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Abstract Let Fq be a finite field and consider an extension Fqn where an optimal normal
element exists. Using the trace of an optimal normal element in Fqn , we provide low com-
plexity normal elements in Fqm , with m = n/k. We give theorems for Type I and Type II
optimal normal elements. When Type I normal elements are used with m = n/2, m odd
and q even, our construction gives Type II optimal normal elements in Fqm ; otherwise we
give low complexity normal elements. Since optimal normal elements do not exist for ev-
ery extension degree m of every finite field Fq, our results could have a practical impact in
expanding the available extension degrees for fast arithmetic using normal bases.
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1 Introduction

Let Fq be a finite field of any characteristic. Let us consider an extension Fqn of Fq and an
element α ∈ Fqn . A normal basis of Fqn over Fq is a basis of the form

N = {α,αq, . . . ,αqn−1}.

In this case, we say that α is a normal element of Fqn , or that α generates the normal basis
N. It is well-known that normal bases exist in any finite extension of a finite field [5].
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Let αi = αqi
for 0≤ i≤ n−1, and let T = (ti j) be the n×n matrix given by

ααi =
n−1

∑
j=0

ti jα j, 0≤ i≤ n−1, ti j ∈ Fq. (1)

The complexity of the normal basis N, denoted by cN , is the number of non-zero entries in T .
Mullin et al. [13] proved that cN ≥ 2n−1. The normal basis N is optimal when cN = 2n−1.

Optimal normal elements do not exist for all finite fields and all extensions (see [6],
Chapter 3, for example). Optimal normal bases over finite fields were completely charac-
terized in a fundamental paper due to Gao and Lenstra [4]; see also [3]. Suppose n + 1 is a
prime and q a primitive element of Zn+1, where q is a prime or a prime power. Then the n
non-unit (n + 1)th roots of unity are linearly independent and they form an optimal normal
basis of Fqn over Fq. Bases of this type are called Type I optimal normal bases. Next, sup-
pose 2n+1 is prime, and either 2 is a primitive element of Z2n+1, or 2n+1≡ 3 mod 4 and
2 generates the quadratic residues in Z2n+1. Then α = γ + γ−1 generates a Type II optimal
normal basis of F2n over F2, where γ is a primitive (2n + 1)th root of unity [3]. These con-
structions were first given in [13]. Gao and Lenstra [4] proved that any optimal normal basis
must be equivalent to a Type I or Type II optimal normal basis.

Normal bases are widely used in applications of finite fields in areas such as coding
theory, cryptography, signal processing, and so on; see for instance [9]. In particular, opti-
mal normal bases are desirable. When no optimal normal basis exists, it is useful to have
normal elements of low complexity, say of complexity bounded by cn for some small con-
stant c. However, when no optimal normal basis exists, the problem of classifying all low
complexity normal bases is still open. Young and Panario [16] gave experimental results
that strongly imply that low complexity normal elements over finite fields of characteristic
2 with complexity up to 3n only occur in finite fields with an optimal normal element. They
also provide some characterizations of low complexity normal elements in F2n . Wan and
Zhou [15] extended parts of their results for finite fields of odd characteristic. Interesting
constructions of low complexity normal elements are in [1,2]

In this paper we study the complexity of the trace of an optimal normal element in Fqn .
We provide low complexity normal elements in Fqm , with m = n/k and k ≥ 2. We give
theorems for Type I optimal normal elements when q is odd and when q = 2. In the case
of even characteristic, only the case q = 2 is considered, as this stands out from a practical
point of view. An immediate consequence of our main theorems for Type I elements is that
when m = n/2, m odd and q even, our construction provides optimal normal elements in Fqm .
Otherwise we give low complexity normal elements with worse and worse complexities as
k grows. We also give the equivalent results for Type II optimal normal elements. We then
give complexities for the dual bases generated by the traces of Type I and Type II normal
elements. We compare our constructions with the NIST-recommended normal bases [14] for
elliptic curve cryptography. Our results may have a practical impact since they provide good
normal elements for extensions where no optimal normal element exist.

2 Main results

2.1 Type I optimal normal bases: q odd

Theorem 1 Let α ∈ Fqn generate an optimal normal basis of Type I of Fqn over Fq, q odd,
and let β = Trqn/qm(α) ∈ Fqm with m = n/k and k ≤ m. Then, the complexity of the normal
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basis of Fqm over Fq generated by β is bounded by (k + 2)m−3k + 1, if m is even and k is
odd and by (k +1)m− k in all other cases.

Furthermore, for 1 ≤ j ≤ m− 1, row j of the multiplication table of β is a cyclic per-
mutation of j positions of row (m− j).

Proof Let n + 1 be a prime, q a primitive root modulo n + 1 where q is a prime or a
prime power, q is odd and α ∈ Fqn an optimal normal element of Fqn over Fq. Let N =
{α,αq,αq2

, . . . ,αqn−1} be the optimal normal basis of Fqn over Fq which is generated by α .
The multiplication table C[n×n] of the linear map

Cα : Fqn → Fqn , Cα(x) = α · x

has exactly 2n−1 non-zero terms with the following properties:

α ·αqi
= α

q j
, i = 0,1, . . . ,

n
2
−1,

n
2

+1, . . . ,n−1, j = 0,1, . . . ,n−1, (2)

α ·αqn/2
=

n−1

∑
s=0
−α

qs
. (3)

The above equations imply that there is exactly one 1 in each row except for the row n/2,
when n is even, where all the n entries are -1.

Suppose that β = Trqn/qm(α) ∈ Fqm with m = n/k. Then,

β = Trqn/qm(α) =
k−1

∑
i=0

α
qmi

= α +α
qm

+α
q2m

+ · · ·+α
q(k−1)m

,

generates a normal basis M of Fqm over Fq of the form

M = {β ,β q,β q2
, . . . ,β qm−1}.

We observe that, for j = 0, . . . ,m−1, we have

β
q j

=
k−1

∑
i=0

α
qmi+ j

= α
q j

+α
q j+m

+ · · ·+α
q j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : Fqm → Fqm , Dβ (x) = β · x.

The first row of the table D is given by

β ·β =

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
i=0

α
qmi

)

=
k−1

∑
i=0

(α ·α)qmi
+

k−1

∑
i=0

(
α ·αqm

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(km)/2

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(k−1)m

)qmi

.

Using (2) and (3), there are µ0,µ1, . . . ,µk−2 ∈ Zn such that

α ·α = α
qµ0

, α ·αqm
= α

qµ1 , . . . ,α ·αq(k−1)m
= α

qµk−2
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and

k−1

∑
i=0

(
α ·αqn/2

)qmi

=
k−1

∑
i=0

(
−

n−1

∑
s=0

α
qs

)qmi

=
k−1

∑
i=0

(
−

m−1

∑
s=0

β
qs

)qmi

=−k
m−1

∑
s=0

β
qs

.

Thus, we get

β ·β =
k−1

∑
i=0

(
α

qµ0
)qmi

+
k−1

∑
i=0

(
α

qµ1
)qmi

+ · · ·+
k−1

∑
i=0

(
α

qµk−2
)qmi

− k
m−1

∑
s=0

β
qs

= β
qµ0 +β

qµ1 + · · ·+β
qµk−2 − k(β +β

q + · · ·+β
qm−1

)

= −kβ − kβ
q + · · ·+(1− k)β qµ0 +(1− k)β qµ1 + · · ·+(1− k)β qµk−2

+ · · ·+(−k)β qm−1
.

The coefficients of β q j
are computed modulo q, so the first row of the table has at most m

non-zero terms.
Then, we calculate the remaining rows j = 1, . . . ,m−1 of the table by computing

β ·β q j
=

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
u=0

α
qmu+ j

)
= ∑

0≤u,i≤k−1

(
α

qmi
)(

α
qmu+ j

)
=

k−1

∑
i=0

(
α ·αq j

)qim

+
k−1

∑
i=0

(
α ·αq j+m

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αq j+(k−1)m

)qim

.

By (2) there are λ0,λ1, . . . ,λk−1 ∈ Zn such that

α ·αq j
= α

qλ0
, α ·αq j+m

= α
qλ1 , . . . , α ·αq j+(k−1)m

= α
qλk−1

, (4)

which implies,

β ·β q j
=

k−1

∑
i=0

(
α

qλ0
)qim

+
k−1

∑
i=0

(
α

qλ1
)qim

+ · · ·+
k−1

∑
i=0

(
α

qλk−1
)qim

= β
qλ0 +β

qλ1 + · · ·+β
qλk−1

.

Finally, for the row (m− j) of the table D, we have

β ·β qm− j
=

k−1

∑
i=0

(
α ·αqm− j

)qim

+
k−1

∑
i=0

(
α ·αq2m− j

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αq− j

)qim

.

Using the identities (4) it follows that

β ·β qm− j
= β

qλk−1+m− j
+β

qλk−2+2m− j
+ · · ·+β

qλ0− j
,

and since β qm
= β we get

β ·β qm− j
= β

qλk−1− j
+β

qλk−2− j
+ · · ·+β

qλ0− j
.
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Thus, the row j of the multiplication table of β is a cyclic permutation of j positions of row
(m− j).

If m = n/k is an even number, to calculate the row m/2 of the table D we must consider
both the cases where k is even and where k is odd. For the odd case we have

β ·β qm/2
=

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
u=0

α
qmu+m/2

)
= ∑

0≤u,i≤k−1

(
α

qmi
)(

α
qmu+m/2

)
=

k−1

∑
i=0

(
α ·αqm/2

)qim

+
k−1

∑
i=0

(
α ·αqm/2+m

)qim

+ · · ·

+
k−1

∑
i=0

(
α ·αqm/2+m(k−1)/2

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αqm/2+(k−1)m

)qim

=
k−1

∑
i=0

(
α ·αqm/2

)qim

+
k−1

∑
i=0

(
α ·αqm/2+m

)qim

+ · · ·

+
k−1

∑
i=0

(
α ·αqn/2

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αqm/2+(k−1)m

)qim

. (5)

By (2) and (3), there are δ0,δ1, · · · ,δk−2 ∈ Zn such that

β ·β qm/2
= β

qδ0 +β
qδ1 + · · ·+(−β −β

q−β
q2 −·· ·−β

qm−1
)+ · · ·+β

qδk−2
.

Thus, the row m/2 in this case has at most m− k + 1 non-zero terms. For the case where
k is even, the computations of (5) are similar to the calculations involving the identities (4)
above, and yield at most k non-zero terms.

In conclusion, we observe that an upper bound for the complexity of the normal basis
of Fqm over Fq generated by β , when m is even and k is odd, is k(m− 2)+ 2m− k + 1 =
(k + 2)m−3k + 1 since the first row of the table gives at most m non-zero entries, the m/2
row gives at most m−k+1 entries and all other rows give at most k entries. In all other cases,
the upper bound for the complexity of the normal basis is k(m−1)+m = (k+1)m−k, since
the first row gives at most m non-zero terms and all other rows give at most k non-zero terms.

ut

2.2 Type I optimal normal basis: q even

Theorem 2 Let α ∈ F2n generate an optimal normal basis of Type I of F2n over F2, n > 2,
and let β = Tr2n/2m(α) ∈ F2m with m = n/k and k ≤ m. Then, an upper bound for the
complexity of the normal basis of F2m over F2 generated by β is (k + 1)m− 3k + 2 if m is
even and k is odd, or km− k +1 otherwise.

Furthermore, for 1≤ j ≤m−1 row j of the multiplication table of β is a cyclic permu-
tation of j positions of row (m− j).

Proof We observe that the proof of this claim is nearly identical to the case where q is odd
except for the following changes.
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Let n + 1 be a prime, 2 a primitive root modulo n + 1, and let α ∈ F2n be an optimal
normal element of F2n over F2. Let N = {α,α2,α22

, . . . ,α2n−1} be the optimal normal basis
of F2n over F2 which is generated by α .

The multiplication table C[n×n] of the linear map

Cα : F2n → F2n , Cα(x) = α · x

has exactly 2n−1 non-zero terms with the following properties:

α ·α2i
= α

2 j
, i = 0,1, . . . ,

n
2
−1,

n
2

+1, . . . ,n−1, j = 0,1, . . . ,n−1, (6)

α ·α2n/2
=

n−1

∑
s=0
−α

2s
=

n−1

∑
s=0

α
2s

. (7)

The above equations imply that there is exactly one 1 in each row except for the row n/2
where all the n entries are 1.

Suppose that β = Tr2n/2m(α) ∈ F2m with m = n/k. Then,

β = Tr2n/2m(α) =
k−1

∑
i=0

α
2mi

= α +α
2m

+α
22m

+ · · ·+α
2(k−1)m

,

generates a normal basis M of F2m over F2 of the form

M = {β ,β 2,β 22
, . . . ,β 2m−1}.

We have that, for j = 0, . . . ,m−1,

β
2 j

=
k−1

∑
i=0

α
2mi+ j

= α
2 j

+α
2 j+m

+ · · ·+α
2 j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : F2m → F2m , Dβ (x) = β · x.

The first row of the table D is given by β ·β = β 2. Thus, the first row of the table D has a 1
in the second position.

If m = n/k is an even number then for the row m/2 of the table, by (5), we have that this
row contributes at most m− k +1 ones to D if k is odd, and at most k ones to D if k is even.

For the remaining rows the proof is identical to the q odd case. We recall that each of
the remaining rows contributes to the complexity with at most k non-zero entries. The proof
that row j of the multiplication of β is a cyclic permutation of j positions of row (m− j) is
also identical to the q odd case.

In conclusion, we observe that an upper bound for the complexity of the normal basis of
F2m over F2 generated by β , when m is odd or if both m and k are even, is k(m− 1)+ 1 =
km− k + 1. Otherwise, if m is even and k is odd, the complexity is at most k(m−2)+ m−
k +2 = (k +1)m−3k +2. ut

Corollary 1 Let α ∈ F2n generate an optimal normal basis of Type I of F2n over F2, n > 2,
and let β = Tr2n/2m(α) ∈ F2m with m = n/2, m odd. Then β generates a Type II optimal
normal basis of F2m over F2.
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Proof The complexity comes as a direct application of Theorem 2 when k = 2 and m odd.
To see that the basis forms a Type II normal basis, we observe that each row has exactly two
ones. For every j = 1, . . . ,m−1, we compute

β ·β 2 j
=
(

α +α
2m
)
·
(

α
2 j

+α
2m+ j

)
=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+α ·α2m+ j
+α

2m ·α2 j

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+α ·α2m+ j
+
(

α ·α2m+ j−2m
)2m

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+α ·α2m+ j
+
(

α ·α2m+ j2−n
)2m

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+
(

α ·α2m+ j
+
(

α ·α2m+ j
)2m)

. (8)

Similar to Theorem 1, there exist µ,λ with 0≤ µ,λ ≤ m−1, such that

α ·α2 j
= α

2µ

and α ·α2 j+m
= α

2λ

.

This in turn implies

β ·β 2 j
= β

2µ

+β
2λ

, j = 1, . . . ,m−1.

This is precisely the form of a Type II optimal normal basis. ut

We observe that another proof of this corollary is possible by using the respective con-
ditions for existence of Type I and Type II optimal normal bases. Indeed, we recall that if
F2n contains a Type I optimal normal basis over F2, then n + 1 is a prime and 2 generates
the group Zn+1. There are two conditions for F2m to contain a Type II optimal normal basis
over F2. In particular, one of these conditions is that 2m + 1 is prime and 2 generates the
group Z2m+1. If we consider n = 2m, then the Type II condition for F2m over F2 is precisely
the Type I condition for F2n over F2.

2.3 Type II optimal normal bases

Theorem 3 Let α generate a Type II optimal normal basis of F2n over F2 and let β =
Tr2n/2m(α) ∈ F2m with m = n/k and k ≤ m. Then the complexity of the normal basis of F2m

over F2 generated by β is 2km−2k +1.

Proof Let 2n+1 be prime, and suppose that either

1. 2 is a primitive element of Z2n+1, or
2. 2n+1≡ 3 mod 4 and 2 generates the quadratic residues in Z2n+1.

Let α = γ + γ−1, where γ is a primitive (2n+1)th root of unity. Let N = {α,α2,α22
, . . . ,

α2n−1} be the optimal normal basis of F2n over F2 which is generated by α .
The multiplication table C[n×n] of the linear map

Cα : F2n → F2n , Cα(x) = α · x
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has exactly 2n−1 non-zero terms with the following property:

α ·α2i
= α

2 j
+α

2k
, i = 1, . . . ,n−1, j,k = 0,1, . . . ,n−1 , j 6= k. (9)

Therefore, there are exactly two ones in each row of C except for the first row, where there
is one 1 in the second position.

Suppose that β = Tr2n/2m(α) ∈ F2m with m = n/k. Then,

β = Tr2n/2m(α) =
k−1

∑
i=0

α
2mi

= α +α
2m

+α
22m

+ · · ·+α
2(k−1)m

generates a normal basis M of F2m over F2 of the form

M = {β ,β 2,β 22
, . . . ,β 2m−1}.

We observe that, for j = 0, . . . ,m−1, we have

β
2 j

=
k−1

∑
i=0

α
2 j+mi

= α
2 j

+α
2 j+m

+ · · ·+α
2 j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : F2m → F2m , Dβ (x) = β · x.

The first row of the table D is given by β ·β = β 2. Thus, it has 1 non-zero term in the second
position.

As in Theorem 2, computing the jth row of D gives

β ·β 2 j
=

k−1

∑
i=0

(
α ·α2 j

)2mi

+
k−1

∑
i=0

(
α ·α2 j+m

)2mi

+ · · ·+
k−1

∑
i=0

(
α ·α2 j+(k−1)m

)2mi

.

By (9), there exist λi,µi ∈ Zn such that α ·α2 j+mi = α2λi +α2µi , i = 0, . . . ,k−1. So,

β ·β 2 j
=

k−1

∑
i=0

(
α

2λ0 +α
2µ0
)2mi

+ · · ·+
k−1

∑
i=0

(
α

2λk−1 +α
2µk−1

)2mi

= β
2λ0 +β

2µ0 + · · ·+β
2λk−1 +β

2µk−1
.

Thus, there are 2k ones appearing in each remaining row of D.
In conclusion, we observe that the complexity of the basis generated by β ∈ F2m over

F2 is 2k(m−1)+1. ut

The following corollary shows that, in contrast with the case Type I normal basis and
q even, we do not obtain optimal normal elements for Type II normal basis. Hence, this
corollary gives new low complexity normal elements for q even.

Corollary 2 Let α generate a Type II optimal normal basis of F2n over F2 and let β =
Tr2n/2m(α) ∈ F2m with m = n/2. Then the complexity of the normal basis of F2m over F2
generated by β is 4m−3.
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3 The dual of the trace of an optimal element

Let N = {α,α1, . . . ,αn−1} be a normal basis of Fqn over Fq and M = {γ,γ1, . . . ,γn−1} be
another basis. Then M is the dual basis of N if Tr(αiγ j) = δi j for 1≤ i, j ≤ n−1 where δi j
is the Kronecker delta function. It is known that the dual basis of a normal basis is again
normal [3], so let γi = γqi

. A basis is self-dual if it is its own dual basis. If α generates a
normal basis N of Fqn over Fq and γ generates the dual basis of N then γ is a dual element
of α .

Theorem 4 gives the statement and proof of an upper bound of the complexity of the
dual basis of the trace of a Type I optimal normal basis when q is odd. Following the proof
we present a statement of the theorem using Type II optimal normal bases and a summary
table outlining upper bounds for any q and for both Type I and Type II optimal normal bases.

Theorem 4 Let α ∈ Fqn generate an optimal normal basis of Type I of Fqn over Fq and let
β = Trqn/qm(α) ∈ Fqm with m = n/k, k ≤ m and (k,q) = 1 or (k, p) = 1, when q is a prime
power of p. Then the complexity of the normal basis of Fqm over Fq generated by γ, which
is the dual element of β , is (k +2)m−2 when m is odd. Further, for 1≤ j ≤ m−1 row j of
the multiplication table of γ is a cyclic permutation of j positions of row (m− j).

Proof As in Theorem 1, let α ∈ Fqn generate an optimal normal basis of Type I and β =
Trqn/qm(α) ∈ Fqm with m = n/k. Let γ ∈ Fqm be a dual element of β . According to [15], γ is
of the form

γ = d0β +d1β
q + · · ·+dm−1β

qm−1
,

where d0,d1, . . . ,dm−1 ∈ Fq are the coefficients of the unique polynomial g(x) of degree
≤ m−1 satisfying

g(x)h(x)≡ 1 mod xm−1

and h(x) is of degree ≤ m−1 with coefficients t0, t1, . . . , tm−1 where

ti = Trqm/q(β ·β qi
), i = 0,1, . . . ,m−1.

Since, Trqn/q(α) =−1 and (k,q) = 1 we get

Trqm/q(β ) =
m
n

Trqn/q(β ) =
m
n

Trqn/q(α +α
q + . . .+α

qn−1) =

=
m
n
· k ·Trqn/q(α) =

1
k
· k · (−1) =−1.

Observing that γ = d0β +d1β q + · · ·+dm−1β qm−1
is the dual element of β ∈ Fqm it follows

that

Trqm/q(β
qi · γq j

) =
{

1, if i = j,
0, otherwise.

The above equation for i = 0 and j = 0, . . . ,m−1 implies the following system:

d0Trqm/q(β ·β ) + d1Trqm/q(β ·β qi
) + . . . + dm−1Trqm/q(β ·β qm−1

) = 1
dm−1Trqm/q(β ·β ) + d0Trqm/q(β ·β qi

) + . . . + dm−2Trqm/q(β ·β qm−1
) = 0

...
...

...
...

d1Trqm/q(β ·β ) + d2Trqm/q(β ·β qi
) + . . . + d0Trqm/q(β ·β qm−1

) = 0
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Summing the equations of the system we get,

(d0 +d1 + . . .+dm−1)
(

Trqm/q

(
β ·
(

β +β
q + . . .+β

qm−1
)))

= 1.

Therefore, we have

(d0 +d1 + . . .+dm−1)

(
Trqm/q

(
β ·

(
m−1

∑
i=0

β
qi

)))
= 1,

(d0 +d1 + . . .+dm−1)
(
Trqm/q (β )

)2 = 1,

(d0 +d1 + . . .+dm−1)(−1)2 = 1.

Thus, we get the following relation for the coefficients of γ ∈ Fqm

d0 +d1 + · · ·+dm−1 = 1.

We compute t0 = Trqm/q(β ·β ) separately from ti = Trqm/q(β ·β qi
), i = 1, . . . ,m−1,

t0 = Trqn/k/q(β ·β ) =
1
k

Trqn/q(β ·β ) =
1
k

Trqn/q

((k−1

∑
i=0

α
qmi
)(k−1

∑
i=0

α
qmi
))

=
1
k

Trqn/q

(
k−1

∑
i=0

(α ·α)qmi
+

k−1

∑
i=0

(
α ·αqm

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(km)/2

)qmi

+

+ · · ·+
k−1

∑
i=0

(
α ·αq(k−1)m

)qmi
)

.

Using (2),(3) there are µ0,µ1, . . . ,µk−2 ∈ Zm such that

α ·α = α
qµ0

,α ·αqm
= α

qµ1 , . . . ,α ·αq(k−1)m
= α

qµk−2
.

Thus

t0 =
1
k

Trqn/q

(
k−1

∑
i=0

(
α

qµ0
)qmi

+
k−1

∑
i=0

(
α

qµ1
)qmi

+ · · ·+ k + · · ·+
k−1

∑
i=0

(
α

qµk−2
)qmi

)

=
1
k

(
k−1

∑
i=0

Trqn/q

(
α

qµ0
)qmi

+
k−1

∑
i=0

Trqn/q

(
α

qµ1
)qmi

+ · · ·+Trqn/q(k)+ · · ·+

+ · · ·+
k−1

∑
i=0

Trqn/q

(
α

qµk−2
)qmi

)

=
1
k

((−k)+(−k)+ · · ·+ kn+ · · ·+(−k))

=
1
k

((−k)(k−1)+ kn)) = n− k +1.

Now, we calculate ti = Trqm/q

(
β ·β qi

)
, i = 1, . . . ,m−1. By Theorem 1, there are λ0,λ1, ...,λk−1 ∈

Zm such that

β ·β qi
= β

qλ0 +β
qλ1 + · · ·+β

qλk−1
.
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We have

ti = Trqm/q

(
β ·β qi

)
= Trqm/q

(
β

qλ0 +β
qλ1 + · · ·+β

qλk−1
)

= Trqm/q

(
β

qλ0
)

+Trqm/q

(
β

qλ1
)

+ · · ·+Trqm/q

(
β

qλk−1
)

= (−1)+(−1)+ · · ·+(−1) =−k.

This implies
h(x) =−k

(
xm−1 + xm−2 + · · ·+ x

)
+n− k +1.

We may compute di, i = 1, . . . ,m−1, by rephrasing the condition

g(x)h(x)≡ 1 mod xm−1

as
m−1

∑
k=0

dkti−k =
{

1, if i = 0,
0, otherwise,

which is equivalent to the following system:

d0t0 + d1t−1 + · · · + dm−1t−(m−1) = 1
d0t1 + d1t0 + · · · + dm−1t−(m−2) = 0

...
...

...
...

d0tm−2 + d1tm−1 + · · · + dm−1t−1 = 0
d0tm−1 + d1tm−2 + · · · + dm−1t0 = 0.

The indices of the ti’s are computed modulo m, and the di ∈ Fq are found by solving the
system 

(n− k +1) −k . . . −k −k
−k n− k +1 . . . −k −k
... . . . . . .

...
...

−k −k . . . (n− k +1) −k
−k −k . . . −k (n− k +1)




d0
d1
...

dm−2
dm−1

=


1
0
...
0
0

 ,

which implies that

d0 =
k +1
n+1

, di =
k

n+1
, i = 1, . . . ,m−1.

Note that n+1 is a prime different from zero in Fq, and therefore has an inverse. Then using
that Trqm/q(β ) =−1 the dual element γ ∈ Fqm is:

γ =
k +1
n+1

β +
k

n+1

(
β

q +β
q2

+ · · ·+β
qm−1

)
=

1
n+1

β +
k

n+1

(
β +β

q +β
q2

+ · · ·+β
qm−1

)
=

1
n+1

β +
k

n+1
Trqm/q(β )

=
1

n+1
β − k

n+1
,

and γqi
= 1

n+1 β qi − k
n+1 , i = 0, . . . ,m−1.
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Let C = C[m×m] be the multiplication table of the linear map

Cγ : Fqm → Fqm , Cγ(x) = γ · x.

By Theorem 1, there exist µ0,µ1, . . . ,µk−2 ∈ Zm such that

β ·β = β
qµ0 +β

qµ1 + · · ·+β
qµk−2 − k

(
β +β

q + · · ·+β
qm−1

)
.

The first row of the table C is given by:

γ · γ =
(

1
n+1

β − k
n+1

)
·
(

1
n+1

β − k
n+1

)
=

1
(n+1)2 β ·β − 2k

(n+1)2 β +
k2

(n+1)2

=
1

(n+1)

((
1

n+1
β

qµ0 − k
n+1

)
+ · · ·+

(
1

n+1
β

qµk−2 − k
n+1

)
− kTrqm/q(β )

)
+

k(k−1)
(n+1)2 −

2k
(n+1)2 β +

k2

(n+1)2

=
1

(n+1)

(
γ

qµ0 + γ
qµ1 + · · ·+ γ

qµk−2
)
− 2k

n+1
γ

Thus, the first row of the table C has at most k non-zero terms. Next we prove that each
one of the remaining rows has at most k + 2 non-zero terms. For every i = 1, ...,m− 1 we
compute

γ · γqi
=
(

1
n+1

β − k
n+1

)
·
(

1
n+1

β
qi − k

n+1

)
=

1
(n+1)2 β ·β qi − k

(n+1)2 β − k
(n+1)2 β

qi
+

k2

(n+1)2

=
1

(n+1)2

(
β

qλ0 +β
qλ1 + · · ·+β

qλk−1
)
− k

(n+1)2 β − k
(n+1)2 β

qi

+
k2

(n+1)2

=
1

(n+1)

(( 1
n+1

β
qλ0 − k

n+1

)
+ · · ·+

( 1
n+1

β
qλk−1 − k

n+1

))
+

+
2k2

(n+1)2 −
k

(n+1)2 β − k
(n+1)2 β

qi

=
1

(n+1)

(
γ

qλ0 + γ
qλ1 + · · ·+ γ

qλk−1
)
− k

n+1
γ− k

n+1
γ

qi
.

Hence, the multiplication table has at most (k + 2) · (m− 1) + k = (k + 2)m− 2 non-zero
terms, so the complexity is at most (k +2)m−2.
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Finally, for the row (m− i) of the table C, using Theorem 1 we get,

γ · γqm−i
=
(

1
n+1

β − k
n+1

)
·
(

1
n+1

β
qm−i − k

n+1

)
=

1
(n+1)2 β ·β qm−i − k

(n+1)2 β − k
(n+1)2 β

qm−i
+

k2

(n+1)2

=
1

(n+1)2

(
β

qλk−1−i + · · ·+β
qλ0−i

)
− k

(n+1)2 β − k
(n+1)2 β

qm−i

+
k2

(n+1)2

=
1

(n+1)

(( 1
n+1

β
qλk−1−i − k

n+1

)
+ · · ·+

( 1
n+1

β
qλ0−i − k

n+1

))
+

2k2

(n+1)2 −
k

(n+1)2 β − k
(n+1)2 β

qm−i

=
1

(n+1)

(
γ

qλk−1−i + · · ·+ γ
qλ0−i

)
− k

n+1
γ− k

n+1
γ

q−i
.

Thus, the row j of the multiplication table of γ is a cyclic permutation of j positions of row
(m− j). ut

We note that the above proof is analogous in the case where q is even with the exception
that the first row contributes only 1 to the complexity as γ ·γ = γ2 is an element of the normal
basis generated by γ . Also, when m is even, we must use the bound that the m/2 row of the
multiplication table C has at most m non-zero entries. The resulting complexity for q odd is
bounded above by (m− 2) · (k + 2)+ m + k = m(k + 3)− k− 4, and for q even is bounded
above by (k +3)m−2k−3.

Recall that the coefficients, ti, of the polynomial h(x) defined in Theorem 4 are given by

ti = Trqm/q

(
β ·β qi

)
, i = 0,1, . . . ,m−1.

If β generates a Type II optimal normal basis, by Theorem 3 there exist λi,µi ∈ Zn such that

β ·β 2 j
= β

2λ0 +β
2µ0 + · · ·+β

2λk−1 +β
2µk−1

.

Thus, t0 = 1 and ti = 0 for 1 ≤ i ≤ m− 1. This provides the analogous result for Type II
optimal normal bases.

Theorem 5 Let α ∈ Fqn generate an optimal normal basis of Type II of Fqn over Fq and
let β = Trqn/qm(α) ∈ Fqm with m = n/k, k ≤ m. Then β is self-dual and consequently the
complexity of the dual basis of β is 2k(m−1)+1.

We summarize the results in this section in the following table.

Table 1 Upper bounds on complexities for Fqm obtained by the dual of the trace of ONBs, where m = n/k.

Type I (q odd) Type I (q even) Type II (q even)
m odd (k +2)m−2 (k +2)(m−1)+1 2k(m−1)+1
m even (k +3)m− k−4 (k +3)m−2k−3 2k(m−1)+1
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4 Existence of optimal extensions

A question that naturally arises is whether, given a prime power q and a natural number m,
there exists an extension Fqn of Fqm , such that Fqn has an optimal normal basis over Fq. This
is a hard question, and certainly it is not the subject of this work. We give a brief discussion
of known results that provide partial answers to this and related questions. For simplicity,
we restrict the discussion to powers of odd primes, that is to fields of odd characteristic.

The extension Fqn contains a Type I optimal normal basis over Fq, which implies that
n = `−1 for a prime ` and q is primitive modulo `. The requirement that Fqn is an extension
of Fqm implies that `≡ 1 mod m. One would be interested to know if such a prime always
exists and what is its order of magnitude in terms of m. We observe that this is already a
refinement of Artin’s conjecture on primitive roots. We note further, that if q is a square
it cannot be primitive modulo any odd prime. Suppose that q is an odd nonsquare prime
power. Then the work of Moree [12] and Lenstra [7] implies that under the GRH there exist
infinitely many primes ` such that ` ≡ 1 mod m and q is primitive modulo `. Thus, under
the GRH, one is assured that optimal extensions such as those used in this work exist. The
ratio k = n/m is clearly of importance for the bounds that we have given. In the terminology
of this section one would like to know the smallest prime ` in the arithmetic progression of
1 modulo m such that q is primitive modulo `. This however is a much harder question, and
a good bound seems to be out of reach even under the GRH.

5 Conclusions

In this paper we give low complexity normal elements for Fqm over Fq, when m = n/k and
there is an optimal normal element in Fqn . Table 2 gives a summary of the best complexities
obtained in this paper.

Table 2 Summary of best-case low complexities for Fqm obtained by traces, where m = n/k.

Type I (q odd): Type I (q even): Type II (q even):
m odd (k +1)m− k km− k +1 2km−2k +1 (for all m)
m even, k odd (k +2)m−3k +1 (k +1)m−3k +2
m even, k even (k +1)m− k km− k +1

In practice, we are mainly interested in fields with q even where we have low complexity
normal bases. As a result of our constructions, we are able to find low complexity normal
elements in intermediate fields using tables from [3]. The optimal normal bases in finite
fields were completely characterized in [4], but there is still a need to find low complexity
normal bases in extensions for which there is no optimal normal basis. Table 3 gives n-
degree extensions of F2, 278 ≤ n ≤ 1026, in which there exists a Type II optimal normal
basis in F2n but no such basis exists in F2n/2 . Table 4 is a similar table where there exists
a Type I optimal normal basis in F2n but no such basis exists in F2n/4 . We also provide the
resulting complexities of the found bases.

The National Institute of Standards and Technology (NIST) recommends a series of
five elliptic curves over binary fields for United States federal government use in cryptog-
raphy [14]. The complexities of the normal basis representatives were found by [10], and
Table 5 compares our best-found constructions with the NIST standard curves.
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Table 3 Complexities (Cm) of intermediate F2m over F2, m = n/2 where F2n has a Type II optimal normal
basis.

n m = n/2 Cm = 4m−3
278 139 553
306 153 609
326 163 649
330 165 657
338 169 673
350 175 697
354 177 705
386 193 769
398 199 793
410 205 817
414 207 825
426 213 849
438 219 873
470 235 937
530 265 1057
554 277 1105
558 279 1113
614 307 1225
638 319 1273

n m = n/2 Cm = 4m−3
650 325 1297
686 343 1369
690 345 1377
726 363 1449
746 373 1489
774 387 1545
810 405 1617
818 409 1633
834 417 1665
846 423 1689
866 433 1729
870 435 1737
930 465 1857
938 469 1873
950 475 1897
974 487 1945
986 493 1969
998 499 1993

1026 513 2049

Table 4 Complexities (Cm) of intermediate F2m over F2, m = n/4 where F2n has a Type I optimal normal
basis.

n m = n/4 Cm = 4m−3
52 13 49
60 15 57

100 25 97
148 37 145
172 43 169
180 45 177
196 49 193
268 67 265
292 73 289
316 79 313
348 87 345
372 93 369
388 97 385
420 105 417
460 115 457
508 127 505
540 135 537
556 139 553

n m = n/4 Cm = 4m−3
612 153 609
652 163 649
660 165 657
676 169 673
700 175 697
708 177 705
756 189 753
772 193 769
796 199 793
820 205 817
828 207 825
852 213 849
876 219 873
940 235 937

1060 265 1057
1108 277 1105
1116 279 1113

The complexities of the extensions where m = 163 and m = 409 given by NIST satisfy
the relation cN = 4m− 7, which is a specific construction given in [3]. This construction
requires finding primitive roots of unity in large composite extensions of Fqn , which is cer-
tainly computationally more difficult than finding the trace of a known optimal normal el-
ement. The basis used for m = 233 is a Type II ONB, and for the m = 283 and m = 571
existing tables in [3] only give extensions for which ONBs exist up to m = 2000, and so
we could not apply our construction. We have provided complexities using our construction
for extensions m = 307 and m = 577 which have the properties that their degrees are prime,
close to an extension given by NIST, and 2m−1, the order of the multiplicative group, is not
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Table 5 Comparison of NIST-standard normal basis representatives of F2m over F2 with our construction.

m NIST-cN Our cN
163 645 649
233 465* 465*
283 1677 -
307 - 1225
409 1629 1633
571 5637 -
577 - 2305

divisible by small prime factors. This could be indicative that elliptic curve cryptography is
computationally desirable over these and similar fields.
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