rThe gradient of a
scalar field =

In this chapter we consider vector fields which are derived from scalar
fields. This is a concept which has wide application in many branches
of mathematical physics, and its usefulness is almost obvious. A scalar
field requires a2 knowledge only of one scalar function ¢(x;, x;, X3)
say, but in the case of a vector field we require information about three
components of the field. It is much simpler therefore if we can deduce
a vector field, which is phystcally useful, from a scalar field, as is the
case for example in electrostatic theory. In that theory a knowledge of
the electrostatic potential ¢ determines completely the vector field of
the electric intensity E. We describe now the construction of such a
vector field from the basic scalar field.

4.1 The construction of grad ¢

The given scalar field ¢ might be specified as a function of the Cartesian
coordinates x;, or as a function of some other system of cocrdinates,
but for the moment it is convenient to think independently of particu-
lar coordinates. Construct the level surfaces of ¢, and consider the
particular level surface ¢ = @(P) which passes through a generic point
P of space. At P draw a unit normal n to this surface; we remark that
we could specily the sense of this normal, but it is not essential to do
this. We now define a vector at P, called the gradient of ¢ at P, or
{grad ¢)p, as follows:

(grad ¢)p = am,

where o« = Rate of increase of ¢ with respect to distance
measured in the direction of n, evaluated at P. 4.1)
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CARTESIAN COMPONENTS OF GRAD ¢ Ti

This constructibn'yields a vector at a typical point P, and the same
process at all points of space gives the vector field grad ¢.

4.2 Cartééian components of grad ¢

Suppose that the scalar field is given in the form ¢(x,, x;, x3). ¥ P is
the point with coordinates x}, then the level surface of ¢ through P is

¢(x1: X325 JC3) = ¢(x,15 x’Zs :Ef?u);
s

and a unit normal n to this surface at Pis <

o (26 86174 30 06 "
T dx, ox; 8x,” 8x, x3)’
evaluated at P, using the summation convention in the multiplier.
Now consider a small displacement dx; along this normal, so that

AN
dx, = 1( axi)P,.k @)

where A is small and positive, The change in ¢, d¢, from its value at P
by virtue of this displacement is

_(9¢
4= (a—xi ‘“‘il:

using a Taylor series expansion and retaining only the first order terms.
Thus, using (2)

The distance moved along the normal

= {dx; dx;}*
2t
= l —_— )
Ox; Ixg\p
since A is positive.
Hence the rate of change of ¢ with respect to distance measured

along n
+
={95”i ff} — sy, @)

ax;_ ax,' P
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the limit here being simply a quotient since we have retained first order
terms only for d¢. It appears here that p is positive, so evidently the
original choice for the sense of n has been taken in the direction of

increasing ¢.
In all, we now have

(grad @)p = pn = (a¢ 2% @)'

ox,” 0x," O

Thus, at any point x; in space the vector field grad ¢, in terms of
Cartesian components, is

w
AY

grad ¢ = -grii c : {42

4.3 The component of grad ¢ in a given direction

At any point P, coordinates x;, consider an arbitrary unit vector b. If ds
is an element of distance measured along a line from P to P’ in the
direction of b, then the Cartesian coordinates of P'are

x,+ods, x,+fds, x3+7vds,

where (a, 8, 7) are the direction cosines of b. Thus

o¢ op d¢

VY—p(P) = — o d - — 0ids?
¢(Py—p(F) Ebcla s+ax2ﬁds+ax3yds+(s),
using the Taylor expansion for @(P'), and 0(ds?) to indicate the terms
of second order and above in the small element ds.

Hence

im PV —¢P) P 06 0
ds—=0 ds _aax1+ﬁ5xz+?axal
: = b+grad ¢. '
“This last result, reading backwards, can be stated:

The component of grad ¢ in a given direction = Rate of
change of ¢ with respect to distance measured in that direction. (4.3)

This statement provides immediately the method of calculating grad ¢
in any system of orthogonal curvilinear coordinates. For all that is
required is the application of the result in cach of three directions at
right angles, followed by multiplication by the appropriate unit vectors
and vector addition of the resulting expressions. -

qradeg -
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The calculation is casily pérforméd. Consider an orthogonal curvi-
“linear system &;, and let e; be the appropriate unit vectors along the
local axes at P (see Section 2.4). Then, with reference to Fig. 4.1, if

(£l+d£1‘52- 53)

Fig. 41 Diagram for the calculation of grad ¢ in orthogonal curvilinear
coordinates, Section 4.3.

@, is the point (¢, +d¢,, &,, &), and thus lies on the local axis of e, at
P, we have:
Change'in ¢ in the e, direction
= O(Q)—@(F) = %dél,
5 ’ o0&,
correct to the first order of small quantities, since ¢, and &3 remain
constant.

Thel distance PQ, = h, d&;, where h, is the appropriate scale factor.
s

‘Rate:of change of ¢ with respect to distance measured in the
direction e; = — i
hy 9y

A similar calculation follows for the directions e,, €;, and hence,
since the system is orthogonal,

1 a¢ 1 3¢ 1 3
rad¢p = — —e, +— ¢ — e 44
gadd = - oot g T e WY
o
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4.4 Single valued scalar fields -

So far we have implied that the scalar fields ¢ which we have‘ discussed .

are single valued fgncﬁons of position; that is, for any point Pin space,
the value of ¢ at P'is unique. :
It is a simple matter to postulate fields which do not satisfy this
requirement. For example, if (r, 6) are plane polar coordinates, and
¢ = kO, then since a point P in the plane is represented equally well

by the coordinates (r, §) or {r, # + 2nr), where nis any integer, then clearly

at P, ¢ takes the multiplicity of values k{f+2nm). Situations of this

type do arise in applications, but for the moment we shalk restrict

attention to scalar fields which are single valued functions of position.
In this context there is a basic theorem which we now prove.

&
Theorem and converse

(i) Statement. If a vector field F is the gradient of a single valued scalar
field ¢ in a region of space, then the line integral of F round any
closed path C in the region is zero. 4.5)

(i) Statement (Converse). If a vector field F is such that its line integral
round any closed path C in a region of space is zero, then F is
expressible as the gradient of a single valued scalar field ¢ in the
region. t {4.6)

(i) PROOF Firstlet C be any path in the region, with terminal points

A, B. If s is the arc length measured along C, we have: :

3

Line integral of F along C = j F-dr = J grad ¢ dr
(o8 C

I
= L s ds (from resuth 4.3
= P(B)—P(A).

Now close the path C, so that B coincides with A. Then since ¢ is sméle
valued, ¢(B) = $(4), and hence

(j‘) Fedr =1,
C

(i) PROOF With reference to Figs. 4.2 and 4.3, let O be an origin in
the region, and P a generic point. Consider two distinct paths Cy, C;
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¢
Fig. 42 Diagram for theorem (4.6).

» P

a

C

0 Fig. 4.3 Diagram“‘f‘or theorem (4.6},

joining O to P. Then the path C; = C,—C, is a closed path in the
region, and hence from the data of (ii),

3@ F-dr =0,

Cs

1Le. ,[ F-dr =J F-dr.
C] Cl

This means that the line integral of F along any path joining O and P
is independent of the path, and so can only be some single valued func-
tion of position ¢(P), regarding O asa fixed origin. Thus,if C is any path
joining O and P,

j F-dr = ¢(P).
c

Now colnsider an arbitrary unit vector a at P, and let P’ be a point such
that PP’ = a ds, where the length element ds is small. Then ¢(P) can
be calculated by forming the line integral of F along the original path C
plus the short section PP’ _ -

Hence
P

G(PY—d(F) = J 'F-dr = F-ads

P
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to the first order in ds, where F is the Vec‘;or.ﬁcld at P.
Now . o ’
O(P)— p(P)

s —grad ¢p-a asds— 0,

from result (4.3). Hence dividing by ds in the above relation, afld.

proceeding to the limit as ds — 0, we have :
(F—grad ¢}+a = 0,

and therefore, since a is arbitrary,

F = grad ¢,

~ which establishes theorem (4.6).

A vector field F which satisfies the condition of theorem (4.6) is
described as a conservative field, associated with the fact thatif Fis a
force field then no work is dong in total by F in a circuit of asclosed
path C. Expressed in equivalent form, if F is a conservative field, the
line integral of F along a path connecting two points is independent of
the choice of path between these points. This explains the reason for
the results of example (3.2). In this particular casc,

F = (2x1X3, 3x§7 X%),

and it is clear that F is expressible in the form
= grad ¢,
with
P = xIx;+x3+e,
where c is an arbitrary constant. This constant is determined explicitly,
of course, if the value of ¢ is prescribed at some point.
If it is known that F is a conservative field, it is possible that the

associated scalar field ¢ might be constructed by evaluation of the line
integral

$(P)—$(0) = J F-dr, e
C
where C is some path connecting a base point O to the curreat point P

in the field. This is illustrated by the following example:

Example 4.1
A system of oblate spheroidal coordinates (£, 4, «) is defined by
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x; = acosh £ cosycosa,
%, = acosh é cospsina,
x5 = asinh £ sin 7,

.where (x,, x,, x3) are Cartesian coordinates. A vector field F is the

~ gradient of a scalar field ¢, and has components F;, F,, F, appropriate

to the above system. On the curve & = 0,1 = 0,
F,=2cosa;
on the curves o = const., y = 0,
F, = 3sinh 2& sin o,
and on the curves & = const.,, { = const,,
. F, = 3sin 2n sin o

Determine ¢ by the evaluation of a line integral, given also that ¢ = 0
whené =g =0 =0

The student will easily verify that the system (£, n, @) is orthogonal,
and that the appropriate scale factors are

he = h, = a{sinh? & +sin® n}%,
h, = acosh § cos 5. -
If we denote, for the moment, the curvilinear coordinates of the point P
in the field by (£, #1p, %p), the path of integration between the origin O

and P can be constructed from arcs of three coordinate curves along
each of which a pair of the coordinates £, #, « take constant values in

turn. Moreover, since we have an orthogonal system, just one com-
ponent of F appears in the line integral at each stage. Thus, recalling
That the scale factors appear in the expressions for displacement, we
have:
P
‘t’(é}” fips aa) = F-dr
JO
TR fa=ap E={p H=np
= F.h, doo + Fohe dE + F,h, dn
E=n=az=0 a=ap N a=ap
§=q=0 c=¢p
n=0
"dF Zp _
= 2a cosada_+'J. a sinh ¢ 3 sinh 2¢ sin op d&
Jo 0

e
+.[ a{sinh? £p+sin® #}43 sin 27 sin ap d
0

b o v A iR i LR o
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o ) o L .
= 2a sin oz +24 sin op smh-,_fi_,
; s 12 202 137270F
+2a sin ap[ {sinh® &p+sin” 7177
= 2a sin e +2a sin ap{sinh? £, +sin? n,p172
Hence, in terms of current coordinates for P,

95(6,'11, ) = 2a sin af(sinh? &+sin® n)*?+ 1}

Examples, Chapter 4

s

\; 1. The vector field F with Cartesian components
F, = 2x;x3%3+ X, €0S (X1 X1),
F, = 3x3x3x3+x, €08 (X1 X,), -~
Fi = xix3,
(-4
is such that § F-dr is invariant for any curve joining any two given
points in the field. By evaluating the integral along the straight line
path _ , '
Gj)m) W ad /QE__EG(L— ;ggrc‘!'g‘clé_ x; = 1X; )
joining the origf and the point x;, find a scalar field-¢ for which
F = grad ¢. :

¢ = xTxdx;+sin (x;x,)-

Answer:
V2. Avector field F with components F; referred to a system of spherical
= 0. Calculate ¢ at the point (r, 8, @) by evaluating a line integral
taken along a suitable composite path, given that
F, =rsin2f{(acosa—r),
and, on the axis 8 = 0, F; = 32,

Answer: ¢ = ar® sin? 0 cos a+r? cos® 6.

y 3. If (r, 0, z) are cylindrical polar coordinates, and
®, = 1 (cos 6—%)+ 2%,
¢, = r’zg(0),

determine the function g{@) if the level surfaces of ¢; and ¢, intersect
orthogonally.

Answer: g = Asin® 6.

polar coordinates (r, 8, o) is such that F = grad ¢, with ¢ = 0 when -,

' B
i
e

-
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4. Ifris the radius vector ofa point with respect to an origin of Cartesian:
‘coordinates x;, unit vectors a;,’and A is 2 ‘constant vector. field,
obtain the gradients of the following scalar ficlds :
(i) A-r, @) r" o GiR) fr), (v} re grad (x, + x5 +Xx3),

aﬂ 1log (A xr)~

Answers: (i) A, (i) #r"?r,  (iii) @r, (iv) 2, +a, +as,
1 .
) WAX (rxA).

\ | r-?j_(dct(ka FrR A Ny ]: = +k2+,_'>§
V5. If ¢; and ¢, are two scalar fields, show that
grad (¢,¢;) = ¢, grad ¢, + ¢, grad ¢2-

Extend this result for a product of several scalar fields.

) Sl'“_“'”‘i'ﬁcﬁ i PR o-c'(‘v) = &PA“‘CF'V V@A?a. 4 a0 4((ﬂ"‘q’v~|) \?dxc'l??v

6./If r is the position vector of a point in curvilinear coordinates ¢;,
\_~ show that

ar Gj =123,

9¢;

where §;, is the Krinecker delta.

* grad é_f = 51‘1
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The divergence of a
vector field

In contrast to the subject of the previous chapter, we next consider
scalar fields which are derived from vector fields. That is, given a vector
field F, we construct a scalar field described as the divergence of F, or

for brevity, div F. .

5.1 Definition

The formal definition of this scalar field is z; simple matter. Given a
vector field F throughout a region of space, then with reference to Fig.

5.1, let P be any point of this region. Surround P by a small closed

i

Fig. 5.1 Diagram for the definition of div F (Section 5.1). P is the point at which
div Fis to be evaluated, and the closed surface S shrinks to zero, condensing on P,

surface S, enclosing a volume V (in which, of course, P lies), and calculate
the flux of F across the surface S, namely

st,
s
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with the usual convention that the unit normal n to S shall be drawn
outwards from V. Now form the ratio )

IsF' ds
V .
and consider the limit of this last quantity as 5 and ¥ both shrink to

zero, condensing on P. With this implication for the limiting process,
we now define div F at P as the limit

(div ¥)p = hm{jS—FI—/E}, (3.1)

and this is evidently a scalar quentity.
This process can be performed for all points in the region, and so the

entire scalar field div F can be constructed. Once again we have made

no appeal to any special system of coordinates in framing the definition
above, but the reader will note that there are mathematical points
which require discussion before the definition (5.1) can be accepted as
satisfactory. These points can be expressed easily in physical terms; in
the first place we note that no particular shape has been specified for
the surface S; for example, a rectangular box could be selected, but
equally well, some other shape such as a sphere. Secondly, the actual
location of P in relation to S is not specified ; all that is required is that
S should shrink to zero about P. There is no reason to suppose at first
sight that the limiting process involved in (5.1) is independent of con-
siderations such as these; thus the result might well depend on the
particular choice of the shape of § and the actual location of P in rela-
tion to S. Fortunately, there are theorems which enable us to assert the
contrary, provided we accept minor restrictions on the original vector
field F. If F,, F,, F5 are Cartesian components of F, then by Gauss’s
theorem (3.25) we have

oF aF aF
F-dS = il Tl it 1 I 43
L J.V(ﬁxl + 0x, * 8x3) ‘

Tlll:é"integr'and in the volume integral is supposed to be a continuous

-function of x,, x, and x,, and in this case we can apply also a mean

value theorem to the integral, which asserts

i) oF F (OF aF oF
_F11_|___3+é_3 d‘l’=V——l—I'———%+-3 .

¥ axl axZ aX3 < axl 6x2 ax'_), P
where P’ is some point in ¥, and the expression in brackets is evaluated
at P’. Thus, we have
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[sF-dS (aFi- aF, aFa-) . ‘
-

If we now carry out the limiting process implied in (5.1), then as S
shrinks to zero (condénsing on P), we must have P' — P, and since the

function concerned is continuous, the value of the limit is

oF, @&F, ©0F;
fx, Ox, Oxs
evaluated at P. .
This establishes the validity of the definition, and incidentally \gives
the value of div F in terms of Cartesian coordinates and components
of F, namely

divF=§1i;_+@+6F3‘

0x, | @x; = 0%y 52

Finally, Gauss’s theorem (3.25) can now be stated more concisely, and
reads:

j div F dz = J F-dS. (5.3)
v s ’

5.2 The expression for div F in terms of orthegonal

curvilinear coordinates _ P

Although the limiting process described in the previous section cofisti-

tutes the basic definition of div F, it does not follow that it is necessary
to carry out this process in detail each time sucha calculation is required.
We can perform the operation just once for the case of orthogonal
curvilinear coordinates, and so obtain a general result which- will be
available for a wide range of applications.

With reference to Fig. 5.2, P is the point (£,p, &op, E3p) at which
div F is to be calculated ; for the moment ‘we introduce the suffix P to
distinguish values of the various quantities at the point P itself from their
current values elsewhere in the region. The surface S is the small curvi-
linear box AD H G C K BE, formed by the six level surfaces of the
coordinates &;p+8&;, where the 8¢; are smail. Thus, for- example, A4 is
the point (&,p+0&4, 2p— 083, £3p—8E5). In a sense, therefore, P is
the ‘centre’ of the box, the sides of which are of lengths

. EA = 2hyp 644,
AD = 2hyp 085,
AG = 2h3p 563.

-

g
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A

Fig. 52 Diagram for the calculation of diy‘F in orthohgona! curvilinear

coordinates.

The unit vectors in the directions of the coordinate axes at P are
€,p, €sp, €3p,a0d Fip, Fyp, Fapare the appropriate components of the
vector field F at P.

In the calculation of the flux of ¥ across §, some care must be exer-
cised because the areas of the six faces of S are not necessarily equal in
pairs. The pair of faces ADHG, E BK C, for example, are not in
general equal in area. However, the flux of F across these faces can be
deduq@d by the simple expedient of first calculating this gquantity for
the level surface & = &,p (ie. for LM NQ), and then obtaining

" the fluxes for the two faces mentioned by changing &, to &;p+0¢,,

and to &, p—0&, respectively. _
. Denote the flux of F across the surface L M N @ by X . Since this
surface is a level surface of &;, the only component of F which contri-
butes to X is F,. Thus

X = j J. F1h2h3 dE—Z dé:.;,

where, in the integrand, £, has the constant value &, . Now the changes

Mz_g__ﬁg& over this.surface afe small, so that we can use a Taylox
series expansion for the integrand. Thus, with the substitutions




84 THE DIVERGENCE OF A VECTOR FIELD
&y = Eapta,
&y = E3p+B,

883 13 '
i TR
(663 (Fy hzhs)) pr s dp (1

in which only the first order terms of the Taylor series expansion for
F,hyh, are shown. In fact the second and third terms above evidently
give no contribution on integration, and the result for X is thus

= 4(F 1haha)p 085 085+ 0(887 0¢3), @)

where n, m are integers > 2. That is, the higher terms in (2) are at best
of the fourth order of small quantities.

The flux across the faces A D H G, E B K C of the box can be deduced
now, since the change

from L M N QO to A D H G is due to the increment+38£; In §p,
and A
from L. M N Q to E B K C s due to the increment —6¢, in £, p.

Thus the flux of F out of the box across AD HG >

AF [hohy 68, 88, +4 88, 68, 8¢ { (F,hyhs)+ higher order terms}

¢,

and the flux of F out of the box across E B K C (here remember that a:

negative sign must be introduced to correspond with the correct sense
of the normal)

= "4F1hzhs 552 563

+4 8¢, 562663{ 5z, {Fyhyh3) +higher order terms}

In these lasi results all quantities are evaluated at P, the coordinates of

which are now set simply as (£, &, £3).
Hence the total flux out of the box due to the above pair of faces is

i
8 68 685 045 -(}T(Flhzhs),

correct to terms of the third order of small quantities. Smnlariy, the
contribution from the pair of faces DBK H, AECG
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= 804,08, 883 2~ (F3hyha),
| 5‘52 _
and that from the pair of faces GHK C,ADBE .

= 8 5&, 88, 883 — ag (F3h h).
3

Also, correct to terms of the third order of small quantities, the volume

V of the box is
V= 8h1h2h3 551 552 553-

Hence applying the limiting process of Section 5.1 (which now becomes
a simple ratio, since we have already shed the terms which vanish in

- the limit) we have, at P,

R 0 K
¢1V F = _fhlhzh {551 (F haohs) + Ez =5 (Fzhihs) + 3z, {F3h1hz)}- (5.4)

5.3 The Laplacian, and Laplace’'s equation

If we have a scalar field ¢, then the vector field grad ¢ can be con-
structed. Since grad ¢ is a vector field, it follows therefore that the
scalar field div (grad ¢) can be constructed. This last quantity, the
Laplacian of ¢, is of considerable importance in applications, as will
be seen later. For the moment, it is simply useful to note the expression
of this scalar field in terms of orthogonal curvilinear coordinates. Thus,
from result (4.4),

| _(La Lo 10
. padé = (hl 8 hy 05 hy 663)’

and hence from result (5.4),

= 1 (8 (hohy a¢) 2 (hlh_,, 6(;5)
div (grad ¢) = ~———— +— 3
(gnd 9 hlhzha{afl(hl %) T\ n

d hhy, 0¢
S

In the case of rectangular Cartesian coordinates (x;, x,, x3), this
result is simply

azd) 62¢ 32()5

div (grad ¢) = a2 — + 53 o2 6 g

(5.6)

3
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Incidentally, the interpretation of the Laplacian (5.6) in terms of another

system of orthogonal curvilinear coordinates is required frequently; -

result (5.3) is the desired expression.
Further, if e -3

div (grad ¢) = 0 (57

everywhere throughout a region of space, the original scalar field ¢
is a solution of a certain partial differential equation, namely equation
(5.7), and this is Laplace’s equation. Tn terms of the coordinates (£4,£,,<3)
this equation is clearly

w
hY

o (i 1) 8 (s 30 0 (5 38) g, i
551(1’41 aéi)+aél(h2 i) +a'§3 hy &5 ’ ()

after removing the factor (b hyhs)” 1 When ¢ is a solution of Laplace’s
equation, ¢ is said to be a harmonic function.

More generally, there are scalar fields which satisfy the partial
differential equation

div {grad ¢) = p, (5.9)

where p is a prescribed scalar function of the coordinates. Equation (5.9)
is Poisson’s equation, and Laplace’s cquation is evidently a special (but
important) case of this, namely the case p = 0. It is clear that the ex-
pression of this equation corresponding to equation (5.8) is obtaineda
by replacing the zero on the right hand side of (5.8) by the term h;hyh3p.

5.4 An expansion formula, and Green’'s formulae

If F is a vector field, and ¢ a scalar field, then ¢F 1s a vector field, and
its divergence can be calculated. There is an expansion formula in this
context, which has very wide application, and the formula is

div (¢F) = grad ¢+ F+¢ div F. . (5.10)

The proofis simple, and is left as an exercise to the reader (use Cartesian
components of F to establish the result).

This formula, applied in Gauss’s theorem, leads directly to Green’s
formulae. Let ¢ and i be two scalar fields defined throughout a region
of space V, and on a closed surface § enclosing V. The two formulae
are then

j [ div (grad )+ grad ¢- grad Wdt = j-d) grad e 48, (5.11)
14 5

“and -
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J. (¢ dw (grad yr)—y div (grad d))‘} dt

14 .

= f {¢ grad § —y grad ¢}-dS. (5.12)
S

The prodf of result (5.11) comes directly from the identity {5.10). For,
by forming the volume integral, we have ~

j{grad ¢ F+p divF}dr = Jdiv {(pFydr = jd}F-dS,
v 4 s ’

from result (5.3). Now put ¥ = grad y to deduce the formula (5.11).
Further, the second formula (5.12) follows by interchanging the roles
of ¢ and  in the formula (5.11), and then by subtraction from (5.11)
itself.

These results are of considerable importance in mathematical physics.
They may be applied to establish the uniqueness of solution of certain
partial differential equations subjéct to given boundary conditions.
They also lead to the development of Green's functions as a device for

_deriving the solutions of certain partial differential equations in the
form of integrals, but this is essentially outside the range of this book.

5.5 The expression of a scalar field ¢ in terms of a
volume and surface integral, when ¢ satisfies
Poisson’s equation

The intention of this section is to provide a result which is required in
the theory of the next chapter. We consider Poisson’s equation, namely

‘ div (grad ¢) = p, (5.13)

~where p is a prescribed scalar field ina region V of space enclosed by 2

closed surface S, and it will be shown how the scalar ficld ¢ can be
(}_e_tgfrmined within § when certain boundary conditions on § are Knowii,

With reference to. Fig. 5.3, let P be a point within S, and et 7 be
distance measured from P of a variable point P’ in the region. It is a
simple matter to verify that 1/r is a solution of Laplace’s equation (5.7).
This can be seen, for example, by choosing Cartesian coordinates
(X 1, X 5, X ;) for P (regarded here as a fixed peint), and (x,, X,, X3) for
P, so that

r={x-X P =X (s —X B
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Fig. 5.3 Diagram for Section (5.5).

and the result follows by differentiation and use of expression (5.6), in
which ¢ is put equal to 1/r. Now the function 1/r-is singular at P itself,
<0 in the first instance we isolate P by constructing a sphere S, of small
radius ¢, say, with P as centre, and apply the argument to follow to the
region V', between § and §,. In Green’s formula (5.12), applied to the
region V, with its composite boundary S and S,, put ¢ = 1/r. Then
since

div (grad ¥) = G,

and e
div (grad ¢) = p,
the formula yields
—.[ Lo = J (¢ grad y— grad ¢} dS
+ j { grad y — ¢ grad ¢}- 4S, (5.14)
5y - .

with due regard to the convention for the sense of the normal on S and
S,. Now consider the behaviour of the surface integral over S, as the

radius of S, tends to zero. It is assumed that ¢ and grad ¢ are con-
tinuous functions of the space variables. Thus, with use of & mean value’

theorem,

J‘ ¢ grad y-dS = ¢(P1)j grad y- dS,

where P, is some interior point of §,. Also,
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) r n
o grad.z,b-_:' —a=z o0 :S'ﬁ
so that
. grad - dS = 4=,

JE:

and hence,
grad yr+ dS = 4nd(P,).
o5

Further, since grad ¢ is finite, f5, Y grad ¢+ dS is of order ¢, and so
tends to zero as ¢— O. In this limiting process, P, necessarily tends
o P, and V, tends to the original volume V. Hence result (5:14) yields

e [sas [fomer-oeu(3n o

This last result therefore determines ¢ in terms of a volume and surface
integral, provided that ¢ and the normal component of grad ¢ are
" known on the boundary surface S. Now a solution of Poisson’s equa-
tion is determined uniquely if ¢ alone is known on S, so that the
expression obtained does not constitute a solution in this secnse. How-
ever, there are circumstances in which it is possibie to employ the result
as a solution, as occurs in the proof of Helmholtz's theorem (Chapter 6).

Exampies, Chapter b

vf 1. Obtain the divergence of the following vector fields:
(i) X,8,+ X33, + X85, (i) x,x;%3(8,+ 2, +23), iii) r/r?,
where r is the radius vector of a point with respect to an origin of
Cartesian coordinates x;, unit vectors a;. Show that

. div (grad ") = n(n+1)r" "%

é_ngswers: () 0, (i) xz%3+%1X3+X1Xz, (ifi) O.
R "
V' 2 In terms of the staied coordinate system, establish the following
results for div (grad ¢):
\.’({EP Cylindrical polar coordinates (r, 8, 2);

1a(ra¢) 1 0%

ror\ or

=
\(ii)) Spherical polar coordinates (r, 6, o);




20

y S

THE DIVERGENCE OF A VECTOR FIELD

19,0 RN 1
P E(” F) *75inp a6 85 ) Tt 0 o

(iii) Oblate spheraidal coot dinates (Z, 7, 0)
x, = acoshécosncosl, x; = a cosh £ cos # sin 0,

x3=asinh£sinn; .
1 1@ g\ L @ ( 6q5)}

- héE—| + —_ L

a*{(siah? & +sin 1) {coshé Pz (ms faé) cosn an\ o

R S i )
a? cosh? ¢ cos® i 007 *

. If the scalar fields u, v, w are harmonic, and the level surfaces of

u, v, w intersect everywhere at right angles, show that the scalar field
w v w is harmonic. :

Prove Kelvin's generalisation of Green's formula, namely

J ¢ grad ¢-grad y dv = jqbé graddrdS—-j ¢ div (£ grad ) dv
v s v ,

= J W& grad qﬁ-dS—jljldiv (& grad ¢) dr,

in a usual notation, where ¢, W, £ are scalar fields. -

[N.B. Considerexpansionsfordiv(g¥),div (W G),where ¥ =S grady, 7

G =¢ grad ¢.]
If the scalar field ¢ satisfies the equation

op
s div{k grad P}

everywhere, where k is a prescribed scalar field, and ¢ is zero over a
closed surface S, show that

j‘{QS—g;i + k(grad qb)z}dr =,

where the volume integration is taken over the region V enclosed’
by 5.

" The curlof a Vec':tc;lfr_
field

In previous chapters we have considered the derivation of a vector
field from a scalar field {the gradient), and that of a scalar field from a
vector field (the divergence). The last construction which we need to

consider is the derivation of a new vector field from a given vector field.

The reason why the particular construction given below exhausts the

 situations which it is necessary to consider will be clear from a funda-

mental theorem to be proved later in this chapter.
Let F be a given vector field; a new vector field A, called the curl of
F (A = curl F), is constructed from ¥ in the following manner:

n

Llil“ Cl

C

Fig. 6.1 Diagram for the caleulation of the component of curl F in the direction

e n at a point P.

6.1 Definition

With reference to Fig. 6.1, let P be any point in space, and let n be a unit
vector at P. Take any smooth surface through P, to which n is normal
at P, and construct a small closed curve C in this sutface, enclosing P

" and an area S of the surface. Form the line integral of F and round C,

namely.
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ﬂgF-dr,"
C .

where the sense of iritegration round C it related to n by the right-hand
screw rule. We now define the - component of curl F at P in the directionn,

(curl F),, by the limnit

Eﬁ F-dr
{curl F), = lim{ < < } (6.1)-
5

where the limiting process implies that the contour C is to shrink to
zero, so that § also shrinks to zero, condensing nltimately on P.

If this definition is accepted for the moment, note that it is necessary
to perform three calculations such as (6.1), corresponding to three
mutually perpendicular directions at P, with unit vectors n,, n,, ny'say,
in order to calculate the complete field of curl F at P, since (6.1) provides
only one component of curl F. There are, however, two important
requirements which must be guaranieed before this construction can
be accepted as valid. In the first place, the limiting process (6.1) must be
shown to be independent of the particular choice of the surface and its
embedded contour C. Secondly, no restriction has been placed on the
choice of the orthogonal triad n,. n,, n,, and naturally the correspond-
ing components of curl F will be different for different triads; the ques-
tion arises whether, on combination of components, different triads
yield the same composite vector field. We can satisfy ourselves on these
points by an appeal to Stokes’s theorem.

In a fixed Cartesian frame of reference Ox,x,x,, let the components
of the given vector field F be F,, F,, F5. Then, with reference to the
definition (6.1), if «, 8, 7 are the direction cosines of the normal to the
surface at any point, Stokes’s theorem (3.27) gives

_(f(oF, oF, 8F, &F, 0F, &F, '
ﬁFd"L{(axz (3:c3)‘”(<3x3_ax1 Brla, ~a, 1%

If we now assume that the integrand in the surface intepral is a con-
tinuous function of the space variables, a mean value theorem can be
applied to the integral to give

_j{oF; OF, dF, 4F, eF, oF\ |
CJ;CF dr‘{(axz E}Z)a_i_(ﬁ& dx, B+ ox;  0x, ”,95’:

where P’ is some point of the surface interior to C, and this suffix
indicates that the quantity in brackets above is to be evaluated at P,
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 Divide now by S, and form the lumtmg process implied i in (6.1); then P’

tends to P in the limit, and we ha.ve

F-dr :

. fﬁ- ar, oF, dF, @F, dF, . &F,
T T (E‘E)”(éz‘a:)“(a‘a)?
where the right-hand side above is evaluated at P, so that e, ﬁ, y are now
the components of n at P.

This last result ensures both the requirements which were mentloned
prevmusly Firstly the result is entirely independent of the surface and
of the shape of C, and secondly it states that the component claimed for
the vector field A in the direction n is exactly -

A1G+A2ﬁ+A3'}’,
where :
_ Oy 0F,
YTk, 6x3
oF oF
= 2
/‘ _ 3 1
_O0F, F,
AT axl 6x2’ J

which are independent of n. This is precisely the form which is required
if indeed the construction is to yield a definite vector field. Thus the
construction Is justified, and incidentally we have obtained the Car-
tesian components of curl F, namely 4,, 4,, 4.

Finally, we recall the statement (3.28) of Stokes’s theorem, which now
becomes

T, | J(cud F)dS = 3§ F- dr, (6.3)
. 5 c

where S is any open surface bounded by a closed contour C.

-."\'

6.2 The components of curl F in orthogonal curvilinear
coordinates

The limiting process of {6.1) will be applied for three directions at right
angles. Natuarally in this case these directions are those of the local axes
of the system at a'point P. One component only of curl F will be calcu-
lated in detail ; the remalnmg coniponents are mferred by arguments

of symmetry.
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C

15

Fig. 6.2 Diagram for the calculation of a component of curl F in orthogonal
curvilinear coordinates. -

With reference to Fig. (6.2), the curvilinear coordinates of the point
Pare({1p,¢5p, ¢3p), and e, 5, €2p, €3p are the unit vectors of the system
at-P. To deduce the component of curl F in the direction €,p, consider
the small circuit A B C D. This lies in the level surface of £, through P,
and the coordinates of A, B, C, D are -

(élP: 52}’ i 652: 531’ i 553)5

where the appropriate selection of signs is clear from the diagram. If
the scale factors of the system are h,, h,, k3, with those at P indicated
by the additional suffix P, the lengths of the edges AB, BC correct to the
first order of small quantities are

AB = 2h;3p 552,

BC = 2h,, 3¢,,
and the area S enclosed by the circuit is, correct to the second order of
small guantities, - '

S = dhyphsp 08, 9¢;.

The line integral of F round A BC D

B C F A
= f F-dr—i—jF-dr-{—j F-dr + J F- dr.
A B c D

In order to simplify the calculation of the various elements in this
expression, consider first the ling integral of F along A'B’, where A'R' is
the coordinate curve formed by the intersection of the level surfaces of
&1, &5 through P. Denote this integral by T, so that -

. THE'COMPONENTS OF CURL F

.. B‘. . B’
T = j F-dr =_J Fyh, dZ;.

Ar .

Pui Fyhy = H, ¢, =%, ,+a Then, since a is small on A'B’, use of a
Taylor expansion for H gives :

T J h {(H) + (aH) + ! a2(62ﬂ) + }da
= of &1 2o af0Ti o de,
el T \8& e 217 \8E),

since ¢, alone varies on A'B'. _
) T = 26¢,(H)p+0(5E3).

Now the line integral of F along AB is obtained from T by a change-
— 045 in {3, and that of F along DC by a change -+8¢, in &,. Hence,

~ correct to terms of the second order of smail quantities,

8 d
f F-dr = 2F;h, 562——-65 (2F 2hy) 88, 8L,
3
A

where the suffix P is now suppressed, on the understanding that
quantities are evaluated at P.

Similarly,
- e 2
| f Fedr = 2F;h, 66,4~ (2F hy) 68, 365,
NC. D 653
B D 2
Thus F'dr+j F- dl‘ = —4—(F2h2) 662 563.
A C 663

In a similar manner, we deduce

C A Fil
J F‘dr“}‘J\ F'dr = +4—{F3h3)5é2 553.
e 8 D o0&,
Hence the limiting process (6.1}, which now amounts to a simple ratio
since we have retained only terms of the sarme order in both numerator
and denominator, gives

f 1 {8 3 }
curl = = —— (F3hg) ——— (F,h,} b

o ul P = {@52 (Fshs)—35- (Fah)

The other components of curl F (i.c. in the directions e,, e,) are calcu-
lated in the same way, but we can infer the result by an argument of
symmetry from the last expression. Thus, we find

_ & j__ - i ces
curl F = ks {85; (F3hs) . (szz)} +
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€; a 0
ot { a2 Fih) = - (Fafza)}
& )0 _ 2
b {3«51 (Fahs) ~ o= (Flhl)}. (64)

This can be expressed more compactly in the form of a*."i‘determinantr
involving differential operators, provided it is clearly understood that
there is no question of rearrangement of rows in this case. The
determinant is:

hye; hye, hye, A

1 d d g

hihshy 188, 0, 8¢,
Flhl thz F3h3

Explicitly, the determinant is to be evaluated in terms of elements of its
first row, to yield expression (6.4).

cwl F =

(6.5)

6.3 The vector operator V

At this stage it is convenient to introduce the operator V {pronounced
‘del’), for it occurs widely in the literature. It is defined in terms of a
Cartesian system x;, with unit vectors a,, by the combination

e

V=a-l, (6.6)

in which, as usual, the summation convention is implied with i ranging
over values from 1 to 3.
Thus, the gradient of a scalar field ¢ can be written

grad ¢ = Vg,
since
i
V¢ = a,
¢ ﬂlaxi

The divergence of a vector field F can be displayed as the dot product of
V with F (in that order, since the operator must precede the quantity
on which it operates). Thus ' ’

d
)'(31F1 +a,F,+a,F,)

d é
V-F = — — i
(al ax, ta dx, t 3 Ox,
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_8F,  6F, OF,

=172 "  divEF
0x;  dxy = Ox, div F,

because a;:a; = &;;, and also the unit vectors a; are unaffected by
differentiation since they are Cartesian unit vectors and hence are
invariant throughout space. This last remark is important, because
difficulties can arise in the indiscriminate use of the operator in other
systems of coordinates. For example, in a system of orthogonal curvi-
linear coordinates, the operator is

hy 08 hy 88, Ry 3y
so that if a vector field F is expressed in terms of its components in this
systern, namely

F = Fe,
then
divF=V-F—(ﬂi+E§i+Ei
hy 88, hy 8, hy 88

However, on performing the differentiations here, it must be remembered
that the unit vectors e, are now also spacially dependent, in general,
and so are subject to differentiation in the same way as the components
of F. Thus the operation becomes much more complicated, and there is
no advantage here in pursuing the use of the operator V. In general,
therefore, the use of the operator is primarily confined to operations in
a Cartesian frame of reference.

Corresponding to the case of the divergence of a vector field, the curl
of a vector field, curl F, is expressed by the cross product V x F, as can
be verified by a similar calculation. Hence, in all we have

)' (elFl +e1F2 +E3F3).

I grad ¢ = V¢,
divF = V- F, (6.7)
cutl F = VxF.
Further, th{}er 1jEL:«,‘thacian of ¢, div (grad ¢) is evidently
.div (grad ¢) = V- (V¢), which is written V3¢. (6.8)

6.4 Further expansion formulae

Two results which are needed frequently are the following :
curl (¢pF) = grad ¢ x F-+¢ curl F, (6.9)
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' div (FxG) = G- curl F—F- curl G, -  (6.10)
in which ¢ is a scalar field, and F, G are vector fields. These results are
established easily by use of Cartesian coordinates and components,

but clearly they d¥e universal (that is, they are applicable in any systeém).
The first result is proved as an illustration: S

curl ) = ay 20 (98— 0|+ a,d Loy - L gr
=43 ax, PF; T ox, 2 a; 0% = .3)

x4

7 d
+33{E(¢F2) - az(ﬁt‘F})}

B oF, 0OF, oF, oF, oF, = oF,
_¢{a1(gz 5x3)+a2(ax3 x, s ax,  ox,

+31{F3%—F2—6j’—}+a2{1‘}@ F {3(],')}

dx, dx4 0%y *ax,
o¢ o¢
4 a; &
o9 8y ¢
= 1F+i-— ¥ %
$ourl F+ 0x; Ox; 0x,
Fy F, F;
= ¢curl F+grad ¢ x F.

There are various other expansion formulae involving the ‘curl’, but ®

their usefulness tends to be restricted to the use of a Cartesian system
of reference. One such result which is widely used is an expression for
curl (curl F). Clearly, if F is a vector field, curl ¥ is also a vector field, and
thus the curl of this second field also can be calculated, The expansion,
which can be established readily by use of a Cartesian system, is

curl (curl F) = grad (div F)— V2F. (6.11)

In this formula it must be remembered that Cartesian components of

F are implied, and the meaning of the last term is
V?F = a, V?F,+a, V?F, +a, V?F,,
where
PF, ®F, &F,
ox? ax3 8x3

Thus no attempt should be made to employ such a result for other
systems of coordinates. In such cases the only certain method of deduc-

VZF;_ =

A e e i L et L
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ing a correct result is to evaluate curl (curl F) directly, by a repeated
application of result (6.4). This vector field occurs so frequently, both
in fluid mechanics and in electro-magnetic theory, that it is worth

performing this calculation as an example for one system of coordinates.

Example | 6.1 ‘

Evaluate curl (curl F) in terms of its components in the system of
paraboloidal coordinates (£, 5, o), where

x; = &ncosa,
X, = & sin o
x3 = 3¢ —n?). _
The usual tests establish that (¢, 5, «) is an orthogonal system of curvi-

- linear coordinates. The scale factors k., k,, hy are

hy = hy = {E+77)E = hsay, hy =y

With F = Fie; +F,e,+Fye;, where the e, are the appropriate unit
vectors for the system, result (6.4) yields :

curl F = ¢,G, +e,G,+e;G; = G, say,

where
1 (4 il
=-—<J{= — —(F,h) >,
Gi = {aﬁ (Fshs) = = (F, )}
1 (2 d
= J{_ — —(Fshy) >,
2 hhs{aa(Flh) 65[ 3 3)}

140 d
Gy = {a—é Fah) - o (Flh)}.

Thaus curl{curl F) = curl G, and the components of curl G are obtained
bﬁéplacing the F; by G; in the right-hand sides of the expressions above.
These components are thus very complicated ; let us select simply the
€3 component for illustration : '

{curl (curl F)}, = L {—éi (G;h) —"Q(Glh)}

W | ¢ on

ifoft o 2
=—|-_J{_ —_ — — —(F.h —_ e
K [ag {1:3 2z F1P) hy 8¢ & 3)}
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d(1 a7 { &
A S o AL .
iy 200~ . 2 0}
_Lfafhar) o fer, 1
WG \h, aaf a2\ Tl

8 (eF, 1 & (h &F
—— {34 F —f{= =2
5?1{&1 i 3}+5’1(h3 50!)]’

(on substituting partially for the i)

_ L [&F, o*F, ¢ /[F, é (K,
(€2+f12)[662 T T %(?) T 55(7)
é {(ézmzﬁ 6&}

8 & dw

__i {(fz‘i"iz)é oF,
on &n b ||

6.5 Special types of vector fields

It ig appropriate at this stage to consider certain types of vector fields
which occur commonly in applications. o

Irratational fields

If Fis a vector field such that curl F = O everywhere in a given region,
then F is described as an irrotational field. This nomenclature arises in
the context of hydrodynamics, in which the curl of the velocity field
measures the local state of rotation of the fluid, and this is zero if the
velocity field is irrotational. Alternative descriptions are non-cur] and
lamellar.

Theorem

Heurl F = O everywhere in a simply connected region of s ace, then F
is expressible as the gradient of a single valued scalar field ¢. {6.12)

This theorem is easily proved. For if C is any closed contour drawn
in the region, it can be spanned by an open surface $ which aiso lies in
the region, and thus by Stokes’s theorem,

%F-dr = qurl I''dS =0, sincecurl F = O.
C S

SPECIAL TYPES_{ OF VECTOR FIELDS i

Hence, by theorem (4.6), F = grad ¢, where ¢ is a single valued scalar

- field. ’

Note carefully the requirement that the region should be simply
connected. If this.is not so, while curl F = O everywhere in the region,
it may still be possible to construct a scalar potential ¢, with F = grad ¢,
but this potential may not be single valued. This situation occurs fre-
quently in applications to hydrodynamics.

The above result explains the description of the irrotational field as
lamellar, which refers to shell-like structure, namely the family of level
surfaces of the scalar field ¢.

Solenoidal fields

If a vector field F is such that div F = 0 everywhere in a given region of
space, then F is described as a solenoidal field. An alternative, but less
direct, definition is the statement that a vector field F is solenoidal if it
can be expressed as curl A, where A is another vector ficld. This last
statement automatically implies that div F = 0, since it is a simple
matter to verify that -

div (curl A) = 0. (6.13)

This can be seen either by direct differentiation, with nse of the Cartesian
forms for div and curl, or alternatively as follows :

Consider an arbitrary region ¥, bounded by a closed surface S, and
let S be divided into two open surfaces §, and S, by a closed contour C
drawn on § (Fig. 6.3).

Fig. 6.3 Diagram for the proof that div(curl A) = 0.

a.wi C?frad ‘?S = O
div ( cw.ﬁﬁ) D
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Now consider the volume integrél'of' div (cﬁrl A).‘Q\_F!'{r.- V. By G_aiisis’s o

theorem we have

f divicuil A) dv = f curl A-dS
¥ s

= j curl A4S +J curl A- dS.
5, S

z

Now apply Stokes’s theorem to each of the last surface iniegrals. They

are, Tespectively, ‘
+ 3€ A-dr,
c

and thus th_e sum is identically zero. Hence -

x,
A

f div (curl A) dz =0,
Vv
and therefore, since V is arbitrary, div {curl A) = 0.

Theorem

If a vector field F is solenoidal everywhere in a-given region of space,
it can be expressed in the form F = curl A : (6.14)

This can be established by use of the Cartesian form for div- F, namely
oF, 0F, dF,

divF=_-4 2
dx,  Ox,  dx,

=0, (1)

since F is solenoidal. Now write

dB
Fo= -2
2 axi E]
dB
Fy= 2
dx,

sipce it is certainly possible to find functions B,, B; (by integration
with respect to x, ), which satisfy the above relations. Substitution in (1)
followed by integration with respect to x,, then gives

B, - @B, @

t

1= —5x2 - ‘8x3 + —é‘x,_ gx,, x3),
oB
=__IR v Y2
é‘x2{ 38 0x;’
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= where g is some arbitrary differentiable function of x, and x,. Hence
- the components of F can be expressed in the form

d a8,
F, = — -
1 axz {B3 +g} ax3
.Fy = —58— {Bs+g}, (since g is independent of X
X1
aB,
Fy =2
3 : axl

That is, F = curl A, where A is the vector field with components
(0, B,, B;+g). :

The vector field A is described as a vector potential for F, when F is
solenoidal. It is clear from the above analysis that A is by no means
unique for a given solenoidal field. Indeed, if A is a vector potential for
F, so also is

A+grad ¢,
where ¢ is any single valued scalar ficld. For it is easily established that
curl (grad ¢) = 0, (6.13)

by use of Cartesian representations, for example. Thus
curl (A+grad ¢) = curl A.

It will be seen later that there are important applications of theorem
(6.14). That is, it will be convenient to represent a solznoidal field F bya
vector potential A, in which the degree of arbitrariness usually is
removed by imposing some restriction on A. It is true that the simplicity
of the irrotational field, with its scalar potential, appears to be lost, but
fortunately in practice the structure of A is frequently much simpler
than that of F itseif. '

‘ 66 Construction of a vector potential by a line integral

IfAisa vector potential for a solenoidal field F, then by Stokes’s theoremn

3€A-dr=qurl_A-dS=fF-dS,
c s s

where C is a closed contour bounding an open surface S. Now let S be
the surface of a cone, with its vertex O as the origin of coordinates
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Fig. 6.4 Diagram for the construction of a vector potential (Sect\jon 6.6).

(Fig. 6.4). Then the above result suggests that if O = r, and PP’ — dr,
where PP’ is a small element of C, then

Avdr = J F-ds,
S

where S, is the triangular element OPP’ of 5. Now consider the sub-
division of S, into small elements of which a typical member is QRR'Q,
and where 00", RR’ are parallel to PF".

The vector OQ = tr, where ¢ is a scalar parameter such that 0 < ¢t < 1.
Thus, with dt as the change in f on passing from @ to R,

QR =rd:;, and QO =t PP = tdr.
Hence the vector element of area QRR'Q’ 1s OR x 00
= rxdrtdt

The given vector field F is F(r), and so has the value F (rr) at Q. Henéé
the contribution to
j F-as8
51

from the above element is F{rr)- {rxdr t dt}, and therefore

j F dS = jl F(er)s {rxdrrdi}
5 =0

= {Jl F(tr) ¢ dt}- (r x dr),
0

since r and dr are fixed in this integration. Hence

. 1
Avdr = (rxdr)-f F(tr) ¢ dr
: 0
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.:.dr-{le@i’)rdt;( r}, '
o

on application of the rules for a scalar triple product. Now the originai

. contour C is arbitrary, so dr is arbitrary. It follows therefore that

A= JlF(tr) tdexr (6.16)

is a vector potential for the solenoidal field F.*

Example 6.2

Find a vector potential for the vector field F, where F has Cartesian
components F = (x}, x,, —2x;x, —x,). This vector field is solenoidal
(div F = 0), and since

F(r) = xia, +x,8, — (23X, +x3)a;,
then

F(it) = xit’a; +x,t8, — (2x5x,82 4 x,t)a,,

so that from result (6.16) a vector potential A for F is

1 Gy
A= J. {xir’a, +x,0%a, — (2x3x, 0+ x,07)f de x (x,a, +x,2; +X335)
]

= (Gxax; +3x,x,x3)a, —@xixs+ix,x508, + (Gxdx, ~§x1x5)a,,
on evaluation.
L]
6.7 The trajectories of a vector field
A family of curves is associated with a given vector field F, and the
construction of this family may be visualised in the following way. In a
Cartesian system of coordinates, let P be a point x; in the field, and let
F;be the components of F. Consider now a small displacement dx, from
P in the direction of the field F at P. Thus
N dx, _ dx, _ dx, (
< Filxq, X2, X3, 1) Falxy, x5, X3, 1) Fi(xy, x5, x5, t)

6.17)

in which the F; have been written explicitly to indicate their dependence
on x;, and also generally on the time ¢, Equations (6.17T) may be regarded
as a pair of differential equations, the solution of which defines a curve
which has the property that at any point on it the corresponding field F
is tangential to it. Equations (6.17), of course, define a whole family of

* [ am indebted to Dr T. A. 8. Jackson for pointing out this resuli.
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Curves, since there are two arbitrary constants in the solution cor-
responding to different choices of the initial field point through which

the solution of equations {6.17) is to pass. This family constitutes the -

system of trajectoriesTof the given vector field F (Fig. 6.5).

Fig. 6.5 Trajectories of a vector ficld F.

A familiar example of such a system is that of the family of streamlines
in hydrodynamics, in which the appropriate vector field is the velocity
field V. If the motion is steady, namely if Vis a function only of the space
variables x; and not of the time ¢, then the streamlines of the flow
constitute the actual paths of the particles of fluid.

Example 6.3

Find the trajectories of the vector field F, where F has Cartesian
components

( ax, ax, 1)
(i +x3) (i +x3) )
and a is constant.

From (6.17) the trajectories are the solutions of the differential
equations

_bdxdde,  (d4xddx, _ ix,.
ax, ax,
The relation between dx, and dx, gives
Xy dxy+x, dx, = 0,
which integrates immediately to yield

xi+xd = 3, (H
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where ¢, is an-arbitrary constant. Use of this result in the relation
between dx, and dx; gives

p ct dx,
X = ——
3 afct—x31¥’
and hériu'e, integrating,
. .

X3 = El sin” !(x,/c;)—c,,

or
.ha
Xz = € 810 E'z'(x3+c}_) ) ()
1

where c; is a second arbitrary constant. For given values of ¢, and ¢,,

relations {1} and (2) specify a curve, and as ¢, and ¢, are varied we obtain
the whole family of trajectories of the field F.

6.8 Vector tubes

- The concept of the trajectories of a vector field leads naturally to that

of vector tubes. Consider a closed circuit C drawn in the field ; then the
sct of trajectories of the field F which pass through points of C consti-
tute a tube, as illustrated in Fig, 6.6.

Flgﬁﬁlé A vector tube, formed from a set of trajectories of the vector field F.

If F is a solenoidal vector field, we can also define an intensity for a
given vector tube, narnely the flux of F across a cross section of the tube.
This scalar quantity is a constant for the tube. For consider 2 finite
volume V of a tube, terminated by open surfaces S , and S5 which span
closed contours C, and C,, respectively, drawn on the surface of the
tube. Then by Gauss’s theorem,
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J‘diVFdT:J‘ F'dS+jF'dS,
¥ 8 : Sz g

since on the surfaee of the tube itself T is tangential to the surface,:so
there is no contribution to the surface integral. Aiso div F = 0 every-
where, since Fig solenoidal, and hence

J‘F-dS-FJ‘ F-dS = 0.
81 5>

In this result the normals to S 1 and §; are in a direction out of the

volume V. If we now arrange for these normals to be drawn in the same .

sense, the result then reads

fF-dS=J F-dS.
5 5> o

The intensity I of the tube is
I - f Fas, (6.18)
b

where S is any cross section of the tube, and the above result establishes
that I is constant. This property, incidentally, explains the description
of the field as solenoidal, referring to the tube-like structure with con-
stant intensity for a given tube. '

Certain consequences are implicit in the theory above, The solenoidal
vector field F is necessarily continuous, so that a vector tube cannot

terminate abruptly in a cross section of finite area inside the field. Thus,

4 vector tube must be closed, or originate from a point and terminate
in like manner. It is not possible for this latter case to occur within the
field, for the fact that the intensity of the tube is constant implies that
the field F itself must become infinite as the cross section of the tube
shrinks to zero, Thus if a vector tube is not closed.it must terminate on

the boundary of the space occupied by the field, or move off to infinity

in the case where the field is unbounded.

6.9 Expression of a given vector field as a sum of an
irrotational field and a solenoidal field )

At this stage we are in a position to establish a fundamental theorem
in the subject of vector field theory, but we precede this by a theorem
which is essentially a lemma for its SUCCESSOT.

}
]

e

. HELMHOLTZ'S THEOREM : BT

Thearem :
If 2 vector field F(r} is shch_ that . _
' divF =0Oand curl F =0

everywhere in the whole of space, and F decays at infinity like rTf,

where ¢ > 0, then F = O everywhere. - {6.19)
With use of Cartesian forms for the vector fields, we have

oF 8
oF, | o, siER (1)

divF = — + — =1,
o dx;  O0x,  dxy

and (since curl F = Q),
OFy _OF, @Fy oF, 0F, OF,
B, dx,’ Ox,  Oxy’ Oxy | 0

Differentiate relation (1) with respect to x 1» and the first two of relations
(2} by x,, xy.respectively. Thus eliminate F 2 and F; to yield

V2F, =.0.

@

Similar equations hold for F, and F,, so that each of the Cartesian
componentis of F is a solution of Laplace’s equation. Now use result
{5.15), in which for this case p = 0, and the surface integral is taken over
a sphere of large radius R with P as centre. Thus

4nF (P) = f {% grad F, —F, grad G)} ds.
S

Now F, =0(R™), |grad F,| = 0(R"!79), fgrad (1/r)] = 0 (R™?),
and [dS| = 0 (R?), so the surface integral is of order R~ and thercfore
vanishes as R — oc . Hence F, = 0, and similarly F, = F; = 0, which
establishes the theorem.

The theorem of Helmholiz

The foIlowing theorem has been described as the fandamental theorem

- of vector analysis. It asserts that any vector field, subject only to modest

restrictions, can be expressed as the sum of an irrotational field and a
solenoidal field.

"y STATEMENT. Let F(r) be a vector field, with div F and curl F both

ontinuous functions, defined throughout the whole of space. Further,
suppose that {F| tends to zero at infinity like r—'~* (where ¢ > 0),
and |div F|, [curl F| do likewise with behaviour like r 27 Then F
can be expressed in the form

F=H-+¢G,
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where H is an irrotational, and G a solenoidal, vector field. - (6.20)
In the above staterent, of course, |div F| is simply the modulus of a

scalar quantity, while | F|, [curl F | are the (positive) magnitudes of :
vector ficlds. The restriction on the tendency to zero of |F| is sharper ;-
than the requirement of theorem (6.19), owing to the fact that in this’
theorem it is necessary to introduce volume integrals, the convergence:

of which must be gnaranteed.
Assume tentatively that the resolution is possible, namely that

F=H+gG, i)
where Y\
curl H=0, and div G = 0. 2

The space is assumed to be simply connected, so the first of conditioﬁ;»
{2) implies that

I = grad ¢, : {6.21)

where ¢ is a single valued scalar field. Now form the divergence of
relation (1), which yields, since div G — 0,

Vi¢p = div F. - 3)

Thus ¢ is a solution of Poisson’s equation, in which the right hand side,
div F, is a prescribed scaiar field. We use result {3.15) to obtain a solu-
tion of equation (3), and we select this solution to be explicitly

S(P) — _L divF

dm |, r

dr. (6.22)

In this result, Vis the whole of space and r is the distance from the field
point P to a general point in space. Notice that the surface integral in
result (5.15), which in this case is an integral over the surface of an
infinite sphere § with centre P, is taken to be zero. This is justified a
posteriori [rom result (6.22). That is, we can establish that ¢ and |grad ¢ |
are vanishingly small on § to such an order that the suiface integeal is
Zero. .

Consider the behaviour of ¢, when P is at large distance R, say, from
the origin O of coordinates (Fig. 6.7). This behaviour can be estimated
by separating the volume integral (6.22) into a volume integral I, over
a sphere V', centre P and radius iR, plus a volume iniegral I, over the
whole of the remainder of space V,. With use of spherical polar coordi-
nates (r, 8, @) centred on P, the volume element is ’

dt = r? dr df} do sin 0,

N

HELMHOLTZ'S THEQREM _ i1

Fig 6.7 Division of the infinite volume of integration in result (6.22) into two
regions.V,, V,, for the purpose of estimating the behaviour of $(P) when P is at
: large distance R from the origin of coordinates O,

L

and therefore

1
I, = H—Jdiv Frsin 6 dr d6 do
dn Jp,

v
l iR "z 2x

= -—j j J div Fr sin 0 dr d@ dex.
4 Jy=0lo-o a=0

We may apply a mean value theorem to this integral, to give

iR *=n 2r
I, = —i(div F)M_[ J j sin Or dr df da,
" dn r=0J0=0Jz=0

where (div F)y is the value of div F at some point within V. Hence
> I = —§R*(div F),.

Now (div F),, is a value of div F calculated at some point whose least
distar_,i'al;e'from Ois 3R, and R is large. Thus (div F),, = O(R™27°), and-
hence '

I, = O(R~E,

gV[
Va

For I, we have

J dldeT
v, T

dIVFld“?:J IdWFld‘c,
r v,

r{],rl-El
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where ¢; is a positive number less than ¢ (le0<e <o

Now since the least value of r in V2 is 4R, this last integral is less than -

L[ v E]
- '-‘—'(%R)el J;’z TI_—E‘ dz,

and the integral here, which involves the infinite domain {R < r < o0,
is a convergent integral, by virtue of the conditions on |div F|. Thus
I; = O(R%). Hence in all @(P) is at best O(R ™) for large values of R,
and therefore |grad ¢| is at best O(R™'"¢1). This establishes that the
surface integral contribution to resuit {6.22) is indeed zero.

Consider now the vector field G;since div G = 0, a vector potential
A can be introduced such that

G = curl A. (6.23)

From relation (1), on formation of the curl of each side, we obtain
(since curl H = (),

curl (curl A} = curl F. 4

The expansion formula (6.1 1) for curl (curl A), in which Cartesian com-
ponents of the vector fields are mplied, gives an alternative form for
equation (4), namely

grad (div A)—VZA = curl F,
‘The vector potential A is not unique, and we may impose the restriction
divA = 0, (5)

so that A, considered in terms of its Cartesian components, now
satisfies the equation

VA = —curl F. (6)

This equation can now be separated into three scaiar equations, so that
the three components of A each satisfy an equation of Poisson’s form,
in which the prescribed right hand sides are respectively the Cartesian
components of curl F. Thus these equations can be solved in the same
manner as equation (3), and give, on assembling the separate Cartesian
components, the vector result :

APy = L. ‘[ cul ¥ . (6.24)
47 r

Once again, for the reasons previously stated, there are no surface
integral contributions in result (6.24), and the vector field G (=curl A)
has similar behaviour to F at infinity. There remains, however, condi-

3
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tion (5) to be satisfied by A, so we must verify that expression {6.24) does
ensure this. ' ' o , o _
Take (X ,X,,X ;) as the Cartesian coordinates of P, in order to

. distinguish P from the coordinates {x15 X2, x3) of a general field poini,

which coordinates are to serve as parameters for ntegration. '
In result (6.24), ' :

F= {(Xl —x1)2+{X2—x2]2+(X3 __xa)z}%’ (7)

and this quantity alone involves the coordinates of P. Thus, if (B, B,, B;)
are the Cartesian components of curl F,

. d [1 2 /1
4?Td1VA =fjJV{Blgf;(;) + Bzyz(;) +

J 1
+ B, 5)—(—3—(;)} dx, dx; dx,.

d (1 d i
=)= ~-=—[-), et
6X1(r) 0x, (i‘)

1
dndiv A = —j curl F- grad (r) dr,
V

Now from (7),
Thus -

in which grad (1/r) as well as curl F now appears as calculated with
respect to the general field coordinates {xy, x5, x3). Hence, with use of
the expansion formula (5.10) and the identity div (curl F) = 0,

] ‘

dndivA = — f div(cuﬂ E) dr
v ¥
B

1
A = _J curl F dS, by Gauss’s theorem.
s r

In this. last expression, the closed surface S is an infinite sphere, with
centre at the point P. If we consider first a sphere of large radius R, then
the conditions of the theorem ensure that the surface integral is of
order R™'7%, and so tends to zero as R — oc. Hence divA = @, as
required.

All that has been established so far is that if F can be expressed in the
form H+ G, with the given conditions on H and G, then these two
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vector fields can be calculated uniquely. It remains to show that the
sum of the two fields as caiculated ig actuallyequal to F. '
Consider the vector ficld :

™ K= F-H-G.

From the definitions of H and G, we have
div K = 0,
and curl K = (.

Also | K| is of order r=1~¢ as r o, where ¢ is now the least of the
positive numbers introduced in the analysis, because |F|, |G [, |Hf are
all of this order at best. Hence theorem (6.19} is applicable, and we
conclude therefore that K = g. :

Hence F=H+aG.

| F = grad ¢ +curl A, k

Thus, finally, we have

where I ¢ = _4i div Fdr, \s
| T \ (6.25)
b
Azif curleT’_
dr 1y r

where the volume integrals extend over the whole of space.

Examples, Chapter 6

1. Use Stokes’s theorem applied to the vector field F with Cartesian
x3 x} 0
a+x} al+x?
to evaluate the integral

az{x1 -xz]-xfxz
fs { (@ +xj)? “

where the surface inte gral is taken over the quadrant x 1: Xz 2 O ofthe
ellipse

components

xi | x3

Ty

;Ij =1, x_;j—_o.

S -

b
R
)

ey
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Answer: 94_'5_2_@_ b log \/Z_H.-
2 22 4a 4277 /21

| 2. If the vector fields A and B satisfy the relations

curl A = B,
curl B = A,

show that, in a system of Cartesian components,
VEA+A = 0.
Show also that div (A xB) = B2 — A2,

3. Use Gauss’s divergence theorem to show that if F is any vector field,

J. curl Fdr = —f F =4S,
4 5

where S is a closed surface enclosing the region V.{Use an expansion
for div (F x G), and take G to be an arbitrary constant vector field.)

4. Verify that in a system of cylindrical polar coordinates (r, 8, z), with
unit veciors e;, the vector field

F= 1 €,
¥
is solenoidal. Use the method of Section 6.6 to show that a vector

potential for F is —ze,/r.

3. Show that if F, are the components appropriate to cylindrical polar
coordinates of a vector field F which satisfies the equation
O*F
curl (curf F) = —¢2 —=,
(curl F) Car?
where ¢ is coritant, and ¢ is the time, then the three corresponding
sqqylar equations are:

Y1 PF,  F, L a( oF\ &F, _ 2 F,
T2 a0t T ezt T 2o\ o dzar Gt
13 ¢F,) LoF) , &@F, 1&F, ,oF,
erlrar ¥ v om 6z rdze® a2

F
1 a{ oF, rﬂFl} L&Fs 1 &F, _ 0T,
"

ar ez ("7  rana: C o
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6. Il u and v are scalar fields, show that grad u x grad ¢ is a solenoidal
field, and that

Heu grad v —v grad u)
is a vector potentizl for it.
7. A closed surface § encloses a region V in which the vector field F is
solenoidal. If ¢ is  scalar field which assumes a constant value on

S, show that

J.grad ¢ Fdr = Q.

8. Use the expansion formula (6.9), and Stokes’s theorem, to show that
if ¢, F are scalar and vector fields respectively,

jcpcurlF-dS = Jt dF-dr — j(grad ¢ x F)- ds,
5 c 5

where the line integral is taken round the closed curve C bounding
an open surface S. Deduce the result

J(grad ¢ x grad ). dS = :)E ¢ grad - dr.
b [

Electro-magnetic
theory

The intention in this chapier, and in the next, is to provide a brief
account of the subject of the title with the object of illusirating practical
applications of the theory of previous chapters. The subjects of electro-
magnetic theory and of hydrodynamics are extensive, and are served
by many excellent text-books, but the concepts of vector field theory
occur so naturally in both these subjects that it is desirable to give some
account of them in this book.

'We shall use the SI system of units, in which mass, length, time and
¢lectric current form the four primary quantities of the subject, and thus
avoid the confusion of the Gaussian system with its separate develop-
ment of units for electrostatic and magnetic phenomena, and consequent
embarrassment when the two are related. Admittedly the modern
system appears to be more complicated initially, but has the merit of
producing ultimately the fundamental equations of the subject in very
simple form.

7.1 The electrostatic field

If two point charges g, and g, are situated in vacuo at O and P respec-
tively, each charge exeits a force on the other in the direction of the
line joining the charges. Explicitly, the force F exerted on g. by g, is

UEUEL
F = ,
dmeyr?

(7.1)

where ris the vector OP. In this expression ¢, is a constant, the dielectric
constant of free space, and its dimensions are defined by relation (7.1)




