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ABSTRACT: Saudi Arabia has great potential in clean energy production from photovoltaic installations. There are two 
main obstacles towards this goal which are related to the local climate: sandstorms and high ambient temperatures. 
Sandstorms are quite frequent in the region; scattered particles reduce solar irradiance and soil deposition on solar panels 
surface is significant, requiring regular cleaning. Furthermore, for most part of the year daily ambient temperatures can 
reach as high as 45 – 55 oC which are well above the range of STC for solar panels. These two factors can reduce the 
energy yield output of PV installations significantly. A priori knowledge and quantification of this efficiency loss can 
help design and assist in strategic planning to compensate and reduce the effects of local climate characteristics in energy 
yield output. In this work we aim on the estimation of the operating temperature of solar cells which is one of the key 
parameters for the assessment of the actual performance of photovoltaic panels. The proposed methodology is based on 
machine learning techniques and on Deep Neural Networks. The models provide excellent results and approximate solar 
cell operating temperature with less that 1 oC of accuracy. 
 
1 INTRODUCTION 
 
      Over the past decades the world-wide market for 
solar photovoltaic (PV) technology has grown 
impressively. Every year the cumulative photovoltaic 
increases and it’s estimated to be sufficient to supply 
about 1.5% of global electricity demand. Saudi Arabia 
belongs to a group of countries with the highest 
insolation worldwide, therefore, is an attractive market 
for PV implementation. The average energy from 
sunlight falling on Saudi Arabia is 2200 kWh/m2, which 
allows a very competitive energy production cost. Even 
though Saudi Arabia receives a high level of solar 
insolation around the year, successful deployment of PV 
technologies can be challenging due to local weather 
conditions. Dust storms are frequent in the region, 
causing soling on the panel surface and reducing sunlight 
radiation intensity. In addition, the combination of 
increased ambient temperatures and high levels of solar 
radiation pose additional challenges in PV module energy 
yield performance. These two factors can reduce the 
energy yield output of PV installations significantly. A 
priori knowledge and quantification of this efficiency loss 
can help design and assist in strategic planning to 
compensate and reduce the effects of local climate 
characteristics in energy yield output.     
      In the literature there are several models for 
estimating the PV module operating temperature. These 
models are mathematical formulas usually derived from a 
data fitting process and use various parameters to provide 
a prediction. A set of models use electrical characteristics 
of the module, e.g., Voc and/or Isc. Another group of 
models, use parameters which, in general, are available a 
priori, such as air temperature (Tair), solar irradiance 
(Girr), wind velocity (Wvlc) and efficiency of the module 
(ηref). For a comprehensive review of these models, we 

refer the reader to [2,3] and the references therein. In [4] 
the authors used a some of these models to forecast 
module temperature by a nonlinear least square fitting 
process.  
      In this study, we propose two different methods for 
estimating solar cell operating temperature. The main 
ingredient in our approach is to use machine learning 
techniques. Our model is based on Deep Neural 
Networks (DNN). The input vector in the DNN consists 
of solar cell parameters and/or environmental factors 
which are known either apriori or aposteriori. The sole 
output of the DNN is the forecasting solar cell 
temperature.  
 
 
2 EXPERIMENTAL SETUP – DATA ACQUISITION  
 
      The testing site is the New Energy Oasis (NEO) test 
field near the Red Sea coast (22.30 N, 39.10 E), located 
in KAUST, Thuwal, Saudi Arabia. This is a challenging 
location for PV installation since ambient temperature 
can reach values as high as 45-50 oC, which are far 
beyond the standard testing conditions (STC) range. The 
system consists of a monofacial PV panel of AlBSF 
technology an IV measuring system with radiation 
sensors and individual thermocouples which measure the 
temperature at the back of the module. The module 
consists of 60 solar cells, nominal efficiency is 14.5% at 
45.7 oC NOCT, and maximum power of 240W. The 
measurements cover a period of ten days 28/03 – 
06/04/2018, with samples every 10min.   
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3 METHODOLOGY 
 
 We propose a machine learning approach to estimate 
the solar cell operating temperature. The base model that 
we use is a Deep Neural Network (DNN) with an input 
vector consisting of five components, several hidden 
layers, and neurons and with a single output. We propose 
two methods that they differ in the kind of input 
parameters used in DNN. The first method (Method 1) 
uses as input the ambient temperature (Tair, 

oC), the solar 
irradiance (Girr, W/m2), wind velocity (Wvlc, m/s), open 
circuit voltage (Voc, V) and short circuit current (Jsc, A). 
This method uses actual/online measurements of solar 
cell’s performance. In the second method (Method 2) we 
replace Voc and Jsc by two manufacturing parameters of 
the panel namely, the TNOCT value and module efficiency 
ηref. The main advantage of the second method is that all 
input values can be known apriori. The sole output of 
both DNNs is the forecasting solar cell temperature.  
We have tested the two DNNs depending on the input 
parameters used: (Tair, Girr, Wvlc, Voc, Jsc) for Method 1 
and (Tair, Girr, Wvlc, TNOCT, ηref) for Method 2. In both 
methods the first three parameters are the same and refer 
to atmospheric factors which can be obtained from well-
known databases e.g., [1] in case local meteorological 
data are not available. The last two parameters in Method 
1 are Voc, Jsc which under operating conditions they might 
not be possible to acquire, while Method 2 uses TNOCT 
and ηref which are provided by the solar cell 
manufacturer.  In [5] the authors consider a single hidden 
layer DNN with a six-component input vector which 
consists of with the same parameters as Method 1 plus 
the value of the produced power. The authors in [6] use 
also a single hidden layer DNN with a two-component 
input vector consisting only with (Tair, Girr).  
 
 
4 RESULTS 
 
      Before feeding the data to the DNN they were scaled-
normalized so they all mapped to [0,1]. The DNN was 
built using Python 3.8 with an in-house code using 
stochastic gradient descent as the optimizing algorithm 
and a fixed learning rate. The number of hidden layers 
and neurons in the DNN they were kept as parameters to 
test their effect in the accuracy of the model. The training 
set was comprised by 70% of the data and the rest was 
used for validation-testing. It’s worth mentioning that 
even with 30% of the data as a training set the Mean 
Absolute Error (MAE) in the testing set was below 1 oC, 
showing the robustness of the method. Tables I, II show 
the MAEs on the testing set for both methods for a range 
of values of hidden layers (HL) and neurons (NR).  
 
Table I : MAE on the testing set for Method 1 

 Method 1: MAE’s (oC) 
NR/HL 2 3 4 5 

 5 0.711 0.623 0.602 0.609 
10 0.589 0.578 0.532 0.447 
20 0.619 0.629 0.392 0.396 
40 0.567 0.530 0.322 0.229 

 
 

 

Table II : MAE on the testing set for Method 2 

 Method 2: MAE’s (oC) 
NR/HL 2 3 4 5 

 5 1.233 1.182 1.074 1.109 
10 1.106 0.863 0.945 0.806 
20 0.928 0.609 0.564 0.471 
40 0.963 0.604 0.475 0.424 

 
 
The first observation from Tables I, II is that for both 
methods the MAE decreases as the number of HL and 
neurons increase reaching a limiting value. The second 
observation is that MEA in Method 2 is larger that of 
Method 1.  This expected since Method 1 uses actual 
values of Voc, Jsc accounting for the actual cell operating 
conditions, in contrast to Method 2 which all its 
parameters are known apriori. Figure 1 shows the 
comparison between the prediction (blue dotted line) of 
Method 1 with 2 HL and 5 neurons on each node and the 
experimental values (solid red line) for the whole dataset. 
In this case we have MAE=0.889 oC. The training time 
for the DNN with 5HL and 40 neurons was less than 
1min for an MAE of about 1 oC. Smaller training times 
can be achieved using one of the standard accelerating 
techniques for the stochastic gradient descent algorithm, 
e.g., Adam, [8]. The same DNN was build using 
Tensorflow computational framework, [7] for purely 
comparative purposes.  For the same set of parameters, 
the in-house code and Tensorflow provided very similar 
results differing only on the execution time.  

 
 
Figure 1: Method 1: 2HL, 5NR, Experimental Data 
(Red), DNN Model (Blue). 

 
5 CONCLUSIONS 

       In this study we have developed machine learning 
techniques for estimating the operating temperature of 
solar cells. We have used DNNs with various number of 
layers and neurons. Two different approaches were used 
in terms of the kind of input data for these DNNs. Both 
methods produced excellent results in predicting solar 
cell’s operating temperature. The first method that uses 
ambient factors and electrical characteristics produces the 
best results. The second method uses ambient data and 
parameters known apriori produced comparable results. 
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Both methods performed well with the differences 
between model predictions and actual measurements 
were small, less than one degree Celsius, for both 
methods.  
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