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Outline

• Monday I. Introduction and overview

II. Time reversal, migration and least squares imaging. Basic

resolution theory

Monday afternoon: C. Tsogka. An overview of computa-

tional results with migration imaging and introduction to

computational issues

• Tuesday III. Resolution theory, use of the Kirchhoff-Helmholtz

identities

IV. Noise sources and correlations. Open media and cavities.

Velocity estimation and imaging with distributed sensors (to

be continued on Thursday afternoon by J. Garnier).

Tuesday afternoon: C. Tsogka. Computational wave propa-

gation and array imaging
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Outline continued

• Wednesday V. The singular value decomposition, in detec-

tion and imaging

VI. Edge illumination, the Fraunhofer regime and inverse fil-

ters

Wednesday afternoon: L. Borcea. Imaging with layer anni-

hilation

• Thursday VII. Waves in random media: Layered media, the

paraxial approximation, radiative transport

VIII. Time reversal in random media, super-resolution, sta-

tistical stability

Thursday afternoon: J. Garnier. Passive sensor imaging with

cross correlations

• Friday IX. Coherent interferometry for imaging in random

media

X. Discussion of research problems: Time reversal, imaging,

random media, simulations, communications, optimization

and adaptivity
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Lecture I

Introduction and overview
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Inverse problems, detection, imaging

• Inverse problem: Given data as part of the solution of a

problem (PDE ...), find the unknown parameters (structure)

in it. Overly general, too inclusive for imaging

• Detection: Given two (or more) sets of data and an under-

lying model, find if they are consistent with it. Notion of

detectability threshold. Too special and restrictive for imag-

ing

• Imaging: From imperfect information (rough forward models,

limited and noisy data) estimate parts of the unknown (pa-

rameter) structure that is of interest. In particular, quantify

and understand the trade-offs between data size, computa-

tional complexity, and resolution.
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Passive and Active Sensor data

f(t)
xs

xr

Ls

Lr

D

y

Active sensor data: P (xr,xs, t) for (xr,xs, t) a set of source-

receiver locations. Can be up to a function in R2 ×R2 plus time

in R+ for planar arrays.

Passive sensor data: P (xr, t). can be up to a three-dimensional

dataset for planar arrays.
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Acquisition geometries, data structure

Different data acquisition geometries: Arrays, synthetic aperture

arrays (zero-offset), distributed sensors, full aperture imaging

(medical).

Narrowband (microwaves), broadband (ultrasound) and noise

probing signals.

Coherent (radar, sonar, seismic ...) and incoherent (infrared,

optical tomography, X-ray tomography) imaging.

Signal-to-Noise ratio (SNR) issues.
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Array data model and the nonlinear inverse problem

The time Fourier transform of the data, P̂ (xr,xs, ω), is modeled

by Û = f̂B(ω−ω0)ĜF (xr,xs, ω; c) where f̂B(ω−ω0) is the Fourier

transform of the pulse f(t) = e−iω0tfB(t) and ĜF is the Green’s

function that solves the Helmholtz equation

(∆ + k2n2(x))ĜF = −δ(x − y), k =
ω

c0
, n(x) =

c0
c(x)

with a radiation condition. The index of refraction is n(x).

The inverse problem, the array least squares problem, is:

Minimize J[c] + α||c||REG where

J[c] =
∫
dω

∑

xs,xr

∣∣∣P̂ (xr,xs, ω) − Û(xr,xs, ω; c)
∣∣∣
2

and α is a strength of regularization parameter.

Note that this is a NONLINEAR problem for the unknown index

of refraction n(x) or propagation speed c(x).
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Structure of velocity (refractive index) and linearization

We need a model that distinguishes between
(a) a background velocity that is known or can be estimated,
(b) the reflectors or targets that we wish to image, and
(c) the clutter that is part of the background that we do not
know, and can only estimate its overall influence statistically.

This motivates writing

n2(x) = n2
BG(x) + ρ(x) + µ(x)

where the background index of refraction is n(x) = c0/cBG(x),
the target reflectivity is ρ(x), and the clutter is modeled by the
mean zero, stationary random function µ(x).

We next linearize in the reflectivity by writing ĜF = Ĝ+δĜ where

(∆ + k2(n2
BG(x) + µ(x)))Ĝ = −δ(x − y)

is the (random) background Green’s function and

δĜ(x,y, ω) = k2
∫
dzρ(z)Ĝ(x, z, ω)Ĝ(z,y, ω)
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Linearized model and least squares

We model the data by

P̂ (xr,xs, ω) ∼ f̂B(xs, ω − ω0)δĜ(xr,xs, ω) = (Â(ω)ρ)(xr,xs)

where Â(ω) is the random, frequency dependent, linear operator

that maps reflectivities to array data. The least squares linearized

inverse problem is to minimize JL[ρ] where

JL[ρ] =
∫
dω

∑

xr,xs

|P̂ (xr,xs, ω) − (Â(ω)ρ)(xr,xs)|
2

When ρ is a sum of M functions with small support (compared

to the wavelength) with M smaller than the array size N , then

the normal solution for this problem is

ρ ∼
∫
dω(ÂH(ω)Â(ω))−1ÂH(ω)P̂ (ω)

In the general case

ρ ∼
∫
dωÂH(ω)(Â(ω)ÂH(ω))−1P̂ (ω)
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The adjoint operator

The adjoint operator ÂH(ω) maps array data to reflectivities and

is given by

(ÂH(ω)P̂ (ω))(z) =
ω2

c20

∑

xs,xr

f̂B(xs, ω − ω0)Ĝ(z,xs, ω)Ĝ(z,xr, ω)

·P̂ (xr,xs, ω)

Problem: ÂH(ω) is random and is not known, so this least

squares solution cannot be implemented to give an image!

However: The operator
∫
dωÂH(ω)Â(ω) is close to the identity

operator, with high probability. It is related to the time re-

versal operator for source imaging. A similar result holds for∫
dωÂ(ω)ÂH(ω). This motivates dropping the normalizing fac-

tors (the inverses) in the least squares solution

ρ(z) ∼
∫
dω(ÂH(ω)P̂ (ω))(z),

but resolution is affected, especially in narrowband cases and in

random media!

11



Kirchhoff or travel time migration

Assume that the background velocity is known and that there is

no clutter. Denote the deterministic background Green’s func-

tion by Ĝ0(x,y, ω) = eiωτ(x,y)

4π|x−y|
. We can then use the following

imaging functional for the reflectivity ρ(yS):

IKM(yS) =
∑

xs,xr

P (xr,xs, τ(xs,y
S) + τ(yS,xr))

Here τ(x,y) = |x− y|/c0 is the travel time from x to y when the

speed of propagation is c0.

Travel time migration (1970’s) is an elegant way to ‘triangulate’

the location of a scatterer using array (or distributed sensor)

data without having to estimate travel times.

Mathematical theory for travel time migration has been devel-

oped by Beylkin, Burridge, Symes, Bleistein, ...
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Travel time migration, back propagation, time reversal

Denote the deterministic background Green’s function by Ĝ0(x,y, ω).

Then the migration functional for imaging the reflectivity ρ(yS)

can be written as

I(yS) =
∫
dω

∑

xs,xr

P̂ (xr,xs, ω)Ĝ0(y
S,xs, ω)Ĝ0(y

S,xr, ω)

If we take Ĝ0 ∼ eiωτ(x,y), where τ(x,y) is the travel time from

x to y, then in the time domain we get the Kirchhoff migration

imaging functional.

For active sources (passive arrays) the imaging functional is

I(yS) =
∫
dω

∑

xr

P̂ (xr, ω)Ĝ0(y
S,xr, ω),

which is the time reversed field in homogeneous (unphysical)

medium.
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Basic resolution theory in homogeneous media.

λ

λ (L/a)

L/a

2

y

L

aa

L

Cross-range (Rayleigh) resolution: λ0L
a

Range resolution (narrowband): λ0L
2

a2

Range resolution (broadband): c0
B

Ultrasonic nondestructive testing: λ0 = 3cm, a = 1m, L =

3 − 5m (propagation speed 3Km/sec.)

Cross-range resolution: 9 − 15cm

•What happens in a randomly inhomogeneous medium?

It depends on whether it is known exactly, as in TIME-REVERSAL,

or only its large scale features are known, as in IMAGING.
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Numerical simulations for imaging in opaque structures

λ 0

λ 0λ 0

λ 0

100

100

absorbing medium

ar
ra

y

L=90

d=6

d
a

Computational domain 100λ0 × 100λ0 with central wavelength

λ0 = 3cm (at central frequency f0 = 100KHz and with c0 =

3km/sec), surrounded by a perfectly matched layer (pink).

The array has 185 receiving elements λ0/2 apart, for an aperture

of 92λ0.
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Passive and active array data

-Passive array -Active array

Left figures: Passive array

Right figures: Active array with central illumination

Top figures: Homogeneous medium.

Bottom figures: Random medium with with standard deviation

s = 3%.
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Why only main (Born) scattering matters in clutter

Down: Homogeneous, 1%, 3%STD.
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Kirchhoff migration or travel time imaging (passive array)

Down: Homogeneous, 1%, 2%, 3%STD. Across: different realizations.
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Critique of travel time migration imaging

It does not work well in clutter.

It is statistically unstable in clutter.

The reason is that KM tries to cancel the random phase of

the signals arriving at the array with a deterministic phase using

travel times.

The true Green’s function for the random medium is not known

and so cannot be used for imaging, which would result is huge

resolution enhancement as in physical time reversal.
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Lecture II

Time reversal, migration and least squares imaging:

Basic resolution theory
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Point spread function in a homogeneous medium

Recall the Fourier transform:

ĝ(ω) =
∫

R
eiωtg(t)dt ; g(t) =

1

2π

∫
e−iωtĝ(ω)dω

The FT of the pulse e−iωtfB(t) (real part) emitted by the source

is f̂B(ω − ω0) with f̂B = 0 for ω > B/2. The bandwidth is B.

A point source at y gives the array data

P (xr, t) = e−iω0t
fB(t− τ(xr,y))

4π|xr − y|
, P̂ (xr, ω) = f̂B(ω−ω0)

eiωτ(xr,y)

4π|xr − y|

where τ(xr,y) is the travel time from y to xr.

For a very broadband pulse (impulse response) the signal arrives at xr at this
travel time. Therefore |xr − y|2 = c20t

2. If L is the distance of y to the array
and xr is the distance from xr to the nearest point from y to the array, then
x2
r + L2 = c20t

2 or

t2

L2/c20
−
x2
r

L2
= 1

which is a hyperbola in (xr, t).
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Array beamforming

Place a point source ar xr and let g(t,xr) be the pulse emitted

from it. The signal received at a search point yS is

∑

xr

g(t− τ(xr,y),xr)

4π|xr − yS|

How do we choose g(t,xr) so as to beamform a pulse to y?

Use time reversal: g(t,xr) = P (xr,−t). Then the signal at yS is

e−iω0t
∑

xr

fB(−t+ τ(xr,y) − τ(xr,yS))

(4π)2|xr − yS|2

and in the Fourier domain

f̂B(ω − ω0)
∑

xr

Ĝ0(xr,y, ω)Ĝ0(xr,y
S, ω)

How well does this focus around y?
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Beamforming, time reversal, migration

The travel time migration functional is

IKM(yS) =
∫
dω

∑

xr

P̂ (xr, ω)e−iωτ(xr,y
S) =

∑

xr

P (xr, τ(xr,y
S))

and up to multiplicative factors this is the conjugate of beam-

forming.

Physical time reversal is not an imaging functional but a physical

process:

ΓTR(yS) =
∫
dω

∑

xr

P̂ (xr, ω)Ĝ(xr,y
S, ω)

There is no difference between them in a homogeneous medium.

Basic fact:

IKM loses resolution in random media

ΓTR gains resolution in random media!
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Time harmonic point spread function

Detailed analysis of

I =
∑

xr

eik(|xr−y|−|xr−yS|) , k =
ω

c0
, λ =

2π

k

under the following conditions. If the origin of coordinates is at the center
of a linear array, y = (L,0), yS = (L + η, ξ), and xr = (0, rh/2) for r =
0,±1,±2, ...,±N , let a = Nh and assume that a≪ L. Assume also that λ≪ a
and that the spacing h/2 between sensors smaller than a half wavelength,
h < λ so that xr = (0, rh/2) = (0, x) with −a/2 ≤ x ≤ a/2.

We then have:

|xr − y| = (L2 + x2)1/2 = L(1 + (
x

L
)2)1/2 ≈ L+

x2

2L
and similarly

|xr − yS| = ((L+ η)2 + (x− ξ)2)1/2 ≈ L+ η+
(x− ξ)2

2(L+ η)

so that

|xr − y| − |xr − yS| ≈ −η −
ξ2

2(L+ η)
+

xξ

L+ η
+

ηξ2

2L(L+ η)

The sum above can be approximated by an integral

I ≈
2

h
e−ik(η+

ξ2

2(L+η)
)

∫ a/2

−a/2

eik(
xξ

L+η
+ ηξ2

2L(L+η)
)dx
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Continue analysis of time harmonic psf

Change variables in the integral, x = ax′. After dropping primes

and taking absolute values the integral is

2a

h

∣∣∣∣∣∣

∫ 1/2

−1/2
e
iπ( kaξ

π(L+η)
x+ k

2π
a2η

2L(L+η)
x2)

dx

∣∣∣∣∣∣

But λ = 2π/k so the exponent is

2ξa

λ(L+ η)
x+

ηa2

λL(L+ η)
x2

For η ≪ L this simplifies to

2
ξ

λL/a
x+

η

λ(L/a)2
x2

We see that the cross range coordinate ξ scales with λL/a and

the range resolution with η with λ(L/a)2. These are the classical

time-harmonic resolution limits in array (aperture) imaging, in

the regime λ≪ a≪ L.
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Broadband range resolution

It is simply c0/B where B is the bandwidth.

This can be seen from the formula

e−iω0t
∑

xr

fB(−t+ τ(xr,y) − τ(xr,yS))

(4π)2|xr − yS|2

after noting the width of fB is proportional to that of its Fourier

transform, which is B.

In units of length it is c0/B.
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Full aperture resolution (time harmonic)

What is the resolution of the Kirchhoff migration (or time re-

versal) functional in a homogeneous medium when the array en-

closes the source point? Lets consider time reversal

ΓTR(yS, ω) =
∑

xr∈∂D

P̂ (xr, ω)Ĝ0(xr,y
S, ω) ≈

∫

∂D
dS(x)P̂ (x, ω)Ĝ0(x,y

S, ω)

Assume that D is a convex region and that

|y − yS|

|x − yS|
≪ 1

This condition says that the search point and the source are

away from the array, which is the boundary of D. We will see

how to generalize this in lecture III.

We will show that the resolution is λ/2, which is a well known

result.
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Full aperture psf

We can get an approximate expression for the difference of the

distance to the array from y and from yS under the assumption

that they are relatively far from it. We first write

ΓTR(yS, ω) =
∫

∂D
dS(x)

eik(|x−y|−|x−yS|)

(4π)2|x − y||x − yS|

Then we note that

|x − y| − |x − yS| ≈ (y − yS) · (
yS − x

|yS − x|
+ o(1))

which means that we have to evaluate the integral

ΓTR(yS, ω) ≈
∫

∂D
dS(x)

e
ik(y−yS)· yS−x

|yS−x|

(4π)2|x − yS|2

where we have simplified the denominator as well.
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Full aperture psf, continued

Since we have assumed that array ∂D is convex, we can parametrize

it with polar coordinates relative to a fixed point x∗ on it:

|x − yS| = g(θ, φ)

with θ and φ the polar and azimuthal angles, respectively. In

these coordinates the surface element has the form dS(x) =

|x − yS|2 sin θdθdφ. Therefore

ΓTR(yS, ω) ≈
∫ π

0

∫ 2π

0

eik|y
S−y| cos θ

(4π)2
sin θdθdφ

The integration gives

ΓTR(yS, ω) ≈
sin(k|yS − y|)

4π|yS − y|
.

We get a resolution estimate from the first zero of the sinc

function, the Rayleigh resolution. We have k|yS − y| = π or

|yS − y| = λ/2, which is a well known result.
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Broadband psf

So far we have considered only time harmonic point spread func-

tions. We will now consider a planar array A ⊂ R2 and signals

with bandwidth B, and we will analyze the weighted Kirchhoff

migration functional in the limit A → R2, B → ∞. The imaging

functional is

IWKM(yS;A,B) =
∫

R3
ρ(z)

∫

A

∫

|ω−ω0|≤B/2
M(x,yS, ω)

×
ei(ω/c0)(|x−z|−|x−yS|)

(4π)2|x − z||x − yS|
dzdxdω

The form of the multiplier M is given below. It compensates

for the fact that the array is large. It significance will become

clearer in Lecture III.

We assume, as in the full aperture, time harmonic case, that

|y − yS|

|x − yS|
≪ 1
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Broadband psf, continued

We use this condition it to simplify the imaging functional

IWKM(yS;A,B) ≈
∫

R3
ρ(z)

∫

A

∫

|ω−ω0|≤B/2
M(x,yS, ω)

e
i(ω/c0)(z−yS)· x−yS

|x−yS |

(4π)2|x − yS|2

We introduce the change of variables from R3 to itself and its

Jacobian

(x, ω) ∈ R3 → ζ =
ω

c0

x − yS

|x − yS|
, dxdω =

∂(x, ω)

∂ζ
= J(x,yS, ω)dζ

which is one-to-one and onto as A → R2 and B → ∞. Let

Z(A,B) be the image of the (x, ω) region of integration in ζ

space.
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Broadband psf, continued

With this change of variables we have

IWKM(yS;A,B) ≈
∫

R3
ρ(z)

∫

Z(A,B)

ei(z−yS)·ζ

(2π)3

provided we choose the multiplier M so that

M(x,yS, ω)J(x,yS, ω)

(4π)2|x − yS|2
=

1

(2π)3

Now as A → R2 and B → ∞ the inner integral becomes a 3D

delta function and therefore

IWKM(yS;A,B) ≈ ρ(yS)

so that we have an asymptotic recovery of the reflectivity.

This calculation in media with smooth background velocity was

carried out by Baylikn in the 80’s. It is presented in the book of

Bleistein, Cohen and Stockwell (Springer 2001).
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The multiplier M

By an elementary calculation we find that the multiplier M is

proportional to

M(x,yS, ω) ∼ n(x) · (x − yS)

where n(x) is the unit ”outward” normal to array at x. By

outward we mean that it is pointing in the direction exterior to

the region of the reflectors with reflectivity ρ.

This is a rather simple form for the multiplier, which suggests

that there should be a more direct and perhaps more general

and less computational way to get this asymptotic consistency

of the migration imaging functional. In Lecture III we will see

that this is indeed the case. There is a simpler and more gen-

eral way to analyze the large array, large bandwidth behavior of

backpropagation (migration) imaging functionals.

Note also that the multiplier M must be consistent with the least squares
multiplier AHA (Lecture I), which we have dropped in travel time migration
and in back propagation.
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Lecture III

Resolution theory, use of the Kirchhoff-Helmholtz

identities
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Green’s identity

Let D be a closed and bounded region with smooth boundary ∂D and let c(x)
be a given speed of propagation that is uniform outside a subregion interior to
D. The time harmonic, outgoing Green’s function and its conjugate satisfy

∆xĜ(ω,x,y2) +
ω2

c2(x)
Ĝ(ω,y,y2) = −δ(x − y2) ,

∆xĜ(ω,x,y1) +
ω2

c2(x)
Ĝ(ω,x,y1) = −δ(x − y1) .

We multiply the first equation by Ĝ(ω,x,y1) and subtract the second equation

multiplied by Ĝ(ω,x,y2):

∇y · [Ĝ(ω,x,y1)∇xĜ(ω,x,y2) − Ĝ(ω,x,y2)∇xĜ(ω,x,y1)]

= Ĝ(ω,x,y2)δ(x − y1) − Ĝ(ω,x,y1)δ(x − y2)

= Ĝ(ω,x1,y2)δ(x − y1) − Ĝ(ω,y1,y2)δ(x − y2) ,

where we have used the reciprocity property Ĝ(ω,y2,y1) = Ĝ(ω,y1,y2). Inte-
grate over ∂D and use the divergence theorem:

∫

∂D

n(x) · [Ĝ(ω,x,y1)∇xĜ(ω,x,y2) − Ĝ(ω,x,y2)∇xĜ(ω,x,y1)]dS(x)

= Ĝ(ω,y1,y2) − Ĝ(ω,y1,y2) ,

where n(x) is the unit outward normal to ∂D.
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The Sommerfeld radiation condition

For the time harmonic Green’s function Ĝ(ω,x,y) this condition is

|x|(
x

|x|
· ∇x −

iω

c0
)Ĝ(ω,x,y) → 0

as |x| → ∞. In a homogeneous medium where

Ĝ(ω,x,y) = Ĝ0(ω,x,y) =
ei(ω/c0)|x−y|

4π|x − y|

this simply means that for |x − y| → ∞

∇xĜ0(ω,x,y) ≈
iω

c0

x − y

|x − y|
Ĝ0(ω,x,y)

For a smooth background velocity the high frequency (WKB) approximation
of the Green’s function is

Ĝ(ω,x,y) ≈ a(x,y)eiωτ(x,y) .

Here a(x,y) and τ(x,y) are smooth except at x = y. The amplitude a(x,y)
satisfies a transport equation and the travel time τ(x,y) the eikonal equation.
It is symmetric τ(x,y) = τ(y,x) and from Fermat’s principle

τ(x,y) = inf

{
T s.t. ∃ (Xt)t∈[0,T ] ∈ C1 , X0 = x , XT = y , |

dXt

dt
| = c(Xt)

}
.

The radiation condition can now be written as

∇xĜ(ω,x,y) ≈ iω∇xτ(x,y)Ĝ(ω,x,y)
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The Kirchhoff-Helmholtz identity

Now lets assume that we can use the radiation condition in

Green’s identity. We get

iω
∫

∂D
n(x) · (∇xτ(x,y

S) + ∇xτ(x,y))Ĝ(ω,x,y)Ĝ(ω,x,yS)dS(x)

= Ĝ(ω,y,yS) − Ĝ(ω,y,yS) ,

Assume that y and yS are near each other as they are the source

location and the search point of the imaging function. Then we

have

2iω
∫

∂D
n(x) · ∇xτ(x,y

S)Ĝ(ω,x,y)Ĝ(ω,x,yS)dS(x)

= Ĝ(ω,y,yS) − Ĝ(ω,y,yS) ,

37



Connection with imaging and time reversal

Clearly

IWBP(yS) =

∫

∂D

n(x) · ∇xτ(x,y
S)Ĝ(ω,x,y)Ĝ(ω,x,yS)dS(x)

is a weighted imaging functional with back propagation to a search point yS,
when there is a point source at y and the array is the ”full aperture” boundary
∂D.

From the KH identity, assuming that it can used, we have that

IWBP(yS) ≈
1

2iω
(Ĝ(ω,y,yS) − Ĝ(ω,y,yS)).

This approximate identity is quite general regarding the background medium,
which can be rough and even random. But (i)
the array must be in a homogeneous medium and far from the scattering
background. The source to be ”imaged” can be in the scattering region.
We put quotations on imaged because if the medium is rough and random
it will not be known and so IWBP(yS) is a time reversal field function, not
an imaging functional. If the background is variable but known then it is an
imaging functional. In addition (ii)
the array must sufficiently far so that the radiation condition applies.
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Resolution results in high frequency regime

In a smooth background at high frequencies we have

Ĝ(ω,x,y) ≈ a(x,y)eiωτ(x,y)

and lets assume that the amplitude a is real. Then

IWBP (yS) ≈
1

2iω
(Ĝ(ω,y,yS) − Ĝ(ω,y,yS))

≈
1

ω
a(y,yS) sin(ωτ(y,yS))

From the first zero of the sine function we get a resolution limit,

the Rayleigh resolution limit: ωτ(y,y∗) = π. If c0 is a reference

background speed then

c0τ(y,y
∗) =

πc0
ω

=
λ0

2
,

which is an appropriate generalization of the ”half wavelength”

far field (high frequency) resolution limit for full aperture imag-

ing.
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Broadband, large planar arrays

In the high frequency, far field regime we can symmetrize a large

planar array about the source and make the array imaging func-

tional (the psf) look approximately like a full aperture functional.

This argument leads to the approximation
∫

|ω−ω0|≤B/2
dωf̂B(ω−ω0)

∫

A
n(x)·∇xτ(x,y

S)Ĝ(ω,x,y)Ĝ(ω,x,yS)dS(x)

≈ a(y,yS)
∫

|ω−ω0|≤B/2
dω
f̂B(ω − ω0)

4iω
eiωτ(y,y

S)

We have used here the fact that the pulse is a real function

and the omega integration extends to negative frequencies with

f̂B(ω) = f̂B(−ω).
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Large, broadband arrays, continued

For a suitably chosen probing pulse we see from this approxima-

tion that
∫

|ω−ω0|≤B/2
dωf̂B(ω−ω0)

∫

A
n(x)·∇xτ(x,y

S)Ĝ(ω,x,y)Ĝ(ω,x,yS)dS(x)

≈ a(y,yS)δ(τ(y,yS)),

as B → ∞ and A→ R2.

This is a generalization of the resolution result mentioned ear-

lier in connection with a change of variables in a homogeneous

medium.
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Summary of results in resolution theory

• Time-harmonic, paraxial, λ≪ a≪ L:

Cross range (λL)/a, Range λ(L/a)2.

• Broadband: Range c0/B (arrival time resolution). Cross

range resolution is still (λL)/a.

• Full aperture: λ/2

• Large aperture, large bandwidth arrays: exact recovery with

suitably weighted migration or back propagation functional.
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Lecture IV

Noise sources and correlations. Open media and

cavities. Velocity estimation and imaging with

distributed sensors

Based on a paper with Josselin Garnier that can be obtained

from http://math.stanford.edu/̃ papanico
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Waves from noise sources

The simplest way randomness can enter is from sources that are

(i) randomly distributed and (ii) are stationary random processes

in time.

In this case the signals recorded at sensors located at {xj}, usu-

ally distributed over some region, are themselves stationary in

time random processes. What information can possibly be in

these signals? Can we image with them?

First some definitions:

1. Random process ν(t), t ∈ R (or µ(x),∈ Rd, d > 1) are stationary

if ν(t1), ν(t2), . . . , ν(tM) has the same joint law as ν(t1+h), ν(t2+

h), . . . , ν(tM+h) for any set of points {tj} and any h. In this case

E{ν(t)} is a constant which we take as zero.

2. The correlation C(τ) = E{ν(t)ν(t+ τ)} is a function of the

lag τ only. Assuming that C is an integrable function, its Fourier

transform Ĉ(ω) =
∫
eiωtC(t)dt is always non-negative or more

generally a measure (Bohner’s theorem).
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Wave cross correlations

Let u(t,x1) and u(t,x2) denote the time-dependent wave fields

recorded by two sensors at x1 and x2. Their empirical cross

correlation function over the time interval [0, T ] with time lag τ

is given by

CT (τ,x1,x2) =
1

T

∫ T

0
u(t,x1)u(t+ τ,x2)dt .

In a homogeneous medium, if the source of the waves is a space-

time stationary random field that is also delta correlated in space

and time then we will show that

∂

∂τ
CT (τ,x1,x2) ≃ G(τ,x1,x2) −G(−τ,x1,x2) ,

where G is the Green’s function.

This approximate equality holds for T sufficiently large and provided some
limiting absorption is introduced to regularize the integral. The main point
here is that the time-symmetrized Green’s function can be obtained from the
cross correlation if there is enough source diversity. In this case the wave
field at any sensor is equipartitioned, in the sense that it is a superposition of
uncorrelated plane waves of all directions. We can recover in particular the
travel time τ(x1,x2) from the singular support of the cross correlation.
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Wave equation with noise sources

We consider solutions u of the wave equation in a three dimen-

sional inhomogeneous (possibly random: c(x) random) medium:

1

c2(x)

∂2u

∂t2
− ∆xu = nε(t,x) .

The term nε(t,x) models a random distribution of noise sources.

It is a zero-mean stationary (in time) Gaussian process with au-

tocorrelation function

〈nε(t1,y1)n
ε(t2,y2)〉 = F ε(t2 − t1)Γ(y1,y2) .

Here 〈·〉 stands for statistical average with respect to the distri-

bution of the noise sources.

We assume that the decoherence time of the noise sources is much smaller
than typical travel times between sensors. If we denote with ε the (small)
ratio of these two time scales, we can then write the time correlation function
F ε in the form

F ε(t2 − t1) = F (
t2 − t1

ε
) ,

where t1 and t2 are scaled relative to typical sensor travel times.
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Statistics of the noise sources

The Fourier transform F̂ ε of the time correlation function is a

nonnegative, even, real-valued function. It is proportional to the

power spectral density of the sources:

F̂ ε(ω) = εF̂ (εω) ,

where the Fourier transform is defined by

F̂ (ω) =
∫
F (t)eiωtdt .

The spatial distribution of the noise sources is characterized by

the autocovariance function Γ. It is the kernel of a symmetric

nonnegative definite operator. For simplicity, we will assume that

the process n is delta-correlated in space:

Γ(y1,y2) = θ(y1)δ(y1 − y2) ,

where θ characterizes the spatial support of the sources.
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Stationary solution

The stationary solution of the wave equation has the integral

representation

u(t,x) =
∫ ∫ t

−∞
nε(s,y)G(t− s,x,y)dsdy

=
∫ ∫

nε(t− s,y)G(s,x,y)dsdy ,

where G(t,x,y) is the time-dependent Green’s function. It is the

fundamental solution of the wave equation

1

c2(x)

∂2G

∂t2
− ∆xG = δ(t)δ(x − y) ,

starting from G(0,x,y) = ∂tG(0,x,y) = 0 (and continued on the

negative time axis by G(t,x,y) = 0 ∀t ≤ 0).
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The empirical cross correlation and its mean

The empirical cross correlation of the signals recorded at x1 and

x2 for an integration time T is

CT (τ,x1,x2) =
1

T

∫ T

0
u(t,x1)u(t+ τ,x2)dt .

It is a statistically stable quantity, in the sense that for a large

integration time T , CT is independent of the realization of the

noise sources.

The expectation of CT (with respect to the distribution of the

sources) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2) ,

where C(1) is given by

C(1)(τ,x1,x2) =
∫
dy

∫
dsds′G(s,x1,y)G(τ+s+s′,x2,y)F ε(s′)θ(y) ,
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Fourier form and self-averaging of the cross correlation

In the frequency domain the cross correlation is given by

C(1)(τ,x1,x2) =
∫
dy

∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)F̂ ε(ω)e−iωτθ(y) .

The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)
T→∞
−→ C(1)(τ,x1,x2) ,

in probability with respect to the distribution of the sources.

More precisely, the fluctuations of CT around its mean value C(1)

are of order T−1/2 for T large compared to the decoherence time

of the sources.
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Elementary derivation of the cross correlation identity

We derive the relation between the cross correlation and the

Green’s function when the medium is homogeneous with back-

ground velocity c0 and the source distribution extends over all

space, i.e. θ ≡ 1.

In this case the signal amplitude diverges because the contri-

butions from noise sources far away from the sensors are not

damped. For a well-posed formulation we need to introduce

some dissipation, so we consider the solution u of the damped

wave equation:

1

c20
(
1

Ta
+

∂

∂t
)2u− ∆xu = nε(t,x) .
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Cross correlation identity in a homogeneous medium

In a three-dimensional medium with dissipation and with noise

source distribution extending over all space θ ≡ 1

∂

∂τ
C(1)(τ,x1,x2) = −

c20Ta

4
e
−

|x1−x2|
c0Ta [F ε∗G(τ,x1,x2)−F

ε∗G(−τ,x1,x2)] ,

where ∗ denotes convolution in τ and G is the Green’s function

of the homogeneous medium without dissipation:

G(t,x1,x2) =
1

4π|x1 − x2|
δ(t−

|x1 − x2|

c0
) .

52



Estimating travel times from cross correlations

If the decoherence time of the sources is much shorter than the

travel time (i.e., ε≪ 1), then F ε behaves like a Dirac distribution

and we have

∂

∂τ
C(1)(τ,x1,x2) ≃ e

−
|x1−x2|
c0Ta [G(τ,x1,x2) −G(−τ,x1,x2)] ,

up to a multiplicative constant.

It is therefore possible to estimate the travel time τ(x1,x2) =

|x1 − x2|/c0 between x1 and x2 from the cross correlation, with

an accuracy of the order of the decoherence time of the noise

sources.
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On the extraction of the travel time from cross

correlations

The cross correlation is closely related to the symmetrized Green’s

function from x1 to x2 not only for a homogeneous medium but

also for inhomogeneous media.

One can give a simple and rigorous proof for an open inhomoge-

neous medium in the case in which the noise sources are located

on the surface of a sphere that encloses both the inhomogeneous

region and the sensors, located at x1 and x2.

The proof is based on an approximate identity that follows from

Green’s identity and the Sommerfeld radiation condition. This

approximate identity is none other than the Helmholtz-Kirchhoff

integral theorem of Lecture III.
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Velocity estimation with travel time tomography

If the sensors are at known locations {xj}, j = 1,2, . . . , N and are

suitably distributed over a region whose speed of propagation

c(x) is unknown, then this speed can be estimated from the travel

time {τ(xi,xj)}. There are tomographic algorithms for doing

this estimation. The accuracy and robustness of the resulting

estimate ĉ(x) will depend on (i) the accuracy of the travel time

estimates, (ii) the topology of the sensor network, and (iii) the

properties of the ambient noise sources, which are also unknown.

The estimation of the surface wave velocity in Southern Cal-

ifornia from seismic noise correlations over some 150 seismic

stations was a breakthrough in 2005 when it was successfully

done by Sabra, Gerstoft, Roux, and Kuperman (Surface wave

tomography from microseisms in Southern California, Geophys.

Res. Lett. 32 L14311)
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Derivation of the cross correlation identity

The Green’s function of the homogeneous medium with dissipation is:

Ga(t,x1,x2) = G(t,x1,x2)e
− t

Ta .

The cross correlation function is given by

C(1)(τ,x1,x2) =

∫
dy

∫
dsds′Ga(s,x1,y)Ga(τ + s+ s′,x2,y)F ε(s′) .

Integrating in s and s′ gives

C(1)(τ,x1,x2) =

∫
dy

16π2|x1 − y| |x2 − y|
e
−

|x1−y|+|x2−y|

c0Ta F ε(τ −
|x1 − y| − |x2 − y|

c0
) .

We parameterize the locations of the sensors by x1 = (h,0,0) and x2 =
(−h,0,0), where h > 0, and we use the change of variables for y = (x, y, z):






x = h sin θ coshφ , φ ∈ (0,∞) ,
y = h cos θ sinhφ cosψ , θ ∈ (−π/2, π/2) ,
z = h cos θ sinhφ sinψ , ψ ∈ (0,2π) ,

whose Jacobian is J = h3 cos θ sinhφ(cosh2ψ − sin2 θ). Using the fact that
|x1 − y| = h(coshφ− sin θ) and |x2 − y| = h(coshφ+ sin θ), we get

C(1)(τ,x1,x2) =
h

8π

∫ ∞

0

dφ sinhφ

∫ π/2

−π/2

dθ cos θe
−2h coshφ

c0Ta F ε(τ +
2h sin θ

c0
) .
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Derivation continued

After the new change of variables u = h coshφ and s = (2h/c0) sin θ, we obtain

C(1)(τ,x1,x2) =
c20Ta

32πh
e
− 2h

c0Ta

∫ 2h/c0

−2h/c0

F ε(τ + s)ds .

By differentiating in τ , we get

∂

∂τ
C(1)(τ,x1,x2) =

c20Ta

32πh
e
− 2h

c0Ta [F ε(τ +
2h

c0
) − F ε(τ −

2h

c0
)] ,

which is the desired result since |x1 − x2| = 2h.
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Use of the Kirchhoff-Helmholtz identity

Let us assume that the medium is homogeneous with background

velocity ce outside the ball B(0, r) with center 0 and radius r.

Then, for any x1,x2 ∈ B(0, r) we have for L≫ r the KH identity:

Ĝ(ω,x1,x2)−Ĝ(ω,x1,x2) =
2iω

ce

∫

∂B(0,L)
Ĝ(ω,x1,y)Ĝ(ω,x2,y)dS(y) .

We also assume that the sources are localized with a uniform

density on the sphere ∂B(0, L) with center 0 and radius L.

If L≫ r, then for any x1,x2 ∈ B(0, r)

∂

∂τ
C(1)(τ,x1,x2) = −F ε ∗G(τ,x1,x2) + F ε ∗G(−τ,x1,x2) ,

up to a multiplicative factor. Here ∗ stands for convolution in τ .
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Directional sources

What if the ambient noise sources are not distributed evenly

about the sensors? What if the wave fields recorded at the sen-

sors have a dominant orientation instead of being equdistributed

in all directions?

In such cases we cannot expect to be able to recover the full

(symmetrized) Green’s function between the sensors. At best

we can recover the travel time τ(x1,x2) if the line (the ray)

connecting the two sensors continues into the source region.

This is done using the stationary phase method and is discussed

further in Garnier’s lecture (Thursday afternoon).

What about imaging reflectors with passive sensor networks using

ambient noise sources? This can be done using suitable fourth

order cross correlations.
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Concluding remarks on noise cross correlations

• Cross correlations can be used effectively in closed environ-

ments with limited ambient noise source diversity but en-

hancing by multiple wall reflections (ergodic cavities)

• It is also possible that a scattering medium can enhance

ambient noise source diversity and make the estimation of

background velocities feasible

• But there is a limitation in how strongly scattering the medium

can be: the transport mean free path must be long compared

to the distance between sensors (to preserve coherence) but

short compared to the distance between noise sources and

sensors

• In a scattering medium, the transport mean free path is a

rough measure of how far waves have to propagate before

they lose their coherence and wave energy diffuses isotropi-

cally
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Lecture V

The singular value decomposition, in detection and

imaging
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Optimal illumination for detection

Let Π̂(xr,xs, ω) be the array impulse response matrix over the

bandwidth ω0 − B/2 < ω < ω0 + B/2, with Ns sources and Nr

receivers which we will assume are collocated and Ns = Nr = N .

If f̂(ω) = (f̂(xs, ω)) is a vector of illuminations in the frequency

domain, then

P̂f(ω) =

(
∑

xs

Π̂(xr,xs, ω)f̂(xs, ω)

)

is the vector of received signals at the array, in the frequency do-

main. The total power of these signals is Ptot(f) =
∫

dω||Π̂(ω)f̂(ω)||2

Problem: Find P = maxf Ptot(f) with ||f ||2 =
∫

dω||f̂(ω)||2 = 1

This problem of optimal illumination for received power, that is,

for detection, is solved using the SVD of Π̂. We assume that we

have a fixed bandwidth of size B.
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The SVD of the array response matrix

The array impulse response matrix is symmetric but not hermi-

tian Π̂T (ω) = Π̂(ω). Let v̂j and ûj be its right and left singular

vectors respectively. Then its singular value decomposition is

Π̂(ω) =
p∑

j=1

σj(ω)ûj(ω)v̂∗
j(ω)

Here p ≤ N is the rank of Π̂ and σ1 ≥ σ2 ≥ · · · ≥ σp > 0.

Suppose that ω∗ = argmaxσ1(ω) over the bandwidth and let

f̂(ω) =
1

2δ
v̂1(ω

∗) , ω ∈ [ω∗ − δ, ω∗ + δ]

and zero outside this interval. Then for this illumination f we

have that Ptot(f) → P = σ2
1(ω

∗) as δ → 0. The optimal illumina-

tion is a narrow band signal proportional to v̂1(ω
∗).
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Iterative time reversal, frequency domain

Consider the following iterative process (experiment). It is done

in the time domain but we describe it frequency by frequency:

1. Start with illumination f̂ . The received signal at the array is

Π̂f̂

2. Use the time reversed field as illumination. The received field

is Π̂Π̂f̂

3. Repeat these two steps n times.

The field received at the array has the form

K̂n(ω)f̂(ω) , K̂(ω) = Π̂(ω)Π̂(ω)

where K̂(ω) is the time reversal operator. It is hermitian and

positive definite for each frequency, and its eigenvalues are the

squares of the singular values. Therefore for large n we have

K̂n(ω)f̂(ω) ≈ σ2n
1 (ω)v̂1(ω)v̂∗

1(ω)f̂(ω)
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Iterative time reversal, time domain

In the time domain the signal received at the array after a large

number n of iterative TR has the approximate form
∫

dωe−iωtσ2n
1 (ω)v̂1(ω)v̂∗

1(ω)f̂(ω)

By the Laplace asymptotic method it can be further approxi-

mated, up to a constant, by

e−iω∗tσ2n
1 (ω∗)v̂1(ω

∗)v̂∗
1(ω

∗)f̂(ω∗)

which is a time harmonic signal at the frequency where σ1(ω)

takes it maximum value.

With ITR we can get v̂1(ω) directly from the physical experiment

without doing the SVD. This however requires some special ad-

justments in order to get it over the full bandwidth. The other

singular vectors can also be obtained with ITR.

But why are we interested in the SVD of the response matrix

and ITR, which is a physical way of getting the SVD?
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Point scatterer models

Let M point scatterers be at yj, j = 1,2, ..., M . Point scatterers

means that the reflectivity is

ρ(z) =
M∑

j=1

ρj1|z−yj|≤δj
,

with the radii δj small compared to wavelengths. In this case the

impulse response matrix in the Born approximation is

Π̂(xr,xs, ω) =
M∑

j=1

ξj(ω)Ĝ(xs,yj, ω)Ĝ(xr,yj, ω)

The scattering amplitudes ξj(ω) depend on the reflectivities and

radii (or shape, in general), and on the frequency. Define the

array vector Green’s function

ĝ(y, ω) = (Ĝ(xr,y, ω))

Then the array impulse response matrix has the form

Π̂(ω) =
M∑

j=1

ξj(ω)ĝ(yj, ω)ĝT (yj, ω)
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Well separated point scatterers

The array vectors {ĝ(yj, ω)} are not of course orthogonal in gen-

eral. But

ĝ∗(yj, ω)ĝ(yl, ω) =
∑

xr

Ĝ(xr,yj, ω)Ĝ(xr,yl, ω)

is exactly the basic quantity that arises in imaging and time

reversal, and whose behavior we have analyzed in Lectures II-III.

We know that if the distance |yj − yl| is large compared to the

resolution limit of the array at this frequency, then these array

vectors are approximately orthogonal

ĝ∗(yj, ω)ĝ(yl, ω) ≈ ||ĝ(yj, ω)||2δjl

In any case we may assume that the {ĝ(yj, ω)} are linearly inde-

pendent.

In the well separated case the array impulse response matrix is

in SVD form.
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Well separated scatterers, continued

In the well separated case we have

Π̂ĝ(yl) =
M∑

j=1

ξjĝ(yj)ĝ
T (yj)ĝ(yl) ≈ ξl||ĝ(yl)||

2ĝ(yl)

Therefore assuming that the ξl are positive and that ξl||ĝ(yl)||
2

are arranged in decreasing order we have

v̂l =
ĝ(yl)

||ĝ(yl)||
, ûl = v̂l, σl = ξl||ĝ(yl)||

2

We conclude that the rank of the SVD can be associated uniquely

with the number of small scatterers, even of they are not well

separated, up to some special configurations.

We now look at time reversal and imaging with the SVD
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TR with the SVD

With illumination f the time reversal field at yS is

ΓTR
f (yS) =

∫
dωĝT (yS, ω)Π̂(ω)f̂(ω)

When f̂ = v̂l then

ΓTR
l (yS) =

∫
dωσl(ω)ĝT (yS, ω)ûl(ω)

and in the well separated case

ΓTR
l (yS) =

∫
dωξl(ω)||ĝ(yl, ω)||ĝT (yS, ω)ĝ(yl, ω)

What is interesting here is that by using the SVD we can se-

lectively do time reversal to the l-th scatterer. And by using

iterative time reversal we can do this completely in hardware,

without doing a numerical SVD. There are advantages to this

when SNR issues are important.
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Imaging with the SVD

In order to image we have to back propagate in a known medium,

which we take as a homogeneous one and let

ĝ0(y, ω) = (Ĝ0(xr,y, ω))

The Kirchhoff migration functional in then given by

IKM(yS) =
∫

dωĝT
0 (yS, ω)Π̂(ω)ĝ0(y

S, ω)

=
∫

dω
p∑

j=1

σj(ω)ĝT
0 (yS, ω)ûj(ω)v̂T

j (ω)ĝ0(y
S, ω)

In the case of well separated scatterers we have

IKM(yS) =
∫

dω
p∑

j=1

ξj(ω)|ĝ∗0(y
S, ω)ĝ0(yj, ω)|2

We see now how the basic resolution theory of the source point

spread function can be carried over to KM.
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Other imaging strategies

We see that KM imaging, which is the the unfiltered least squares

imaging functional (AHA ≈ I), is rather strange because it illu-

minates a spot and then back propagates to it with the same

array vector ĝ0(y
S, ω). If we choose a general illumination vector

f , a linear combination of the right singular vectors for example,

we have

IBP (yS; f) =
∫

dωĝT
0 (yS, ω)Π̂(ω)f̂(ω)

If we let f̂(ω) =
∑

dl(ω)v̂l(ω) then

IBP (yS; d) =
∫

dω
p∑

j=1

σj(ω)ĝT
0 (yS, ω)ûj(ω)v̂T

j (ω)
p∑

l=1

dl(ω)v̂l(ω)

IBP (yS; d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)ĝT
0 (yS, ω)ûj(ω)

We can now look for a way to choose the weights {dj(ω)} so as

to optimize the image.
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Optimal illumination

Let

Gj(ω) =
∫

dyS|ĝT
0 (yS, ω)ûj(ω)|2

with the integration over some window, and let

I(d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)Gj(ω)

Then we can try to find weights {dj(ω)} that minimize this ob-

jective function.

There is no reason to adhere to the array least squares criterion,

which leads to filtered back propagation (or back projection), as

a basis for imaging.

Criteria based on the quality of the image directly have many

advantages, especially in random media.

13



Optimal subspace selection

Another way to introduce an optimization process using the SVD

is by subspace selection. Let

D
[
Π̂(ω);ω

]
=

p∑

j=1

σj(ω)dj(ω)ûj(ω)v̂∗
j(ω)

a subspace selector with weights {dj(ω)}. Now consider KM

imaging with it instead of Π̂. We have

IKM(yS; d) =
∫

dωĝT
0 (yS, ω)D

[
Π̂(ω);ω

]
ĝ0(y

S, ω)

or

IKM(yS; d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)(û∗
j(ω)ĝ0(y

S, ω))2

If we now integrate |IKM(yS; d)| over an image window we see

that we get back an objective similar to the optimal illumination

criterion, which we must minimize over {dj(ω)}.
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Summary of SVD, TR and imaging methods

• The SVD of the array response matrix allows for selective

focusing with TR on small scatterers

• The SVD singular vectors for TR can be computed directly

with ITR without having to know the full response matrix in

advance

• The SVD can be used for optimal illumination, or optimal

subspace selection, for migration imaging that is based on

the quality of the image itself
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Lectures VII-VIII

Waves in random media: Layered media, the paraxial

approximation, radiative transport

Time reversal in random media, super-resolution,

statistical stability
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Waves in random media

We consider the wave equation in a random medium

1

c2(~x)

∂2u

∂t2
−△u = 0 , t > 0 , ~x ∈ R

d+1 ,

with d = 1,2 and the local wave speed

c−2(z,x) = c−2
0

[
1 + σ0µ

(
z

lz
,
x

lx

)]
.

Here z and x ∈ Rd are, respectively, the coordinates along and

transverse to the direction of propagation, and ~x = (z,x). The

random function µ models the fluctuations in the propagation

speed.

When the characteristic scale of variation in the transverse di-

rection lx is large compared to lz then we have a layered random

medium. When lx = lz = l then we have essentially isotropic

randomness.
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The three regimes of random wave propagation

• Layered: Very strong scattering in direction of propagation.

Wave localization, long wave codas

• Wave transport: Wave energy ”diffuses” by radiative trans-

port. The transport mean free path

• The paraxial or parabolic regime: one-way wave propaga-

tion for beams, with scattering into lateral directions and no

backscattering

• Layered and paraxial are approximations that have very well

developed mathematical theories. Real world phenomena are

somewhere in between
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Paraxial or parabolic approximation

We consider wave fields propagating mainly in the z direction

u(t,x, z) =
1

2π

∫
eiω(z/c0−t)ψ(z,x;ω/c0)dω

The complex amplitude ψ(z,x; k) satisfies the Helmholtz equa-

tion

2ikψz + ∆xψ+ k2(n2 − 1)ψ = −ψzz.

Here k = ω/c0 is the wavenumber and n(x, z) = c0/c(x, z) is the

random index of refraction relative to a reference speed c0. The

fluctuations of the refraction index have the form

n2(x, z) − 1 = σ0µ

(
z

l
,
x

l

)

They are a stationary random field with mean zero, variance

σ2
0 and correlation length l. The normalized and dimensionless

covariance is given by

R(z,x) = E{µ(z + z′,x + x′)µ(z′,x′)}.
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On the numerical simulation of µ

1. Write (in 1D): R(x) = (1/2π)
∫
dkeikxR̂(k), with R̂(k) the

power spectral density, and discretize the integral with mesh

size ∆k

2. Generate independent identically distributed complex random

variables µ̂n with mean zero and variance R̂(n∆k)∆k/2π, and

so that µ̂n = µ̂−n

3. The process µ∆k(x) =
∑
n e

in∆kxµ̂n is an approximate real-

ization of µ(x)
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Scales

• Lz, the characteristic distance in the direction of propagation.

• Lx, the length scale in the directions transverse to the direc-

tion of propagation. This is typically taken to be the width

of the propagating beam.

• k0 = 2π/λ0, the central wavenumber corresponding to the

central wavelength λ0.

• l, the correlation length of the random medium. It character-

izes the dominant spatial scale of the random fluctuations.

• σ0, the dimensionless standard deviation of the random fluc-

tuations in the medium.

In the asymptotic regimes that we consider here Lz and Lx are

large compared to l and λ0, and σ0 is small.
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Scaled, dimensionless wave equation

We obtain the dimensionless form of the equation by introducing

dimensionless variables by x = Lxx
′, z = Lzz′, k = k0k

′ and

rewriting it as

2ik
∂ψ

∂z
+

Lz

k0L2
x

∆xψ+ k2k0Lzσ0µ

(
zLz

l
,
xLx

l

)
ψ = −

1

Lzk0

∂2ψ

∂z2
,

after dropping the primes. We identify now the following three,

usually small, dimensionless parameters in the problem:

• ε =
l

Lz
, the ratio of the correlation length to the propagation

distance,

• δ =
l

Lx
, the ratio of the correlation length to the transverse

length scale, which is usually the beam width,

• θ =
Lz

k0L2
x

=
λ0Lz

2πL2
x

, the reciprocal of the Fresnel number, the

ratio of the diffraction focal spot of the beam to its width.
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Scaled equation, continued

In terms of these parameters we have

2ikψz + θ∆xψ+
k2σ0δ

2

θε2
µ(
z

ε
,
x

δ
)ψ = −

θε2

δ2
ψzz.

We assume that ε is the smallest parameter in the problem. It

then follows formally, but it is quite difficult to prove, that the

ψzz term is a lower order term and can be neglected.

2ikψz + θ∆xψ+
k2σδ

θ
√
ε
µ

(
z

ε
,
x

δ

)
ψ = 0 , z > 0

with ψ at z = 0 given and where

σ =
σ0δ

ε3/2
.

This scaled noise strength parameter is assumed to be indepen-

dent of ε and δ as these parameters tend to zero in the asymptotic

analysis.
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The white noise limit

We consider the limit ε→ 0 while δ and θ are fixed. This means

that ε is the smallest of the three parameters ε, θ, δ. Assume that

the CLT applies to the random field µ:

lim
ε→0

1
√
ε

∫ z

0
µ

(
s

ε
,x

)
ds = B(z,x),

weakly in law, where B is a Brownian random field parameterized

by x. This means that for any test function h(x), in law

1
√
ε

∫ z

0
µh(s/ε)ds 7→ Bh(z), z ≥ 0,

µh(z) =
∫

Rd
µ(z,x)h(x)dx , Bh(z) =

∫

Rd
B(z,x)h(x)dx.

The random field B(z,x) is Gaussian with mean zero and

E{B(z1,x1)B(z2,x2)} = R0(|x1 − x2|)min{z1, z2}.

Here R0 is the integrated correlation function R0(x) =
∫∞
−∞R(z,x)dz.
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The Ito-Schrödinger equation

In the white noise limit ε→ 0 the solution of the random partial

differential equation converges in law to the process defined by

the stochastic partial differential equation

2ikdzψ+ θ∆xψdz +
k2σδ

θ
ψ ◦ dzB

(
x

δ
, z

)
= 0

given here in the Stratonovich form. The Itô form is

2ikdzψ+ θ∆xψdz +
ik3σ2δ2

4θ2
R0(0)ψdz +

k2σδ

θ
ψdzB

(
x

δ
, z

)
= 0.

There are two small parameters left in the Itô-Schrödinger equa-

tion after we have taken the white-noise limit – the reciprocal

Fresnel number θ and the non-dimensional correlation length δ.

We can consider the following limits.
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High and low frequency; lateral diversity

• The low frequency limit and large lateral diversity limit: δ → 0

with θ fixed,

• the high frequency or geometric asymptotics limit followed

by the large lateral diversity limit: θ ≪ δ ≪ 1, that is, θ → 0

followed by δ → 0, and

• the combined scaling limit: θ ∼ δ ≪ 1 with θ → 0 and δ → 0

simultaneously.

We refer to the limit θ → 0 as the high frequency limit and to

the limit δ → 0 as the limit of large lateral diversity.
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Low frequency limit

We see that if we pass to the limit δ → 0 with a fixed θ > 0 we

arrive at the homogeneous Schrödinger equation

2ikψz + θ∆xψ = 0.

This is because we have an a priori bound ‖ψ(t)‖L2 = ‖ψ0‖L2

and for any deterministic test function η(z,x) we have by the Itô

isometry

E

[
k2σδ

θ

∫ z

0

∫
η(s,x)ψ(s,x)dzB

(x

δ
, s
)
dx

]2

=

(
k2σδ

θ

)2

E

∫ z

0

∫
η(s,x)η(s,x′)ψ(s,x)ψ(s,x′)R0

(
x − x′

δ

)
dxdx′ds→ 0 as δ → 0.

A similar bound holds for the third term and therefore conver-

gence in probability follows.
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Phase space

In the high frequency limit θ → 0 (whether coupled with the limit

δ → 0, or not) solutions of the Itô-Schrödinger equation become

oscillatory in time and space. Therefore, rather than studying

the limit of the solution itself we consider the limits of its Wigner

transform which resolves the wave energy of oscillatory fields in

the phase space and (unlike the spatial energy density) satisfies

a closed evolution equation.

We define the spatial Fourier transform and its inverse by

f̂(k) =

∫
dxe−ik·xf(x) , f(x) =

∫
dk

(2π)d
eik·xf̂(k) ,

where d = 1 or 2 is the number of transverse spatial dimensions.

The Wigner transform relative to the scale θ is

Wθ(z,x,p) =
1

(2π)d

∫

Rd
eip·yψ(x −

θy

2
, z)ψ(x +

θy

2
, z)dy

The Wigner distribution is real, may be interpreted as phase

space wave energy. It is well suited for random media.
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Stochastic transport equation

Using the Itô calculus we find from the Ito-Schrödinger equa-
tion that the scaled Wigner distribution satisfies the stochastic
transport equation

dWθ(z,x,p) +
p

k
· ∇xWθ(z,x,p)dz =

k2σ2δ2

4θ2

∫ (
Wθ

(
z,x,p +

θq

δ

)
−Wθ(z,x,p)

)
R̂0(q)d

(2π)d

+
ikσδ

2θ

∫
dq

(2π)d
eiq·x/δ

(
Wθ

(
z,x,p −

θq

2δ

)
−Wθ

(
z,x,p +

θq

2δ

))
dB̂(q, z).

We do the high frequency and large diversity limits with the Itô-

Wigner equation as a starting point.

We note that the L2 norm of the Wigner distribution is conserved

‖Wθ(z)‖L2(R2d) = ‖Wθ(0)‖L2(R2d)
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High frequency limit

When we take the high frequency limit we find that Wθ converges

weakly to Wδ satisfying the Itô-Liouville equation

dWδ(z,x,p)+
p

k
·∇xWδ(z,x,p)dz+

k2σ2

8
R

′′

0(0)△pWδdz = −
kσ

2
d∇xB

(x

δ
, z
)
·∇pWδ.

We remark that R′′(0) < 0 so that this equation is well-posed.

This SPDE is connected to stochastic flows where solutions of

SDE’s play the role of characteristics (Kunita).
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Large diversity limit

The limiting Wigner distribution solves a stochastic PDE, in

which the coefficient of the random term fluctuates on the small

scale δ. When we subsequently take the limit of large lateral

diversity we find that the limiting Wigner distribution actually

becomes deterministic. We refer to this as the stabilization of

the Wigner distribution. Define W as the deterministic solution

of

∂W

∂z
(z,x,p) +

p

k
· ∇xW (z,x,p) +

k2σ2

8
R

′′

0(0)△pW = 0.
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Moment formula

There are two simple and practical items to remember when

with waves in random media and how affect TR and imaging

calculations.

One is the moment formula:

E{Ĝ(xr,y, ω)Ĝ(xr,y
S, ω)} ≈ Ĝ0(xr,y, ω)Ĝ0(xr,y

S, ω)e
−k2ξ2ae

2L2

The other is statistical stability: When integrating over a suffi-

ciently wide frequency band we have
∫
dωĜ(xr,y, ω)Ĝ(xr,y

S, ω) ≈
∫
dωE{Ĝ(xr,y, ω)Ĝ(xr,y

S, ω)}

Thus, we under favorable conditions we have for example

∫
dω

∑

xr

Ĝ(xr,y, ω)Ĝ(xr,y
S, ω) ≈

∫
dω

∑

xr

Ĝ0(xr,y, ω)Ĝ0(xr,y
S, ω)e

−k2ξ2ae
2L2
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Time Reversal Schematic

y

ys

L L(1+ )δ

λ/2

xp

ξ

Range: L, Carrier wavelength λ, Array size a = (N − 1)λ/2.

Source at y, Search point at ys, Transducers at xp.

Remote sensing regime: λ << a << L.

Random medium: Correlation length l << L, fluctuation strength

σ << 1.
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Remarks on TR in RM

• Resolution in time reversal: λL
a , cross-range. It is the same

as the Rayleigh resolution of optical instruments

• Super-resolution in random media because of multiple scat-

tering: λL/ae, cross-range. The effective aperture ae can be

much larger that the physical aperture a. In random media,

resolution is better than the diffraction limit

• Statistical stability (self-averaging) of time-reversed and back-

propagated field. Broad-band and narrow-band signals. Super-

resolution is observed only in regimes where there is statistical

stability
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The time-reversed, back-propagated field

On the plane of the source, at a point with transverse coordinates

ξ, the time time harmonic field is

ψB(L, ξ, k) =
∫
Gθ(L, x, ξ; k)Gθ(L, η, x; k)ψ0(η, k)χA(x)dxdη

where Gθ is the (random) Green’s function. In the time domain

it is

ΨB(L, ξ, t) =
∫
e−iωtψB(L, ξ,

ω

c0
)dω

Because of the form of this field, and for many other reasons,

we introduce and use the Wigner distribution of ψ

Wθ(z, x, p) =
∫

dy

(2π)2
eip·yψ(z, x−

θy

2
, k)ψ(z, x+

θy

2
, k)

and note that ψB can be written entirely in terms of Wθ.
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High frequency limit θ → 0

The Wigner distribution satisfies a linear stochastic equation,

the Ito-Wigner equation, that comes from the Ito-Schrödinger

equation using the Ito calculus. In the high frequency limit the

Wigner process converges weakly to the solution of the Ito-

Liouville equation

dzW + (
p

k
· ∇xW −

k2D

2
∆pW )dz +

k

2
∇pW · ∇xdzB(

x

δ
, z) = 0

where D = −R
′′

0(0)/4 and the wave number scales out: W =

W (z, x, p/k; k = 1). The expected value E{W} solves the PDE

Wz +
p

k
· ∇xW −

k2D

2
∆pW = 0

with given initial conditions W (0, x, p; k).

The process W depends on δ but E{W} does not.
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The mean of the time-reversed, back-propagated field

If we take a source field that is a directed beam

eip0·x/θψ0(
x

σs
, k),

with σs the lateral extent of the source, then in the white-noise

(ǫ→ 0) and high-frequency (θ → 0) limits we have

E{ψB(L, ξ, k)} = ψ0(·,−k) ∗W(·)(ξ)

where W is the point spread function

W(η) =

(
k

2πL

)2

χ̂A(
ηk

L
)e−η

2/(2σ2
M)

and

σM =
L

kae
, ae =

√
DL3

3

Here ae = ae(L) is the effective aperture of the array.
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Interpretation of the point spread function

If there is no scattering medium then D = 0 and

W(η) =

(
k

2πL

)2

χ̂A(
ηk

L
)

For a square aperture A = [−a
2,
a
2]

2

W(η) = W(η1, η2) =
1

π2η1η2
sin(

η1ka

2L
) sin(

η2ka

2L
)

The first zero of the sine function is at

ηF =
2πL

ka
=
λL

a
= Rayleigh resolution

If we define σF = L/ka, the Fresnel spot size, then when σF <<

σM , or a >> ae, multipathing does not alter the refocused spot

size of diffraction theory.

But if ae >> a then the point spread function is

W ≈

(
a

√
2πae

)2
e−η

2/(2σ2
M)

2πσ2
M
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Self-averaging

When is the time-reversed, back-propagated field self-averaging?

This is a fundumental issue because it determines when super-

resolution is observable.

In the present setting there are two results:

• If the source is localized, σs ∼ θ, then, in the limit δ → 0, the

time harmonic field ψB is self-averaging

lim
δ→0

E{(ψB − E{ψB})2} = 0

• If the source is distributed, σs >> θ, then only in the time

domain, that is for ΨB(L, ξ, t), we have self-averaging in mean

square sense as δ → 0.

• What does δ → 0 mean? Provides cross-range diversity in

multipathing.
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Field theory for the Ito-Liouville equation

The self-averaging is based on the following theorem for the

Ito-Liouville process (with k = 1) defined by

dzW + (p · ∇xW −
D

2
∆pW )dz +

1

2
∇pW · ∇xdzB(

x

δ
, z) = 0

with W (0, x, p) = χA(x):

For any z > 0 the integral

Jδ(z, x) =
∫
Wδ(z, x, p)dp

exists and

lim
δ→0

E{(Jδ − E{Jδ})
2} = 0

where E{Jδ} is independent of δ.

This is proved by using properties of the SDE’s (random charac-

teristics) through which the Ito-Liouville equation can be solved.
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Time-reversed, back-propagated pulse

In the time domain and for a distributed source, the self-averaging

field, in the white-noise and high-frequency limit, is given by

ΨB(L, ξ, t) = e−i(p0·ξ+ωot)ψ0(ξ)

·
∫

{|ω|<Ω}

dω

2π
e−iωtĝ(−ω) χA ∗



e
−x2/2a2e

2πa2e



 (
Lc0p0
ω0 + ω

)

When ae << a, that is, no multipathing, then

ΨB(L, ξ, t) ∼ e−i(p0·ξ+ωot)ψ0(ξ)

·
∫

{|ω|<Ω}

dω

2π
e−iωtĝ(−ω) χA

(
Lc0p0
ω0 + ω

)

In this case, if the beam lands entirely withing the TRM then

the time-reversed and back-propagated pulse is

e−i(p0·ξ+ωot)ψ0(ξ)g(−t)
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Time-reversed, back-propagated pulse schematic

L

σs

ap0c0L
ω0

A directed field propagates from a distributed source of size σs

toward the time reversal mirror of size a. The time-reversed,

back-propagated field depends on the location of the mirror rel-

ative to the direction of the propagating beam.
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Time-reversed, back-propagated pulse with multipathing

When multipathing is strong, ae >> a, then the self-averaging

time-reversed and back-propagated pulse is given by

ΨB(L, ξ, t) ∼ e−i(p0·ξ+ωot)ψ0(ξ)

·

(
a

√
2πae

)2 ∫

{|ω|<Ω}

dω

2π
e−iωtĝ(−ω) e

−1
2(

Lc0p0
ae(ω0+ω)

)2

Note that, remarkably, this expression is almost independent

of the time reversal mirror!

Use this formula to estimate the most important quantity in time

reversal with strong multipathing: the effective aperture ae.

Point the beam in different directions toward the TRM, measure

the time reversed pulse and estimate ae by fitting to the formula.
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Summary and conclusions

• Time reversal in a random medium is important because of

super-resolution and self-averaging, which are phenomena

that are difficult to analyze and understand quantitatively,

and require interesting mathematics.

• Applications abound, are very exciting and limited only by

the hardware, our imagination, and also our analytical un-

derstanding: Direct TR applications, Imaging, Communica-

tions.
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Lectures IX and X

Coherent interferometry for imaging in random

media

2



Kirchhoff or travel time migration

Assume that the background velocity is known. Denote the de-

terministic background Green’s function by Ĝ0(x,y, ω) = eiωτ(x,y)

4π|x−y|
.

We can then use the following imaging functional for the reflec-

tivity ρ(yS):

IKM(yS) =
∑

xs,xr

P (xr,xs, τ(xs,y
S) + τ(yS,xr))

Here τ(x,y) = |x− y|/c0 is the travel time from x to y when the

speed of propagation is c0.

This does not work in clutter because the deterministic travel

time cannot deal with the delay spread in the traces. The delay

spread is due to the scattering from the random inhomogeneities.
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Incoherent Interferometry

Delay spread manifests itself in the frequency domain as random

phases. To avoid this random phase problems in Kirchhoff mi-

gration imaging we mimic physical time reversal by computing

cross-correlations of data traces, the interferograms, and sum-

ming

IINT (yS) =
∑

xr,xr′

P (xr, ·) ∗t P (xr′,−·)|τ(xr,yS)−τ(xr′,y
S)

The interferograms are given by

P (xr, ·) ∗t P (xr′,−·)(t) =
∫ ∞

−∞
P (xr, s)P (xr′, s − t)ds

In the frequency domain we have

IINT (yS) =
∫

dω

∣∣∣∣∣
∑

xr

P̂ (xr, ω)e−iωτ(xr,yS)

∣∣∣∣∣

2
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Incoherent interferometry II

In the frequency domain we have

IINT (yS) =
∫

dω

∣∣∣∣∣
∑

xr

P̂ (xr, ω)e−iωτ(xr,yS)

∣∣∣∣∣

2

This is almost Matched Field Imaging

IMF (yS) =
∫

dω

∣∣∣∣∣
∑

xr

P̂ (xr, ω)Ĝ0(xr,y
S, ω)

∣∣∣∣∣

2

, Ĝ0(x,y, ω) =
eiωτ(x,y)

4π|x − y|

that is widely used in sonar and elsewhere in more general situ-

ations (waveguides, enclosures, etc) with a suitable Ĝ0.
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Decoherence distance Xd and decoherence frequency Ωd

The trace cross-correlation

P (xr, ·) ∗t P (xr′,−·)(t)

does not have a peak if |xr − xr′| > Xd.

The phases of P̂ (xr, ω1) and P̂ (xr, ω2) decorrelate when |ω1 −

ω2| > Ωd.

Both Xd and Ωd can be ESTIMATED from the array data di-

rectly.
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Coherent interferometric imaging

Use the Coherent Interferometric imaging functional:

ICINT (yS;Xd,Ωd) =
∫ ∫

|ω1−ω2|≤Ωd

dω1dω2

∑ ∑
|xr−x′

r|≤Xd

P̂ (xr, ω1)P̂ (x′
r, ω2)e

−i(ω1τ(xr,yS)−ω2τ(x′
r,y

S))

If we take Xd = a and Ωd = B, which means that there is

no smoothing, then the CINT functional is just the Kirchhoff

migration functional squared: ICINT = (IKM)2. The case Ωd =

0, suitably interpreted, is incoherent interferometry.
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Adaptive Selection of Xd and Ωd

For CINT to be effective we need to be able to determine the

decoherence length and frequency adaptively. We do this by min-

imizing the bounded variation norm of the (random) functional

ICINT

{X∗
d ,Ω∗

d} = argminXd,Ωd
||ICINT (·;Xd,Ωd)||BV

where

||f ||BV =
∫

|f(y)|dy + α
∫

|∇f(y)|dy

The bounded variation norm is used because it is smoothing

on small scales but is respectful of large scale features (discon-

tinuities). The smoothing is limited by the L1 norm. Other

sparsity-type norms can be used, such as entropy norms.
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What about denoising the data first and then migrating?

The array data P , not the image, could be denoised by minimiz-

ing

α||P − Q||PROX + ||Q||REG

over Q. This is an expensive calculation for large array data sets.

The denoising can also be done by harmonic analysis methods:

decompose the data P in some well chosen basis (ridgelets?),

threshold the Fourier coefficients below some level and recon-

struct to get the denoised data Q.

After the denoising one can do Kirchhoff migration with Q as

array data.
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Coherent interferometric imaging results
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Coherent Interferometry images in random media with s = 3%.

Left Figures: Xd = a, Ωd = B (Kirchhoff Migration, no

smoothing)

Middle Figures: Xd = X∗
d, Ωd = Ω∗

d (Adaptively selected optimal

smoothing)

Right Figures: Xd < X∗
d, Ωd < Ω∗

d (Too much smoothing)
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Comments on the CINT results

• Without smoothing there is no statistical stability of the im-

age: Different realizations of the random medium give differ-

ent images. Smoothing, especially in frequency, gives stable

but blurred images.

• Statistical stability of the image is very important because

it allows further processing with deblurring methods. We

have used Level Set Deblurring methods successfully, pro-

vided that we have a good estimate of the amount of blur-

ring.

• The optimal decoherence frequency Ω∗
d is not known and

it is determined adaptively, as explained above. So is the

decoherence distance X∗
d.
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Resolution theory for specific models

A resolution theory can be developed based on several assump-

tions about the random medium and the propagation regime.

Such assumptions are NOT used in the numerical simulations.

• With the paraxial approximation, the white noise limit, and

a high frequency expansion we reduce all theoretical calcu-

lations to the use of one relatively simple formula obtained

from the random Schrödinger equation: a second order mo-

ment formula.

• One other regime where analytical results can be obtained:

Layered media. In no other regime do we have, or expect,

analytical results.
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Summary: Resolution limits

Determin Known Rand (TR) Unknown Rand (CINT)

Range
c0

B

c0

B

c0

Ωd

Cross Range
c0L

ωa

c0L

ωae
∼ Xd

c0L

ωXd

∼ ae

Resolution limits in deterministic media and in random media,

when the random medium is known as in physical time rever-

sal, and when the random medium is not known as in coherent

interferometry.
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Role of coherence in array imaging

Coherence is essential in array imaging. A more physical, and

more conventional, way to measure coherence is through the

transport mean free path l⋆. In the regime where waves energy

propagates by diffusion, the diffusion coefficient is given by

D =
c0l⋆

3
.

If the transport mean free path l⋆ is small compared to the range

L of the object to be imaged then migration methods, including

CINT, will not work. In our numerical simulations l⋆ is of the

order of L, which is the regime where we expect CINT to be

effective.
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Optimal illumination and waveform design

Optimal illumination in array imaging is up to now aimed at

DETECTION. That is, if f̂(xs, ω) is the signal in the frequency

domain that is emitted at xs then the signal received at xr is

given by

Ns∑

s=1

Π̂(xr,xs, ω)f̂(xs, ω).

The total power received at the array is given by

P =
∫

|ω−ω0|≤B
dω

Nr∑

r=1

∣∣∣∣∣∣

Ns∑

s=1

Π̂(xr,xs, ω)f̂(xs, ω)

∣∣∣∣∣∣

2

.

We want to maximize this functional over all illumination signals

f̂(xs, ω) with the normalization

∫

|ω−ω0|≤B
dω

Ns∑

s=1

∣∣∣f̂(xs, ω)
∣∣∣
2

= 1
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Optimal illumination and waveform design

In general, Optimal Illumination for Detection (SVD) produces

images with bad resolution.

Just like in Adaptive Coherent Interferometry we can, however,

introduce an optimal illumination objective that is tied to the

resolution of the image itself.

We now show the results of numerical simulations using this

approach to optimal illumination.
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Optimal Illumination, Random Medium
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Left: image; Center, weights; Right: pulse.
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Optimal Illumination, Deterministic Medium
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The algorithm

We compute first the weighted average of the migrated traces

m̂(xr,y
S, ω) =

Ns∑

s=1

wsf̂B(ω − ω0)Π̂(xr,xs, ω)e−iω
[
τ(xr,yS)+τ(xs,yS)

]
.

We then cross correlate these migrated traces

ICINT(yS;w, f̂) =
∫

|ω−ω0|≤B
dω

∫

|ω′ − ω0| ≤ B
|ω′ − ω| ≤ Ωd

dω′

Nr∑

r=1

Nr∑

r′ = 1

|xr − x′
r| ≤

2c0

(ω+ω′)κd

m̂(xr,y
S, ω)m̂(xr′,y

S, ω′),
(1)

where w = (w1, ..., wNs).
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The algorithm, continued.

We determine w and f̂ by minimizing an objective function O(w, f̂)

that quantifies the quality of the image. We take it to be the L1

norm. We then determine the weights w = (w1, . . . , wNs) and the

waveform f̂(ω) as minimizers of O(w, f̂), subject to the following

constraints.

The weights should be nonnegative and sum to one

Ns∑

s=1

ws = 1, ws ≥ 0, s = 1, . . . , Ns. (2)

The support of f̂(ω) = f̂B(ω − ω0) is restricted to the fixed

frequency band [ω0 − B, ω0 + B], we ask that

f̂B(ω − ω0) ≥ 0, for all ω ∈ [ω0 − B, ω0 + B] (3)

and its integral is one.
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Optimal subspace selection and CINT

Another way to introduce an optimization process using the SVD

is by subspace selection. Let

D
[
Π̂(ω);ω

]
=

p∑

j=1

σj(ω)dj(ω)ûj(ω)v̂∗
j(ω)

a subspace selector with weights {dj(ω)}. Now let

m(xr,xs,y
S, ω; d) = D

[
Π̂(ω);ω

]

rs
e−iω(τ(xr,yS)+τ(xs,yS))

The CINT imaging functional to be optimized is:

ICINT (yS; d) =
∫ ∫

|ω−ω′|≤Ωd

dωdω′
∑

|xr−xr′|≤Xd

∑

|xs−xs′|≤Xd

m(xr,xs,y
S, ω; d)m(x′

r,x
′
s,y

S, ω; d)
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Summary of CINT and imaging in random media

• Coherent interferometry, which is the back propagation of

local cross-correlations of traces, deals well with partial loss

of coherence in cluttered environments.

• Adaptive estimation of the space-frequency decoherence ad-

dresses well the issue of learning the unknown environment.

• The key parameters Ωd and Xd, which characterize the clut-

ter, play a triple role: they are thresholding parameters for

CINT, they determine its resolution, and characterize the

coherence of the data. Theory and implementation issues

merge.

• In Optimal Subspace and Illumination selection is computa-

tionally intensive but makes a huge difference.
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Conclusions

Imaging in its many forms is at the center of modern applied

mathematics.

• It is naturally interdisciplinary

• It is profoundly mathematical

• It has to deal with large data sets

• It has to deal with statistical issues

• It has to deal with optimization issues
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