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Finite volume schemes are commonly used to construct approximate solutions to conser-
vation laws. In this study we extend the framework of the finite volume methods to disper-
sive water wave models, in particular to Boussinesq type systems. We focus mainly on the
application of the method to bidirectional nonlinear, dispersive wave propagation in one
space dimension. Special emphasis is given to important nonlinear phenomena such as sol-
itary waves interactions, dispersive shock wave formation and the runup of breaking and
non-breaking long waves.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The simulation of water waves in realistic and complex environments is a very challenging problem. Most of the
applications arise from the areas of coastal and naval engineering, but also from natural hazards assessment. These
applications may require the computation of the wave generation [30,46], propagation [75], interaction with solid bodies,
the computation of long wave runup [73,74] and even the extraction of the wave energy [68]. Issues like wave breaking,
robustness of the numerical algorithm in wet–dry processes along with the validity of the mathematical models in the
near-shore zone are some basic problems in this direction [42]. During past years, the classical shallow water equations have
been employed to solve some of these problems [2,31]:
Ht þ ðHuÞx ¼ 0;

ðHuÞt þ Hu2 þ g
2

H2
� �

x
¼ gHDx;

ð1Þ
where H(x, t) :¼ g(x, t) + D(x) is the total water depth, D(x) describes the depth below the mean sea level while g(x, t) is the
free surface elevation, u(x, t) denotes the depth-averaged fluid velocity and g is the gravity acceleration constant. Mathemat-
ically, Eq. (1) represent a system of conservation laws describing the propagation of infinitely long waves with a hydrostatic
pressure assumption. The wave breaking phenomenon is commonly assimilated to the formation of shock waves (or hydrau-
lic jumps) which is a common feature of hyperbolic p.d.e’s. Consequently, the finite volume (FV) method has become the
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method of choice for these problems due to its excellent intrinsic conservative and shock-capturing properties [2,24,25,31].
Furthermore the shallow water equations have been proven in practice to predict accurately the maximum runup of long
waves [17,41,44,71,73,74].

On the other hand, various studies have shown that the inclusion of dispersive effects is beneficial for the description of
long wave propagation and runup processes [54,78,80]. Moreover, Zelt [80] reported a divergence in the prediction of the run-
down and in the prediction of the reflected wave-train after the wave climbing on the shore when a dispersionless model is
employed. According to Zelt, the results of the nonlinear dispersive model considered in [80] showed better performance
compared to (1). During the last fifty years numerous dispersive models have been proposed for the simulation of long waves
[12,45,56,58,61,63,65].

In this work we will study numerically bidirectional water wave models. Specifically, we consider the following family of
Boussinesq type systems of water wave theory, introduced in [13], written in nondimensional, unscaled variables
Please
(2011
gt þ ux þ ðguÞx þ auxxx � bgxxt ¼ 0;
ut þ gx þ uux þ cgxxx � duxxt ¼ 0;

ð2Þ
where a; b; c; d 2 R; g ¼ gðx; tÞ; u ¼ uðx; tÞ are real functions defined for x 2 R and t P 0.
For more realistic situations we introduce a new Boussinesq type system with variable bottom topography based on Per-

egrine’s system, [63]. The new system incorporates a very important property — the invariance under vertical translations,
thus more appropriate for practical applications such as wave runup on non-uniform shores. In dimensional variables the
model reads
Ht þ Q x ¼ 0;

Q t þ
Q 2

H
þ g

2
H2

 !
x

� H2

3
Q xxt �

1
3

H2
x �

1
6

HHxx

� �
Q t þ

1
3

HHxQ xt

" #
¼ gHDx;

ð3Þ
where H(x, t) = g(x, t) + D(x), Q(x, t) = H(x, t)u(x, t).
There is a wide range of numerical methods in the literature for computing approximate solutions to these models.

Finite difference (FD) schemes [39,43,47], finite element methods [7,15,28,58] and spectral methods [60,62] have been
proposed. More contemporary discontinuous Galerkin (DG) schemes have also been adapted with some success to
dispersive wave equations [33,34,53,79] while the application of Finite Volumes (FV) or hybrid FV/FD methods remain
most infrequent for this type of problems. To our knowledge, only a few very recent works are in this direction
[8,10,32,66,76].

Finite volume method is well known for its accuracy, efficiency and robustness for approximating solutions to conserva-
tion laws and in particular to nonlinear shallow water Eq. (1). The aforementioned bidirectional models (2) and (3) are rewrit-
ten in a conservative form and discretization by the finite volume method follows. Three different numerical fluxes are
employed:

� a simple average flux (m-scheme),
� a central flux, (KT-scheme) [51,59], as a representative of central schemes,
� a characteristic flux (CF-scheme), as a representative of the linearized Riemann solvers, [36],

along with TVD, UNO and WENO reconstruction techniques, [40,55,70]. Time discretization is based on Runge–Kutta (RK)
methods which preserve the total variation diminishing (TVD) property of the finite volume scheme, [38,69,67]. We use
explicit RK methods since we work with BBM type systems (2) and not with KdV-type systems which is well known to
be notoriously stiff, [58]. These methods have been studied thoroughly in the case of nonlinear conservation laws. The aver-
age flux although is known to be unstable for conservation laws is proved to be very accurate for nonlinear dispersive waves.
On the other hand finite volume methods based on the central flux as well as on characteristic flux work equally well for the
numerical simulation of waves even in realistic environments.

The performance of the finite volume method applied to models (2) and to the new system (3) is studied in a systematic
way through a series of numerical experiments. Our main focus is the evaluation, in terms of accuracy, efficiency and robust-
ness of second order finite volume methods compared to high order schemes. In particular, in this study we take up on the
following points:

� accuracy of the finite volume method in the propagation of solitary waves with very satisfactory results,
� conservation of various invariant quantities during the formation of dispersive shocks is studied numerically. The finite

element as well as spectral methods break down for these experiments. The finite volume method provides very accurate
results,
� interactions of solitary waves are computed with high accuracy. It is shown numerically that Boussinesq type systems

describe better overtaking collisions of solitary waves than unidirectional models like KdV-BBM. We compare our results,
whenever possible, with experimental measurements with very good agreement,
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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� finite volume method allows to use appropriate techniques to treat the transition from wet to dry regions and vice versa.
These techniques are applied successfully to systems with dispersive terms modeling runup of long waves. On the other
hand, when the model fails due to wave breaking, the method allows to use locally the nonlinear shallow water system,
thus enabling us to resolve a wide spectrum of hydrodynamic phenomena using a single computational framework,
� it is shown numerically the advantage of using dispersive models over standard nonlinear shallow water equations in

computing the wave runup and, in particular, in capturing the reflected wave. It’s also illustrated by an example the
importance of the system being invariant under vertical translations.

The paper is organized as follows. In Section 2 Boussinesq type systems are presented along with some of their basic prop-
erties. A new system with uneven bottom and invariant under vertical translations is derived. In Section 3 the finite volume
method is presented for a general framework incorporating all models.

Section 4 presents a series of numerical experiments for the Boussinesq systems (2). In this mathematical setting we val-
idate the finite volume method and measure its accuracy. We study the propagation as well as the interaction of solitary
waves: we consider in particular head-on and overtaking collisions, but also we present results concerning the small disper-
sion effect. Finally, in Section 5 the new system with variable bottom, (3) is studied. Numerical simulations of non-breaking
and breaking long wave runup are presented and compared with experimental data.

2. Mathematical models

We present briefly the mathematical models being considered and some of their main properties.

2.1. Dispersive models with flat bottom

We consider the following family of Boussinesq type systems of water wave theory, introduced in [13], which may be
written in nondimensional, unscaled variables
Please
(2011
gt þ ux þ ðguÞx þ auxxx � bgxxt ¼ 0;
ut þ gx þ uux þ cgxxx � duxxt ¼ 0;

ð4Þ
where g = g(x, t), u = u(x, t) are real functions defined for x 2 R and t P 0. Coefficients a, b, c and d are defined as
a ¼ 1
2

h2 � 1
3

� �
m; b ¼ 1

2
h2 � 1

3

� �
ð1� mÞ; c ¼ 1

2
ð1� h2Þl; d ¼ 1

2
ð1� h2Þð1� lÞ; ð5Þ
where 0 6 h 6 1 and l; m 2 R. The variables in (4) are non-dimensional and unscaled: x and t are proportional to position
along the channel and time, respectively, while g(x, t) and u(x, t) are proportional to the deviation of the free surface above
an undisturbed level and to the horizontal velocity of the fluid at a height y = �1 + h(1 + g(x, t)), respectively. In terms of these
variables the channel bottom is located at y = �1, (h = 0), while the free surface corresponds to h = 1. Boussinesq systems (4)
with b = d conserve the energy functional:
I1ðtÞ ¼
Z

R

ðg2ðx; tÞ þ ð1þ gðx; tÞÞu2ðx; tÞ � cg2
x ðx; tÞ � au2

x ðx; tÞÞdx; ð6Þ
i.e. I1(t) = I1(0) for t P 0. System (4) is derived under the following assumptions:
e :¼ A=h0 � 1; r :¼ h0=k� 1 S :¼ Ak2

h3
0

¼ Oð1Þ;
where S is the Stokes (or Ursell) number, A is a typical wave amplitude of fluid of depth h0 and k is a characteristic wave-
length. If one takes S = 1 and switches to scaled, dimensionless variables, one may derive from Euler equations a scaled ver-
sion of (4) by appropriate asymptotic expansion in powers of e, cf. [13]:
gt þ ux þ eðguÞx þ e½auxxx � bgxxt� ¼ Oðe2Þ;
ut þ gx þ euux þ e½cgxxx � duxxt� ¼ Oðe2Þ

ð7Þ
from which we obtain (4) by unscaling and neglecting higher order terms O(e2).
We list several examples of particular Boussinesq systems of the form (4) that we will refer to in the sequel. The initial-

value problem for all these systems has been shown to be at least nonlinearly well-posed locally in time, cf. [14].

(i) The ‘classical’ Boussinesq system (l = 0, h2 = 1/3, i.e. a = b = c = 0, d = 1/3 in (4)), whose initial-value problem is globally
well-posed, [1,64],
gt þ ux þ ðguÞx ¼ 0;

ut þ gx þ uux �
1
3

uxxt ¼ 0:
ð8Þ
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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(ii) The BBM–BBM system (m = l = 0, h2 = 2/3, i.e. a = c = 0, b = d = 1/6 in (4)), whose initial-value problem is locally well-
posed, [11],
Please
(2011
gt þ ux þ ðguÞx �
1
6
gxxt ¼ 0;

ut þ gx þ uux �
1
6

uxxt ¼ 0:
ð9Þ
(iii) The Bona–Smith system (m = 0, l = (4 � 6h2)/3(1 � h2), i.e. a = 0, b = d = (3h2 � 1)/6, c = (2 � 3h2)/3, 2/3 < h2 < 1 in
(4)), whose initial-value problem is globally well-posed, cf. [12]. The limiting form of this system as h ? 1, corre-
sponding to a = 0, b = d = 1/3, c = �1/3, is the system actually studied by Bona and Smith, [12]. These systems are
given by
gt þ ux þ ðguÞx �
3h2 � 1

6
gxxt ¼ 0;

ut þ gx þ uux þ
2� 3h2

3
gxxx �

3h2 � 1
6

uxxt ¼ 0:

ð10Þ
The existence of solitary wave solutions to the above systems, in some cases the uniqueness also, has been proved in
[19,18,29] and in the case of the Bona–Smith type systems (10), for each h2 2 (7/9,1), there exists one solitary wave in closed
form, [18]
gðnÞ ¼ g0sech2ðknÞ;
uðnÞ ¼ BgðnÞ;

ð11Þ
with
g0 ¼
9
2
� h

2 � 7=9
1� h2 ; cs ¼

4ðh2 � 2=3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� h2Þðh2 � 1=3Þ

q ; k ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðh2 � 7=9Þ

ðh2 � 1=3Þðh2 � 2=3Þ

s
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� h2Þ
h2 � 1=3

s
: ð12Þ
2.2. Dispersive models with variable bottom

For more realistic applications one should consider Boussinesq systems with variable bottom. In his pioneering work Per-
egrine, [63], derived the following Boussinesq type system
gt þ ½ðDþ gÞu�x ¼ 0;

ut þ ggx þ uux �
D
2
ðDuÞxxt þ

D2

6
uxxt ¼ 0;

ð13Þ
where g(x, t) and u(x, t) are defined as before and D(x) describes the water depth below its rest position. Many other
systems have been derived also, including systems with improved dispersion characteristics [61], high-order Boussinesq
systems [56] and other generalizations of (4), cf. [58]. Most of these systems break Galilean invariance and the invari-
ance under vertical translations. This is a restrictive property especially in the studies of realistic problems like the
water wave runup on non-uniform shores. We note also that the complete water wave problem possesses these sym-
metries, [9].

To overcome this deficiency we develop a new system, analogous to the original Peregrine’s system, [63], which is invari-
ant under vertical translations. To derive the system we begin with (13) written in dimensionless scaled variables (in analogy
with (7))
gt þ ½ðDþ egÞu�x ¼ 0;

ut þ gx þ euux � r2 D
2
ðDuÞxxt �

D2

6
uxxt

" #
¼ Oðe2; er2Þ:

ð14Þ
Then by setting H = D + eg, we obtain
Ht þ eðHuÞx ¼ 0;

ðHuÞt þ eHu2 þ 1
2e

H2
� �

x

� r2 HD
2
ðDuÞxxt �

HD2

6
Du
D

� �
xxt

" #
¼ 1

e
HDx þ Oðe2; er2Þ:

ð15Þ
Observing that Du
D

� �
xx ¼ 2 D2

x

D3 � Dxx

D2

h i
ðDuÞ � 2 Dx

D2 ðDuÞx þ 1
D ðDuÞxx and that H = D + O(e) we have that
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
), doi:10.1016/j.jcp.2011.01.003

http://dx.doi.org/10.1016/j.jcp.2011.01.003


D. Dutykh et al. / Journal of Computational Physics xxx (2011) xxx–xxx 5

Please
(2011
Ht þ eðHuÞx ¼ 0;

ðHuÞt þ eHu2 þ 1
2e

H2
� �

x

� r2 D2

3
ðDuÞxxt �

1
3

D2
x �

1
6

DDxx

� �
Dut þ

1
3

DDxðDuÞxt

" #
¼ 1

e
HDx þ Oðe2; er2Þ:

ð16Þ
By setting Q = Hu, and using again the relation H = D + O(e) we have
Ht þ eQ x ¼ 0;

Q t þ eQ2=H þ 1
2e

H2
� �

x

� r2 H2

3
Qxxt �

1
3

H2
x �

1
6

HHxx

� �
Q t þ

1
3

HHxQxt

" #
¼ 1

e
HDx þ Oðe2; er2Þ:

ð17Þ
In dimensional variables, neglecting the higher order terms at the right-hand side we obtain
Ht þ Q x ¼ 0;

Q t þ Q2=H þ g
2

H2
� �

x
� PðH;QÞ ¼ gHDx;

PðH;QÞ ¼ H2

3
Q xxt �

1
3

H2
x �

1
6

HHxx

� �
Q t þ

1
3

HHxQ xt;

ð18Þ
where H(x, t) = g(x, t) + D(x), Q(x,t) = H(x, t)u(x, t). We underline that system (18) is invariant under vertical translations and
therefore more appropriate for studying long wave runup. Moreover, the linearization of the system (18) coincides with
the original Peregrine’s system (14) and therefore, inherits all its linear dispersive characteristics. On the other hand system
(18) cannot be regarded as a correct asymptotic model to the Euler equations since it contains terms of the order O(er2).
However, such terms considered in the correct (small amplitude and long wave) regime are negligible, hence their contri-
bution will be negligible. Finally we note that ignoring the dispersive terms P(H,Q) of system (18) we obtain the shallow
water Eq. (1).

We also note that even though Boussinesq systems are not valid in the near-shore region, in practice they appear to pre-
dict well the behavior of small amplitude waves from moderately deep to shallower waters and for smooth flows, cf. [80]. Of
course, more accurate systems in the near-shore zone have been derived such as the Sérre equations (sometimes referred
also as Green–Naghdi equations), cf. [26,52,65]. These systems appeared in practice to model better the breaking phenomena
in the near shore zone but recent numerical studies of the Sérre system showed that unphysical oscillations might appear in
analogy with the Boussinesq equations during the wave breaking and the runup process, [20,21].

2.3. Source terms

Nonlinear shallow water model (1) and Boussinesq system (3) may be completed to take into account some dissipative or
friction effects which are very beneficial in describing the wave breaking phenomena. Usually this is accomplished by includ-
ing appropriate source or dissipative terms into momentum conservation Eqs. (1) or (3). Possible choices are the following:
Friction : Fðu;HÞ ¼ �cmg
ujuj
H1=3 ; ð19Þ

Viscosity : Vðu;HÞ ¼ l @

@x
H
@u
@x

� �
; ð20Þ
where cm is the Manning roughness coefficient and l denotes the kinematic viscosity of the fluid. The particular form of the
source terms is suggested by empirical laws, which are generally obtained for steady state flows. Similar models have been
derived from then Navier–Stokes system for incompressible flows with a free surface. More complex friction laws can be also
formulated to model bottom rugosity effects, etc.

3. Numerical schemes

In the present section we generalize the finite volume method to systems (2) and (3) of dispersive PDEs. In our work we
rely on corresponding schemes for conservation laws. Next we present briefly the finite volume framework for conservation
laws. Based on this framework we introduce finite volume schemes for the dispersive models.

3.1. Finite volume method for conservation laws

We consider the initial value problem
wt þ FðwÞx ¼ SðwÞ; x 2 R; t > 0;
wðx;0Þ ¼ w0ðxÞ;

ð21Þ
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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where w(x, t) is the state variable, F denotes the flux and S is the source term. Let T ¼ fxig; i 2 Z denotes a partition of R into

cells Ci ¼ xi�1
2
; xiþ1

2

h i
where xi ¼ xiþ1

2
þ xi�1

2

� �
=2 denotes the midpoint of Ci. Let Dxi ¼ xiþ1

2
� xi�1

2
be the length of the cell

Ci; Dxiþ1
2
¼ xiþ1 � xi. Without loss of generality we assume a uniform partition T , that is Dxi ¼ Dxiþ1

2
¼ Dx; i 2 Z. Let wi denote

the cell average of w on Ci i.e. wiðtÞ ¼ 1
Dx

R
Ci

wðx; tÞdx. Then a simple integration of (21) over a cell Ci yields
Please
(2011
d
dt

wiðtÞ þ
1
Dx

F w xiþ1
2
; t

� �� �
� F w xi�1

2
; t

� �� �� �
¼ 1

Dx

Z
Ci

Sðwðx; tÞÞdx: ð22Þ
3.1.1. Semidiscrete schemes
We now define the semidiscrete finite volume approximation of w(x, t). Let vCi

denotes the characteristic function of the
cell Ci, we seek a piecewise constant function whðx; tÞ ¼

P
i2ZWiðtÞvCi

ðxÞ with
d
dt

WiðtÞ þ
1
Dx
F iþ1

2
� F i�1

2

� �
¼ Si; i 2 Z;

Wið0Þ ¼
1
Dx

Z
Ci

wðx; 0Þdx; i 2 Z;
ð23Þ
where F iþ1
2
¼ F WL

iþ1
2
;WR

iþ1
2

� �
is an approximation to F wðxiþ1

2
; tÞ

� �
while Si approximates the source term

Si ¼ SiðWiÞ � 1
Dx

R
Ci

Sðwðx; tÞÞdx. The values WL
iþ1

2
;WR

iþ1
2

are approximations to the point value w xiþ1
2
; t

� �
from cells Ci, Ci+1,

respectively and F is a numerical flux function which is consistent and monotone. The values WL
iþ1

2
;WR

iþ1
2

are computed by

a reconstruction process described below (see Section 3.1.3).

3.1.2. The numerical fluxes
There are many possible choices for the numerical flux function F . In the present study we choose to work with three

following fluxes
FmðW;VÞ ¼ F
W þ V

2

� �
; ð24Þ

F KTðW;VÞ ¼ 1
2
f½FðVÞ þ FðWÞ� � AðW;VÞ½V �W�g; ð25Þ

F CFðW;VÞ ¼ 1
2
f½FðVÞ þ FðWÞ� � AðW;VÞ½FðVÞ � FðWÞ�g: ð26Þ
The average flux (24) is the simplest one. Although this flux is unstable for nonlinear conservation laws, it is proven very
stable and accurate for nonlinear dispersive models.

The central flux (25) is a Lax–Friedrichs type flux and is a representative of central schemes [51,59]. The operator A is
related to the characteristic speeds of the flow and is defined as
AðW;VÞ ¼max½qðDFðWÞÞ;qðDFðVÞÞ�; ð27Þ
where DF denotes the Jacobian matrix and q(A) is the spectral radius of A.
The characteristic flux function (26), [36,37], is similar to the upwind flux and the operator A in this case is defined by
AðW;VÞ ¼ sign DF
W þ V

2

� �� �
: ð28Þ
3.1.3. The reconstruction process
The values WL

iþ1
2
;WR

iþ1
2

are approximations to w xiþ1
2
; t

� �
from cells Ci and Ci+1, respectively. The simplest possible choice is

to take the piecewise constant approximation in each cell,
WL
iþ1

2
¼Wi; WR

iþ1
2
¼Wiþ1: ð29Þ
The resulting semidiscrete finite volume scheme is formally first order accurate in space.
To construct a higher order scheme in space, the piecewise constant data is replaced by a piecewise polynomial represen-

tation. The main idea here is to construct higher order approximations to w xiþ1
2
; t

� �
using the computed cell averages Wi. For

this purpose the classical MUSCL type (TVD2) linear reconstruction [48,77] as well as UNO2, [40] or WENO type reconstruc-
tions, [55], have been developed.

The classical TVD2 linear reconstruction is given by the following formulas:
WL
iþ1

2
¼Wi þ

1
2

/ðriÞðWiþ1 �WiÞ; WR
iþ1

2
¼Wiþ1 �

1
2

/ðriþ1ÞðWiþ2 �Wiþ1Þ; ð30Þ
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
), doi:10.1016/j.jcp.2011.01.003

http://dx.doi.org/10.1016/j.jcp.2011.01.003


D. Dutykh et al. / Journal of Computational Physics xxx (2011) xxx–xxx 7
where ri ¼ Wi�Wi�1
Wiþ1�Wi

, and / is an appropriate slope limiter, [70]. There are many options for a limiter function. Some of the most
usual choices are

� MinMod (MM) limiter: /(h) = max (0,min (1,h)),
� VanLeer (VL) limiter: /ðhÞ ¼ hþjhj

1þjhj,
� Monotonized Central (MC) limiter: /(h) = max (0,min ((1 + h)/2,2,2h)),
� Van Albada (VA) limiter: /ðhÞ ¼ hþh2

1þh2.

The last three limiters have been shown to exhibit sharper resolution of discontinuities since they do not reduce the slope
as severely as (MM) near a discontinuity. The TVD2 reconstruction is second order accurate except at the local extrema
where it reduces to the first order. A remedy is to consider the UNO2 type reconstruction.

The UNO2 reconstruction is a linear interpolation which is second order accurate even at local extrema, [40]. The values
WL

iþ1
2
;WR

iþ1
2

are defined as
Please
(2011
WL
iþ1

2
¼Wi þ

1
2

Si; WR
iþ1

2
¼Wiþ1 �

1
2

Siþ1; ð31Þ
where
Si ¼ m Sþi ; S
�
i

� �
; S�i ¼ di�1

2
W 	 1

2
Di�1

2
W;

diþ1
2
W ¼Wiþ1 �Wi; Diþ1

2
W ¼ mðDiW ;Diþ1WÞ;

DiW ¼Wiþ1 � 2Wi þWi�1; mðx; yÞ ¼ 1
2
ðsignðxÞ þ signðyÞÞminðjxj; jyjÞ:
Using either (TVD2) or (UNO2) reconstructions the semidiscrete finite volume scheme (23) is formally second order accurate.
In order to achieve higher order accuracy we also employ WENO type reconstructions for the values WR

i�1
2
;WL

i�1
2
. We imple-

mented 3rd and 5th order accurate WENO methods (also referred to as WENO3 and WENO5, respectively) as they are
described in [55]. For the sake of simplicity we only present the WENO3 case. In order to compute the approximations
WL

iþ1
2

and WR
i�1

2
, we first compute the 3rd order reconstructed values
W ð0Þ
iþ1

2
¼ 1

2
ðWi þWiþ1Þ; W ð1Þ

iþ1
2
¼ 1

2
ð�Wi�1 þ 3WiÞ;

W ð0Þ
i�1

2
¼ 1

2
ð3Wi �Wiþ1Þ; W ð1Þ

i�1
2
¼ 1

2
ðWi�1 þWiÞ:
We define the smoothness parameters
b0 ¼ ðWiþ1 �WiÞ2; b1 ¼ ðWi �Wi�1Þ2
and the parameters d0 ¼ 2
3 ; d1 ¼ 1

3 and ~d0 ¼ d1;
~d1 ¼ d0, along with the weights
x0 ¼
a0

a0 þ a1
; x1 ¼

a0

a0 þ a1
; ~x0 ¼

~a0

~a0 þ ~a1
; ~x1 ¼

~a1

~a0 þ ~a1
;

where ai ¼ di
�þbi

; ~ai ¼
~di
�þbi

and � to be a small, positive number (in our computations we set � = 10�15). Then the reconstructed
values are given by the following formulas
WL
iþ1

2
¼
X1

r¼0

xrW
ðrÞ
iþ1

2
; WR

i�1
2
¼
X1

r¼0

~xrW
ðrÞ
i�1

2
: ð32Þ
3.1.4. Discretization of source terms
The finite volume discretization of the source term S(w) in (21) depends on the particular choice. On the other hand the

resulting approximation should preserve the upwind nature and the overall scheme should be well balanced. One possible
discretization of the source term S(w) is given by:
1
Dx

Z
Ci

SðwÞdx �
Si�1

2
þ Siþ1

2

2
; Siþ1

2
¼ S

WL
iþ1

2
þWR

iþ1
2

2

 !
: ð33Þ
3.1.5. Fully discrete schemes
Problem (23) is an initial value problem and can be discretized by various methods. In our case we use a special class of

Runge–Kutta methods which ensure the TVD property of the finite volume scheme, [38,67,69].
Let Dt be the time step and let tn+1 = tn + Dt, n P 0 be discrete time levels. Assuming at tn the approximations Wn

i

	 

; i 2 Z

are known then Wnþ1
i are defined by
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Please
(2011
Wnþ1
i ¼Wn

i �
Dt
Dx

Xs

j¼1

bj F n;j
iþ1

2
� F n;j

i�1
2

� �
þ Dt

Xs

j¼1

bjSn;j
i ;

Wn;j
i ¼Wn

i �
Dt
Dx

Xs

‘¼1

aj‘ F n;‘
iþ1

2
� F n;‘

i�1
2

� �
þ Dt

Xs

‘¼1

aj‘Sn;‘
i ;

ð34Þ
where F n;j
iþ1

2
¼ F Wn;j

i ;W
n;j
iþ1

� �
; Sn;j

i ¼ S Wn;j
i

� �
. The set of constants A = (aj‘), b = (b1, . . . ,bs) define an s-stage Runge–Kutta

method. The following tableau are examples of explicit TVD RK-methods which are of 2nd and 3rd order, respectively
ð35Þ
In our computations we mainly use the three stage 3rd order method.

3.2. Finite volume schemes for dispersive models

To construct the finite volume schemes for the dispersive models the main idea is to rewrite the governing equations or
systems in a conservative like form and discretize the resulting conservation laws using the aforementioned framework. One
can use any of the numerical fluxes, Fm;F KT ;F CF and reconstruction techniques TVD2, UNO2 or WENO. Temporal discreti-
zation is based on the TVD-Runge–Kutta methods, (35).

3.2.1. Boussinesq systems with flat bottom
Boussinesq systems (2) can be rewritten in a conservative like form as follows:
ðI� DÞvt þ ½FðvÞ�x þ ½GðvÞ�x ¼ 0; ð36Þ
where v ¼ ðg;uÞT ; FðvÞ ¼ ð1þ gÞu; gþ 1
2 u2

� �T
; GðvÞ ¼ ðauxx; cgxxÞ

T , and D ¼ diag b@2
x ; d@

2
x

� �
. The simplest discretization is

based on the average fluxes Fm for F and Gm for G. For the other two choices of the numerical flux F the evaluation of a Jaco-
bian is needed. Let A denotes the Jacobian of F, then
A ¼
u 1þ g
1 u

� �
;

with eigenvalues ki ¼ u�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
, i = 1, 2. It is readily seen, since F is a hyperbolic flux, that A can be decomposed as A = LKR

thus for the characteristic flux F CF we have with l ¼ WþV
2 ; si ¼ signðkiÞ; i ¼ 1;2
AðW;VÞ ¼
1
2 ðs1 þ s2Þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l1

p
ðs1 � s2Þ

s1�s2

2
ffiffiffiffiffiffiffiffiffi
1þl1

p 1
2 ðs1 þ s2Þ

0
@

1
A:
For evaluating the numerical fluxes F ;G simple cell averages or higher order approximations such as UNO2 (31) or WENO
(32) can be used.

Remark 1. The discretization of the elliptic operator D is based on the standard centered difference. This is a second order
accurate approximation and it is compatible with the TVD2 and UNO2 reconstructions. For higher order interpolation we
modify the elliptic and flux discretization. Indeed, the finite volume scheme is modified as
d
dt

Vi�1 þ 10Vi þ Viþ1

12
� ðb;dÞViþ1 � 2Vi þ Vi�1

Dx2

� �
þHi�1 þ 10Hi þHiþ1

12
¼ 0;
where Hi ¼ 1
Dx F iþ1

2
� F i�1

2

� �
þ 1

Dx Giþ1
2
� Gi�1

2

� �
, resulting in a high order accurate approximation. Thus in the WENO3 case a

global third order accuracy is observed, while for WENO5 interpolation, we profit only locally by the 5th order accuracy
of the reconstruction, cf. Section 4.1.
Remark 2. In the sequel for the discretization of the dispersive term G we use mainly the average numerical flux Gm defined
as Gm

iþ1
2
¼ ða; cÞ 1

2 ðYi þ Yiþ1Þ, where Yi ¼ 1
Dx2 ðViþ1 � 2Vi þ Vi�1Þ. In case of higher order WENO reconstructions we use the aver-

age numerical flux based on the reconstructed values of Yi i.e. the flux Glm
iþ1

2
¼ ða; cÞ 1

2 YL
iþ1

2
þ YR

iþ1
2

� �
, where YL

iþ1
2

and YR
iþ1

2
are

reconstructed values of Yi.
3.2.2. Boussinesq system with variable bottom
We write system (18) in terms of dependent variables v :¼ (H,Q)T in the following conservative form
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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Please
(2011
½DðvtÞ� þ ½FðvÞ�x ¼ SðvÞ; ð37Þ
where
DðvtÞ ¼
Ht

1þ 1
3 H2

x � 1
6 HHxx

� �
Q t � 1

3 HHxQ xt � H2

3 Q xxt

 !
; ð38Þ

FðvÞ ¼
Q

Q2

H þ
g
2 H2

 !
; SðvÞ ¼

0
gHDx

� �
: ð39Þ
We consider a uniform mesh and we denote by Hi, Ui and Di the corresponding cell averages. To discretize the dispersive
terms in (38) we consider the following approximations:
1
Dx

Z x
iþ1

2

x
i�1

2

1þ 1
3
ðHxÞ2 �

1
6

HHxx

� �
Qdx � 1þ 1

3
Hiþ1 � Hi�1

2Dx

� �2

� 1
6

Hi
Hiþ1 � 2Hi þ Hi�1

Dx2

 !
Q i;

1
Dx

Z x
iþ1

2

x
i�1

2

1
3

HHxQ xdx � 1
3

Hi
Hiþ1 � Hi�1

2Dx
Q iþ1 � Q i�1

2Dx
; ð40Þ

1
Dx

Z x
iþ1

2

x
i�1

2

1
3

H2Qxxdx � 1
3

H2
i

Q iþ1 � 2Q i þ Q i�1

Dx2 : ð41Þ
The aforementioned discretizations lead to a linear system with tridiagonal matrix denoted by L that can be inverted effi-
ciently by a variation of Gauss elimination for tridiagonal systems with computational complexity O(d), d-being the dimen-
sion of the system. We note that on the dry cells the matrix becomes diagonal since Hi is zero on dry cells. For the time
integration the explicit third-order TVD-RK method, (35) is used. In the numerical experiments we observed that the fully
discrete scheme is stable and preserves the positivity of H during the runup under a mild restriction on the time step Dt.

Therefore, the semidiscrete problem of (38), (39) is written as a system of o.d.e’s in the form
Livi t þ
1
Dx
F iþ1

2
� F i�1

2

� �
¼ 1

Dx
Si; ð42Þ
where Li is the ith row of matrix L and F iþ1
2

can be chosen as one of the numerical flux functions mentioned in the previous
sections. In the sequel we will use the KT and the CF numerical fluxes. In this case the Jacobian of F is given by the matrix
A ¼
0 1

gH � ðQ=HÞ2 2Q=H

� �
and the eigenvalues are k1;2 ¼ Q=H �
ffiffiffiffiffiffi
gH

p
. Therefore, the CF numerical flux takes the form
F iþ1
2
¼

F VL
iþ1

2

� �
þ F VR

iþ1
2

� �
2

� UðlÞ
F VR

iþ1
2

� �
� F VL

iþ1
2

� �
2

; ð43Þ
where l = (l1,l2)T are the Roe average values,
l1 ¼
HL

iþ1
2
þ HR

iþ1
2

2
; l2 ¼

ffiffiffiffiffiffiffiffiffi
HL

iþ1
2

q
UL

iþ1
2
þ

ffiffiffiffiffiffiffiffiffi
HR

iþ1
2

q
UR

iþ1
2ffiffiffiffiffiffiffiffiffi

HL
iþ1

2

q
þ

ffiffiffiffiffiffiffiffiffi
HR

iþ1
2

q

and
UðlÞ ¼
s2ðl2þcÞ�s1ðl2�cÞ

2c
s1�s2

2c

ðs2�s1Þ l2
2�c2ð Þ

2c
s1ðl2þcÞ�s2ðl2�cÞ

2c

0
@

1
A; c ¼

ffiffiffiffiffiffiffiffiffi
gl1

p
; si ¼ signðkiÞ: ð44Þ
In order to guarantee the positivity of the reconstructed values Hiþ1
2

on the cell interfaces we employ the well balanced
hydrostatic reconstruction algorithm, [6]. Here we briefly recall the great lines of this reconstruction algorithm.

In the cell Ci we compute first the reconstructions Vi,r and Vi,l at iþ 1
2

� �� and i� 1
2

� �þ, respectively using either TVD2 or
UNO2 with MinMod limiter. Moreover, we compute in the same way the values gi,l and gi,r of the free surface elevation gi = -
Hi � Di. Now we can deduce the values Di,l = Hi,l � gi,l and Di,r = Hi,r � gi,r. Letting Diþ1

2
¼minðDi;r;Di;lÞ we compute
HR
iþ1

2
¼ max 0;Hi;r þ Di;r � Diþ1

2

� �
; HL

iþ1
2
¼max 0;Hiþ1;l þ Diþ1;l � Diþ1

2

� �
ð45Þ
and we deduce conservative reconstructed variables
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Please
(2011
VL
iþ1

2
¼

HL
iþ1

2

HL
iþ1

2
ui;r

0
@

1
A; VR

iþ1
2
¼

HR
iþ1

2

HR
iþ1

2
uiþ1;l

0
@

1
A: ð46Þ
Then the term Si can be written as Si ¼ SL
iþ1

2
þ SR

iþ1
2
þ Sci, where
SL
iþ1

2
¼

0
g
2 HL

iþ1
2

� �2
� ðHi;rÞ2

� �0
@

1
A; SR

iþ1
2
¼

0
g
2 ðHi;lÞ2 � HR

iþ1
2

� �2
� �0

@
1
A

and
Sci ¼
0

g Hi;lþHi;r

2 ðDi;l � Di;rÞ

 !
:

Numerical experiments show that the resulting scheme is well-balanced even for Boussinesq system of equations.

3.2.3. Boundary conditions
In the case of Bona–Smith type systems with flat bottom we consider herein only the initial-periodic boundary value

problem which is known to be well-posed [3].
In case of the modified Peregrine’s system with an uneven bottom we use reflective boundary conditions. We note that for

the classical Boussinesq system posed in a bounded domain I = [b1,b2], one needs to impose boundary conditions only in one
of the two dependent variables, cf. [35]. In the case of reflective boundary conditions it is sufficient to take u(b1, t) = u(b2, t) = 0
cf. [5]. In [5] it was also observed that during solitary waves reflection the derivatives gx(b1, t) = gx(b2, t) ? 0, while for other
wave types these derivatives remained very small.

In our case we consider analogous reflective boundary conditions taking the cell averages of u on the first and the last cell
to be u0 = uN+1 = 0. We do not impose explicitly boundary conditions on H. The reconstructed values on the first and the last
cell are computed using neighboring ghost cells and taking odd and even extrapolation for u and H, respectively. These spe-
cific boundary conditions appeared to reflect incident waves on the boundaries while conserving the mass.
4. Interactions of solitary waves

For the Boussinesq system (2) we present initially results demonstrating the accuracy of the finite volume scheme. We
study the propagation as well as the interaction of solitary waves. In particular we consider head-on and overtaking
collisions.

4.1. Accuracy test, validation

We consider the initial value problem with periodic boundary conditions for the Bona–Smith systems (10) with known
solitary wave solutions (11), (12) to study the accuracy of the finite volume method. We fix h2 = 8/10 in the system and an
analytic solitary wave of amplitude g0 = 1/2 is used as the exact solution in [�50,50] computed up to T = 200. The error is
measured with respect to discrete L2 and L1 scaled norms E2

h; E
1
h , namely
E2
hðkÞ ¼ ku� Ukkh=kU

0kh; ku� Ukkh ¼
X

i

DxjuðxiÞ � Uk
i j

2

 !1=2

;

E1h ðkÞ ¼ ku� Ukkh;1=kU
0kh;1; ku� Ukkh;1 ¼max

i
juðxiÞ � Uk

i j;
where Uk ¼ Uk
i

n o
i

denotes the solution of the fully-discrete scheme at the time tk = kDt. The expected theoretical order of
convergence was confirmed for all finite volume methods presented above.Three indicative cases, demonstrating the order
of convergence, are reported in Table 1: (a) for the average flux, (b) for the KT flux with TVD2 reconstruction using the min-
mod limiter and (c) for CF flux with WENO3 reconstruction. The order of convergence for the WENO5 method cannot be ob-
tained since a 4th order discretization is used for the elliptic operator.

We also check the preservation of the invariant (6) by computing its discrete counterpart:
Ih
1 ¼

X
i

Dx g2
i þ ½ð1þ giÞui�2 � c

giþ1 � gi

Dx

h i2
� a

uiþ1 � ui

Dx

h i2
� �

; ð47Þ
as well as the discrete mass Ih
0 ¼ Dx

P
igi. Fig. 1 shows the evolution of the amplitude and the invariant Ih

1 of the solitary wave
up to T = 200. The comparison of various methods is performed. We observe that the UNO2 reconstruction is more accurate
while KT and the CF schemes show comparable performance. (We note that the invariant Ih

0 ¼ 1:932183566158 conserved
the digits shown for all numerical schemes. In this experiment we took Dx = 0.1, Dt = Dx/2.) Fig. 1(a) and (c) show the evo-
lution of the amplitude of the analytical solitary wave of the Bona–Smith system (h2 = 8/10) and of the solitary wave pro-
cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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Table 1
Rates of convergence.

Dx Rate E2
h

� �
Rate E1h

� �
(a) Average Flux
0.5 1.910 1.978
0.25 1.910 1.954
0.125 1.923 1.937
0.0625 1.936 1.941
0.03125 1.946 1.948

(b) KT-TVD2(MinMod)
0.5 2.042 2.032
0.25 2.033 2.029
0.125 2.026 2.023
0.0625 2.021 2.019
0.03125 2.017 2.016

(c) CF-WENO3
0.5 2.976 2.975
0.25 3.017 3.022
0.125 3.031 3.044
0.0625 3.042 3.059
0.03125 3.051 3.073

Fig. 1. Preservation of the solitary wave amplitude and conservation of the invariant Ih
1 : Gm flux with Minmod limiter.
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duced by the solution of the analogous ordinary differential equations system of the classical Boussinesq system, respec-
tively. In the case of the classical Boussinesq system we took cs = 1.2 and we used the method described in [28].
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The well balanced property of the finite volume schemes is also verified numerically. We consider a uniform shore, cf.
Section 5, including a wet and dry region. The bottom is also modified by adding a small parabolic type hump located at
x = 40. We tested the steady state preservation of all fluxes and possible reconstruction techniques. The results are similar
in all cases. In Fig. 2 we present the case of FC flux along with UNO2.

4.2. Head-on collisions

The head-on collision of two counter-propagating solitary waves is characterized by the change of the shape along with a
small phase-shift of the waves as a consequence of the nonlinearity and dispersion. These effects have been studied exten-
sively before by numerical means using high order numerical methods such as finite differences, [11], spectral and finite ele-
ment methods [4,27,62] and experimentally in [22]. In Fig. 3 we present the numerical solutions of the BBM–BBM system (9)
and the Bona–Smith system (10) with h2 = 9/11 (in dimensional and unscaled variables) along with the experimental data
from [22]. The spatial variable is expressed in centimeters while the time in seconds. The solutions were obtained using
the CF-scheme with UNO2 and WENO3 reconstruction using Dx = 0.05 cm and Dt = 0.01 s. For this experiment we con-
structed solitary waves for Boussinesq systems by solving the respective o.d.e’s system in the spirit of [15] such that they
fit to experimentally generated solitary waves before the collision. The speeds of the right and left-traveling solitary waves
are cr,s = 0.854 m/s and cl,s = 0.752 m/s, respectively.

We observe that Boussinesq models converge to the same numerical solution with all numerical schemes we tested. A
very good agreement with the experimental data is observed. The maximum height predicted by the numerical solution dur-
ing the collision process is slightly higher in the case of the BBM–BBM system but the difference is negligible within the spe-
cific experimental scale. Furthermore, we observe similar underestimation of the maximum amplitude of the colliding waves
compared to the experimental data, [22]. This discrepancy might be explained by a possible ‘‘splash’’ phenomenon during
the collision reported also earlier by Maxworthy, [57]. After the collision we observe that the phase shift of the solitary waves
is the same in both numerical and experimental data, while the shape of the experimental solitary waves were not stabilized
due to interactions with other small amplitude dispersive waves. We note that after the head-on collision of the waves small
amplitude dispersive tails were developed, [4,11,27].

The discrete mass for the Bona–Smith system is Ih
0 ¼ 0:0059904310418 and for the BBM–BMM system is

Ih
0 ¼ 0:0059199389479 for all fluxes and reconstructions used. The variances in Ih

1 are mainly due to different types of recon-
struction and not to the choice of numerical fluxes. In Table 2 these values are reported.

4.3. Overtaking collisions

The overtaking collision of two solitary waves similarly to the head-on collision incorporates nonlinear and dispersive
effects. Overtaking collision has been studied recently in the case of bidirectional models in [4]. The interaction is similar
to that of the unidirectional models but it was found that a new N-shape wavelet is generated during the interaction. This
wavelet is of small amplitude and travels in the opposite direction to solitary waves and its shape depends on the Boussinesq
system in use. Furthermore, as it was observed numerically and experimentally in [22], the interaction of two solitary waves
during an overtaking collision is characterized by a mass exchange and not by a simple superposition of the solitary pulses.
These pulses remain separate retaining two different maxima contrary to unidirectional models where they merge into a
single pulse momentarily.
−20 0 20 40 60 80 100
−1

−0.5

0

0.5

0 20 40 60 80 100
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0

0.5

x 10−14

Fig. 2. Steady state preservation.
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Fig. 3. Head-on collision of two solitary waves: —: BBM-BBM, ––: Bona–Smith (h2 = 9/11), �: experimental data of [22].
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To study this interaction we solve numerically the Bona-Smith system (10) with h2 = 9/11. Following the same process as
before two solitary waves were generated numerically with speeds c1,s = 1.2 and c2,s = 1.4. We solved the system using all
fluxes using UNO2 and WENO3 reconstructions with discretization parameters Dx = 0.01, Dt = 0.005 up to T = 600. During
simulations we were able to observe the generation and propagation of a small N-shape wavelet. In all computations the
Please cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
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invariants were Ih
0 ¼ 4:6098804880; Ih

1 ¼ 5:116 conserving the digits shown for all methods. In Fig. 4 we present the inter-
action of two solitary waves. Fig. 5 shows a magnification on the generation of a small wavelet along with the generation of
dispersive tails as an effect of the inelastic interaction of two waves. In Fig. 6 we observe that the overtaking collision is
accompanied by an exchange of mass between pulses while both peaks are permanently present. The situation is different
for unidirectional models where two pulses merge during a few time-steps to travel as a single pulse. Up to the graphic res-
olution we could not observe any difference in numerical solutions between UNO2 and WENO3 reconstructions.
4.4. Small dispersion effect

In this section we study the small dispersion effects on solitary waves of the classical Boussinesq system. The motivation
for this study is the lack of theory supporting the breaking phenomena in Boussinesq systems contrary to the KdV equation.
Table 2
Preservation of the invariant Ih

1.

Ih
1

(a) Bona–Smith
m-flux 0.000944236
UNO2 0.00094423
TVD2 0.00094
WENO3 0.00094423

(b) BBM-BBM
m-flux 0.00092793
UNO2 0.00092793
TVD2 0.00092
WENO3 0.00092793

Fig. 4. Overtaking collision of two solitary waves of the Bona–Smith system with h2 = 9/11.
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Fig. 5. Generation of a wavelet during the overtaking collision of two solitary waves of the Bona–Smith system with h2 = 9/11.
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For this reason we employ the Boussinesq system with a = b = c = 0, d = 10�5 and we take the solitary wave of the Boussinesq
systems (8) as an initial condition. In Fig. 7 we present numerical results obtained with CF-UNO2 and CF-WENO3 schemes. In
these experiments we take Dx = 0.001 and Dt = Dx/2. The invariant Ih

0 is 1.629096452537 preserving the digits shown during
all simulations. The invariant Ih

1 is not preserved by this model since the coefficient b is not equal to d. The oscillations gen-
erated in the case of the WENO3 reconstruction were larger compared to those generated by the UNO2 reconstruction. More-
over, a new W-shaped wavelet is generated traveling to the left. This small wavelet finishes by producing a secondary
breaking very similar to that of the initial solitary wave.

5. Boussinesq system with variable bottom: runup of long waves

The shallow water equations are routinely used to predict a tsunami wave runup and, subsequently, constitute inunda-
tion maps for tsunami hazard areas. One of the main questions we address in this study is whether the inclusion of dispersive
effects is beneficial for the description of the wave/shore interaction. In this section we perform a comparison of numerical
solutions to Boussinesq Eq. (18), shallow water Eq. (1) (solved by the same numerical method) and experimental measure-
ments made by Synolakis [71] and Zelt [80]. In these experiments we consider a bottom of the form, Fig. 8,
Please
(2011
DðxÞ ¼
�x tan b; x 6 cot b;

�1; x > cot b;



In all experiments over a flat bottom, D(x) = �D0, we use an approximate solitary wave solution of the following form:
g0ðxÞ ¼ Assech2ðkðx� X0ÞÞ; u0ðxÞ ¼ �cs
g0ðxÞ

D0 þ g0ðxÞ
; ð48Þ

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3As

4ð1þ AsÞ

s
; cs ¼

ffiffiffi
g
p

ffiffiffi
6
p
ð1þ AsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2As
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ AsÞ logð1þ AsÞ � As

p
As

; ð49Þ
where As denotes the amplitude, cs is the correct speed of the solitary wave propagation for classical Boussinesq equations.
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Fig. 6. Overtaking collision of two solitary waves of the Bona–Smith system with h2 = 9/11: mass exchange process.
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The first three experiments we tested are described in [71] and deal with the runup of solitary waves on a shore with a
mild slope of 1:19.85. The first is a non-breaking solitary wave with dimensionless and scaled amplitude As/D0 = 0.0185, the
second one is a nearly breaking solitary wave with As/D0 = 0.04, while the third experimental setup is a breaking solitary
wave with As/D0 = 0.28.

System (18) has some advantages over other asymptotically equivalent models with variable bottom. Namely, it shows
excellent stability properties even for nearly breaking waves on the shore. However, for the simulation of strong breaking
events, it is beneficial to include friction or dissipative terms taking into account turbulence generation.

We also considered two experiments from [80] concerning the runup of solitary waves on a shore with steep slope 1:2.74.
These experiments shed some light on the differences between dispersive and non-dispersive models.

Finally we consider a non-uniform sloping shore that contains a small pond demonstrating the capability of the modified
Peregrine’s system to handle simultaneously and correctly dispersive effects in two basins with different mean sea levels.

In the sequel t denotes the dimensionless time scaled by the quantity
ffiffiffiffiffiffiffiffiffiffiffi
g=D0

p
. Furthermore, we denote by R the height of

the last dry cell at a specific time instance. In our computations a cell is considered as dry if the total water depth Hi inside is
less than 5 � 10�14. The quantity R will also be referred to as runup. The maximum runup will be denoted by R1. In all exper-
iments the discretization parameters were taken to be equal Dx = 0.05, Dt = Dx/10, unless otherwise mentioned. Further, we
compute in all cases the discrete mass Ih

0 and show the preserved digits. We use the KT and CF schemes combined with the
TVD2 and UNO2 reconstructions. The CF-scheme appeared to be less dissipative and we emphasize the results of this
method.

5.1. Runup of a solitary wave on a gradual slope b = 2.88� with As/D0 = 0.0185

We consider first the simplest case — the runup of a non-breaking solitary wave. In this experiment we take an initial
solitary wave with the amplitude As = 0.0185, D0 = 1 and X0 = 19.85 in I = [�10,70] and a mildly sloping shore 1:19.85. This
specific solitary wave does not break [71] and the solution remains smooth during the runup and the rundown processes. In
Fig. 9 we show several profiles of numerical solutions to Boussinesq and shallow water equations along with the experimen-
tal data of [71]. We observe that both models converge to the same solution. The runup as well as the rundown in this exper-
iment is predicted very well. The runup value R for both models is almost the same. The maximum runup is R1 � 0.085 for
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Fig. 8. Sketch of the problem setup.

Fig. 7. The small dispersion effect onto classical Boussinesq equations solutions.
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the Boussinesq system, while for NSWE is R1 � 0.088. The experimental value reported in [71] is equal to R1 � 0.078. In
Fig. 10 the runup R as a function of time is represented. The discrete mass is preserved Ih

0 ¼ 60:3667671231 conserving
the digits shown for both models.
5.2. Runup of a solitary wave on a gradual slope b = 2.88� with As/D0 = 0.04

We consider the same sloping shore as before. We study the runup of a solitary wave with amplitude As = 0.04, placed
initially at X0 = 19.85 in I = [�10,70]. The solitary wave does not break during the runup phase. Breaking occurs during
the rundown process as in experimental observations [71]. Results of the numerical simulations are presented in Fig. 11.
In Fig. 12 the evolution of the runup value is shown. The maximum runup for the Boussinesq system is R1 � 0.20 and
R1 � 0.21 for shallow water system. The experimental value reported in [71] is R1 � 0.156.
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Fig. 9. Solitary wave runup on a sloping shore: As = 0.0185 case.

Fig. 10. Runup value R as a function of time: As = 0.0185 case.
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In Fig. 13 we perform a comparison with tide gauge data (free surface elevation measured in [71]) collected at 32.1 m
from the still shoreline position. We observe again a good agreement between the dispersive and nondispersive models.
The discrete mass is preserved, Ih

0 ¼ 60:5210181987 conserving the digits shown.

5.3. Runup of a solitary wave on a gradual slope (b = 2.88�) with As = 0.28

Finally we present the stiffest case of a solitary wave with amplitude As = 0.28, placed initially at X0 = 19.85 in
I = [�10,60]. This specific initial condition is characterized by the wave breaking phenomenon before even reaching the
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Fig. 11. Solitary wave runup on a sloping shore: As = 0.04 case.
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shoreline. Strictly speaking, in this case the Boussinesq model is not valid unless a wave breaking mechanism is considered,
cf. [80]. In this case the approximate solitary wave given by formulas (48), (49) with As = 0.28 it is outside the range of
validity of the specific system. We proceed by constructing numerically a more accurate solitary wave following the cleaning
Please cite this article in press as: D. Dutykh et al., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys.
(2011), doi:10.1016/j.jcp.2011.01.003
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Fig. 12. Runup value R as a function of time: As = 0.04 case.

Fig. 13. Free surface elevation at x = 32.1 m.
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procedure of [11]. (Note that since the linearized system (18) coinsides with the linearized classical Boussinesq system we
conclude that there exist classical solitary wave solutions of at least small amplitude, cf. [28]). We constructed a solitary
wave with As ffi 0.28 with Dx = 0.1 and Dx = 0.05 while Dt = Dx/10. Specifically, we consider the interval [�200,200], and
the initial condition g0(x) = 0.5exp (�(x � 150)2/25), u0 = 0 (with reflective boundary conditions). The initial condition is
resolved into two solitary waves traveling in opposite directions. We observed that the left-traveling solitary wave at
t = 88 was separated enough from the rest of the solution. This solitary wave is isolated by keeping the numerical solution
in the interval [�200,�151] and setting it equal to zero to the rest of the interval. The solution is then translated to the right
at X0 = 19.85 and we let it propagate. We observe that the clean solitary wave propagates like the analytical solution of the
Bona-Smith system with analogous behavior between the TVD2 and UNO2 reconstruction. In Fig. 14 we present the results
for the KT scheme since the results of the CF scheme are completely analogous and no difference can be observed. In
Fig. 14(a) the rightward traveling waves were reflected by the right boundary.

In order to ensure the stability of the simulation and to study the runup, instead of smoothing, filtering or adding extra
dissipative terms, we simply exclude the contribution of the term Qxxt in the vicinity of the shoreline (where Di < 0.3). Wave
transition between these two regions appeared to be smooth as one may witness on Fig. 15. After this slight modification, the
algorithm became more robust for large amplitude breaking waves without creating any unphysical oscillations.

In this experiment friction appeared to play a significant role during the runup process, contrary to previous cases. The
maximum runup computed without taking into account the friction of the bottom was far away from the experimentally
measured values. For this reason, and only in this specific test case we included the empirical friction term (19) into the
momentum conservation Eq. (18), with coefficient cm = 2 � 10�4. The friction term is discretized according to (33). This dis-
cretization preserves the positivity of all numerical schemes we tested. Mass conservation in this experiment was perfect
Ih
0 ¼ 51:7504637472 preserving the digits shown.

In Fig. 15 we show the propagation of a breaking wave including its runup and rundown. We observe a significant dif-
ference between shallow water system and the dispersive model during the wave propagation. Discrepancies are present
in the amplitude and in the phase speed simultaneously. However the dispersive model solution approximates better the
measurements of Zelt [80]. Nevertheless, we have to underline that the runup and rundown are fairly well described by both
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Fig. 14. Generation of a solitary wave with As ffi 0.28 applying cleaning.
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models. The maximum runup value according to the dispersive and nondispersive models is R1 � 0.47 which is in the range
of [0.42,0.53] of the theoretical prediction of Synolakis, [71]. There is no single experimental value reported for the maxi-
mum runup in [71] due to practical difficulties in generating a solitary wave of such large amplitude. Finally, we mention
that the specific technique for handling the breaking wave leads to more accurate results for the rundown process than those
presented in [80].
5.4. Solitary wave runup on a steep slope (b = 20�)

Now we present two experiments pointing out some further differences in solutions to dispersive and nondispersive
models. These experiments were performed by Zelt, [80]. We consider two waves in I = [�10,30] with amplitudes
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Fig. 15. Solitary wave runup on a sloping shore: As = 0.28 case.
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As = 0.12 and As = 0.2 initially located at X0 = 8.85 and X0 = 10.62 respectively. These waves propagate onto a steep sloping
shore 1:2.74. A very fine grid of Dx = 0.01, Dt = Dx/100 is used to guarantee the accuracy and stability of simulations.
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As it was observed in [80] both waves do not break during the runup but the second one generates a strong breaking
event during the rundown. Friction does not play an important role in these experiments. Consequently, no friction term
is included into the models.

Fig. 16 shows the runup value R as a function of time. We observe for both models that there is a phase lag compared to
the experimental data. We believe that this discrepancy can be removed by changing the definition of the last dry cell. We
also observe that shallow water equations over-predict the maximum runup and the minimum rundown while the Bous-
sinesq model predicts correctly the extrema in both cases.
Fig. 17. Rundown of the wave with amplitude As = 0.2.

Fig. 16. Runup value R as a function of time.
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Fig. 18. The amplitude at the wave gauge A.
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Fig. 17 shows the rundown of the solitary wave of amplitude As = 0.2 during breaking. One may observe that the exper-
imental data consist of two curves due to the difficulty in measuring the surface elevation of the breaking wave due to 3D
effects which become important. On Fig. 18 the free surface elevation at a gauge is presented. The gauge is located 8.85 me-
ters away from the still shoreline position. The reflected wave appears in both cases to be highly dispersive thus, the Bous-
sinesq model provides a much better approximation. In the case As = 0.2, the mass remained equal to Ih

0 ¼ 29:770808175,
while in the case As = 0.12, Ih

0 ¼ 29:4861671693 conserving the digits shown.

5.5. Solitary wave runup on a gradual slope (b = 2.88�) with a pond

We repeat the experiment of Section 5.2 in I = [�10,50] with solitary wave amplitude equal to As = 0.05. However, we
modify the bottom by adding a small pond over the shoreline described by the exponential function 0:1e�ðxþ4Þ2 . The Bous-
sinesq system preserves the correct dispersion characteristics for the waves reaching the pond. In Fig. 19 we present the
overall process. It is worth noting that after the pond was filled a breaking wave was reflected back. As the wave slides down,
a small hydraulic jump appears. In the case of shallow water system this jump propagates as a shock wave due to hyperbolic
character of equations. On the other hand, the Boussinesq system develops into an Airy type wave according to its dispersive
characteristics. In Fig. 20 we show the solution at two wave gauges located at x = �3.4 and x = 8 for both the dispersive and
nondispersive models. The mass during the simulations is constantly equal to Ih

0 ¼ 40:5198087147.

6. Conclusions

In the present study we extend the finite volume framework, developed for hyperbolic conservations laws, to approxi-
mate solutions of dispersive wave equations. This type of equations arises naturally in many physical problems. In the water
wave theory dispersive equations have been well known since the pioneering work of Boussinesq [16] and Korteweg–de
Vries [49]. Currently, the so-called Boussinesq-type models become more and more popular as an operational model for
coastal hydrodynamics and other fields of engineering.

We extend the finite volume framework to dispersive models. We tested several choices of numerical fluxes, various
reconstruction methods ranging from classical MUSCL type to modern approaches such as WENO. Various choices of limiters
have been also tested out. Advantages of specific methods are discussed and some suggestions are outlined.

For operational modeling of the wave runup we derived a new system which has some advantages over its classical coun-
terpart. The new system together with proposed novel discretization procedure are validated by extensive comparisons with
experimental data of Synolakis [71] and Zelt [80].

We paid a special attention to the comparison of dispersive (Boussinesq) and nondispersive (shallow water) models.
Nowadays shallow water equations have become the model of choice for operational tsunami modeling including the inun-
dation zone estimation [72,75]. The question of dispersive effects importance arises recurrently in the tsunami wave mod-
eling community [23,50]. Our results show that shallow water equations are sufficient to predict maximum runup values.
However, the dispersive effects can be beneficial for more accurate description of long wave propagation, runup and
rundown.
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Fig. 19. Long wave runup on a shore with a pond.
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Fig. 20. Evolution of the free surface elevation at two wave gauges.
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