of any element
of a p-Sylow subgroup GL2(Fq), wherep is the characteristic ofFq, relates to irreducibles that
are invariant under the substitutionX 7→ X + b, and we compute its cardinality. Further, for any
divisor ℓ of q− 1, we express the substitutionX 7→ aX, as the action of a matrix of orderℓ and
compute the cardinality of the set of fixed points this matrix. As a corollary, we obtain the number
of even irreducible polynomials of given degree. Finally, we obtain enumeration formulas for the
number of fixed points of any upper triangular matrix. We notethat the irreducible polynomials
that remain invarian under additive and multiplicative translations have been studied, by different
methods, in [8] and [9] respectively. Methods similar to those in the present paper have been used
in [10] to study the action of subgroups of GL2(F2) on irreducible polynomials.

2. Group Action on Irreducibles

Let Iλn denote the set of irreducible polynomials inFq[X] of degreen having leading coeffi-
cient equal toλ. For simplicity we denoteIn the setI1

n of monic irreducibles of degreen. The set
of all irreducibles of degreen is denoted byI ′n. We denote byPn the set of polynomials inFq[X]
of degreen that do not have roots inFq and letP = ∪n≥2Pn.

The group GL2(Fq) acts on the setP by the rule

f A = (cX+ d)deg(f ) f

(

aX+ b
cX+ d

)

, where A =

(

a b
c d

)

∈ GL2(Fq).

It is a simple calculation to show that the above rule defines an action of GL2(Fq) onP, the crucial
point being that iff =

∑n
i=0 fi Xi , then the leading coefficient of f A is fnan if c = 0 andcn f (a/c) if

c , 0. SinceA is invertible andf does not have roots inFq, the leading coefficient is non-zero in
either case. It follows that the action preserves the degrees, so we get an action onPn, for n ≥ 2.

Lemma 1. Let A ∈ GL2(Fq) and P∈ In, n ≥ 2. Then PA ∈ Iλn for someλ ∈ F
∗
q . Further,θ is a

root of P if and only if(−dθ + b)/(cθ − a) is a root of PA, where A=

(

a b
c d

)

.

Proof. Letn = deg(P), θ be a root ofP and letβ = (−dθ+b)/(cθ−a). Note thatβ is well defined
sinceθ does not belong toFq. Thenθ = (aβ + b)/(cβ+ d) and we compute

PA(β) = (cβ + d)nP

(

aβ + b
cβ + d

)

= (cβ + d)nP(θ) = 0.

Soβ is a root ofPA. If m is the degree of the minimal polynomial ofβ overFq, thenFqm = Fq(β) ⊆
Fq(θ) = Fqn, which implies thatm|n. Conversely,θ = (aβ + b)/(cβ + d) so thatFqn ⊆ Fqm, which
implies thatn|m. It follows thatm = n = deg(PA) andPA is irreducible. Finally, note that if
β = (−dθ + b)/(cθ − a) is a root ofPA then (cβ + d)nP(θ) = 0. Sinceβ does not belong toFq,
cβ + d , 0 and it follows thatP(θ) = 0. �

From Lemma 1 it follows that the ruleP 7→ PA defines an action of GL2(Fq) on I ′n for n ≥ 2.
The following lemma is evident.

Lemma 2. Letλ ∈ F∗q and P∈ I ′n, n≥ 2. Then(λP)A = λPA.

2



Our objective is to compute the fixed points, inIn, of certain subsets of GL2(Fq). If S ⊆
GL2(Fq), we denote

CIn(S) = {P ∈ In : ∀A ∈ S,PA = P}.

Lemma 3. Let A, B ∈ GL2(Fq) be conjugate. Then|CIn(A)| = |CIn(B)|.

Proof. SinceA andB are conjugate, there exists someU ∈ GL2(Fq), such thatB = U−1AU. We
define the map

ψ : CIn(A) −→ CIn(B)

P 7→ λPPU ,

whereλP is the unique element inF∗q that makesλPPU monic. The map is well defined since
λPPU ∈ In by the definition ofλP, and using Lemma 2, we have

(λPPU)B = λPPUU−1AU = λPPAU = λPPU .

The map is one-to-one, sinceλP1P
U
1 = λP2P

U
2 , by applyingU−1 to both sides, implies that

λP1P1 = λP2P2. SinceP1 andP2 are monic, we conclude thatλP1 = λP2 andP1 = P2. The
injectivity of ψ implies that|CIn(A)| ≤ |CIn(B)|. The reverse inequality and the result follow by
symmetry.�

Lemma 4. Letλ ∈ F∗q and A∈ GL2(Fq). If n ≡ 0 (mod ord(λ)), then CIn(A) = CIn(λA).

Proof. We first note that forP ∈ In, PλA = λnPA. The extra assumption on the degree, implies
thatPλA = PA. Therefore,P ∈ CIn(A) if and only if P ∈ CIn(λA).

3. The substitution X 7→ X + b

Let A =

(

1 b
0 1

)

∈ GL2(Fq), b , 0. In this section, we consider the fixed points, inIn, of A.

SincePA(X) = P(X + b), we call the polynomials that are fixed byA periodic. The order ofA in
GL2(Fq) is equal to the characteristicp of Fq. Therefore〈A〉 is generated by anyA j , 0 < j < p.
Noting thatA maps monic irreducibles of degreen ≥ 2 to monic irreducibles of the same degree,
we see that

PA = P ⇐⇒ PA j
= P

for any 0< j < p.

Proposition 1. LetFq be of characteristic p, P∈ CIn(A), n ≥ 2 andθ a root of P. Then n= pm
for some m∈ N. Further, the set{s ∈ N : θqs

= θ − b} is non-empty and r= rP = min{s ∈ N :
θqs
= θ − b} satisfies0 < r < pm and m|r.

Proof. SinceP ∈ CIn(A) andn ≥ 2 it follows from Lemma 1 thatθ − b is a root ofP. Therefore,
θqs
= θ − b for some 0< s < n (note thats , 0 otherwise we would haveb = 0). Thus the

set{s ∈ N : θqs
= θ − b} is non-empty. Thusr = rP exists and, by its definition,θqr

= θ − b,
0 < r < n. It is easy to see then, thatθ jr = θ − jb, so thatθpr = θ. It follows thatn|pr. If p 6 |n, we
would haven|r, which is impossible, since 0< r < n. Thusn = pm for somem ∈ N. Sincen|pr
andn = pmwe obtain thatm|r. �
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It is clear that the integerrP depends only on the polynomialP, and not on the rootθ.

Definition 1. Let P ∈ CIpm(A), m ∈ N, θ a root ofP, andrP = min{s ∈ N : θqs
= θ − b}. The

integertP = rP/m is called the type ofP.

Clearly, the typetP of a polynomialP ∈ CIpm(A) lies in {1, . . . , p − 1}. In particular,tP . 0

(mod p). For 0 < j < p, we denoteC( j)
Ipm

(A) = {P ∈ CIpm(A) : tP = j}. The next proposition
shows that the polynomials inCIpm(A) are distributed equally with respect to their type.

Proposition 2. For m ∈ N and0 < j < p, |C( j)
Ipm

(A)| = |C(1)
Ipm

(A)|.

Proof. We fix some 0< j < p and considerU j =

(

j 0
0 1

)

∈ GL2(Fq), and observe that

U jA = A jU j . If P ∈ C(1)
Ipm

(A) and θ is one of its roots, thenθqm
= θ − b and by induction

θqjm
= θ − jb. DefineQ = j−pmPU j = j−pmP( jX), so thatQ is monic. The polynomialQ is fixed

by A since
QA = ( j−pmPU j )A = j−pmPA jU j = j−pmPU j = Q.

By Lemma 1,β = θ/ j is a root ofQ. We compute,

βqjm
=
θqjm

j
=
θ

j
− b = β − b.

Since 0< j < p, it follows thatQ is of type j, so thatQ ∈ C( j)
Ipm

(A). We have shown that the map

ψ : C(1)
Ipm

(A) −→ C( j)
Ipm

(A)

P 7→ j−pmPU j

is well defined. The same argument as in the proof of Lemma 3 shows thatψ is injective. Finally,
if Q ∈ C( j)

Ipm
(A), thenP = jpmQU−1

j is fixed by A j , and therefore fixed byA, and has type 1.

Therefore, it is an element ofC(1)
Ipm

(A) andψ(P) = Q. So the map is surjective. It follows that

|C( j)
Ipm

(A)| = |C(1)
Ipm

(A)|. �

The setsC( j)
Ipm

(A), 0< j < p form a partition ofCIpm(A). Therefore,

|CIpm(A)| =
p−1
∑

j=1

|C( j)
Ipm

(A)| = (p− 1)|C( j)
Ipm

(A)|, for any j = 1, . . . , p− 1.

DenotingNA(pm) = |CIpm(A)|, we have

NA(pm) =
1

p− 1
|C( j)

Ipm
(A)|, for any j = 1, . . . , p− 1. (1)

Theorem 1. LetFq be of characteristic p, k∈ N, Fk,b = Xqk
− X + b ∈ Fq[X], and P∈ In, n ≥ 2.

Then P divides Fk,b if and only if
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1. P ∈ CIn(A),
2. n = pm, for some m∈ N.
3. m|k,
4. k

m ≡ tP . 0 (mod p).

Proof. Suppose thatP dividesFk,b and letθ be a root ofP. Thenθqk
= θ − b, which implies

thatθ − b is a root ofP. SincePA is irreducible, by Lemma 1, this forcesPA|P. SinceP andPA

are monic irreducibles, this implies, by induction, thatPA = P, so thatP ∈ CIn(A). The equality
θqk
= θ−b implies thatθqjk

= θ− jb for j ∈ N, so thatθqpk
= θ. It follows thatn|pk. If we assume

that p 6 |n then we would haven|k which would imply thatθqk
= θ, that isb = 0, a contradiction.

Thusn = pmfor somem ∈ N. Sincen = pm|pk we getm|k. Finally, sincePA = P, Proposition 1
implies thatθqr

= θ−b with r = rP = tPmand 0< tP < n. It follows thatθqk
= θqr

, which implies
thatk ≡ r (mod n), and therefore,k/m≡ tP (mod p).

Conversely, suppose thatP ∈ CIpm(A), andθ is a root ofP. Then by Proposition 1,θqtPm
= θ−b.

The assumptionk/m≡ tP (mod p) implies thatk ≡ tPm (mod n), and we haveθqk
= θqtPm

= θ−b.
It follows thatθ is a root ofFk,b soP|Fk,b. �

We note, that the necessary and sufficient conditions in Theorem 1 can be written asm|k and
P ∈ C(t)

Ipm
(A), with t ≡ k/m (mod p). From this together with the fact that all the roots ofFk,b are

simple, which can be checked using the derivative, we obtain

Xqk
− X + b =

∏

d|k

∏

P

P, (2)

where the inner product is over irreducibles inC(t)
Ipm

(A) with t ≡ k/m (mod p).
We can use Eq.(2) and Eq.(1) to computeNA(pm) for anym ∈ N.

Theorem 2. Let n ∈ N. If n . 0 (mod p), then NA(n) = 0. If n = pm, m∈ N, then NA(pm) =
|CIpm(A)| satisfies

NA(pm) =
p− 1
pm

∑

d|m
d.0 (mod p)

µ(d)qm/d.

Proof. From Eq.(2), comparing degrees, we have

qk =
∑

d|k

∑

P

pd|C(t)
Ipm

(A)|,

where the inner sum is over polynomialsP ∈ C(t)
Ipm

(A), wheret is the remainder ofk/d on division

with p. Since|C(0)
Ipm

(A)| = 0 and|C( j)
Ipm

(A)| = 1
p−1NA(pm) for 0 < j < p, by Eq.(1), we have

qk =
∑

d|k
k/d.0 (mod p)

p
p− 1

dNA(pd).

Möbius inversion now yields

p
p− 1

kNA(pk) =
∑

d|k
d.0 (mod p)

µ(d)qk/d.

�
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The following corollary gives an estimate ofNA(pm).

Corollary 1. Let m∈ N. Then
∣

∣

∣

∣

∣

NA(pm) −
p− 1
pm

∣

∣

∣

∣

∣

≤
p− 1
pm

q
q− 1

q
m
2 .

Proof. From Theorem 2 we have

NA(pm) =
p− 1
pm

∑

d|m
d.0 (mod p)

µ(d)qm/d =
p− 1
pm

qm+
p− 1
pm

∑

d|m
d.0 (mod p)

d>1

µ(d)qm/d.

It follows that
∣

∣

∣

∣

∣

NA(pm) −
p− 1
pm

∣

∣

∣

∣

∣

≤
p− 1
pm

∑

d|m
d.0 (mod p)

d>1

qm/d

≤
p− 1
pm

⌊m/2⌋
∑

i=1

qi

≤
p− 1
pm

q
q− 1

qm/2.

�

A matrix of the form,

(

1 b
0 1

)

is a p-element of GL2(Fq). The set

T =

{(

1 b
0 1

)

: b ∈ Fq

}

,

is in fact a subgroup of GL2(Fq) of orderq. Since|GL2(Fq)| = q(q− 1)(q2− 1), we see thatT is a
p-subgroup of GL2(Fq) of maximal order, and thus it is ap-Sylow subgroup. Consider now any
p-Sylow subgroupS of GL2(Fq) andD ∈ S. ThenS andT are conjugate, soD is conjugate to
some element ofT. Lemma 3 implies the following corollary.

Corollary 2. Let S be a p-Sylow subgroup ofGL2(Fq), B ∈ S , and n∈ N. If n . 0 (mod p),
then|CIn(B)| = 0. If n = pm, m∈ N, then

|CIpm(B)| =
p− 1
pm

∑

d|m
d.0 (mod p)

µ(d)qm/d.

4. The substitution X 7→ aX

In this section, we consider the action ofB =

(

a 0
0 1

)

∈ GL2(Fq), a < {0, 1} on In. We

denoteℓ = ord(a) the order ofa in F
∗
q . It is easy to see thatℓ is also the order ofB in GL2(Fq).

6



Proposition 3. Let P∈ CIn(B), n ≥ 2 andθ a root of P. Then n= ℓm for some m∈ N. Further,
the set{s ∈ N : θqs

= θ/a} is non-empty and r= rP = min{s ∈ N : θqs
= θ/a} satisfies

0 < r < ℓm, m|r, and (r/m, ℓ) = 1.

Proof. Let P ∈ CIn(B). ThenPB = P(aX) and the leading coefficient ofPB is an. SinceP = PB

is monic, we havean = 1, son = ℓm for somem ∈ N. If θ is a root ofP, thenθ/a is a root of
PB, soθ/a is also a root ofP. It follows thatθ/a = θqr

for some 0< r < n (note thatr , 0 since
a , 1). Therefore, the set{s ∈ N : θqs

= θ/a} is non-empty and its minimum satisfies the stated
bounds. Since the integers in the set are equivalent modulon there is a unique element in this set
that satisfies 0< s < n, so the minimumrP is equal tor. By induction, we haveθqjr

= θ/a j for
any j ∈ N. In particular,θqℓr = θ, thereforen = ℓm|ℓr, which impliesm|r. Let t = r/m, (t, ℓ) = u
and writet = ut1, ℓ = uℓ1. Then

θqtm
=
θ

a
=⇒ θqtmℓ1

=
θ

aℓ1
=⇒

θqt1ℓm
=

θ

aℓ1
=⇒ aℓ1 = 1 =⇒ ℓ = ℓ1,

where we used the fact thatθqℓm = θ. It follows thatu = (r/m, ℓ) = 1. �

As in the previous section, we see thatrP depends only onP and not on the particular rootθ,
which allows us to define its type.

Definition 2. Let P ∈ CIℓm(B), θ a root ofP, andrP = min{s ∈ N : θqs
= θ/a}. The integer

tP = rP/m is called the type ofP.

It is clear from Proposition 3 that the typetP of a polynomialP ∈ CIℓm(B) satisfies 0< tp < ℓ and
(tP, ℓ) = 1. We should emphasize that the type of a polynomial is definedwith respect to, and
depends on, the matrixB. For instance, if we choose 0< j < ℓ with ( j, ℓ) = 1, then〈B〉 = 〈B j〉.
It follows thatCIℓm(B) = CIℓm(B j). However, the type of a polynomialP ∈ CIℓm(B) with respct to
B may, and in general will, be different from its type with respect toB j.

Following the notation of the previous section, we let

C(t)
Iℓm

(B) = {P ∈ CIℓm(B) : tP = t}.

The setsC(t)
Iℓm

(B), 0 < t < ℓm, (t, ℓ) = 1 form a partition ofCIℓm(B).

Proposition 4. Let 0 < j, t < n, with ( j, ℓ) = (t, ℓ) = 1. Then

C( j)
Iℓm

(Bt) = C( jt−1)
Iℓm

(B),

where the superscript jt−1 is computed moduloℓ.

Proof. We start by noting thatBt =

(

at 0
0 1

)

, and ord(at) = ℓ, since (t, ℓ) = 1, thus Proposi-

tion 3 and Definition 2 apply to elements fixed byBt. Let s be the inverse oft moduloℓ. Then
denotingθ a root ofP, we have

P ∈ C( j)
Iℓm

(Bt) ⇐⇒ θqjm
=
θ

at
⇐⇒ θqjsm

=
θ

ast

⇐⇒ θqjsm
=
θ

a
⇐⇒ P ∈ C( js)

Iℓm
(B). �
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Theorem 3. Let k ∈ N, a ∈ F
∗
q of orderℓ > 1, Gk,a = Xqk−1 − 1/a ∈ Fq[X] and P∈ In, n ≥ 2.

Then P|Gk,a if and only if

1. P ∈ CIn(B),
2. n = ℓm, for some m∈ N.
3. m|k,
4. k

m ≡ tP (mod ℓ).

Proof. Suppose thatP dividesGk,a andθ is a root ofP. Thenθqk
= θ/a, which implies that

θ/a is a root ofP. Sinceθ/a is a root ofPB, which is irreducible, by Lemma 1, and the leading
coefficient ofPB is an, we havePB = anP. The equalityθqk

= θ/a implies, by induction, that

θqjk
= θ/a j for any j ∈ N. (3)

In particular, we haveθqnk
= θ/an. Sinceθqnk

= θ, we obtainan = 1. Thus,n = ℓm for some
m ∈ N andPB = P, that is,P ∈ CIn(B). From Eq.(3), forj = ℓ we haveθqℓk = θ, which implies
that n = ℓm|ℓk, that ism|k. SinceP ∈ CIℓm(B), Proposition 3 implies thatθqtPm

= θ/a. Forces
tPm≡ k (mod ℓm), which implies thatk/m≡ tP (mod ℓ).

Conversely, suppose thatP ∈ CIℓm(B) andθ is a root ofP. ThenθqtPm
= θ/a. Sincek/m ≡ tP

(mod ℓ), we havek ≡ tPm (mod ℓm) and thereforeθqk
= θqtPm

. This implies thatθ is root ofGk,a,
soP|Gk,a. �

The polynomialGk,a has simple roots, as can be seen using the derivative. Theorem 3 is
equivalent to the following factorization ofGk,a.

Gk,a = Xqk−1 −
1
a
=

∏

d|k
( k

d ,ℓ)=1

∏

P∈C
( k

d )

Iℓd
(B)

P, (4)

where the superscriptk/d is computed moduloℓ.
In view of the comments after Definition 2, we see that we can apply Eq.(4) to the polyno-

mialsGk,at , 0 < t < ℓ, (t, ℓ) = 1 that correspond to the matricesBt, to obtain

Gk,at =
∏

d|k
( k

d ,ℓ)=1

∏

P∈C
( k

d )

Iℓd
(Bt)

P, for 0 < t < ℓ, (t, ℓ) = 1.

This equality can be rewritten, using Proposition 4, as

Gk,at =
∏

d|k
( k

d ,ℓ)=1

∏

P∈C
( k

d t−1)

Iℓd
(B)

P, for 0 < t < ℓ, (t, ℓ) = 1.
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Putting all factorizations together, we have
∏

0<t<ℓ
(t,ℓ)=1

Gk,at =
∏

0<t<ℓ
(t,ℓ)=1

∏

d|k
( k

d ,ℓ)=1

∏

P∈C
( k

d t−1)

Iℓd
(B)

P

=
∏

d|k
( k

d ,ℓ)=1

∏

0<t<ℓ
(t,ℓ)=1

∏

P∈C
( k

d t−1)

Iℓd
(B)

P

=
∏

d|k
( k

d ,ℓ)=1

∏

0<t<ℓ
(t,ℓ)=1

∏

P∈C(t)
Iℓd

(B)

P

=
∏

d|k
( k

d ,ℓ)=1

∏

P∈CIℓd (B)

P

where we used the facts that ast runs through (Z/ℓZ)∗ so doesk
d t−1 and that the setsC(t)

Iℓd
(B),

0 < t < ℓ, (t, ℓ) = 1 form a partition ofCIℓd(B). Taking degrees, we have

φ(ℓ)(qk − 1) =
∑

d|k
( k

d ,ℓ)=1

ℓd|CIℓd(B)|.

DenotingNB(ℓd) = |CIℓd(B)|, we have

qk − 1 =
∑

d|k
( k

d ,ℓ)=1

ℓd
φ(ℓ)

NB(ℓd). (5)

Theorem 4. Let n∈ N. If n . 0 (modℓ), then NB(n) = 0. If n = ℓm, m∈ N, then

NB(ℓm) =
φ(ℓ)
ℓm

∑

d|m
(d,ℓ)=1

µ(d)(q
m
d − 1),

whereφ is Euler’s function.

Proof. From Eq.(5) we have

qk − 1 =
∑

d|k
( k

d ,ℓ)=1

ℓd
φ(ℓ)

NB(ℓd) =
∑

d|k

ℓd
φ(ℓ)

NB(ℓd)χ1

(

k
d

)

,

whereχ1 is the principal Dirichlet character moduloℓ. Denotingg(k) = qk−1, f (k) = ℓk
φ(ℓ) NB(ℓk)

we can writeg = f ∗ χ1, where∗ is Dirichlet multiplication. The Dirichlet inverse ofχ1 is µχ1,
sinceχ1 is completely multiplicative, and we haveg ∗ µχ1 = f , that is

f (k) =
∑

d|k

µ(d)χ1(d)g

(

k
d

)

=
∑

d|k
(d,ℓ)=1

µ(d)g

(

k
d

)

. �
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The proof of the following effective bounds ofNB(ℓm) is similar to that of Corollary 1.

Corollary 3. Let m∈ N. Then
∣

∣

∣

∣

∣

NB(ℓm) −
φ(ℓ)
ℓm

qm
∣

∣

∣

∣

∣

≤
2φ(ℓ)
ℓm

q
m
2 .

One interesting special case arises fora = −1. In this case,ℓ = 2 and the polynomials that

are fixed by the matrix

(

−1 0
0 1

)

are even polynomials. The results of this section, applied in

this case, are summarized in the following corollary.

Corollary 4. The even irreducible polynomials inFq[X] have even degree. The number Neven(2m)
of even irreducibles of degree2m is given by

Neven(2m) =
1

2m

∑

d|m
d odd

µ(d)(q
m
d − 1),

and satisfies
∣

∣

∣

∣

∣

Neven(2m) −
1

2m
qm

∣

∣

∣

∣

∣

≤
1
m

q
m
2 .

Remark 1. A polynomial f is called odd if f (X) = − f (−X). Clearly, any odd polynomial has
constant term zero, therefore odd irreducible polynomialsof degree at least two do not exist.

This is reflected in the fact that|CIn(B)| = 0 for B =

(

−1 0
0 1

)

andn odd. Indeed, consider the

matrixC =

(

1 0
0 −1

)

, and note that forP ∈ In, PC = (−1)nP(−X). Thus, the fixed points ofC

of even degree are even irreducibles and the fixed points ofC of odd degree are odd irreducibles.

However,R−1BR= C for R=

(

0 1
1 0

)

and Lemma 3 implies that|CIn(B)| = |CIn(C)|. Forn odd,

we know that|CIn(B)| = 0.

Proposition 5. Let r be an odd prime divisor of q− 1 and D =

(

a 0
0 b

)

, with ar = br = 1,

max{ord(a), ord(b)} = r. Then

1. If a = b,

ND(n) =

{

0 , if n . 0 (modr)
|In| , if n ≡ 0 (modr)

2. If a , b,

ND(n) =















0 , if n . 0 (modr)
r−1
rm

∑

d|m
(d,r)=1

µ(d)(q
m
d − 1) , if n = rm

Proof. Assume first, thata = b. ThenD = aI, and forP ∈ In, PD = anP. Clearly,|CIn(D)| = 0
for n . 0 (modr) and|CIn(D)| = |In| for n ≡ 0 (modr).

Next, suppose thata , b. Since
(

a 0
0 b

)

= R−1

(

b 0
0 a

)

R,

10



Lemma 3 implies that the set of fixed points of

(

a 0
0 b

)

and

(

b 0
0 a

)

have the same cardinali-

ties. So we may assume that max{ord(a), ord(b)} = ord(a) = r. ForP ∈ In, the leading coefficient
of PD = bnP(aX/b) is an. This implies that|CIn(D)| = 0 for n . 0 (modr). Forn ≡ 0 (modr),

we haveD = bB, with B =

(

ab−1 0
0 1

)

. Lemma 4 implies thatCIn(D) = CIn(B), and the result

follows from Theorem 4.�

Theorem 5. Let r be an odd prime divisor of q− 1. Then for any E∈ GL2(Fq) of order r the
following statements hold.

1. If n . 0 (modr), then NE(n) = 0.
2. If n = rm, E= aI, for some a∈ F∗q , then

NE(rm) =
∑

d|rm

µ(d)q
rm
d .

3. If n = rm, E, aI for every a∈ F∗q , then

NE(rm) =
r − 1
rm

∑

d|m
(d,r)=1

µ(d)(q
m
d − 1).

Proof. We writeq− 1 = res, with (r, s) = 1. The set

S =

{(

a 0
0 b

)

: a, b ∈ F∗q , a
re
= bre

= 1

}

is a subgroup of GL2(Fq) of orderr2e, and is anr-Sylow subgroup of GL2(Fq). Any E ∈ GL2(Fq)
of orderr belongs to anr-Sylow subgroup and therefore it is conjugate to some element of S,
necessarily of orderr. The elements of orderr in S are the matrices described in Proposition 5.
The result follows once we notice that the only conjugate ofaI is aI itself. �

5. Upper triangular matrices

In this section, we combine the results we have to obtain enumeration formulas for the num-
ber of irreducible polynomials that are fixed by upper triangular matrices.

Theorem 6. Let U =

(

a b
0 d

)

∈ GL2(Fq) and letℓ1 be the order of a andℓ2 the order of d/a in

F
∗
q . Then the following statements hold.

1. If n . 0 (modℓ1) then NU (n) = 0.
2. If n ≡ 0 (modℓ1) and a, d, then

NU (n) =















0 , if n . 0 (modℓ2)
φ(ℓ2)
ℓ2m

∑

d|m
(d,ℓ2)=1

µ(d)(q
m
d − 1) , if n = ℓ2m
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3. If n ≡ 0 (modℓ1) and a= d, then

NU(n) =



























|In| , if b = 0
0 , if b , 0, n . 0 (mod p)

p−1
pm

∑

d|m
(d,p)=1

µ(d)qm/d , if b , 0, n = pm

Proof. We start by noting that forP ∈ In, the coefficient of the leading term ofPU is an. It
follows that a necessary condition forP to be fixed byU is n ≡ 0 (modℓ). We assume that
n = ℓm for somem ∈ N.

We consider the casea , d. Then

(

b 1
d − a 0

)−1 (

a b
0 d

) (

b 1
d− a 0

)

=

(

d 0
0 a

)

From Lemma 4, follows thatNU(n) = NU1(n), where

U1 =

(

da−1 0
0 1

)

.

The stated result follows from Theorem 4.
For the casea = d, we note that

(

a b
0 a

)

= a

(

1 ba−1

0 1

)

.

If b = 0 we haveNU (n) = |In|. If b , 0, the result follows from Lemma 4 and Theorem 2.�

Remark 2. The characteristic polynomialmA ∈ Fq[X] of any matrixA ∈ GL2(Fq) has degree
2. Therefore, eithermA splits overFq or it is irreducible. IfmA splits, it follows from Schur’s
Lemma thatA is similar to an upper triangular matrix. Thus, Theorem 6 applies to matrices with
all their eigenvalues inFq.
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