
Dispersive wave runup on non-uniform shores
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Abstract Historically the finite volume methods have been developed for the numer-
ical integration of conservation laws. In this study we present some recent results on
the application of such schemes to dispersive PDEs. Namely,we solve numerically
a representative of Boussinesq type equations in view of important applications to
the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto
a non-uniform beach are presented along with great lines of the employed numerical
method (see D. Dutykhet al. (2011) [7] for more details).

1 Introduction

The simulation of water waves in realistic and complex environments is a very chal-
lenging problem. Most of the applications arise from the areas of coastal and naval
engineering, but also from natural hazards assessment. These applications may re-
quire the computation of the wave generation [6, 13], propagation [18], interaction
with solid bodies, the computation of long wave runup [17, 19] and even the extrac-
tion of the wave energy [16]. Issues like wave breaking, robustness of the numerical
algorithm in wet-dry processes along with the validity of the mathematical models in
the near-shore zone are some basic problems in this direction [12]. During past sev-
eral decades the classical Nonlinear Shallow Water Equations (NSWE) have been
essentially employed to face these problems [1, 8]. Mathematically, these equations
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represent a system of conservation laws describing the propagation of infinitely long
waves with a hydrostatic pressure assumption. The wave breaking phenomenon is
commonly assimilated to the formation of shock waves (or hydraulic jumps) which
is a common feature of hyperbolic PDEs. Consequently, the finite volume (FV)
method has become the method of choice for these problems dueto its excellent
intrinsic conservative and shock-capturing properties [1, 4, 8].

In the present article we report on recent results concerning the extension of the
finite volume method to dispersive wave equations steming essentially from water
wave modeling [15, 5, 7].

2 Mathematical model and numerical methods

Consider a cartesian coordinate system in two space dimensions(x,z) to simplify
notations. Thez-axis is taken vertically upwards and thex-axis is horizontal and
coincides traditionally with the still water level. The fluid domain is bounded below
by the bottomz= −h(x) and above by the free surfacez= η(x, t). Below we will
also need the total water depthH(x, t) := h(x)+η(x, t). The flow is supposed to
be incompressible and the fluid is inviscid. An additional assumption of the flow
irrotationality is made as well.

In the pioneering work of D.H. Peregrine (1967) [15] the following system of
Boussinesq type equations has been derived:

ηt +
(

(h+η)u
)

x = 0, (1)

ut +uux+gηx−
h
2
(hu)xxt+

h2

6
uxxt = 0, (2)

whereu(x, t) is the depth averaged fluid velocity,g is the gravity acceleration and
underscripts (ux, ηt ) denote partial derivatives.

In our recent study [7] we proposed an improved version of this system which
contains higher order nonlinear terms which should be neglected from asymptotic
point of view and can be written in conservative variables(H,Q) = (H,Hu) as:

Ht +Qx = 0, (3)

(

(

1+
1
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H
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H2
)

x
= gHhx. (4)

Obviously the linear characteristics of both systems (1), (2) and (3), (4) coincide
since they differ only by nonlinear terms.

However, this modification has several important implications onto structural
properties of the obtained system. First of all, the magnitude of the dispersive terms
tends to zero when we approach the shorelineH→ 0. This property corresponds to
our physical representation of the wave shoaling and runup process. On the other
hand, the resulting system becomes invariant under vertical translations (subgroup
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G5 in Theorem 4.2, T. Benjamin & P. Olver (1982) [3]):

z← z+d, η ← η−d, h← h+d, u← u, (5)

whered is some constant. This property is straightforward to checksince we use
only the total water depth variableH = h+η which remains invariant under trans-
formation (5).

Remark 1 In this paper we will consider the initial-boundary value problem posed
in a bounded domain I= [b1,b2] with reflective boundary conditions. In this case
one needs to impose boundary conditions only in one of the twodependent variables,
cf. [9]. In the case of reflective boundary conditions it is sufficient to take u(b1, t) =
u(b2, t) = 0.

2.1 Finite volume discretization

Let T = {xi}, i ∈ Z denotes a partition ofR into cellsCi = (xi− 1
2
,xi+ 1

2
) where

xi = (xi+ 1
2
+xi− 1

2
)/2 denotes the midpoint ofCi . Let∆xi = xi+ 1

2
−xi− 1

2
be the length

of the cellCi , ∆xi+ 1
2
= xi+1− xi. (Here, we consider only uniform grids with∆xi =

∆xi+ 1
2
= ∆x.)

The governing equations (3), (4) can be recast in the following vector form:

[D(vt)]+ [F(v)]x = S(v),

where

D(vt) =
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, (6)
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We denote byHi andUi the corresponding cell averages. To discretize the dis-
persive terms in (6) we consider the following approximations:
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We note that we approximate the reflective boundary conditions by taking the
cell averages ofu on the first and the last cell to beu0 = uN+1 = 0. We don’t impose
explicitly boundary conditions onH. The reconstructed values on the first and the
last cell are computed using neighboring ghost cells and taking odd and even ex-
trapolation foru andH respectively. These specific boundary conditions appeared
to reflect incident waves on the boundaries while conservingthe mass.

This discretization leads to a linear system with tridiagonal matrix denoted byL
that can be inverted efficiently by a variation of Gauss elimination for tridiagonal
systems with computational complexityO(n), n-being the dimension of the system.
We note that on the dry cells the matrix becomes diagonal since Hi is zero on dry
cells. For the time integration the explicit third-order TVD-RK method is used. In
the numerical experiments we observed that the fully discrete scheme is stable and
preserves the positivity ofH during the runup under a mild restriction on the time
step∆ t.

Therefore, the semidiscrete problem of (6) - (7) is written as a system of ODEs
in the form:

Livi t +
1

∆x
(Fi+ 1

2
−Fi− 1

2
) =

1
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Si,

whereLi is thei−th row of matrixL andFi+ 1
2

can be chosen as one of the numer-

ical flux functions [7] (in computations presented below we choose the FVCF flux
[10]). In the sequel we will use the KT and the CF numerical fluxes. In this case the
Jacobian ofF is given by the matrix

A=

(

0 1
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)

,

and the eigenvalues areλ1,2 = Q/H±√gH. Therefore, the characteristic numerical
flux [10] takes the form
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T are the Roe average values,
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For more details on the discretization and reconstruction procedures, (that are
based on the hydrostatic reconstraction, [2]), we refer to our complete work on this
subject [7].

3 Numerical results

In the present section we show a numerical simulation of a solitary wave runup onto
a non-uniform sloping beach. More precisely, we add a small pond along the slope.
As our results indicate, this small complication is alreadysufficient to develop some
instabilities which remain controlled in our simulations.

As an initial condition we used an approximate solitary wavesolution of the
following form:

η0(x) = Assech2
(

λ (x− x0)
)

, u0(x) =−cs
η0(x)

1+η0(x)
,

whereAs is the amplitude relative to the constant water depth taken to be 1 in our
study. The solitary wave speedcs along with the wavelengthλ are given here:

λ =

√

3As

4(1+As)
, , cs =

√
g

√
6(1+As)√
3+2As

·
√

(1+As) log(1+As)−As

As
.

The solitary wave is centered initially atx0 = 10.62 and has amplitudeAs = 0.08.
The constant slopeβ is equal to 2.88◦. The sketch of the computational domain can
be found in [7].

In numerical simulations presented below we used a uniform space discretization
with ∆x= 0.025 and very fine time step∆ t = ∆x/100 to guarantee the accuracy and
stability during the whole simulation.
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(a) t = 1 s
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Fig. 1 Solitary wave aproaching a sloping beach with a pond.
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(a) t = 3.5 s
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(b) t = 4 s

Fig. 2 Beginning of the pond inundation.
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(a) t = 5 s
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(b) t = 5.5 s

Fig. 3 A part of the wave mass is trapped in the pond volume.
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(a) t = 6 s
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(b) t = 6.5 s

Fig. 4 Wave oscillations in the pond.

Snapshots of numerical results are presented on Figures 1 – 6. We present simul-
taneously three different computational results:

• Modified Peregrine system solved with UNO2 reconstruction [11]
• The same system with classical MUSCL TVD2 scheme [14]
• Nonlinear Shallow Water Equations (NSWE) with UNO2 scheme [11]

Surprisingly good agreement was obtained among all three numerical models.
Presumably, the complex runup process under considerationis governed essen-
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(a) t = 7 s
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Fig. 5 Stabilization of wave oscillations.
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Fig. 6 The whole system is tending to the rest position (t = 10 s).

tially by nonlinearity. However, on Figures 1(b) and 2(a) the amplitude predicted
by NSWE is slightly overestimated.

On Figures 3(b) – 4(b) some oscillations (due to the small-dispersion effect char-
acterizing dispersive wave breaking procedures) can be observed. However, their
amplitude remains small for all times and does not produce any blow up phenom-
ena. Later these oscillations decay tending gradually to the “lake at the rest” state
(see Figures 5, 6).

In the specific experiment a friction term could be beneficialto reduce the ampli-
tude of oscillations (or damp them out completely). However, we prefer to present
the computational results of our model without adding any ad-hoc term to show its
original performance.

4 Conclusions

In this study we presented an improved version of the Peregrine system which is par-
ticularly suited for the simulation of dispersive waves runup. This system allows for
the description of higher amplitude waves due to improved nonlinear characteristics.
Better numerical stability properties have been obtained since most of the disper-
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sive terms tend to zero when we approach the shoreline. Consequently, our model
naturally degenerates to classical Nonlinear Shallow Water Equations (NSWE) for
which the runup simulation technology is completely mastered nowadays. However
we underline that there is no artificial parameter to turn offdispersive terms. Their
importance is naturally governed by the underlying physical process.

Moreover we presented some numerical results on the wave runup onto a com-
plex beach containing a pond. Even in this stiff case the numerical model at hand
produced stable and physical results, thus validating modification of the Peregrine
system.
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18. Titov, V., González, F.: Implementation and testing ofthe method of splitting tsunami (MOST)
model. Tech. Rep. ERL PMEL-112, Pacific Marine Environmental Laboratory, NOAA (1997)

19. Titov, V.V., Synolakis, C.E.: Numerical modeling of tidal wave runup. J. Waterway, Port,
Coastal, and Ocean Engineering124, 157–171 (1998)


