
Active array imaging in free space

In the case of active imaging the array elements act as sources and receivers and the
object that we wish to image is a scatterer. The geometry of the problem is depicted in
Figure 1. We dispose of a linear array (in 2d) which sends the pulse f(t, ~xs) from the sources
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Figure 1: Setup for imaging a distributed scatterer D with a passive array of transducers in
free space.

and records the data at the receivers. We assume here that the sources and receivers are
point transducers located at the same points, denoted ~xs, s = 1, . . . , N for the sources and
~xr, r = 1, . . . , N for the receivers. The aperture of the array is a = (N − 1) h, with h the
array pitch, that is, the distance between the receiver elements. The data recorded at the
array is the acoustic pressure field p(~xr, ~xs, t) recorder at receiver ~xr when the pulse f(t, ~xs)
is emitted from the source located at ~xs.

In imaging we are interested in solving the following problem:

Problem 1 Find the support D of the scatterer given the array response matrix p(~xr, ~xs, t),
for s, r = 1, . . . , N and t in some time interval [0, T ].

We will assume that the source function f(t, ~xs) is of the following form,

f(~x, t) = f(t)δ(~x− ~xs). (1)

To produce numerically the array data we can solve the wave equation either in the time
or in the frequency domain. We can also use the following expression

p̂(~xr, ~xs, ω) = f̂(ω)

∫

D

d~yĜ0(~xr, ~y, ω)Ĝ0(~xs, ~y, ω), (2)
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with

Ĝ0(~x, ~y, ω) =
e
i ω

|~x−~y|
c0

4π |~x− ~y|
,

being the Green’s function in the homogeneous background medium. For this project take
c0 = 1500m/s.

To produce the images, you should use the Kirchhoff migration imaging functional,

IKM(~yS) =

∫
dω

N∑

r=1

N∑

s=1

G0(~xr, ~yS, ω)p̂(~xr, ~xs, ω)G0(~xs, ~yS, ω) (3)

Source function For the imaging part assume that the array data are known at the fre-
quency range [f0 −B/2, f0 +B/2], with f0 the central frequency (recall that ω = 2πf). For
the construction of the data you will need to program the following source function,

f̂2(ω) = e−(ω−ω0)2/(2σ2)

with σ = πB/3.

1. Linear array Consider a linear array with N = 51 elements and array pitch h = 0.5m.
The location of the array elements is ~xr = (xr, z) with z = 10m and xr = 10+(r−1) h
(in m). We call the direction x the cross-range and z the range.

(a) Point target Consider the case of a point target located at ~y∗ = (22.5, L+10)m,
L = 200m.

i. Construct the KM image using only one frequency, f0 = 1.5kHz. What do
you observe? What is the resolution in range? in cross range? Compare with
the theory. You can use either one source on the array or many sources. Do
you get any benefit by using more sources?

ii. Add white measurement noise to the data with different values of SNR. Take
for example SNR = 10, 0, and−10 dB. Look at the paper [2] for details about
the SNR (cf. also [3]). Compare between one and N sources. Do you get any
benefit by using more sources?

iii. Construct the KM image using f0 = 1.5kHz and B = 1kHz. Use one and N
sources for different values of SNR. What do you observe?

iv. For f0 = 1.5kHz, B = 1kHz and the three SNR levels given above compute the
singular value decomposition of the response matrix frequency by frequency.
For the central frequency plot the sigular values of the response matrix. How
many are significant? Do you see the effect of the noise on the singular values?
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Plot also the first singular value as a function of frequency for the three SNR
levels. What do you observe?
Use the subspace projection method that we described in the course (see also
appendix A). Take J(ω) = 1, i.e., keep the strongest reflection at each fre-
quency and do the KM image. Are the images better than the ones obtained
in iii? Why?

(b) Extended object Consider the case of an extended object. Take for example,
as domain D a crack parallel to the array with center ~y∗ = (22.5, L+ 10)m, L =
200m and size b = 16m. Compute the noisy response matrix using f0 = 1.5kHz,
B = 1kHz and for three SNR levels SNR = 10, 0, and− 10 dB.

i. Construct the KM image for the three SNR levels. What do you observe?

ii. Compute the singular value decomposition of the response matrix frequency
by frequency. For the central frequency plot the sigular values of the response
matrix. How many are significant? Do you see the effect of the noise on the
singular values? Plot also the first (second, third, ...) singular value as a
function of frequency for the three SNR levels. What do you observe?

iii. Use the subspace projection method that we described in the course (see
also appendix A). Take J(ω) = 1, i.e., keep the strongest reflection at each
frequency and do the KM image.

iv. Can you chose the J(ω) appropriately frequency by frequency so as to recon-
struct the boundary of the object (i.e., the two end points of the crack)?

2. Circular array - extended object Consider a circular array with N = 101 (equidis-
tant) elements. The location of the array elements is on a circle centered at zero with
radius r = 20m. You might need to increase the number of array elements if the results
are not very good, make some tests to decide. Use your experience from the source
problem. Consider the case of an extended object. Take for example, as domain D a
square with center ~y∗ = (0, 0)m and size b = 4m. Compute the noisy response matrix
for f0 = 1.5kHz, B = 1kHz and for three SNR levels SNR = 10, 0, and− 10 dB.

(a) Construct the KM image for the three SNR levels. What do you observe?

(b) Compute the singular value decomposition of the response matrix frequency by
frequency. For the central frequency plot the sigular values of the response matrix.
How many are significant? Do you see the effect of the noise on the singular values?
Plot also the first (second, third, ...) singular value as a function of frequency for
the three SNR levels. What do you observe?

(c) Use the subspace projection method that we described in the course (see also
appendix A). Take J(ω) = 1, i.e., keep the strongest reflection at each frequency
and do the KM image.

(d) Can you chose the J(ω) appropriately frequency by frequency so as to reconstruct
the boundary of the object ?
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A The singular value decomposition of the response

matrix

The singular value decomposition of the N × N response matrix Π̂(ω) =
{
Π̂(~xr, ~xs, ω)

}
at

any frequency ω in the bandwidth is given by

Π̂(ω) =

N∑

j=1

σj(ω)ûj(ω)v̂
⋆
j (ω), (4)

so that
Π̂(ω)v̂j(ω) = σj(ω)ûj(ω), j = 1, . . . , N. (5)

Here the star stands for complex conjugate and transpose. The singular values σj(ω) ≥ 0
are in decreasing order and ûj(ω), v̂j(ω) are the orthonormal left and right singular vectors,
respectively.

Because the complex matrix Π̂(ω) is symmetric, although not hermitian, we can deter-
mine the left singular vectors as the complex conjugates of the right ones. However, this is
true only when the correct phase has been assigned to these vectors. The computation of
the SVD with any public software returns

ûj(ω) = eiϕj(ω)v̂j(ω), j = 1, . . . , N, (6)

with an ambiguous phase that is difficult to unwrap in a consistent manner across the
bandwidth. Nevertheless, the projection matrices

Pj(ω) = ûj(ω)û
⋆
j(ω) (7)

onto the space spanned by the jth left singular vector have no phase ambiguities, and this
is what we use in the algorithm described below.

A.1 Data filtering

Let us assume that the number N of array elements is large enough so that the number
n⋆(ω) of significant singular values of Π̂(ω) is smaller than N .

The filtered version of the response matrix, D[Π̂(ω);ω], is defined in the following way,

D[Π̂(ω);ω] =

N∑

j=1

dj(ω)Pj(ω)Π̂(ω) (8)

with dj(ω) ≥ 0 the filter weights that we take as binary,

dj(ω) =

{
1 if j ∈ J(ω)
0 otherwise ,

(9)
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for some set J(ω) ⊂ {1, . . . , N} that determines which singular vectors of Π̂(ω) we keep. The
simplest choice for the filter weights is to take JI(ω) = {1, 2, . . . , N} so that D becomes the
identity. Another choice is to take Jdetect(ω) = {1}, i.e., keep the strongest reflection at each
frequency. This is a very good method for detection because it is robust to noise. However,
it is not a good method for imaging. That is because the largest singular vector corresponds
in general to direct or specular reflections from the bulk of the object and imaging with it
will not provide any information about the geometrical details of the object, such as the
edges or the corners.

The filter Jdetect(ω) is related to the DORT method [4] which is designed to selectively
image or focus energy on well-separated point-like targets. It relies on the fact that the array
response matrix for m such targets has rank m, and that each singular vector corresponds
to a different target. For point-like targets that are not well separated, an optimization
approach introduced in [1] can determine weights dj(ω) that image the targets one by one
in a robust way. This optimization approach is coupled with the adaptive CINT functional
and therefore can be used in cluttered media. However, it does not generalize in an obvious
way to extended reflectors.

To focus on the edges of an extended object we follow the approach in [3] and define the

filter weights so that the normalized singular values σj(ω)/σ1(ω) of Π̂(ω) are in some interval
[a, b] ⊂ (0, 1),

JSM(ω; [a, b]) =

{
j

∣∣∣∣
σj(ω)

σ1(ω)
∈ [a, b]

}
. (10)

Selectively imaging the edges of extended objects in homogeneous media with the subspace
migration method was extensively studied in [3]. It was shown with numerical simulations
that this imaging method masks the strong specular reflections from the bulk of the object
and allows to image its edges quite effectively. It is also robust to noise for arrays that
have a large number of sensors. The analysis of the imaging method was carried out in the
Fraunhofer regime using the theory of generalized prolate spheroidal wave functions.

In [2] this method was applied for selectively image the edges of a crack. This allowed us
to obtain a better estimate of its size especially in cluttered media.
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