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Abstract

The paper shows that a public key cryptosystem due to Yoo, Hong,
Lee, Lim, Yi and Sung is insecure, as it is susceptible to an attack
based on the LLL algorithm.
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1 Introduction

This paper cryptanalyses a public key cryptosystem due to Yoo, Hong, Lee,
Lim, Yi and Sung [8] (which we refer to as the YHLLY'S cryptosystem). This
scheme was inspired by a cryptosystem invented by Goldreich, Goldwasser
and Helevi [1] and cryptanalysed by Nguyen [6]. The YHLLYS cryptosystem
is an attempt to avoid the attacks of Nguyen by using modular arithmetic.
However, we will show that the YHLLYS cryptosystem is open to an attack
based on the LLL algorithm [4] for finding short vectors in a lattice.

We describe the YHLLY'S cryptosystem in Section 2. Our cryptanalysis
is contained in Section 3, and the results of practical experiments are given
in Section 4.



2 The YHLLYS Cryptosystem

The YHLLYS cryptosystem is defined as follows. Let n be a small positive
integer (the paper of Yoo et al [8] suggests that n should lie between 10 and
20). Let p and ¢ be randomly chosen 512 bit primes, and let N = pq. Let m
and e be random integers so that m ~ ¢** and e ~ ¢*2.

Let D, T, U and L be n X n integer matrices, chosen subject to the
following conditions:

e D is diagonal, and the entries d;; on the main diagonal of D have
modulus between m and ¢%°.

e T is invertible, its entries are non-negative and its row sums are all at
most ¢°2. (The non-negative condition is not explicitly stated in the
paper of Yoo et al [8]. However something like this condition is needed
for the decryption process to work correctly.)

e U is upper unitriangular, the entries off the main diagonal are multiples
of q.

e [ is lower unitriangular, the entries off the main diagonal are multiples
of q.

Define R = DT. Note that the entries of R lie in the range [—¢%7, ¢*7].
Define B, = R™! mod ¢ and define B = B,UL mod N.

The public key consists of B, e, m and N. The secret key consists of the
public key together with R, ¢ and D.

Let M be a message, which is thought of as a length n (column) vector
whose entries are integers between 0 and m. To encrypt M, a user randomly
chooses a length n vector £ whose entries are integers between 0 and e. The
ciphertext C' is

C = BM + E mod N.

To decrypt, a user computes a length n vector X whose entries are integers
between 0 and ¢ by
X = RC mod q.

The ith entry of X is reduced modulo d;; (the ith diagonal entry of D) to
obtain the ¢th entry of M. To show that this decryption process works, see
the paper of Yoo et al [8].



3 A Cryptanalysis

This section contains a cryptanalysis of the YHLLYS cryptosystem. We use
the notation of the previous section throughout.

Yoo et al observe that their scheme is broken if ¢ becomes known. But
we will show that the public key contains sufficient information to enable N
to be factorised, and so g is revealed.

We begin with a definition. The vector

Uy Uz Uy
R 1
of rational numbers is an unusually good simultaneous diophantine approzi-
mation to the vector

(ﬂ Y2 %) 2)

v v
if u < v and the following inequality holds

(%

u— —u;| < vt for all i € {1,2,...,¢}. (3)
v

We will use the fact that if the vector (1) is an unusually good simultane-
ous diophantine approximation to the vector (2) then the integers u; and
the integer v may be found from the integers v; and v by using the LLL
Algorithm [4]. Lagarias [3] was the first to observe this; see Menezes, van
Oorschot and Vanstone [5, Page 121]. Joux and Stern [2] give a useful sur-
vey of the uses of the LLL algorithm in cryptography. [The detail of the
method is as follows. Let A be an integer near to the expected upper bound
for ‘u% — u;|. Form the (£ + 1)-dimensional integer lattice generated by AN
times the first ¢/ standard basis vectors together with the vector

(—)\’Ul, —)\1)2, [P —)\’Ug, 1).

Apply the LLL algorithm to this lattice, to produce a reduced basis. Then
the vector

(UI:UQa .. .,U@,U)

is usually one of the vectors in this basis.]
We now show how this technique may be used to break the YHLLYS
scheme. Let S be defined by S = B! mod N. Note that S may be calculated
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from the public key. (It is highly unlikely that S fails to be invertible. In
any case, if S is not invertible then the gecd of its determinant and N would
be p and so N is factorised.) Now, since U = L = I mod ¢ the definition
of B shows that S = R mod g. Since the entries of R lie in the range
[—¢%7,¢"7], we have that each entry s;; of S is an integer such that s;; mod
q € [-¢"7, ¢"7].

Let vy, v9,...,v,2 be the entries of S listed in some order. Let £ be a
small integer (we discuss the choice of £ below, but we must have ¢ < n?).
We are only going to use ¢ of the entries v; of S in our cryptanalysis. We
may write v; = u;q + r; for some integers u; and r; such that 0 < u; < p and
r; € [—q%7,¢"7]. We claim that the vector

(E% %) 1)
p’'pp

is an unusually good simultaneous diophantine approximation to the vector

V1 Vg Vy
(¥ % %) ©)
whenever ¢ > 7. For we have that

7] 0.3

V4
:—<q )
q

pﬁ — Ui
where we have used the fact that v; = u;q + r; and the fact that N = pq.

Since ¢ is approximately N%3 we have that

< N70.15.

V4
pﬁ — U

Now, 0.15 > % whenever ¢ > 7, and so (4) is an unusually good simultaneous
diophantine approximation to (5). Thus our claim follows.

Our cryptanalysis proceeds as follows. Let B and N be part of the public
key. Assume that B is an n X n matrix, where n > 3 (as the suggested
values for n range from 10 to 30, this is a reasonable assumption). Since
7 < 3% < n? we may take £ = 7 and the vector (5) may be efficiently
computed from B and N (by inverting B modulo N to obtain the elements
v;). Since (4) is an unusually good simultaneous diophantine approximation
to (5), we may use the LLL algorithm to compute p (and the integers u;).
But now we have obtained a factor of N, and so the YHLLYS cryptosystem
is broken.



4 Experimental Verification

The above cryptanalysis relies on the heuristic simultaneous diophantine ap-
proximation techniques of Lagarias [3]. We have performed experiments to
verify that these techniques work in practice, for the parameters we were
considering. We picked two 512-bit pseudoprimes p and ¢ at random, and
multiplied them together to form N. We generated ¢ elements v; modulo N
of the form v; = u;q + r; where 0 < u; < p and r; € [—¢%7, ¢°7] were chosen
uniformly and independently at random.

Define an integer A = | N%!5|. We submitted the lattice generated by the
rows of the following (¢ + 1) x (£ + 1) matrix to the LLL algorithm:

AN 0 o - 0 0 0
0 AN o - 0 0 0
0 0 AN - 0 0 0
0 0 0 --- AN 0 0
0 0 o --- 0 AN 0
—Av1 —Avy —Avg --- —Aupmg —Ay 1

In our experiments with ¢/ = 7, the reduced basis returned by the LLL
algorithm always had p or —p as its last entry and so we were able to factorise
N. (Indeed, though not indicated by our theoretical analysis, this approach
always factorised N when ¢ = 6; but the method never succeeded if we
chose £ = 5.) We performed our experiemnts on a 700MHz Pentium 3 laptop
running Lynux, using Victor Shoup’s NTL library [7]. In every case, the LLL
algorithm took under 3 minutes to return the reduced basis of the lattice.
All these results were repeated for 712-bit primes p and ¢, with no change of
outcome.
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