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We investigate the Lie point and generalized symmetries of certain nonlinear inte-
grable equations on quad-graphs. Applications of the symmetry methods to such
equations in obtaining group invariant solutions, related to discrete versions of the
Painlevé differential equations, are also demonstrated.

1. Introduction

The study of Sophus Lie in the late nineteenth century on the unification

and extension of various solution methods for ordinary differential equations

led him to introduce the notion of continuous groups of symmetry transfor-

mations. During the same period Bäcklund investigated possible extensions

of Lie contact transformations, introducing an important class of surface

transformations in ordinary space. A remarkable feature of Bäcklund trans-

formations is that due to a commutativity property repeated applications

can be performed in a purely algebraic manner. This is known in classical

geometry as the Bianchi permutability theorem and represents a nonlinear

analogue of the superposition principle for linear homogeneous differential

equations. The archetype is given by the equation

(p − q) tan

(

u12 − u

4

)

= (p + q) tan

(

u2 − u1

4

)

. (1)

It relates a solution u12 of the sine-Gordon equation

uxy = sin u , (2)

with an arbitrary seed solution u and two solutions u1 and u2 obtained from

u via the Bäcklund transformations specified by the parameters values p

and q, respectively.

On the other hand, equation (1) may be interpreted as a partial dif-

ference equation. This interpretation is obtained by simply identifying u1
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and u2, respectively, with the values attained by the dependent variable u

when the discrete independent variables n1 and n2 change by a unit step.

Nonlinear partial differential equations (PDEs) possessing Bäcklund

transformations and their compatible nonlinear partial difference equations

(P∆Es) arising from the associated superposition formulae have been the

subject of intensive investigations during the past century, leading to the

modern theory of integrable systems. Such systems are characterized also

by an extremely high degree of symmetry, and as a result, Lie symmetries

and their generalizations have proven to be invaluable tools for generating

solutions of difference and differential equations.

Symmetry based techniques applied to difference equations have ap-

peared quite recently in the literature starting from different philosophies,

see e.g. [1]-[11] and references therein. In the present work, we investigate

the symmetries of certain partial difference equations living on elementary

quadrilaterals. Our approach to this problem originates in the interplay be-

tween integrable quadrilateral equations and their compatible continuous

PDEs, as this has been addressed recently in [5], [7]. We find Lie point and

generalized symmetries for the celebrated discrete potential KdV equation.

We show that appropriate linear combinations of Lie point and generalized

symmetries can be used in obtaining group invariant solutions of the lattice

equations. In particular we show that certain reductions of this type lead

to discrete versions of the Painlevé differential equations.

2. Symmetries of quadrilateral equations

Central to our considerations are integrable discrete equations on quad-

graphs, i.e. certain equations associated to planar graphs with elementary

quadrilaterals faces. In particular, we consider equations where fields are

assigned on the vertices and the lattice parameters on the edges of Z2.

In the simplest case, one has complex fields f : Z2 → C assigned on the

vertices at sites (n1, n2) which vary by unit steps only, and complex lattice

parameters α1, α2 assigned on the edges of an elementary square (Fig. 1).

The basic building block of such equations consists of a relation of the form

H(f, f(1,0), f(0,1), f(1,1); α1, α2) = 0 , (3)

which relates the values of four fields residing on the four vertices of an

elementary quadrilateral. The forward shifted value of a field along n1 and

n2 will be denoted by f(0,1), f(0,1) respectively, i.e.

f(1,0) = f(n1 + 1, n2), f(1,1) = f(n1 + 1, n2 + 1) . (4)
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Figure 1. An elementary quadrilat-

eral.
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Figure 2. A cross configuration.

A specific equation of the type (3) is given by the equation (1). Its

linearized version is the following P∆E

(p − q)(f(1,1) − f) = (p + q)(f(0,1) − f(1,0)) . (5)

Let Q be a scalar function which depends on f and its shifted value forming

the cross configuration of Fig. 2. We denote the first prolongation of a

vector field XQ = Q ∂f , by the vector field

X
(1)
Q = Q ∂f +Q(−1,0) ∂f(−1,0)

+Q(0,1) ∂f(0,1)
+Q(0,−1) ∂f(0,−1)

+Q(0,1) ∂f(0,1)
.

(6)

Similarly, the second prolongation of XQ is denoted by

X
(2)
Q = X

(1)
Q + Q(−1,−1)∂f(−1,−1)

+ Q(−1,1)∂f(−1,1)
+

Q(1,−1)∂f(1,−1)
+ Q(1,1)∂f(1,1)

+ . . . (7)

Definition 2.1. We say that XQ = Q ∂f is a symmetry generator of the

quadrilateral equation (3), if and only if

X
(2)
Q (H) = 0 , (8)

holds for all solutions of equation (3). Thus, in equation (8) we should take

into account (3), and its consequences.

It may be seen from the above definition that equation (8) is a linear

functional relation for Q. Solutions of the latter equation provide sym-

metries admitted by equation (3). An indirect approach for determining

solutions of the corresponding functional relation for Q, once a specific

equation of the type (3) is given, is to derive first a compatible set of

differential-difference and partial differential equations, by interchanging

the role of the discrete variables (n1, n2) with that of the continuous pa-

rameters (p, q). The reasoning behind this construction is that one could
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set up a natural framework for the description of the symmetries and reduc-

tions of discrete systems, by exploiting the notion of Lie-point symmetries

and the infinitesimal methods for obtaining them, which are well known for

the continuous PDEs. We next illustrate the relevant construction for the

P∆E (5).

A particular solution of equation (5) is

f =

(

p − λ

p + λ

)n1
(

q − λ

q + λ

)n2

, (9)

λ ∈ C. Differentiating f with respect to p, (respectively q) and rearranging

terms, we easily find that f also satisfies the differential-difference equations

(D∆Es)

fp =
n1

2p
(f(−1,0) − f(1,0)) , fq =

n2

2q
(f(0,−1) − f(0,1)) , (10)

where the minus sign denotes backward shift in the direction of the corre-

sponding discrete variable.

By interchanging completely the role of the lattice variables n1, n2 with

that of the continuous lattice parameters p, q, the aim now is to find a PDE

which is compatible with equations (5) and (10). Such a PDE is the fourth

order equation obtained from the Euler-Lagrange equation

∂pq

(

∂L

fpq

)

− ∂p

(

∂L

fp

)

− ∂q

(

∂L

fq

)

= 0 , (11)

for the variational problem associated with the Lagrangian density

L =
1

2
(p2 − q2)(fpq)

2 +
2

p2 − q2
(n2fp − n1fq)(n2p

2fp − n1q
2fq) . (12)

Two of the divergence symmetries of Lagrangian L are the scaling trans-

formations

p 7→ αp , q 7→ αq , f 7→ βf , α, β ∈ C , α, β 6= 0. (13)

Since every divergence symmetry of a variational problem is inherited as a

Lie-point symmetry by the associated Euler-Lagrange equations, the trans-

formations (13) are Lie-point symmetries of equations (11). They corre-

spond to the characteristic symmetry generator

XQ = Q ∂f , where Q = c1(pfp + qfq) + c2 f , c1 , c2 ∈ C . (14)

In view of the compatible D∆Es (10), the characteristic Q takes the form

Q =
c1

2

(

n1(f(−1,0) − f(1,0)) + n2(f(0,−1) − f(0,1))
)

+ c2f . (15)
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Equations (5), (10) and (11) form a compatible set of equations, in the

sense that they share a non empty set of solutions. By virtue of this fact and

since the symmetry generator XQ given by (14) maps solutions to solutions

of PDE (11), XQ, with Q given by (15), should generate a symmetry of the

discrete equation (5). In other words, Q given by (15) should satisfy

(p − q)(Q(1,1) − Q) = (p + q)(Q(0,1) − Q(1,0)) , (16)

for all solutions f of (5). Taking into account equation (5) and its backward

discrete consequences, we easily find that equation (16) holds. Thus, Q is

indeed a symmetry characteristic of equation (5).

The above considerations justify the reason why the symmetry charac-

teristic Q of a general quadrilateral equation (3), depends initially on the

values of f assigned on the points which form the cross configuration of Fig.

2. In general, this dependence could be arbitrary. Indeed, as it is illustrated

in the following sections, symmetries which correspond to extended cross

configurations can be found from known ones.

3. Symmetries of equation (5)

The symmetries of equation (5) are determined from the functional equation

(16). Two simple solutions of the latter give the symmetry generators

X1 = (µ + λ(−1)n1+n2 )∂f , X2 = f∂f . (17)

Symmetry characteristics corresponding to the cross configuration of Fig.

2, and which can be found by exploiting the correspondence with the con-

tinuous PDE, are given by the vector fields

Y1 =
(

f(1,0) − f(−1,0)

)

∂f , Y2 =
(

f(0,1) − f(0,−1)

)

∂f , (18)

Z =
(

n1(f(1,0) − f(−1,0)) + n2(f(0,1) − f(0,−1))
)

∂f . (19)

The latter serve to construct an infinite number of symmetries. This follows

from the fact that the commutator of two symmetry generators is again a

symmetry generator. Let

Q[i,0] = f(i,0) − f(−i,0) , Q[0,j] = f(0,j) − f(0,−j) i, j ∈ N , (20)

be the characteristics of the vector fields

YQ[i,0]
= Q[i,0]∂f , YQ[0,j] = Q[0,j]∂f , i, j ∈ N . (21)
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By induction we find that

YQ[i−1,0]
+

1

i
[Z, YQ[i,0]

] = YQ[i+1,0]
, (22)

YQ[0,j−1]
+

1

j
[Z, YQ[0,j]

] = YQ[0,j+1]
, (23)

holds ∀ i, j ∈ N \ {0}. Repeated applications of the commutation relations

(22), (23) produce new symmetries of equation (5), and thus the vector

field Z represents a master symmetry. The generated new symmetries cor-

respond to extended cross configurations.

4. Symmetries of the discrete potential KdV equation

We next demonstrate how the above considerations can be applied equally

well to a nonlinear discrete equation, namely the discrete Korteweg-de Vries

(KdV) equation [12]

(f(1,1) − f)(f(1,0) − f(0,1)) = p − q . (24)

Exploiting the symmetries of the continuous compatible PDE and the in-

terplay between the compatible set of differential and difference equations,

we have found [13] the following symmetries for the discrete KdV equation

X1 = ∂f , X2 = (−1)n1+n2f∂f , X3 = (−1)n1+n2∂f , (25)

Y1 =
1

f(1,0) − f(−1,0)
∂f , Y2 =

1

f(0,1) − f(0,−1)
∂f , (26)

Z1 =

(

n1

f(1,0) − f(−1,0)
+

n2

f(0,1) − f(0,−1)

)

∂f , (27)

Z2 =

(

n1 p

f(1,0) − f(−1,0)
+

n2 q

f(0,1) − f(0,−1)
−

1

2
f

)

∂f , (28)

Taking the commutator of Z1 with Y1, one finds the new symmetry gener-

ator

[Z1, Y1] =
1

(f(1,0) − f(−1,0))2

(

1

f − f(2,0)
+

1

f(−2,0) − f

)

∂f (29)

and a similar relation can be found for the commutator [Z1, Y2]. Further

new symmetries are obtained by taking the commutator of Z1 with the

resulting new symmetries.



660

5. Symmetry reduction on the lattice

Let H = 0 be a quadrilateral equation of the form (3) and XQ = Q∂f a

symmetry generator. In analogy with the continuous PDEs, we adopt the

following.

Definition 5.1. We say that a solution f of equation H = 0 is an invariant

solution under XQ, if it satisfies in addition to H = 0, the compatible

constraint X(f) = 0, or equivalently Q = 0.

We next demonstrate the notion of invariant solutions of discrete quadrilat-

eral equations by considering a specific symmetry reduction of the discrete

KdV (24). For the symmetry constraint we choose a linear combination of

Y1 and Y2 given by (26). The corresponding invariant solutions are obtained

from the compatible system

(f(1,1) − f)(f(1,0) − f(0,1)) = p − q , (30)

c(f(1,0) − f(−1,0)) = f(0,1) − f(0,−1) (31)

The aim is to eliminate from the above system, one direction of the lat-

tice, i.e. to derive an ordinary difference equation. To this end, we define

auxiliary variables

x = f(1,1) − f , a = f(1,0) − f(−1,0) , (32)

y = f(1,0) − f(0,1) , b = f(0,1) − f(0,−1) . (33)

It follows from equations (32)-(33) that

b(1,0) = x − y(0,−1) , b = x(0,−1) − y , (34)

a(0,1) = x + y(−1,0) , a = x(−1,0) + y . (35)

With the help of the auxiliary variables (32)-(33), we arrive at the following

O∆E

w(1,0) =
α w + β

γ w + δ
, (36)

where w = xx(−1,0) and the parameters are given by α = −δ = r c, β =

r2(1 + c), γ = 1 − c and r = p − q. Equation (36) is a discrete Riccati

equation which can be solved explicitly, by using the symmetry generator

[1]

X =
(

γw2 + (δ − α)w − β
)

∂w . (37)

It should be noted that, when c = −1, the invariant solutions obtained

above correspond to the periodic reduction f(−1,1) = f(1,−1).
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6. Symmetry reductions to discrete Painlevé equations

In this section we show how discrete versions of the Painlevé equations

arise from invariant solutions of the discrete KdV. In particular, here we

demonstrate two such symmetry reductions using the symmetry generators

W1 = Z1 + λX1, W2 = Z1 + λX2,

respectively, where the symmetry generators X1, X2 and Z1 are given by

equations (25) and (27).

Invariant solutions under W1 are solutions of discrete KdV, subject to

the compatible constraint W1(f) = 0, i.e.

n1

f(1,0) − f(−1,0)
+

n2

f(0,1) − f(0,−1)
+ λ = 0 , (38)

which in terms of the auxiliary variables (32) reads

n1

a
+

n2

b
+ λ = 0 . (39)

Using the auxiliary variables (32) and discrete KdV equation we have

a = x(−1,0) +
r

x
, (40)

r = p − q. On the other hand, a straightforward calculation shows that

1

b(1,0)
=

r

x2

1

b
+

1

x
. (41)

Eliminating the variable b between equations (39), (41) we get

−

(

λ +
n1 + 1

a(1,0)

)

= −
r

w2

(

λ +
n1

a

)

+
n2

w
. (42)

Substituting a given by equation (40) into (42) and rearranging terms we

arrive at the second order difference equation

(n1 + 1)r

xx(1,0) + r
+

n1r

xx(−1,0) + r
= n1 + n2 + 1 − λ

r

x
+ λx , (43)

known as alternate discrete Painlevé II equation [14].

Invariant solutions of KdV under the symmetry W2 are obtained from

the constraint
n1

f f(1,0) − f f(−1,0)
+

n2

f f(0,1) − f f(0,−1)
+ λ(−1)n1+n2 = 0 . (44)

In a similar manner as previously, we arrive at the following coupled system

of difference equations

(y(−1,0) − x) (x − y) = r x , (45)
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(n1 + 1)
x(1,0) − y

x(1,0) − x
+ n1

x − y(−1,0)

x − x(−1,0)
= n1 + n2 + 1 +

λ(−1)n1+n2(y − y(−1,0)) , (46)

for the auxiliary variables (group invariants under the symmetry X2)

x = f f(1,0), y = f(1,0) f(1,1) . (47)

The system of equations (45), (46) can be decoupled for the variable x.

Indeed, equation (46) can be integrated once to give

n1

x − y(−1,0)

x − x(−1,0)
=

n1 + n2

2
+

1

4
− λ(−1)n1+n2y(−1,0) + γ(n2)(−1)n1 . (48)

Due to a compatibility condition, it turns out that it is necessary to set

γ(n2) = c(−1)n2 . Solving equation (48) for y(−1,0) and inserting into equa-

tion (45) we obtain a second order difference equation for the variable x,

involving the parameters r, λ, n2, c. The explicit connection of the latter

equation with the various discrete Painlevé equations known so far, cf. [15]

and references therein, is under investigation.

7. Concluding remarks

The main purpose of this work was to demonstrate that the notions of sym-

metry and invariance on the discrete level arise naturally from the interplay

between P∆Es and PDEs that share a common set of solutions. Moreover,

certain symmetries which admit the aforementioned cross configuration can

be used to derive invariant solutions, in exact analogy with the invariant

solutions of the continuous PDEs. Recently in [16], the discrete multi-field

Boussinesq system and the compatible PDEs were investigated. It was

shown that scaling invariant solutions of the relevant PDEs are built from

solutions of higher Painlevé equations, which potentially lead to solutions

in terms of new transcendental functions. We expect that appropriate re-

ductions of the discrete Boussinesq system using the admitted symmetries,

will lead to new discrete equations of Painlevé type, [17]. A detailed study

of all inequivalent reductions of this kind, for various integrable discrete

equations on quad-graphs, will be given elsewhere.
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