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Abstract

Metals deformed at high strain rates can exhibit failure through formation of shear
bands, a phenomenon often attributed to Hadamard instability and localization of the
strain into an emerging coherent structure. We verify formation of shear bands for a
nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of
strain softening and strain rate sensitivity are first assessed by linearized analysis, in-
dicating that the combined effect leads to Turing instability. For the nonlinear model
a class of self-similar solutions is constructed, that depicts a coherent localizing struc-
ture and the formation of a shear band. This solution is associated to a heteroclinic
orbit of a dynamical system. The orbit is constructed numerically and yields explicit
shear localizing solutions.

1 Introduction

Shear bands are narrow zones of intense shear observed during the dynamic deformation
of many metals at high strain rates. Shear localization forms a striking instance of
material instability, often preceding rupture, and its study has attracted considerable
attention in the mechanics e.g. [8, 11, 16, 1, 25, 7, 22, 5, 24], numerical [23, 6, 10], or
mathematical literature [9, 19, 4, 10, 13]. In experimental investigations of high strain-
rate deformations of steels, observations of shear bands are typically associated with strain
softening response – past a critical strain – of the measured stress-strain curve [8]. It was
proposed by Zener and Hollomon [27], and further precised by Clifton et al [8, 17], that the
effect of the deformation speed is twofold: An increase in the deformation speed changes
the deformation conditions from isothermal to nearly adiabatic, and the combined effect of
thermal softening and strain hardening of metals may produce a net softening response. On
the other hand, strain-rate hardening has an effect per se, inducing momentum diffusion
and playing a stabilizing role.

Strain softening has a destabilizing effect; it is known at the level of simple models
(e.g. Wu and Freund [26]) to induce Hadamard instability - an ill-posedness of a linearized
problem. It should however be remarked that, while Hadamard instability indicates the
catastrophic growth of oscillations around a mean state, what is observed in localization
is the orderly albeit extremely fast development of coherent structures, the shear bands.
Despite considerable attention to the problem of localization, little is known about the
initial formation of shear bands, due to the dominance of nonlinear effects from the early
instances of localization.
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Our aim is to study the onset of localization for a simple model, lying at the core of
various theories for shear band formation,

∂tv = ∂x
(
ϕ(γ) vnx

)
,

∂tγ = ∂xv ,
(1)

which will serve to assess the effects of strain softening ϕ′(γ) < 0 and strain-rate sensi-
tivity 0 < n � 1 and analyze the emergence of a shear band out of the competition of
Hadamard instability and strain-rate hardening. The model (1) describes shear deforma-
tions of a viscoplastic material in the xy-plane, with v the velocity in the y-direction, γ the
plastic shear strain (elastic effects are neglected), and the material is obeying a viscoplastic
constitutive law of power law type,

σ =
1

γm
(γt)

n , corresponding to ϕ(γ) = γ−m with m > 0 , (2)

The constitutive law (2) can be thought as describing a plastic flow rule on the yield
surface. The model (1) captures the bare essentials of the localization mechanism proposed
in [27, 8, 17]. Early studies of (1) appear in Hutchinson and Neal [12] (in connection to
necking), Wu and Freund [26] (for linear rate-sensitivity) and Tzavaras [19, 21, 22].

The uniform shearing solutions,

vs(x) = x, γs(t) = t+ γ0 , σs(t) = ϕ(t+ γ0) , (3)

form a universal class of solutions to (1) for any n ≥ 0. When n = 0 and ϕ′(γ) < 0 the
system (1) is elliptic in the t-direction and the initial value problem for the associated
linearized equation presents Hadamard instability; nevertheless it admits (3) as a special
solution. Rate sensitivity n > 0 offers a regularizing mechanism, and the associated system
(1) belongs to the class of hyperbolic-parabolic systems (e.g. [21]). The linearized stability
analysis of (3) has been studied in [11, 16, 17] for (even more complicated models including)
(1)-(2). As (3) is time dependent, the problem of linearized stability leads to the study
of non-autonomous linearized problems. This was addressed by Fressengeas-Molinari [11]
and Molinari-Clifton [16] who introduced the study of relative perturbations, namely to
assess the stability of the ratios of the perturbation relative to the base time-dependent
solution, and provided linearized stability results. Such linearized stability and instability
results compared well with studies of nonlinear stability (e.g [19] or [22] for a survey).

Here, we restrict to the constitutive function ϕ(γ) = 1
γ in (2) but retain the dependence

in n, and study

vt =

(
vnx
γ

)
x

, γt = vx . (4)

This model has a special and quite appealing property: After considering a transformation
to relative perturbations and a rescaling of variables,

vx(x, t) =: u(x, t) = U(x, τ(t)) , γ(x, t) = γs(t) Γ(x, τ(t)) , σ(x, t) = σs(t) Σ(x, τ(t))

where τ(t) = log(1 +
t

γ0
) ,

(5)
the problem of stability of the time-dependent uniform shearing solution (3) is transformed
into the problem of stability of the equilibrium (Ū , Γ̄) = (1, 1) for the nonlinear but
autonomous parabolic system

Uτ = Σxx =

(
Un

Γ

)
xx

, Γτ = U − Γ . (6)
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The following heuristic argument leads to a conjecture regarding the effect of rate
sensitivity n on the dynamics: As time proceeds the second equation in (6), which is of
relaxation type, relaxes to the equilibrium manifold {U = Γ}. Accordingly, the stability
of (6) is determined by the equation describing the effective equation

Uτ =
(
Un−1

)
xx
.

The latter is parabolic for n > 1 and backward parabolic for n < 1, what suggests
instability in the range n < 1. The argument is proposed in [13] in connection to the
development of an asymptotic criterion for the quantitative assessment of shear band
formation and can be quantified by means of an asymptotic expansion (see Section 4).

In this article we study the dynamics of the system (6). First, we provide a complete
analysis of linearized stability. The linearized system around the equilibrium (1, 1) takes
the form

Ũτ = nŨxx − Γ̃xx,

Γ̃τ = Ũ − Γ̃,
(7)

and is simple to analyze via Fourier analysis. A complete picture emerges:

(a) For n = 0, high-frequency modes grow exponentially fast and indicate catastrophic
growth and Hadamard instability.

(b) For 0 < n < 1, the modes still grow and are unstable but at a tame growth rate.

(c) For n > 1 strain-rate dependence is strong and stabilizes the motion.

The instability occurring in rate-dependent localization resembles at the linearized level
to the Turing instability familiar from problems of morphogenesis [18] (cf. Remark 3.1).

Next, we turn to the nonlinear system (6) and proceed to analyze the competition
between Hadamard instability and strain-rate dependence in the nonlinear regime in the
parameter range 0 < n < 1. Exploiting scaling properties of (6) we construct a class of
focusing self-similar solutions of the form

γ(x, t) = γ0

(
1 +

t

γ0

)1+ 2λ
2−n

Γ̄

(
x
(

1 +
t

γ0

)λ)
,

σ(x, t) =
1

γ0

(
1 +

t

γ0

)−1−2λ 1−n
2−n

Σ̄

(
x
(

1 +
t

γ0

)λ)
,

u(x, t) = vx(x, t) =
(

1 +
t

γ0

) 2λ
2−n

Ū

(
x
(

1 +
t

γ0

)λ)
.

(8)

For λ > 0 – and as opposed with the usual self-similar solutions of diffusion equations

– the information will propagate on the lines x
(
1 + t

γ0

)λ
= const and focus towards the

center x = 0. The solution (8) depends on four-parameters: n, the growth-rate λ > 0, and
the initial data (Γ̄0, Ū0) standing for the sizes of the initial nonuniformities: Γ̄0 = Γ̄(0)
in the strain and Ū0 = Ū(0) in the strain rate. The profiles (Γ̄, Ū , Σ̄), Ū = V̄ξ, solve the
singular system (11) and are constructed numerically. For the construction, it turns out
that the parameters need to satisfy the constraints

λ =
2− n

2

(
Ū0

Γ̄0
− 1

)
, 0 < λ <

(2− n)(1− n)

n
. (9)

The uniform shear solution corresponds to the choice Ū0 = Γ̄0 = 1 associated to no
growth λ = 0. The solution (8) shows that rate-sensitivity suppresses, at the nonlinear
level, the oscillations resulting from Hadamard instability and that the combined process
leads into a single “runaway” of concentrated strain that appears like the shear bands
observed in experiments. It is sketched at various time instances in Figure 4(a) for the
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strain γ, in Figure 4(b) for the strain rate γt, in Figure 4(c) for the velocity v, and in
Figure 4(d) for the stress σ. The figure for the stress provides an analytical justification of
the phenomenon of stress collapse across the shear band, predicted in theoretical results
of [20] and in numerical computations of Wright and Walter [25].

Our analysis validates for the model (4) the onset of localization predicted by the
asymptotic analysis in [13] along the lines of the Chapman-Enskog expansion of kinetic
theory. The result complements an earlier study of similar behavior for a thermally soft-
ening temperature dependent non-Newtonian fluid [14]. In a companion article [15], we
provide an existence proof for the heteroclinic orbit (computed numerically here); this is ac-
complished even at the level of the plastic flow rule (2) in the parameter range 0 < n < m.
(This region is optimal as it is known that for m > n the uniform shear is asymptotically
stable [21].) The proof of existence for the heteroclinic employs the geometric singular
perturbation theory for dynamical systems and is outside the scope of the present work.

The article is organized as follows : in Section 2 we introduce the mathematical model
along with its basic properties. The idea of relative perturbations for the stability of the
time-dependent uniform shearing solutions is reviewed in Section 3.1 and the complete
linearized stability analysis is presented in Section 3.2. A dichotomy of stability for the
linearized problem appears, depending on the strain-rate sensitivity, in accord with [11, 16]
and results on nonlinear stability [19, 22]. From Section 4 onwards, we study nonlinear
effects. First, an effective equation is derived via an asymptotic analysis following [13] that
postulates instability in the parameter regime 0 < n < 1. The emergence of localization
is studied in Section 5: We introduce an ansatz of focusing self-similar solutions

V (x, τ) = eλ
n

2−n τ V̄
(
ξ
)
, Γ(x, τ) = eλ

2
2−n τ Γ̄

(
ξ
)
, Σ(x, τ) = eλ

(
−1+ n

2−n

)
τ Σ̄
(
ξ
)
, (10)

where V̄ξ = Ū , ξ = xeλτ and λ > 0 is a parameter. Their existence is based on constructing
a solution (V̄ , Γ̄, Σ̄) for the nonlinear system of singular ordinary differential equations

λ

(
n

2− n
V̄ + ξV̄ξ

)
= Σ̄ξ, , λ

(
2

2− n
Γ̄ + ξΓ̄ξ

)
= V̄ξ − Γ̄ , Σ̄ =

V̄ n
ξ

Γ̄
. (11)

Such singular systems may (or may not) have solutions and this is determined by a case-by-
case analysis. One can remarkably de-singularize (11) and convert the problem of existence
of localizing profiles to that of constructing a suitable heteroclinic orbit for a system of
ordinary differential equations (see (64)-(66)). Using a combination of dynamical systems
ideas and numerical computation, we numerically construct the heteroclinic connection
and show that it gives rise to a coherent localizing structure. The heteroclinic orbit is
represented by the red dotted line in Figure 2(a). The properties of the localizing
solutions are summarized in Section 5.5.

2 Description of the model

The simplest model for analyzing the dynamics of shear band formation is the one-
dimensional shear deformation of a viscoplastic material that exhibits strain softening
and strain-rate sensitivity. The motion of the specimen occurs in the y-direction, with
shear direction that of the x-axis, and is described by the velocity v(x, t), plastic strain
γ(x, t) and stress σ(x, t). These field variables satisfy the balance of linear momentum
and the kinematic compatibility equation

vt = σx, (12)

γt = vx, (13)

respectively. In the simplest situation, the elastic effects are neglected and one focusses
on a viscoplastic model, where the stress depends only on the (plastic) strain γ and the
strain rate γt,

σ = f(γ, γt).
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The material exhibits strain softening when
∂f

∂γ
< 0. A simple constitutive law of that

form is
σ = ϕ(γ)(γt)

n, (14)

where ϕ′(γ) < 0 for strain softening, while the strain-rate sensitivity parameter n > 0 is
thought as very small n� 1.

Uniform shearing solutions. The system (12)-(13) with (14) admits a special class of
solutions describing uniform shearing,

vs(x) = x, us(t) = (∂xvs)(x, t) = 1,

γs(t) = t+ γ0,

σs(t) = ϕ
(
t+ γ0

)
.

(15)

Due to the strain-softening assumption ϕ′(γ) < 0, the system (12)-(13), (14), with n =
0 is an elliptic initial-value problem which is ill-posed exhibiting Hadamard instability.
Nevertheless, both the system with n = 0 and its regularized version with n > 0 admit
the class of the uniform shearing solutions (15).

Our goal is to study the stability of the uniform shearing solutions in both cases n = 0
and n > 0. For the remainder of this work we focus on the particular choice of ϕ(γ) = 1

γ ,

namely
σ = ϕ(γ)(γt)

n = γ−1γnt , n > 0. (16)

The reason for this restriction is the following: The uniform shearing solutions are time-
dependent and their analysis (linearization and nonlinear analysis) leads very quickly to
issues with non-autonomous problems. The special choice of the constitutive relation (16)
has the property that it leads to autonomous problems for its relative perturbation (see
system (29)-(30)) and appears to be indicative of the general response in the unstable
regime.

With the choice (16) system (12)-(13) reads

vt =

(
vnx
γ

)
x

, (17)

γt = vx. (18)

An initial-boundary problem for (17)-(18) is considered in [0, 1] × R+ with the following
initial and boundary conditions

v(x, 0) = v0(x), γ(x, 0) = γ0(x),

v(0, t) = 0, v(1, t) = 1.
(19)

The boundary condition reflects imposed boundary shear. As a consequence of the bound-
ary conditions we have ∫ 1

0
vx(y, t) dy = 1, for all t > 0. (20)

An equivalent formulation of (17)-(18) and (19) is obtained by considering the strain
rate as the primary field variable (replacing the velocity). Introducing the strain rate
u = γt = vx, the system becomes

ut =

(
un

γ

)
xx

, (21)

γt = u. (22)
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The corresponding initial conditions are

u(x, 0) = u0(x), γ(x, 0) = γ0(x). (23)

Note that the boundary conditions on v and the compatibility condition (20) imply that(
un

γ

)
x

(0, t) = 0,

(
un

γ

)
x

(1, t) = 0, (24)∫ 1

0
u(x, t) dx = 1, for all t > 0. (25)

The resulting initial-boundary problem consists of (21)-(22) subject to (23)-(24). The

constraint (25) is inherited from the initial data due to the conservation of
∫ 1

0 u dx. It is
apparent from (21) that there is a diffusion mechanism in the strain-rate, manifesting the
effect of strain-rate sensitivity.

3 Stability Analysis

3.1 Relative Perturbations

Motivated by the form of the uniform shearing solutions (15) and [11, 16], one may intro-
duce a rescaling of the dependent variables and time in the following form:

u(x, t) = us(x)U(x, τ(t)) = U(x, τ(t)),

γ(x, t) = γs(t) Γ(x, τ(t)) =
(
t+ γ0

)
Γ(x, τ(t)),

σ(x, t) = σs(t) Σ(x, τ(t)) =
( 1

t+ γ0

)
Σ(x, τ(t)),

τ̇(t) =
1

t+ γ0
, τ(0) = 0 =⇒ τ(t) = log(1 +

t

γ0
).

(26)

In (26) we select

γ0 :=

∫ 1

0
γ(x, 0) dx (27)

which normalizes the initial relative perturbation∫ 1

0
Γ(x, 0) dx = 1 . (28)

From (21)-(22) we see that the new field variables satisfy,

Uτ = Σxx =

(
Un

Γ

)
xx

, (29)

Γτ = U − Γ. (30)

The boundary condition (24) together with (25), (28) and the equations (26), (29), (30)
imply the restrictions ∫ 1

0
U(x, t) dx =

∫ 1

0
Γ(x, t) dx = 1 for t > 0. (31)

Note that under the transformation (26) the uniform shearing motion is transformed to
an equilibrium

U ≡ 1, Γ ≡ 1, Σ ≡ 1, (32)

for the transformed problem (29)-(30). Despite the fact the solution (15) is time dependent,
the transformed problem is still autonomous. In fact, the latter property is the reason for
restricting to the constitutive class (16), so that spectral analysis can be used to obtain
information for the linearized problem.
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3.2 Linearized stability analysis

In order to assess the growth or decay of perturbations of the uniform shearing solutions,
we linearize the system (29)-(30) around (32). Let δ � 1 be a small parameter (describing
the size of the perturbation) and consider the asymptotic expansions

U = 1 + δŨ +O(δ2),

Γ = 1 + δΓ̃ +O(δ2),

Σ = 1 + δΣ̃ +O(δ2).

By neglecting O(δ2)-terms, we obtain from (29)-(30) the linearized system

Ũτ = (nŨ − Γ̃)xx, (33)

Γ̃τ = Ũ − Γ̃. (34)

The boundary condition (24) and the constraint (31) imply

(nŨ − Γ̃)x(0, t) = (nŨ − Γ̃)x(1, t) = 0, (35)∫ 1

0
Γ̃(x, t) dx =

∫ 1

0
Ũ(x, t) dx = 0 for all t > 0. (36)

Growth and decay modes of the linearized system (33)-(34) can be captured via spectral

analysis. Let us assume the even extension of Σ̃ = nŨ − Γ̃ in [−1, 1], which is compatible

with (35) and consider a cosine series expansion of Σ̃,

Σ̃(x, τ) = Σ̂0(τ) +
∞∑
j=1

Σ̂j(τ) cos(jπx).

In view of (33), we have also

Ũ(x, τ) = Û0(τ) +
∞∑
j=1

Ûj(τ) cos(jπx),

Γ̃(x, τ) = Γ̂0(τ) +

∞∑
j=1

Γ̂j(τ) cos(jπx).

(37)

Then the coefficients (Ûj , Γ̂j) satisfy(
Ûj
Γ̂j

)′
=

(
−nj2π2 j2π2

1 −1

)(
Ûj
Γ̂j

)
, j ≥ 0. (38)

The characteristic polynomial of the coefficient matrix is

λ2
j + λj(1 + nπ2j2)− (1− n)π2j2 = 0,

with discriminant

∆ = (1 + nj2π2)2 + 4(1− n)j2π2 > 0, 0 < n < 1.

Thus two eigenvalues are real and

λj,1λj,2 = −(1− n)π2j2 < 0.
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Hence, for 0 ≤ n < 1, j > 0 there is always one negative and one positive eigenvalue. The
eigenvalues can be computed explicitly

λ±j =
1

2

(
− (1 + nj2π2)±

√
(1 + nj2π2)2 + 4(1− n)j2π2

)
. (39)

The mode j = 0 needs special attention. In this case the eigenvalues are λ0,1 = 0 and
λ0,2 = −1. Due to the constraint (36), we have

Û0(τ) ≡ 0,

Γ̂′0(τ) = −Γ̂0(τ),

thus the zero-th mode decays exponentially to zero. We summarize the result:

Case 1. n = 0: Hadamard Instability
The eigenvalues are

λ±j =
1

2

(
−1±

√
1 + 4j2π2

)
, j ≥ 0, (40)

and satisfy λ+
j > 0 for j > 0 and λ−j < 0 for j ≥ 0.

Using the Taylor series expansion,
√

1 + x = 1 + 1
2x −

1
4x

2 + 3
8x

3 + · · · , the leading
order terms of (40), are

λ±j = ±πj − 1

2
± 1

8πj
∓ 1

64π3j3
+O(

1

j5
),

so λ+
j increases linearly as j → ∞ and is thus unbounded. This kind of catastrophic

instability, called Hadamard instability, is associated with the strain softening behavior
and is typical in initial value problems of elliptic equations.

Case 2. n > 0: Turing Instability
Strain-rate dependence provides a diffusive mechanism, which moderates but does not
entirely suppress the instability, as can be seen by the following lemma. The behavior in
this regime is that of Turing instability

Lemma 3.1. For 0 < n < 1, the eigenvalues are

λ+
j =

1

2

(
−(1 + nj2π2) +

√
(1 + nj2π2)2 + 4(1− n)j2π2

)
,

λ−j =
1

2

(
−(1 + nj2π2)−

√
(1 + nj2π2)2 + 4(1− n)j2π2

)
.

and satisfy the properties

(i) λ+
j is increasing in j,

(ii) λ+
j <

1−n
n ,

(iii) λ+
j →

1−n
n as j →∞.

Proof. Let x = πj and write

λ+
j (x) =

1

2
(1 + nx2)

(
− 1 +

√
1 +

4(1− n)x2

(1 + nx2)2

)
.

8



Since
√

1 + z < 1 + 1
2z for z > 0, we have√

1 +
4(1− n)x2

(1 + nx2)2
< 1 +

2(1− n)x2

(1 + nx2)2
,

and hence

λ+
j (x) <

(1− n)x2

1 + nx2
=

1− n
n+ 1

x2

<
1− n
n

, (41)

which proves (ii). The eigenvalue λ+
j (x) satisfies

λ+
j (x)2 + λ+

j (x)(1 + nx2)− (1− n)x2 = 0.

Differentiation with respect to x gives

(λ+
j )′(x) = 2x

(1− n)− nλ+
j (x)

2λ+
j (x) + (1 + nx2)

,

and the upper bound (41) of λ+
j (x) proves (i). Further, the asymptotic expansion

λ+
j (x) =

1

2
(1 + nx2)

(
1

2

4(1− n)x2

(1 + nx2)2
− 1

4

(4(1− n)x2

(1 + nx2)2

)2
+ · · ·

)
=

1− n
n+ 1

x2

+O(
1

x2
) as x→∞,

yields (iii).

Remark 3.1. (i) In view of (26), positive eigenvalues imply linearized instability and
negative linearized stability. Invoking that τ = log(1 + t

γ0
), Lemma 3.1 implies that

the rates are of polynomial order and the precise rate of growth or decay can be easily
computed. The upper bound of growth rate indicates that the rate of growth is bounded
and the bound is proportional to 1

n . By (37), the perturbations exhibit oscillatory response.
(ii) The instability arising in the case 0 < n < 1 is a Turing-type instability, namely,

the combined effect of two different stabilizing mechanisms leads to an instability: Note
that the coefficient matrix of (38) can be decomposed as(

−nj2π2 j2π2

1 −1

)
=

(
−nj2π2 j2π2

0 0

)
+

(
0 0
1 −1

)
.

Taking note of (36) both matrices on the right-hand-side give rise to marginally stable
systems for the eigenmodes; however, the matrix obtained as the sum of the two is equiped
with a family of strictly positive eigenvalues. This decomposition corresponds to visualiz-
ing the linearized problem (33)-(34) as the sum of two problems{

Ũτ = (nŨ − Γ̃)xx,

Γ̃τ = 0
and

{
Ũτ = 0 ,

Γ̃τ = Ũ − Γ̃.
(42)

which, subject to the restriction (36), are both marginally stable. The stabilizing mecha-
nism in the first one is viscosity, while in the second one are the inertial effects (stemming
from the fact that excess growth is needed to overcome the uniform shear solution). This
perspective clarifies the stabilizing mechanisms present in this problem; still, the prime
driver of instability is the softening response of the system that effects the coupling of the
two systems.
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4 Derivation of an effective nonlinear equation

The analysis in Section 3.2 concerns the behavior of the linearized problem and captures
the onset of instability. Focusing next in the nonlinear regime, we devise an asymptotic
criterion, in the spirit of [13], for the onset of localization. The goal is to derive an effective
equation for the evolutions of U and Γ valid at a coarse space and time scale. To this end,
we consider the rescaling of independent variables

s = ετ, y =
√
ε x,

and rewrite (29)-(30) as

Us =

(
Un

Γ

)
yy

, (43)

εΓs = U − Γ. (44)

For small values of ε, we can view (43) as a moment equation and equation (44) as a
relaxation process towards the equilibrium curve

Γ = U, Σ = Un−1.

We are interested in calculating the equation describing the effective response of (43),
(44) for ε sufficiently small. We consider a Chapman-Enskog type expansion with ε � 1
for the field variables

U = U0 + εU1 +O(ε2),

Γ = Γ0 + εΓ1 +O(ε2).

Then we have

Un = Un0
(
1 + ε

U1

U0
+O(ε2)

)n
= Un0

(
1 + nε

U1

U0

)
+O(ε2),

1

Γ
=

1

Γ0

1

1 + εΓ1
Γ0

+O(ε2)
=

1

Γ0

(
1− εΓ1

Γ0

)
+O(ε2),

Un

Γ
=
Un0
Γ0

+ ε
Un0
Γ0

(
n
U1

U0
− Γ1

Γ0

)
+O(ε2)

=
Un0
Γ0

(
1 + ε

(
− (1− n)

U1

U0
+
U1

U0
− Γ1

Γ0

))
+O(ε2).

From (43) and (44), collecting together the O(1)-terms, we have

U0 − Γ0 = 0, (45a)

∂sU0 =

(
Un0
Γ0

)
yy

=
(
U
−(1−n)
0

)
yy
. (45b)

This implies that the equation describing the effective dynamics at the order O(ε) is
(45b). Since 0 < n < 1, equation (45b) is a backward parabolic equation. On the one
hand, this indicates instability, on the other the asymptotic procedure will cease to be a
good approximation at this order O(ε).
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We thus proceed to calculate the effective equation at the order O(ε2). Collecting
together the ε-terms, we obtain

∂sΓ0 = ∂sU0 = U1 − Γ1,

∂sU1 =

(
Un0
Γ0

(
− (1− n)

U1

U0
+
U1

U0
− Γ1

Γ0

))
yy

=

(
U
−(1−n)
0

(
− (1− n)

U1

U0
+

1

U0

(
U
−(1−n)
0

)
yy

))
yy

=

(
U
−(1−n)
0

(
− (1− n)

U1

U0

))
yy

+

(
U
−(2−n)
0

((
U
−(1−n)
0

)
yy

))
yy

.

Hence,

∂sU = ∂sU0 + ε∂sU1 +O(ε2)

=

(
U
−(1−n)
0

(
1− ε(1− n)

U1

U0

))
yy

+ ε

(
U
−(2−n)
0

((
U
−(1−n)
0

)
yy

))
yy

+O(ε2)

=

(
(U0 + εU1)−(1−n)

)
yy

+ ε

(
(U0 + εU1)−(2−n)

((
(U0 + εU1)−(1−n)

)
yy

))
yy

+O(ε2)

=

(
U−(1−n)

)
yy

+ ε

(
U−(2−n)

((
U−(1−n)

)
yy

))
yy

+O(ε2).

We thus obtain an effective equation for U which captures the effective response of the
system up to order O(ε2),

Us =

(
1

U1−n

)
yy

+ ε

(
1

U2−n

(
1

U1−n

)
yy

)
yy

. (46)

The leading term in (46) is backward parabolic while the first order correction is a
fourth order. The fourth order term introduces a stabilizing mechanism to the equation,
in the sense that the linearized equation around the equilibrium U = 1 is stable. To see
that, write U = 1 + Ũ , and compute the linearized equation satisfied by Ũ . This has the
form

Ũs = −(1− n)Ũyy − ε
(

(2− n)Ũyy + (1− n)Ũyyyy

)
. (47)

To study the stability properties of (47) we take the Fourier transform and obtain

Ûs =
((

(1− n) + ε(2− n)
)
ξ2 − ε(1− n)ξ4

)
Û .

We can see that the right-hand-side becomes negative with high frequency ξ >
√

1 + 1
ε + 1

1−n
due to the fourth order term. The fourth order term acts as a stabilizing mechanism.

5 Emergence of Localization

Experimental observations of shear bands indicate that the development of shear local-
ization proceeds in a fast but organized and coherent fashion. It is not associated with
oscillatory response, rather a coherent structure emerges from the process leading to strain
localization. The reader should note that the unstable modes of the linearized problem
(33)-(34) for 0 < n < 1 contain oscillatory modes; such individual oscillatory modes are
not observed in experiments. The conjecture is that the combined effect of instability and
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nonlinearity suppresses the oscillations and results in a “runaway” of the strain at a point.
In this section, we will construct a class of self-similar solutions that captures this process
for the system (21)-(22).

The goal is to exploit the invariance properties of the system (29)-(30) in order to
construct self-similar focusing solutions that depict the initial stage of localization. We
focus on values of the parameter space 0 < n < 1 and carry out the following steps :

(i) In Section 5.1, we consider a variant of (29)-(30) and show that its invariance prop-
erties suggest a similarity class of solutions of the form (52) with the profile

(
V̄ , Γ̄, Σ̄

)
in (52) satisfying (53)-(55).

(ii) In Section 5.2, the system (53)-(55) is de-singularized and transformed to a sys-
tem of three autonomous differential equations (64)-(66). The profile

(
V̄ , Γ̄, Σ̄

)
is

transformed to a heteroclinic connection for the orbit (p, q, r) of (64)-(66).

(iii) In Section 5.3, we identify the equilibria Mi, i = 0, 1, 2, 3, of the system (64)-(66) and
calculate their corresponding stable and unstable manifolds W u(Mi) and W s(Mi).

(iv) In Section 5.4, we probe the possibilities for heteroclinic connections between the
equilibria, and characterize our target orbit as a connection joining M0 and M1

(following ~X02 near M0).

(v) The heteroclinic connection is computed numerically in Section 6 as an orbit between
M0 and M1. The implications on localizing solutions are summarized in Section 5.5.

5.1 Scale invariance and a class of similarity solutions

We return to the system (17)-(18), restrict henceforth to 0 < n < 1, and consider it in
the entire domain (x, t) ∈ R × [0,+∞), with the objective to construct a special class of
solutions. Upon introducing the change of variables (26), we obtain

Vτ = Σx, (48)

Γτ = Vx − Γ, (49)

Σ =
(Vx)n

Γ
, (50)

where V (x, τ(t)) = v(x, t), and the last system is considered for (x, τ) ∈ R × [0,+∞).
Equation (50) may be expressed as

Vx =
(
ΣΓ)

1
n , if n > 0,

Σ =
1

Γ
, if n = 0.

The system (48)-(50) is scale invariant. Indeed, given
(
V (x, τ),Γ(x, τ),Σ(x, τ)

)
, one veri-

fies that
(
VA(x, τ),ΓA(x, τ),ΣA(x, τ)

)
defined by

VA(x, τ) = A
n

2−n V (Ax, τ),

ΓA(x, τ) = A
2

2−n Γ(Ax, τ),

ΣA(x, τ) = A−1+ n
2−n Σ(Ax, τ),

(51)

satisfies again (48)-(50). Note that the time τ is not rescaled here. The scaling invariance
property motivates to seek for self-similar solutions of (48)-(50) in the form

V (x, τ) = φλ(τ)
n

2−n V̄
(
ξ
)
,

Γ(x, τ) = φλ(τ)
2

2−n Γ̄
(
ξ
)
,

Σ(x, τ) = φλ(τ)−1+ n
2−n Σ̄

(
ξ
)
,

(52)
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functions of the similarity variable

ξ = xφλ(τ),

where φλ(τ) is specified later. (The format of (52) is suggested by setting A → φλ(τ) in
(51) thus exploiting the property that rescalings of τ do not enter in the scale invariance
property (51)).

With this form of solutions, the problem of localization is transformed to the problem of
construction of an appropriate self-similar “profile” functions

(
V̄ , Γ̄, Σ̄

)
. The reason is the

following: Suppose a smooth profile
(
V̄ , Γ̄, Σ̄

)
is constructed associated to an increasing

function φλ(τ) satisfying φλ(τ) → ∞ as τ → ∞. Then (52) will describe a coherent
localizing structure where

(
V̄ , Γ̄, Σ̄

)
will depict the profile of that structure. Indeed, if

for example Γ̄ is a bell-shaped even profile, the transformation of variables will have the
effect of narrowing the width and increasing the height of the profile as time increases.
Eventually it forms a singularity at x = 0 as τ → +∞.

A simple calculation shows that the functions
(
V̄ , Γ̄, Σ̄

)
satisfy a system of ordinary

differential equations,

λ

(
n

2− n
V̄ + ξV̄ξ

)
= Σ̄ξ, (53)

λ

(
2

2− n
Γ̄ + ξΓ̄ξ

)
= V̄ξ − Γ̄, (54)

Σ̄ =
V̄ n
ξ

Γ̄
, (55)

where we have selected λ := φ̇λ(τ)
φλ(τ) independently of τ , or equivalently

φλ(τ) = eλτ , with φλ(0) = 1.

In this ansatz the parameter λ parametrizes the focusing rates of growth and narrowing
during the developing localizing structure. Invoking τ = log(1+ t

γ0
), we see that φλ(τ(t)) =

(1 + t
γ0

)λ and thus we are seeking a family of solutions growing at a polynomial order.

The system (53)-(55) is solved subject to initial data

Γ(0) = Γ̄0 (56)

Ū(0) = V̄ξ(0) = Ū0 , Σ̄(0) = Σ̄0 . (57)

Because the problem is singular the values of the data cannot be independent and (54)-(55)
imply the compatibility conditions

Σ̄0 =
Ūn0
Γ̄0
, (58)(

1 + λ 2
2−n

)
Γ̄0 = Ū0 . (59)

Therefore, among the five parameters n, λ, Γ̄0, Ū0 and Σ̄0, involved in determining these
solutions, only three are independent. We adopt the view that n and the rate λ precise
the system (53)-(55), while one parameter (say) Γ̄0 reflects choice of the initial data.

Further inspection of (53)-(55) shows that if (V̄ (ξ), Γ̄(ξ), Σ̄(ξ)) is a solution, then
(−V̄ (−ξ), Γ̄(−ξ), Σ̄(−ξ)) is also a solution. This symmetry implies V̄ (ξ) is odd, Γ̄(ξ) and
Σ̄(ξ) are even, and suggests to impose

V̄ (0) = 0, Γ̄ξ(0) = 0, Σ̄ξ(0) = 0. (60)
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In summary, we seek a family of solutions to (53)-(55) in the half space ξ ∈ R+ subject to
the initial conditions (56) and (60).

The scale invariance property of (48)-(50) is inherited by the system (53)-(55):

V̄A(ξ) = A
n

2−n V̄
(
Aξ
)
,

Γ̄A(ξ) = A
2

2−n Γ̄
(
Aξ
)
,

Σ̄A(ξ) = A−1+ n
2−n Σ̄

(
Aξ
)
,

(61)

is a solution if
(
V̄ (ξ), Γ̄(ξ), Σ̄(ξ)

)
is a solution. Note that conditions (60) persist under

rescaling but the initial value (56) does not. In other words, once we have a solution with
the initial value Γ̄0 = 1, then we obtain solutions with different initial values by rescaling.

5.2 An associated dynamical system

In the previous section the emergence of a localizing structure was reduced to the existence
of an orbit for the initial value problem (53) and (55) satisfying the initial conditions (56)-
(60). The system (53)-(55) is non-autonomous and singular at ξ = 0. In this section, we
introduce a series of transformations in order to de-singularize the problem and obtain
an autonomous system of ordinary differential equations. The solution associated with a
localizing structure rises as a heteroclinic orbit of the new system.

Define
(
ṽ(η), γ̃(η), σ̃(η), ũ(η)

)
and a new independent variable η by

ṽ
(

log ξ
)

= ξ
n

2−n V̄ (ξ), γ̃
(

log ξ
)

= ξ
2

2−n Γ̄(ξ),

σ̃
(

log ξ
)

= ξ−1+ n
2−n Σ̄(ξ), ũ

(
log ξ

)
= ξ

2
2−n Ū(ξ),

(62)

where η = log ξ, η ∈ [−∞,+∞] and Ū(ξ) is such that

U(x, τ) = φλ(τ)
2

2−n Ū(ξ).

Then
(
ṽ(η), γ̃(η), σ̃(η)

)
satisfy the autonomous system

σ̃′ = −
(

1− n

2− n

)
σ̃ +

λn

2− n
ṽ + λ(σ̃γ̃)

1
n ,

γ̃′ =
1

λ

(
(σ̃γ̃)

1
n − γ̃

)
,

ṽ′ = (σ̃γ̃)
1
n +

n

2− n
ṽ,

in the new independent variable η, where we have denoted d
dη (·) by (·)′.

We observe that even if γ̃ → γ̃∞ as η → ∞ for some γ̃∞ < ∞, then (σ̃γ̃)
1
n → γ̃∞

and thus ṽ and σ̃ diverge to infinity. This causes analytical difficulties, and in order
to overcome this difficulty we introduce a second non-linear transformation to obtain an
equivalent system with all equilibria lying in a finite region. We define new variables

p =
γ̃

σ̃
, q = n

ṽ

σ̃
, r =

(
σ̃γ̃1−n) 1

n

(
=
ũ

γ̃

)
. (63)

A cumbersome but straightforward computation shows that (p(η), q(η), r(η)) satisfies the
autonomous system

p′ = p
( 1

λ
(r − 1) +

(
1− n

2− n
)
− λpr − λ

2− n
q
)
, (64)

q′ = q
(

1− λpr − λ

2− n
q
)

+ npr, (65)

nr′ = r
(1− n

λ
(r − 1) +

(
− 1 +

n

2− n
)

+ λpr +
λ

2− n
q
)
. (66)
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In the following section we study the equilibria of system (64)-(66) and the local behavior
around them, with the objective of understanding the existence of heteroclinic orbits
between the equilibria.

5.3 Equilibria and orbits

System (64)-(66) has four equilibria, for λ 6= 1 + n
2(1−n) , which are

M0 =

p0

q0

r0

 =

 0
0

1 + 2λ
2−n

 , M1 =

p1

q1

r1

 =

 0
2−n
λ

1− nλ
(2−n)(1−n)

 ,

M2 =

p2

q2

r2

 =

 0
2−n
λ
0

 , M3 =

p3

q3

r3

 =

0
0
0

 .

(67)

When λ = 1 + n
2(1−n) the equilibria M0, M1, M2 persist, but M3 is replaced by equilibria

distributed on the entire p-axis. Since, we will be interested in the heteroclinic from M0

to M1 we do not consider this case separately. Furthermore, we restrict attention to the
placement that M1 lies above the plane r = 0, which implies the restriction

λ <
(2− n)(1− n)

n
. (68)

The placement of equilibria is depicted in Figure 1(a).
The local behavior of the dynamical system around each equilibrium is determined (for

hyperbolic equilibria) from the eigenstructure of the linearized problem. We denote the
three eigenvalues of the linearization at each Mi by µij and the associated eigenvectors by
~Xij , j = 1, 2, 3.
• M0 is as unstable node: all eigenvalues are real and positive. The first and the

last eigenvectors lie on the (q, r)-plane, the first one is pointing towards the origin on the
r-axis and the last one is pointing towards right and down on the (q, r)-plane. The second
eigenvector is going off the (q, r)-plane. (See Figure 1(a).)

~X01 =

(
0, 1,− λ

1− n
λ

2− n

(
1

1− n
1−n

λ
r0

))
, µ01 = 1,

~X02 =

(
1

r0
, n,− λ

1− n
λ

2− n

(
1

1
2 −

n
1−n

λ
r0

))
, µ02 = 2, (69)

~X03 = (0, 0, 1), µ03 =
1

n

1− n
λ

r0.

• M1 is a saddle : all eigenvalues are real, two are negative and one is positive. The
first and the last eigenvector lie on the (q, r)-plane, the first one is an unstable direction,
pointing toward the M2 and the last one is a stable direction, pointing toward M1 in right
bottom direction. The second eigenvector is pointing off the plane.

~X11 =

(
0, 1,− λ

1− n
λ

2− n

(
1

1 + n
1−n

λ
r1

))
, µ11 = −1,

~X12 =

(
− 1

r1

(
2− 1

1− n

)(2− n
λ

)
, 2(1− n),−

(
n

1− n

)
λ

1− n
λ

2− n

(
1

1 +
(

n
1−n
)2 λ
r1

))
,

µ12 = − n

1− n
,

~X13 = (0, 0, 1), µ13 =
1− n
λn

r1.
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(a) Equilibria of (p, q, r)-system and linearized vec-
tor fields around

(b) Schematically illustrated target orbit between
M0 and M1

Figure 1: Phase diagram. Features attributed to generic parameters are (i) M1 lies above
the plane r = 0; (ii) µ31 > 0.

• M2 is a stable node: all eigenvalues are real and negative. The eigenvectors are the
coordinate basis vectors,

~X21 = (1, 0, 0), µ21 = − 1

λ

(
1 +

n

2− n
λ

)
,

~X22 = (0, 1, 0), µ22 = −1,

~X23 = (0, 0, 1), µ23 = − 1

n

1− n
λ

r1.

• M3 is at the origin and is a saddle: all eigenvalues are real, the second eigenvalue
is positive and the last eigenvalue is negative. The sign of the first eigenvalue bifurcates
by λ = 1 + n

2(1−n) ; it is negative if λ < 1 + n
2(1−n) and is positive if λ > 1 + n

2(1−n) . The

eigenvectors are the coordinate basis vectors,

~X31 = (1, 0, 0), µ31 = − 1

λ

(
1− 2(1− n)

2− n
λ

)
,

~X32 = (0, 1, 0), µ32 = 1,

~X33 = (0, 0, 1), µ33 = − 1

n

1− n
λ

r0.

5.4 Characterization of the heteroclinic orbit

In this section, we study the heteroclinic connections between the equilibrium points.
Since there are four equilibria, the unstable and stable manifolds of the equilibria might
intersect in various ways and could conceivably produce multiple connections. We aim to
identify the one that is physically relevant and to construct it in phase space. We assert
that the relevant orbit joins M0 to M1 as η runs from −∞ to ∞. A schematic sketch of
this orbit is depicted in Figure 1(b). Let us explain how that is singled out.

5.4.1 The behavior as η →∞

We will be interested in the orbit converging to the equilibrium M1. The reason is the
following: From the perspective of shear band formation, the strain of a localizing solution
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should grow with time, as the material is loading. Note that if γ(x, t) grows polynomially

as tρ, then the ratio (t+γ0)γt
γ ∼ ρ as t increases. On the other hand, the transformations

we imposed imply

r =
ũ

γ̃
=
ξ

2
2−n Ū(ξ)

ξ
2

2−n Γ̄(ξ)
=
Ū(ξ)

Γ̄(ξ)
=
U(x, τ)

Γ(x, τ)
=

(t+ γ0)ū(x, t)

γ̄(x, t)
=

(t+ γ0)γ̄t
γ̄

.

Thus we are interested in r → ρ with ρ > 0 as η →∞, which suggests to restrict attention
to orbits converging to M1.

The behavior of the nonlinear problem near the saddle point M1 is determined by the
corresponding linearization and the orbit ϕ(η) in a neighbourhood of M1 is expressed as

ϕ(η)−M1 = κ′1e
−η ~X11 + κ′2e

− n
1−nη ~X12 + higher-order terms as η →∞ . (70)

We are interested in orbits that have a nontrivial component out of the plane p = 0. This
is achieved by requiring the coefficient κ′2 6= 0 in (70). Note that when n

1−n < 1 the term

κ′2e
− n

1−nη ~X12 determines the asymptotic response when κ′2 6= 0.
The reader should note that the plane p = 0 is invariant for the flow of the dynamical

system (64) - (66). In fact the flow can be explicitly computed in this case and provides
the heteroclinic connecting M0 to M1 on the plane p = 0. As this orbit is known we focus
on the ones that venture out of the plane p = 0, hence imposing κ′2 6= 0. Figure 1(b)

illustrates schematically the orbit approaching M1 in ~X12.

5.4.2 The behavior as η → −∞

The orbit emanating from M0 (as η → −∞) has the asymptotic expansion

e−2η

p(η)
q(η)
r(η)

−M0

→ κ ~X02, as η → −∞ for some constant κ > 0. (71)

This claim follows from the initial conditions (56) and (60), via an asymptotic analysis of
the behavior of the solution (V̄ (ξ), Γ̄(ξ), Σ̄(ξ)) of (53)-(55) near the singular point ξ = 0,
which is presented in the Appendix. Figure 1(b) depicts the orbit exhibiting the above

asymptotics; the orbit emerges in the direction of ~X02 of the second unstable eigenspace.

5.4.3 Singling out the heteroclinic orbit

The numerical calculations performed in Section 6 (see Fig 2(a)) suggest there is a two-
parameter family of heteroclinic orbits connecting M0 and M1. This conjecture is also
supported by the following arguments: M1 has a two dimensional stable manifold while
M0 is an unstable node (with a three-dimensional unstable manifold). One heteroclinic
connection between M0 and M1 lies in the plane p = 0 and can be explicitly computed.
Its computation results from noticing that the plane p = 0 is invariant under the flow of
the dynamical system (64)-(66) and integrating the resulting system of (two) differential
equations. This provides one connection on the plane p = 0. Since, the numerical compu-
tations suggest there is an out-of-plane heteroclinic connection this indicates that there is
a two parameter family of such connections. Indeed, they are systematically computed in
Section 6.

Given the two parameter family, we proceed to show how to select the desired hete-
roclinic that satisfies (56) and (60). The objective is to select the heteroclinic connection
that satisfies the asymptotic relation (71). Note that using (58) and (59) we can compute
from the data the coefficient κ = Γ̄0Ū

1−n
0 in (71).

17



The general heteroclinic orbit ϕ(η) satisfies, in a sufficiently small neighbourhood of
M0, the expansion

ϕ(η)−M0 = κ1e
η ~X01 + κ2e

2η ~X02 + κ3e
1
n

1−n
λ
r0η ~X03 + higher-order terms, (72)

as η → −∞. For n small, 1 < 2 < 1
n

1−n
λ r0, the first term in the right hand side of

(72) dominates the remaining terms. Therefore, (71) dictates that the coefficient κ1 = 0
and thus (71) fixes one curve and reduces by one the degrees of freedom. Let us denote
by Φ(η) := (P (η), Q(η), R(η)) a heteroclinic orbit that emanates in the direction of the

eigenvector ~X02. There is one degree of freedom at our disposal provided by the translation
invariance of the selected orbit.

Having selected the curve Φ(η), we proceed to select the translation factor η0 as follows:
Let κ2 be the constant associated to the asymptotic behavior of Φ(η) in (72). We set our
target heteroclinic

ϕ?(η) =

p(η)
q(η)
r(η)

 =

P (η + η0)
Q(η + η0)
R(η + η0)

 ,

and compute

e−2η

p(η)
q(η)
r(η)

−M0

 = e−2η

P (η + η0)
Q(η + η0)
R(η + η0)

−M0

→ κ2e
2η0 ~X02, as η → −∞.

Therefore, given κ in (71), we compute η0 by

η0 =
1

2
log
(κ2

κ

)
. (73)

In summary, there exists a two parameter family of heteroclinic orbits joining M0 and M1,
whose existence is supported by the numerical calculations, and (71) singles out one orbit
among them.

5.5 A three-parameter family of focusing self-similar solutions

Among the parameters n, λ and the data Γ̄0, Ū0 and Σ̄0, only three are independent due to
(58) and (59). Given n and two parameters, say Γ̄0 = Γ̄(0) and Ū0 = Ū(0) with Γ̄0 < Ū0,
we select λ > 0 and the translaton factor η0 by (79):

λ =
2− n

2

(
Ū0

Γ̄0
− 1

)
, κ = Γ̄0Ū

1−n
0 . (74)

The inequality (68) restricts the data

1 <
Ū0

Γ̄0
<

2− n
n

. (75)

Now, we pick one heteroclinic ϕ?(η) =
(
p(η), q(η), r(η)

)T
having the desired asymptotic

behavior by the procedure described in Section 5.4.3. The solution is reconstructed by
inverting (63) to obtain ṽ, γ̃, ũ and σ̃,

ṽ =
1

n

(
p−(1−n)q2−nrn

) 1
2−n

, γ̃ =
(
prn
) 1

2−n
, σ̃ =

(
p−(1−n)rn

) 1
2−n

, ũ =
(
pr2
) 1

2−n
.

(76)
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It is instructive to relate (p, q, r) to the original variables
(
v(x, t), γ(x, t), σ(x, t), u(x, t)

)
.

Using (62) we recover
(
V̄ (ξ), Γ̄(ξ), Ū(ξ), Σ̄(ξ)

)
which are smooth functions of ξ. More-

over, using (52) and (26), the original variables v, γ, σ and u = vx are reconstructed by
the formulas

v(x, t) =
(

1 +
t

γ0

) λn
2−n

V̄

(
x
(

1 +
t

γ0

)λ)
,

γ(x, t) = γ0

(
1 +

t

γ0

)1+ 2λ
2−n

Γ̄

(
x
(

1 +
t

γ0

)λ)
,

σ(x, t) =
1

γ0

(
1 +

t

γ0

)−1−λ(1− n
2−n )

Σ̄

(
x
(

1 +
t

γ0

)λ)
,

u(x, t) =
(

1 +
t

γ0

) 2λ
2−n

Ū

(
x
(

1 +
t

γ0

)λ)
.

(77)

The focusing behavior of the profiles is readily deduced from the above formulas and is
also illustrated in the Figures 4(a)-4(d), obtained from the computed heteroclinic orbit.
The asymptotic behavior of the profiles

(
V̄ , Γ̄, Σ̄, Ū

)
as ξ → 0 and ξ → ∞ captures the

behavior of the localizing solution and is listed in the following proposition:

Proposition 5.1. For the orbit ϕ?(η), the corresponding profile
(
V̄ , Γ̄, Σ̄, Ū

)
defined in

[0,∞) by (62) satisfies the properties:

(i) At ξ = 0 it satisfies the boundary conditions

V̄ (0) = Γ̄ξ(0) = Σ̄ξ(0) = Ūξ(0) = 0, Γ̄(0) = Γ̄0, Ū(0) = Ū0.

(ii) The asymptotic behavior as ξ → 0 is given by

V̄ (ξ) = Ū0ξ +O(ξ3), Γ̄(ξ) = Γ̄0 +O(ξ2),

Σ̄(ξ) =
Ūn0
Γ̄0

+O(ξ2), Ū(ξ) = Ū0 +O(ξ2).

(iii) The asymptotic behavior as ξ →∞ is given by

V̄ (ξ) = O(1), Γ̄(ξ) = O(ξ−
1

1−n ),

Σ̄(ξ) = O(ξ), Ū(ξ) = O(ξ−
1

1−n ).

Indeed the behavior in (i) and (ii) follows readily from the analysis in Section (5.4)
and the Appendix. To prove (iii): Note that the heteroclinic orbit ϕ?(η) must lie in the
intersection W u(M0) ∩W s(M1) and thus satisfies as η → ∞ the asymptotic expansion

(70). The term multiplying e−η decays much faster than the term e−
n

1−nη and can be
ignored. Using (70), together with (67), (69), we compute the asymptotic behavior

p(η) ∼ e−
n

1−nη , q(η)→ 2− n
λ

, r(η)→ 1− nλ

(2− n)(1− n)
as η →∞ .

In turn, via (76),

γ̃(η) ∼ e−
n

(1−n)(2−n)η , ũ(η) ∼ e−
n

(1−n)(2−n)η . σ̃(η) ∼ e
n

2−nη as η →∞

and (iii) follows from (62) and ξ = eη.
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Having identified the asymptotic behavior of
(
Γ̄, Σ̄, Ū

)
associated to the selected hete-

roclinic orbit, we can identify the behavior of
(
γ, σ, u

)
. Using (77) and Proposition 5.1(iii),

we obtain:

(a) For the strain:

γ(0, t) = Γ̄0

(
1 + t

γ0

)1+ 2
2−nλ

γ(x, t) ∼
(

1 + t
γ0

)1− n
(2−n)(1−n)λ |x|−

1
1−n as t→∞ for x 6= 0.

The tip of the strain γ(0, t) grows at superlinear order and γ(x, t), x 6= 0, grows in sublinear
order as t → ∞. Recalling that the growth of the uniform shear motion is linear, this
observation points to localization.

(b) For the strain rate

u(0, t) = Ū0

(
1 + t

γ0

) 2
2−nλ

u(x, t) ∼
(

1 + t
γ0

)− n
(2−n)(1−n)λ |x|−

1
1−n as t→∞ for x 6= 0.

u(x, t) decays to 0 for x 6= 0 in the presence of n > 0 as t→∞.

(c) For the stress

σ(0, t) =
Ūn0
Γ̄0

1

γ0

(
1 + t

γ0

)−1−2λ 1−n
2−n

,

σ(x, t) ∼
(

1 + t
γ0

)−1+ n
2−nλ |x| as t→∞ for x 6= 0.

As time proceeds, the stress collapses at the origin quicker to 0 than at points x 6= 0.

6 Numerical Results

In this section we construct numerically the heteroclinic orbit proposed in Section 5.4 and
schematically presented in Figure 1(b). To this end we numerically compute solutions of
the dynamical system (64)-(66) using appropriate routines from the odesuite of MATLAB.
Care has to be exercised to deal with the known difficulties in numerically computing
heteroclinic orbits.

The first task is to compute the collection of heteroclinic orbits joining M0 and M1.
Such heteroclinics appear as intersections of W u(M0), the unstable manifold of the equi-
librium M0, and W s(M1), the stable manifold of the equilibrium M1. We capture this
intersection numerically by using a shooting argument. We start with initial conditions
near M1 at the directions spanned by the stable eigenvectors of the equilibrium M1. Such
data lie in the stable manifold W s(M1); we compute numerically the solution of (64)-
(66) solving backwards in η. The orbits that tend near the equilibrium M0 are retained
and form a two dimensional manifold of heteroclinics, which comprises the intersection
W u(M0) ∩W s(M1). The result of the computation is depicted in Fig. 2(a).

It is expected from the asymptotic behavior in formula (72) that the heteroclinics

in this manifold will be separated to those approaching M0 along the eigenvector ~X01

(the blue curves) and one single orbit approaching in the direction ~X02. To capture
computationally the latter, we proceed as follows. Starting now near M0 we compute the

solutions of (64)-(66) with initial data close to M0 in the tangent space spanned by ~X02

and ~X03. We note that the unstable manifold W u(M0) is the whole space and splits into
the blue curves (forming the heteroclinic surface) and the orange curves in the transversal
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(a) Numerical plot of the surface formed by
heteroclinic orbits (blue curves) comprising
W s(M1) ∩Wu(M0).

(b) A zoom around M0 depicting the inter-
section of the surface of heteroclinics (blue
curves) with the part of the unstable man-
ifold Wu(M0) associated to the directions
~X02 and ~X03 (orange curves).

Figure 2: Numerical plot of the heteroclinic orbit (red dotted line).

directions. This second computation captures the orange curves. When the orbits reverse
directionality the computation captures the (red) heteroclinic emanating in the direction
~X02; see Figure 2(b) for a zoom of this computation.

Having computed the heteroclinic orbit (p, q, r) of the dynamical system (64)-(66), our
next task is to introduce the computed solution to the transformation (77) to produce the
numerically computed form of the associated self-similar solution. The computed solution
is presented in Figures 4(a)-4(d). The graph is presented in terms of the original variables
v(x, t), γ(x, t), u(x, t) and σ(x, t) depicting the solution at various instances of time. From
Figures 4(a) - 4(d), one sees that initially all the variables are small perturbations of the
corresponding uniform shear solutions (15). These nonuniformities then are amplified and
eventually develop a shear band. The strain and strain rate exhibit sharp peaks localized
around the origin and the velocity field becomes a step like function, with the transition
again occurring around the origin. The stress field initially assumes finite values, but as
the shear band forms it collapses to computable zero at the center of the band.

7 Discussions and Conclusions

We have considered a model for shear deformation of a viscoplastic material, with a yield
relation depending the plastic strain γ and the strain rate γt, modeling a viscoplastic
material exhibiting strain softening and strain rate sensitivity, in the form of inverse and
power law respectively. The effects of those two mechanisms were first assessed at the
linearized level. The uniform shearing solutions are stable for n > 1, see [19], and we
considered the range 0 < n < 1. In this parameter range, strain rate sensitivity alters the
nature of instability from Hadamard instability to Turing instability.

Then we turned into explaining the emergence of a coherent structure in the nonlinear
regime. An effective equation is derived which captures the combined effect of the compe-
tition between strain-rate hardening and strain-softening. We analyzed a class of focusing
self-similar solutions exploiting the invariance properties of the underlying model. This
offers a quantitative way for describing the development of singularity beyond the lin-
earized level. The associated localized solution arises as a heteroclinic orbit of an induced
autonomous dynamical system. For a certain range of the parameters, the existence of
such a heteroclinic orbit was shown numerically. The associated profiles exhibit coherent
localizing structures that have the morphology of shear bands. The result hinges on a
computational construction of the heteroclinic orbit. The proof of existence of the het-
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(a) Detected orbit (b) Zoom-in of orbit near M0

Figure 3: Simulation of the heteroclinic orbit (n = 0.3 and λ = 2).

eroclinic orbit requires advanced results from dynamical systems, the geometric singular
perturbation theory, and is presented in [15].

Appendix : Proof of (71)

To establish the claim (71), the starting point is the boundary conditions (56) and (60).
We compute a Taylor expansion of the variables p(log ξ), q(log ξ) and r(log ξ) near ξ = 0.
Initial conditions (60) imply an asymptotic behavior near ξ = 0 of the form

V̄ (ξ) = Ū(0)ξ + o(ξ2),

Γ̄(ξ) = Γ̄(0) +
ξ2

2
Γ̄ξξ(0) + o(ξ2),

Σ̄(ξ) = Σ̄(0) +
ξ2

2
Σ̄ξξ(0) + o(ξ2),

Ū(ξ) = Ū(0) +
ξ2

2
Ūξξ(0) + o(ξ2).

The values of the variables and their derivatives evaluated at ξ = 0 can be inferred by
differentiating system (53)-(55) repeatedly. After a straightforward calculation, we find

V̄ (0) = 0, V̄ξ(0) = Ū(0) = Γ̄(0)
(

1 +
2λ

2− n

)
,

Σ̄(0) =
Ū(0)n

Γ̄(0)
, Γ̄ξ(0) = Σ̄ξ(0) = Ūξ(0) = 0,

and

Γ̄ξξ(0) = −
(
Γ̄(0)2Ū(0)1−n) λ

2− n
λ

1− n

(
1

1
2 −

n
1−n

λ
r0

)
1

λ
,

Ūξξ(0) = −
(
Γ̄(0)2Ū(0)1−n) λ

2− n
λ

1− n

(
r0 + 2λ

1
2 −

n
1−n

λ
r0

)
1

λ
.
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Figure 4: The localizing solution, for n = 0.05 and λ = 10, sketched in the original
variables v, γ, u, σ. All graphs except v are in logarithmic scale.

Then, the Taylor expansion of p(log ξ) near ξ = 0 gives

p(log ξ) =
γ̃

σ̃
=
ξ

2
2−n Γ̄

ξ
2

2−n Σ̄
= ξ2 Γ̄

Σ̄
= ξ2 Γ̄(0)

Σ̄(0)
+ o(ξ2) = Γ̄(0)2Ū(0)−nξ2 + o(ξ2) ,

and the Taylor expansion of q(log ξ) is

q(log ξ) = n
ṽ

σ̃
= n

ξ
n

2−n V̄

ξ−1+ n
2−n Σ̄

= nξ
V̄

Σ̄
= n

[
ξ
V̄ (0)

Σ̄(0)
+ ξ2 V̄ (0)

Σ̄(0)

(
V̄ξ(0)

V̄ (0)
−

Σ̄ξ(0)

Σ̄(0)

)
+ o(ξ2)

]
= nΓ̄(0)Ū(0)1−nξ2 + o(ξ2).

Finally, notice first that

r(log ξ) =
ũ

γ̃
=
ξ

2
2−n Ū

ξ
2

2−n Γ̄
=
Ū

Γ̄
and thus lim

ξ→0
r(log ξ) =

Ū(0)

Γ̄(0)
= 1 +

2λ

2− n
= r0. (78)

The Taylor expansion of r(log ξ)− r0 near ξ = 0 yields

r(log ξ)− r0 =
Ū

Γ̄
− Ū(0)

Γ̄(0)
= ξ

Ū(0)

Γ̄(0)

(
Ūξ(0)

Ū(0)
−

Γ̄ξ(0)

Γ̄(0)

)
+

1

2
ξ2

[
Ūξξ(0)

Γ̄(0)
− 2

Ūξ(0)Γ̄ξ(0)

Γ̄2(0)
+ Ū(0)

(
−

Γ̄ξξ(0)

Γ̄2(0)
+ 2

(
Γ̄ξ(0)

)2
Γ̄3(0)

)]
+ o(ξ2)

= −
(
Γ̄(0)Ū(0)1−n) λ

2− n
λ

1− n

(
1

1
2 −

n
1−n

λ
r0

)
ξ2 + o(ξ2) .
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From log ξ = η, we conclude that

e−2η

p(η)
q(η)
r(η)

−M0

→ Γ̄(0)Ū(0)1−n ~X02, as η → −∞.

Now (56) specifies Γ̄(0) and in view of (78),

κ = Γ̄0Ū
1−n
0 , where Ū0 = Γ̄0

(
1 +

2λ

2− n

)
. (79)

Notice that Γ̄0 has the role of determining a translation factor of the curve.

Remark 7.1. Let
(
Γ̄, V̄ , Σ̄

)
be a solution of (53)-(55) with (56),(60) and ϕ?(η) be the

corresponding heteroclinic orbit of (64)-(66). Further, let
(
Γ̄A, V̄A, Σ̄A

)
be the rescaled

solution as in (61) and ϕ?A(η) be the corresponding heteroclinic orbit. Then ϕ?A(η) =
ϕ?(η + η0) with η0 = logA.

Let η0 = logA. Then

ṽA
(

log ξ
)

:= ξ
n

2−n V̄A(ξ) = (Aξ)
n

2−n V̄ (Aξ) = ṽ
(
η + η0

)
,

γ̃A
(

log ξ
)

:= ξ
2

2−n Γ̄A(ξ) = (Aξ)
2

2−n Γ̄(Aξ) = γ̃
(
η + η0

)
,

σ̃A
(

log ξ
)

:= ξ−1+ n
2−n Σ̄A(ξ) = (Aξ)−1+ n

2−n Σ̄(Aξ) = σ̃
(
η + η0

)
and hence ϕ?A(η) = ϕ?(η + η0).
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