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Symmetries and Group Invariant Reductions
of Integrable Partial Difference Equations

A. TONGAS, D. TSOUBELIS and V. PAPAGEORGIOU

Department of Mathematics, University of Patras, 26 500 Patras, Greece

The interplay between the symmetries of compatible discrete and continuous
integrable systems in two dimensions is investigated. Master and higher sym-
metries for certain quadrilateral lattice equations are found. The usage of
symmetries in obtaining group invariant reductions on the lattice is also dis-
cussed.

1 Introduction

The investigations of Béacklund, in the late nineteenth century, of possible exten-
sions of Lie contact transformations led him to introduce an important class of
surface transformations in ordinary space. The intimate connection of Backlund
transformations with certain type nonlinear equations, which from a modern per-
spective are called integrable systems, has been the subject of intensive investi-
gations over the past century. A detailed account on Bécklund transformations
can be found in the recent works [1,2]. Integrable systems are also characterized
by an extremely high degree of symmetry. As a result, Lie symmetries and their
generalizations have proven to be invaluable tools for generating solutions and
obtaining classification results for this kind of systems, cf [3] and contributions in
this volume.

Due to a commutativity property, Backlund transformations possess the inter-
esting feature that repeated applications can be performed in a purely algebraic
fashion. This is known in classical geometry as the Bianchi permutability theo-
rem and represents a nonlinear analogue of the superposition principle for linear
homogeneous differential equations. The prototypical example is given by the
equation

(p—q)tan <u124_ u) = (p+q)tan <%> : (1)

It relates a solution w19 of the sine-Gordon equation

Ugy = Sinu, (2)

with an arbitrary seed solution v and two solutions u; and us obtained from u
via the Béacklund transformations specified by the parameters values p and g,
respectively.
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On the other hand, equation (1) may be interpreted as a partial difference
equation. This interpretation is obtained by simply identifying u; and us, respec-
tively, with the values attained by the dependent variable u when the discrete
independent variables n; and ns change by a unit step.

Recent advances in the theory of integrable systems show that discrete sys-
tems are equally important to their continuous analogues, and their study has
led to new insights into the structures behind the more familiar continuous sys-
tems. Thus, standard symmetry techniques applied to integrable discrete equa-
tions have attracted the attention of many investigators, see e.g. [4-11]. More
general symmetry approaches are being pursued starting from different philoso-
phies, see e.g. [12-18] and references therein.

In the present work, symmetries and invariant reductions of certain partial
difference equations on elementary quadrilaterals are investigated. The approach
to this problem originates in the interplay between integrable quadrilateral equa-
tions and their compatible continuous PDEs, as this has been addressed recently
in [8,11].

2 Symmetries of Quadrilateral Equations

Central to our considerations on the discrete level are equations on quadrilaterals,
i.e. equations of the form

H(F0,0), Fr1,0), Flo), Fa,1y:0,9) = 0. (3)

They may be regarded as the discrete analogues of hyperbolic type partial dif-
ferential equations (PDEs) involving two independent variables. The dependent
variables (fields) are assigned on the vertices at sites (n1,n2) which vary by unit
steps only, and the continuous lattice parameters p,q € C are assigned on the
edges of an elementary quadrilateral (Fig. 1). The updates of a lattice variable
F € C, along a shift in the ny and ne direction of the lattice are denoted by
Flo,1), Flo,1) respectively, i.e.

F(l,O) :F(n1+1,n2), F(O,l) :F<n1,n2—|—1), F(l,l) :F(n1+1,n2+1). (4)

A specific equation of the type (3) is given by the Bianchi lattice (1). Its linearized
version is the partial difference equation (PAE)

r—a)(fayy—f) =@+ (fon — fam)- (5)

The aim now is to find the symmetries of equation (5) and successively to find the
corresponding group invariant solutions. An indirect approach in dealing with
such a problem is to derive first a compatible set of differential-difference and
partial differential equations, by interchanging the role of the discrete variables
(n1,n2) with that of the continuous parameters (p, ¢). The reasoning behind this
construction is that one could set up a natural framework for the description of



224 A. Tongas, D. Tsoubelis and V. Papageorgiou

=1y Jo.n Jfa.n
o o

Fou P JFun
q q f=1,0) fa0
F D Fl1,0) o o
J-1,-1) JTo-1  fa-y

Figure 1. An elementary quadrilateral.

Figure 2. A cross configuration.

the symmetry and the symmetry reduction of discrete systems, by exploiting the
notion of Lie-point symmetries and the infinitesimal methods for obtaining them,
which are well known for the continuous PDEs. We next illustrate the relevant
construction for the PAE (5).

A particular solution of equation (5) is

p—A\"" [qg—A\"?
f= , (6)
p+A g+ A
A € C. Differentiating f with respect to p, (respectively ¢) and rearranging terms,
we easily find that f also satisfies the differential-difference equations (DAES)

ni

fo=go U0 = fam)s fa= 50 Uo-n = fon). (7)
where the minus sign denotes backward shift in the direction of the corresponding
discrete variable.

By interchanging completely the role of the lattice variables ny, ne with that
of the continuous lattice parameters p, ¢, the aim now is to find a PDE which
is compatible with equations (5) and (7). Using similar considerations as in [19],
we find that such a PDE is the fourth order equation obtained from the Euler-
Lagrange equation

()0 () (%)

for the variational problem associated with the Lagrangian density
1 2
L= 5(?2 - q2)(qu)2 + }qu(nlfp - nlfq)(”2p2fp - ”1q2fq) : (9)

Two of the divergence symmetries of Lagrangian L are the scaling transforma-
tions

p—oap, q—aq, f—pBf, aBeC, af#0. (10)
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Since every divergence symmetry of a variational problem is inherited as a Lie-
point symmetry by the associated Euler-Lagrange equations, the transformations
(10) are Lie-point symmetries of equations (8). They correspond to the charac-
teristic symmetry generator

Xq=Q0, where Q=ci(pfy+af)+eaf. cr.czeC. (11)

In view of the compatible DAEs (7), the characteristic @) takes the form

Q= 6_21 (m(f—1,0) = fr0) + 12(fo.-1) — fro1))) + c2f - (12)

Equations (5), (7) and (8) form a compatible set of equations, in the sense
that they share a common set of solutions. By virtue of this fact and since the
symmetry generator X¢ given by (11) maps solutions to solutions of PDE (8), X,
with @ given by (12), should generate a symmetry of the discrete equation (5).
In other words, @ given by (12) should satisfy

P—)(Qu1—Q)=@+a)(Qu1) — Qo) (13)

for all solutions f of (5). It should be noted that @ depends on the values of f
and the four adjacent values on the lattice. Taking into account equation (5) and
its backward discrete consequences, we easily find that equation (13) holds. Thus,
@ is indeed a symmetry characteristic of equation (5).

The above considerations lead us naturally to assume that the symmetry char-
acteristic @) of a general quadrilateral equation (3) initially depends on the values
of f assigned on the points which form the cross configuration of Fig. 2. In other
words, we are led to adopt the following definition.

Let @ be a scalar function which depends on the values of F' and their shifts
forming the cross configuration of Fig. 2. We denote the first prolongation of a
vector field Xg = Q) O, by the vector field

Xy = QOr+Q(-1.0) 0, 0 + Q1) O 1y +Q0.-1) O 1 +Q(0.1) Orig - (14)
Similarly, the second prolongation of X¢ is denoted by
Xéf) = X8)+Q(—1,—1)8F(_1,_1)+Q(—1,1)3F(_1,1>+Q(1,—1)0F(1,_1)+Q(1,1)5F(171)- (15)

We say that Xg = Q Or is a symmetry generator of the quadrilateral equa-
tion (3), if and only if

x5 ) =0, (16)

holds, where equation (3) and its backward discrete consequences should be taken
into account.
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2.1 Symmetries of the Linearized Bianchi Lattice

The symmetries of equation (5) are determined from the functional equation (13).
Two simple solutions of the latter give the symmetry generators

X1 = (A9, Xp = [0y (17)

Symmetry characteristics corresponding to the cross configuration of Fig. 2, and
which can be found by exploiting the correspondence with the continuous PDE,
are given by the vector fields

V1= (fao — ferm) 05 Yo = (f0.1) — flo-1)) 95, (18)

Z = (nm(fa0) — f-1,0) + n2(fo1) — flo.-1)) 95 - (19)

The latter serve to construct an infinite number of symmetries. This follows from
the fact that the commutator of two symmetry generators is again a symmetry
generator. Let

Quo = fuo) — f—io), Qg = foy — fo-5 @JEN, (20)

be the characteristics of the vector fields

YQuo = Q00 Y =@pos9, ijeN. (21)

By induction we find that

(22)

1 1
YQ['L—I,O] + ; [Z7 YQ[i,O]] = YQ[¢+1,0]7 YQ[O,j—l] + ; [Z7 YQ[O,j]] = YQ[O,j+1]7
holds Vi,j € N\ {0}. Repeated applications of the commutation relations (22)
produce new symmetries of equation (5), and thus the vector field Z represents
a master symmetry. The generated new symmetries correspond to extended cross
configurations.

2.2 Symmetries of the Discrete Korteweg—de Vries Equation

We next demonstrate how the above considerations can be applied equally well
to a nonlinear discrete equation, namely the discrete Korteweg—de Vries (KdV)
equation [20]

(fa,) — Hfo) — fo) =p—q. (23)
Recently in [22], the compatible differential-difference system
n n
ho=g———— Jim (24)

fao — fieio)’ fon = fo—1)’
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was derived, along with the compatible PDE which is the Euler-Lagrange equation
for the variational problem associated with the Lagrangian density

RN €/ S S RS SIS /1
L=-d folaq +P—Q<( ?) fq+( 2 fp>‘ (25)

The importance of the above Lagrangian stems from the fact that the commuting
generalized symmetries of the associated Euler-Lagrange equation generate the
complete hierarchy of the KdV soliton equations, (cf [21] for generalizations of
the above results). Moreover, the Euler-Lagrange equation acquires a certain
physical significance, since it incorporates the hyperbolic Ernst equation for an
Einstein—Weyl field [23]. Thus, it would be interesting to find symmetries and
special solutions on the discrete level as well.

Exploiting the symmetries of the continuous PDE and the interplay between
the compatible set of differential and difference equations, we find the following
symmetries of the discrete KdV equation

Xi=0;, Xo= (-1 foy, )
Kl e LA e L o
7= <f(1,0) iﬂblf(—Lo) * fo.n 7—12f(0,_1)> 5 (28)
%= (f(1,0)n—1?(_1,o) " f(071)71—2;(07_1) a %f) O (29)

Taking the commutator of Z; with Y7, one finds the new symmetry generator

1 1 1
B 9
2, 11] (fa0 = f-1.0)? (f — f20) i f—20) = f) ! .

and a similar relation can be found for the commutator [Z7,Y3]. Further new
symmetries are obtained by taking the commutator of Z; with the resulting new
symmetries, which are omitted here because of their lenght.

3 Symmetry Reduction on the Lattice

Let H = 0 be a quadrilateral equation of the form (3) and X¢g a symmetry
generator. In analogy with the continuous PDEs, we say that a solution of H =0
is invariant under Xg, if it satisfies the compatible constraint @ = 0.

Let us now consider the linearized Bianchi lattice (5) and a linear combination
of the symmetries Y7 and Y3 given by equation (18). The corresponding invariant
solutions are obtained from the compatible system

(r—a)(fan—f) = p+a)(fo—fam), fao—Ff=i,0 = c(fo—Ffo-1)) (31)
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The method for obtaining the invariant solutions on the lattice is similar to the
direct substitution method for the invariant solutions of PDEs. The aim is to
derive from the above discrete system, equations where the variables are given
in terms of only one direction of the lattice, i.e. to derive an ordinary difference
equation. To this end, we define auxiliary dependent variables

T = f(1,1) -f, a = f(l,o) - f(fl,O) ) (32)
y=fao—fon, b= fon — fo-1)- (33)

It follows from equations (32)—(33) that

b(l,o) =T = Y0,-1) b= Lo,-1) — Y, (34)
ap,) =2 +Y—10: a=T—10) ty. (35)

Using the above relations and the system (31), we arrive at the second order linear
ordinary difference equation (OAE) for the variable x

T2,0) — (c(r— r Y — (r + 7"_1)) T +r=0, (36)
where 7 = (¢ + p)/(q¢ — p). Equation (36) can be easily solved, giving

r = c1(ng) 1™ + ca(ng) u2"?, (37)

where 1, po are the two roots of the characteristic polynomial of equation (36).
In a similar manner, the arbitrary functions ¢y, ca of ng are determined from (31),
(32)—(33) and their consequences, leading finally to the invariant form of f.

We conclude this section by considering a specific symmetry reduction of the
discrete KdV (23). For the compatible symmetry constraint we choose a linear
combination of Y7 and Y> given by (27), leading to the same symmetry constraint
as in the previous case (¢ = 1/¢). With the help of the same auxiliary variables
(32)—(33), we arrive at the following OAE

aw+
S 38
w0 yw+4 (38)
where w = z z(_; o) and the parameters are given by « = —6 =r¢, § = r2(14¢),

v=1—¢and r = p— q. Equation (38) is a discrete Riccati equation which can
be solved explicitly, by using the symmetry generator

X = ('yw2 + (6 — a)w — B3)0w . (39)

It should be noted that, when ¢ = —1, the invariant solutions obtained above
correspond to the periodic reduction f(_y 1) = f1,-1)-
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4 Concluding Remarks

The main purpose of this work was to demonstrate that the notions of symmetry
and invariance on the discrete level arise naturally from the interplay between
PAEs and PDEs that share a common set of solutions. Moreover, certain sym-
metry characteristics which admit the aforementioned cross configuration can be
used to derive invariant solutions, in exact analogy with the invariant solutions
of the continuous PDEs. In connection with the latter issue, recently in [11], a
parameter family of discrete OAEs which are compatible with the full Painlevé VI
differential equations was derived. More recently in [19], the discrete multi-field
Boussinesq system and the compatible PDEs were investigated. It was shown
that scaling invariant solutions of the relevant PDEs are built from solutions of
higher Painlevé equations, which potentially lead to solutions in terms of new
transcendental functions. Thus, it is even more interesting to find the compatible
discrete reduced system.
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